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Nonlinear Robust Filtering of
Sampled-Data Dynamical Systems

Masoud Abbaszadeh* and Horacio J. Marquez*

Abstract

This work is concerned with robust filtering of nonlinear sampled-
data systems with and without exact discrete-time models. A linear
matrix inequality (LMI) based approach is proposed for the design of
robust H,, observers for a class of Lipschitz nonlinear systems. Two
type of systems are considered, Lipschitz nonlinear discrete-time sys-
tems and Lipschitz nonlinear sampled-data systems with Euler ap-
proximate discrete-time models. Observer convergence when the exact
discrete-time model of the system is available is shown. Then, prac-
tical convergence of the proposed observer is proved using the Euler
approximate discrete-time model. As an additional feature, maximiz-
ing the admissible Lipschitz constant, the solution of the proposed
LMI optimization problem guaranties robustness against some nonlin-
ear uncertainty. The robust H,, observer synthesis problem is solved
for both cases. The maximum disturbance attenuation level is achieved
through LMI optimization. At the end, a path to extending the results
to higher-order approximate discretizations is provided.

1 Introduction

Design of discrete-time nonlinear observers has been the subject of signifi-
cant attention in recent years. [1], [2], [3], [4]. The study of the nonlinear
discrete-time observers is important at least for two reasons. First, most
continuous-time control system designs are implemented digitally. Given
that in most practical cases it is impossible to measure every state vari-
able in real time, these controllers require the reconstruction of the states
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of the discrete-time model of the true continuous-time plant. Second, there
are systems which are inherently discrete-time and do not originate from
discretization of a continuous-time plant. Of those, discrete-time observers
of continuous-time systems are particularly challenging. The reason is that
exact discretization of a continuous-time nonlinear model is usually not pos-
sible to obtain. Approximate discrete-time models, on the other hand, are
affected by the consequent approximation error. In this paper, we address
both problems. First, we consider a class of nonlinear discrete-time systems
with exact model. A nonlinear H,, observer design algorithm is proposed
for these systems based on an LMI approach. Then, the nonlinear sampled
data system with Euler approximate model is considered. The Euler approx-
imation is important because not only it is easy to derive but also maintains
the structure of the original nonlinear model. We will show that by appro-
priate selection of one of the parameters in our proposed LMIs (actually the
only design parameter in our algorithm), the practical convergence of the
observer via FEuler approximation is guaranteed as well as the robust H,
cost. Our approach is based on the recent results of [5]. See [6] and [7]
for other approaches. We emphasize that while the algorithms in [6] and
[7] are specifically designed for Euler discretization, our proposed algorithm
can be applied either to the nominal exact discrete-time model or its Euler
approximation.

There is a large body of literature for control and estimation of non-
linear systems satisfying a Lipschitz continuity condition. See for example
I8, 9, 10, 01, 2] 3] 14 151 6l [16] 17, 18, 19, 20, 211, 22, 23, 24 25, 26), 27, 28]
and the references therein, for details of the approach and applications to
control and filtering of different classes of nonlinear systems. The signifi-
cance of this condition is that it guarantees the existence and uniqueness of
the solution of the nonlinear systems. Also, it provides a mathematically
tractable framework to apply Lyapunov stability theory and establish sta-
bility and performance conditions in the form of Riccati equations or LMIs.

The LMI based observer design for uncertain discrete-time systems has
been addressed in several works e.g. [12], [16] and [I3]. In all these studies,
the proposed LMIs are nonlinear in the Lipschitz constant and thus it can not
be considered as one of the LMI variables. In the algorithm proposed here,
first the problem is addressed in the general case, then, having a bound on
the Lipschitz constant, the LMIs become linear in the Lipschitz constant and
we can take advantage of this feature to solve an optimization problem over
it. Providing that the optimal solution is larger than the actual Lipschitz
constant of the system in hand, we show that the redundancy achieved
can guarantee robustness against some nonlinear uncertainty in the original



continuous-time model for both exact and Euler approximate discretizations.

The rest of the paper is organized as follows: Section II briefly describes
the filtering framework. In Section III, an observer design method for a
class of nonlinear discrete-time systems is introduced. In Section IV the
practical convergence of the proposed observer via the Euler approximate
models is shown. In section V, the results of the two previous sections will
extend into the Hy, context followed by an illustrative example showing
satisfactory performance of our algorithm.

2 Filtering Framework

Figure (1] shows a classification of state estimators in terms of their func-
tionality, and their computational framework [29]. The filtering problem
deals with state estimation under noise/disturbance; the robust observation
problem addresses state estimation under model uncertainty, while robust
filtering combines the two. Multi-objective robust filtering provides tools to
tune the trade-offs between robustness bounds, disturbance attenuation level
and convergence rate [26, 22, [9]. While general matrix inequalities, including
bilinear matrix inequalities (BMIs), are not numerically tractable, semidef-
inite programming problems (SDP) and LMIs can be solved using efficient
interior-point methods. Strict LMIs are referred to those LMIs in which
all inequalities are strictly positive or negative definite and no semidefinite
matrices or equality constraints are allowed. Strict LMI solvers are often
more efficient than SDP solvers. The solutions provided in this work are
robust filters whose gains are computed using strict LMIs. Following an Lo
filtering framework, we assume that the noise is energy-bounded and the
model uncertainties are norm-bounded.

3 Observer Design For Nonlinear Discrete-Time
Systems

We consider the following system

z(k+1) = Agx(k) + F(z(k),u(k)) (1)
y(k) = Cax(k) (2)
where z € R",u € R™,y € RP and F(x(k),u(k)) contains nonlinearities

of second order or higher. The above system can be either an inherently
discrete-time system or the exact discretization of a continuous-time system.
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Figure 1: State estimation functionality and computational framework

We assume that F(z(k),u(k)) is locally Lipschitz with respect to = in a
region D, uniformly in u, i.e. Vx1(k),z2(k) € D:

[1F (21, u”) = F(w2,u")|| < yalley — 22|l (3)

where ||.|| is the induced 2-norm, u* is any admissible control sequence and
~vq > 0 is called the Lipschitz constant. If the nonlinear function F' satisfies
the Lipschitz continuity condition globally in R™, then all the results in this
and the ensuing sections will be valid globally. All matrices and vectors have
appropriate dimensions unless otherwise mentioned. The proposed observer
is in the following form:

ik +1) = Agi(k) + F@(k),u(k) + Ly(k) — Caa(k))  (4)
the observer error is thus:

e(k+1) 2 2(k+1)—2(k+1) = (Ag — LCy)e(k)

+ F(a(k), u(k)) — F(@(k), u(k)). (5)

Our goal is two-fold: (i) In the first place, we want to find an observer gain,
L, such that the observer error dynamics is asymptotically stable. (ii) We
want to maximize 74, the allowable Lipschitz constant of the nonlinear sys-
tem.

Theorem 1. Consider the system —@ with given Lipschitz constant
vq- The observer error dynamics (@ is (globally) asymptotically stable if
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there exist scalar € > 0, fized matriz @ > 0 and matrices P > 0 and G such
that the following set of LMIs has a solution

P—-Q-—¢eI AlP-CIGT

[PAd—GCd P >0 (6)
v, P

{P \Ifll}>0 (7)

where

“Amax(Q) + A (@) + 520 (Q)
Ya + 2 ' ®)

P, G, and € are the LMI variables and Q is a design parameter to be chosen.
Once the problem is solved:

Uy =

L=P'q (9)
Proof: Consider the Lyapunov function candidate as follows:
Vi = e;;FPek (10)
then:
AV =V — Vi = el (Ag — LC)TP(Aq — LCy)ey,
+2¢f (Aq — LCy)" P(Fy — Fy) (11)
+ (Fk — Fk)TP(Fk — Fk) — egPek
where for simplicity:

Fy & Fx(k), u(k)), B, £ F(#(k), u(k)). (12)

Suppose 3 P, > 0 such that the following discrete-time Lyapunov equation
has a solution:

(Ag — LCy))TP(Ay — LCy) — P = —Q (13)
then becomes:

AV = — el Qey, + 2eF (Ag — LCy)T P(F), — E})

+ (F, — E)TP(Fy, — F) (14)



using Rayleigh and Schwartz inequalities, we have:
lek Qexll = Amin(Q)lex (15)
12¢f, (Aq — LCa)" P(Fy — Fy)|| < |12 P(Fy, — )| - -
-+ || Aa = LG4l < 27aAmax (P)lex]|*|| A¢ — LCull

= 294 max(P) |l ex||*F(Aq — LCy) (16)
[(Fi — F)"P(Fy — Fy)|| < Amax(P)||(Fi — )2
< Y3 Amax(P)lex)? (17)

so for AV < 0 it is sufficient to have:

— Amin(Q) + Amax(P)[274(Ag — LCy) + 73] < 0. (18)
Condition along with are sufficient conditions for asymptotic sta-
bility. We now endeavor to convert these nonlinear inequalities into LMIs.
There exists a solution for if

Je>0, (Ag— LC)TP(Ay— LCy) — P < —Q — el

= (P-Q—cl)— (Ag— LC)TPP'P(Ay — LCy) >0 (19)

using Schur’s complement lemma, defining G = PL and knowing that PT =

P, the first LMI in Theorem 1 is obtained. The Lyapunov equation in
can be rewritten as

P=(Aq— LCy)TP(Ag— LCy) + Q (20)
and taking into account that:
0(A) —a(B)| <3(A+ B) <5(A) +3(B) (21)
we have that
|6 [(Ag — LCq)"P(Aq — LCy)] — 5(Q)| < 5(P) (22)
=0 [(Ag — LCy)"P(Aq — LCy)] <5(Q) +5(P)
using Schwartz inequality:
6 [(Aq— LCy)"P(Ag — LCy)] < 6%(Aq — LCy)5(P) (23)
comparing and , a sufficient condition for is
2(Ag — LCy)5(P) < 5(P) 4+ 5(Q)

= 0(Aq — LCq) < 1+ZE§Z§ (24)



note that since P and @ are positive definite their eigenvalues and singular
values are the same. Now, we want to find a sufficient condition for .

Using :
a(

=V e

5’(Ad — Lcd)Amax(P) < 5(P) (25)

(26)

Suppose @ is given, define,
9(a(P)) £ /a2(P) +5(Q)a(P)

then g(a(P)) is strictly increasing so there is no constant upper limit for
this function but we can still bound this nonlinear function with a linear

~ 2

g(@(P)) < \/62(P) +5(Q)a(P) + [U(QQ)}
=o(P)+ 0(2@ (27)
7(Q) (28)

which is a sufficient condition for . Substituting the above into , a
sufficient condition for is
(29)

/ Amax
'Yd)\max(P) 24/1+ )\maxg + Yd

For any a,b > 0, a® < b? implies a < b, thus, by squaring the two sides of
the above inequality, substituting from and after some algebra, to have

< )\min(Q)-

it suffices to
Min (@)
; _Zmin\%/
(Ya + 2)Anax (P) + 2Amax (@) Amax(P) < Y
= )\max(P) < Uy (30)
(31)

or equivalently,
W1 - PPT >0



which is by means of Schur’s complement lemma, equivalent to the second
LMI in Theorem 1 where ¥y is as in . This ends the proof. A

In continuance, consider the case where the Lipschitz constant of system,
Y4, is less than 1. This is not restrictive since the Lipschitz constant can
reduced using a suitable coordinate transformation [I0]. Besides, the dis-
cretized models of continuous-time systems may also fall into this category
by appropriate selection of the sampling time. We will see this in detail
for Euler discretization in the next section. The following theorem shows
that under this assumption, the maximum admissible Lipschitz constant is
achievable through an LMI optimization over ~,.

Theorem 2. Consider the system —@. The observer error dynamics
@) is (globally) asymptotically stable with maximum admissible Lipschitz
constant vy, if there ewist scalars ¢ > 0,§ > 1, fivred matriz Q > 0 and
matrices P > 0 and G such that the following LMI optimization problem
has a solution

min(¢)
s.t.
P-Q—¢cI AlP-CIGT
{ PA,—GCy P >0 (32)
Ul P
[ P Wyl } >0 (33)
where )
Uy = 3 [Amin (@) € — Amax (Q)] - (34)
once the problem is solved:
L=P'q@ (35)
. 1
g & max(yg) = 3 (36)

Proof: Having the same Lyapunov function candidate it follows that,
AV is given by . Knowing v4 < 1, reduces to

Amin(CQ)
25 (Aq — LCq) + 1] Amax(P)

Va < [ (37)



where (@) is the same as before. Based on , it can be written

[26(Ag — LCy) + 1] Amax(P) < 36(P) + 7(Q). (38)
From the above, we have
Ao Q) L @
[26(Ag — LCyq) 4+ 1] Amax(P) = 36 (P) + Amax(Q)
Eventually, a sufficiency condition for (37) is
< e v oP) < @ )

which, by means of Schur’s complement lemma is equivalent to the second
LMI in Theorem 2. A

Remark 1. The purpose of Theorem 2 is two-fold. (i) to find a gain ma-
trix “L” that stabilizes the observer error dynamics, and (ii) to maximized
~4. Dropping the maximization of 44 still renders a stable observer. In this
case the proposed LMI optimization reduces to an LMI feasibility problem
(namely; satisfying the constraints) which is easier. The only parameter to
be chosen in both cases is the positive definite matrix Q.

Remark 2- Nonlinear Uncertainty. The advantage of maximization
of 74 is that if the maximum admissible Lipschitz constant achieved by
Theorem 1, 77, is greater than the actual Lipschitz constant of the system,
Y4, then the proposed observer can tolerate some nonlinear uncertainty.
Consider the system with nonlinear uncertainty as below:

Fa(z,u) 2 F(x,u) + AF(z,u) (40)
x(k+1) = Agz(k) + Fa(z,u) (41)
y(k) = Caa(h). (12)

Suppose the additive nonlinear uncertainty is Lipschitz with unknown Lip-
schitz constant A~vy. According to the Theorem 1, Fa(x(k),u(k)) can be
any Lipschitz nonlinear function with Lipschitz constant less than or equal
to vy, ie.
|Fa(a1,u) - Falen, u)l| < yillay — w2l (43)

On the other hand

[Ea(z1,u) = Fa(zz, u)|| = [F(z1,u) + AF(z1,u) - -

<o — F(zg,u) — AF (9, u)]|

< [Fzr,u) — Fzz,u)|| + [[AF (21, u) — AF (22, u)]|

< vdllzr — m2ll + Avallzr — 22|



So, there must be:

Ya + Avg < g = Ava <v5 — Ya- (44)

This means that the proposed observer is robust against any additive Lip-
schitz nonlinear uncertainty with Lipschitz constant less than or equal to

Vi — Vd-

4 Observer Design For Nonlinear Sampled-Data
Systems Via Euler Approximation

In usual, given a continuous nonlinear model, an exact discretization can not
be found in closed form, thus originating the need of approximate discrete-
time models. A framework for nonlinear observer design based on approxi-
mated models has been recently proposed in [5]. In this section, our focus
will be on Euler approximation which is an important case because it is easy
to derive and it doesn’t change the structure of the original nonlinear model.
Following the notation of [5], we consider the following continuous-time sys-
tem

&= Ax + f(z,u)

y=Cx (4)

where x € R", u € R™,y € RP. We assume that system has an equilibrium
point at the origin and f(z,u) is locally Lipschitz with the Lipschitz constant
ve. The family of exact discretizations of is:

xz(k +1) = Agz(k) + F5(x(k), u(k))

y(k) = Cuz(k) (46)

index T means the discretization is dependent to the sampling time, 7.
To compute we need a closed-form solution of over the sampling
intervals [k T,(k+1)T), which is hard to obtain or even impossible. However,
it is realistic to assume that a family of approximate discrete-time models
is available

(k4 1) = Afx(k) + Fi(x(k), u(k))

(k) = Caa (k) e

Then for the Euler approximation we have
Ay = I+AT (48)
Fp(a(k), u(k)) = Tf(x*(k),u(k)). (49)
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Similar to , the proposed observer is
Ty = Agy + FR(2g, uk) + L(ye — Cay). (50)

Before expressing our result, we recall two aspects from [5], consistency and
semiglobal practicality. The definitions are omitted here due to space limita-
tions. According to the verifiable consistency conditions given in [30], if the
trajectories of a continuous-time Lipschitz nonlinear system are bounded,
then the Euler approximation is consistent (one-step consistent) with the
exact discrete-time model.

Based on , the Lipschitz constant of the Euler approximation is
Y4 = T7.. Again, we assume 4 < 1. This is even less restrictive than
in section 2, because here T directly multiplies . and can be chosen suffi-
ciently small. The following theorem shows that how the algorithm proposed
in Theorem 2 can be used to design an observer using Euler approximate
discrete-time model guaranteing observer practical convergence when ap-
plied to the (unknown) exact model, by the appropriate selection of Q.

Theorem 3. The observer (@) designed using the FEuler approrimate
model @ 1s semiglobal practical in T with the mazimum admissible Lip-
schitz constant v, if the trajectories of are bounded and there exist
scalarse > 0, £ > 1, fized matriz Q > 0 and matrices P > 0 and G such that
the LMI optimization problem @— has a solution where Apin (Q) = T.

Proof. Consider the same Lyapunov function used in Theorems 1 and

2:

Vi(e(k) = [0 (k) = 2°(0)]° P [o"(k) - 2" (k)] (51)
then

IV (ex,) = Vir(ew,))l = ||er, Pery — eg, Pens ||

= |etkn) = e(r))” P le(hr) + et (52)

< Amax(P)le(k1) + e(k2)llle(k1) — e(k2)]]

by the definition of observer error, the observer error is finite (note that the
convergence of the observer states to the states of the Euler approximate
model has already been achieved by virtue of Theorem 2, so

dM e (0700)7 )\maX(P) ||€(k‘1) + €(k2)|| < M (53)

11



thus, from the above:

1V (e(k1)) = Vr(e(k2)[| < M lle(kr) — e(k2)| (54)
Similar to what we did it section 2, we have
Fip = FRa®(k),u(k)), Fip £ FEE(k), u(k)) (55)
Vr(egps1) — Vr(er) = —ef Qep + 2ef (Ag — LOy)T
- P(Fgr — Fl?T) + (Fer — Flg,T)TP(FI?,T - FlgT)
< —Amin(Q)lex ]| + 26 (Ag — LCa)Amax(P)vallex |
+ 73 Amax (P) [lex ]|
Using and , it can be written

[~ Amin(Q) + 26 (A§ — LC&) Amax (P)valllex |
< _ )‘min(Q)HGkHQ < - )‘mm( )H%HQ
- 20'(Ad — LCd) + 1 2 /1 + )\rmn:iggg + 1

substituting into and knowing that Apnin(Q) = T and v4 = Ty,

we will have

(57)

Vr(e(k +1)) — Vr(e(k))
T
e (58)

- + Ty Amax(P) llex]”
max Q
241452 1 q

Now, we define the following functions:

<

ai(llexll) £ Amin(P) [lex]|? (59)
as((ex])) £ Amax(P) flex||? (60)
A 1 2
as(|lekl]) = e 61
e & (61)
po(T) £ T, vo(llexl)) £ 72 Amax(P) [lex||” (62)
m(llzxl) 20, v2(flukl) £ 0. (63)
Then, the following can be written
ar(llexll) < Vr(e(k)) < aa(llexl]) (64)
Vr(e(k + 1)%— Vr(e(k)) < —as(llexl)
+ po(T) o(llexll) +va(llzrll) + v2(llukl)] (65)

12



where ai(.) , aa(.) ,as(.) and po(.) are in class-K and ~(.) , 71(.) and
~2(.) are nondecreasing functions. Finally, since the trajectories of are
bounded for the Euler approximation, the Euler approximate model is con-
sistent with the exact model . It follows that all conditions of Theorem
1 in [5] are satisfied and the proposed observer is semiglobal practical in T. A

Remark 3. @ is not necessarily equal to TI, nevertheless, it can be
figured out from that to have a better convergence rate, Apax(Q) must
to be as small as possible

Amax(@) = Amin(Q) =T < Q =T1I. (66)

Remark 4: Nonlinear Uncertainty. Similar to Remark 2, in section
2, the observer is robust against any additive Lipschitz nonlinear uncertainty
with Lipschitz constant less than or equal to v} — ~..

5 Nonlinear H,, Observer Synthesis

In this section we extend the result of the previous section by proposing a
new nonlinear robust H., observer design method. Consider the system

w(k+1) = Agz(k) + F(2(k), u(k)) + Baw(k) (67)
y(k) = Cqx(k) (68)

where w(t) € £2[0,00) is an unknown exogenous disturbance. Suppose that
z(k) = He(k) (69)

stands for the controlled output for error state where H is a known matrix.
Our purpose is to design the observer parameter L such that the observer
error dynamics is asymptotically stable and the following specified H,, norm
upper bound is simultaneously guaranteed.

2]l < pllw]- (70)

The following theorem introduces a new method for nonlinear robust H.
observer design.

Theorem 4. Consider Lipschitz nonlinear system @)- with given

Lipschitz constant g4, along with the observer . The observer error dy-
namics is (globally) asymptotically stable with minimum Lo gain, p*, if there

13



exist scalars € > 0 and ¢ > 0, fivzed matriz Q@ > 0 and matrices P > 0 and
G such that the following LMI optimization problem has a solution.

min(¢)
[ P-Q—ecI AlP-CITGT
| PA;—GCy P >0 (71)
(W, P
P wl >0 (72)

I AZI % [2(7d + 1)\111 + )\max(Q)] I
<0 (73)

x BIPB;— (I

where Uy is as in and Ay = HTH — Q + 74 [3¥1 + Amax(Q)]. Once the
problem is solved L = P~'G and p* = min(u) = /C.

Proof: Consider the same Lyapunov function candidate as before, thus,
AV = el (Ag — LCy)T P(Ag — LCy)ey,
+2ef(Ag — LCy)T P(Fy, — F},) — el Pey,
+ (Fy — Fp)TP(F, — Fy) + 2wl BT P(A44 — LCy)es,
+ 2wl BYP(Fy — Fy)ey, +wi BY PBywy,
where the first four terms are the same as those found in Theorem 1, and

the next three terms are due to the disturbance w. If wy = 0, AV is given

by so the LMIs and guarantee the asymptotic stability. If
w # 0, we have that

wi BYP(Ay — LCy)e, < wl BYa(P)a(Aq — LCy)ey,
wl BT P(Fy, — F},) < wFBY&(P)yer
from the above and using , and , we have:
AV Seg [_Q + Yd (3)\maX(P) + )\max(Q))] €L

+wi By [2Amax (P)(va + 1) + Amax(@)] e (74)
+ wl BY PBywy,.
Now, define
JED " [a(k) (k) — pPwk) w(k)] . (75)
k=0

14



So, J < >0, [2(k)T2(k) — pPw(k)Tw(k) + AV]. Thus, a sufficient condi-
tion for J < 0 is that
Vke[0,00), 2lz—p2wTw+ AV <0. (76)
We have
(k)T 2(k) — pPw(k)Tw(k) + AV < el [HTH - Q- --
-4 Y (BAmax(P) + Amax(Q))]ex
+ wng [2Amax(P)(Yd + 1) + Amax(Q)] ek
+wl(BYPBy — 1wy
So a sufficient condition for J < 0 is that the right hand side of the above

inequality be negative. Then

2o whw <0= 2] < plw| (78)

substituting Apax(P) from into and defining ¢ = p?, the LMI
is obtained. A

(77)

Remark 5. For the Euler approximation, according to Theorem 3, if
Amin(®@) = T then the proposed Ho, observer will be semiglobal practical
in T. In this case, if we choose Q = T'I as suggested in Remark 3, then
it is clear that LMIs and can be simplified. Furthermore, having
vq < 1, we can first maximize the admissible Lipschitz constant using The-
orem 2, and then minimize p for the maximized 4, using Theorem 4. In
this case, according to Remark 2, robustness against nonlinear uncertainty
is also guaranteed.

Now we show the usefulness of this method through a design example.

Example: Consider the following continuous-time nonlinear system and
its Euler approximation

. 0 1 3

v [ -1 -1 ]x—{_ [ —627 — 623wy — 207 — 223 ]

y=Cr= [ 10 ] x

2 (k+1)= I+ AT)z*(k) + T f(x*(k))

y(ky=[1 0]a%k).
It is well-known that the polynomial type nonlinearities are locally Lipschitz.
f(z) is Lipschitz in the following region

D= {(l‘l,l‘g) € Rz | r1 < 03}

15



with Lipschitz constant 7. = 0.6109. We assume T = 0.1 sec and design
observer . Using Theorem 2, we have

7. = 0.67.

Now, using Theorem 4, with H = 0.25I, v4 = v; =Tv:, B = [ 11 ]T,
we get

p* =0.1308, L= [ 1.0497 0.3588 | .

Figure 1, shows the state trajectories for the continuous-time system along
with their estimations made by an observer which uses the Euler-approximate
model. Simulation is done for 10 seconds (100 samples) in the presence of
a Gaussian disturbance with zero mean and standard deviation 0.01. It can
be seen in the figure that after 3 seconds, the true and estimated states are
almost identical.

. . . . . . . .
10 20 30 40 50 60 70 80 90 100
time(T*Sec)

-0.2 I I I I I I I I I |
0 10 20 30 40 60 70 80 90 100

50
time(T*Sec)

Figure 2: The true and estimated states

5.1 Higher Order Approximate Models

Under certain conditions, the Lipschitz contiguity is preserved under second
order approximate discretization as studied in [31]. In most practical appli-
cations, first or second order discretization should be enough, specially since
the sampling time can be selected small enough to ensure desired bounds

16



on the approximation error. Furthermore, the expressions involving higher-
order approximate models rapidly become very complicated. In particular,
higher-order partial derivatives require tensor analysis of higher-orders. Un-
der the ZOH assumption, similar to the approach given in [32], we have:

T'd'w
(k+1 +Zl' tl|t1c

:x(k)+ 3

dl 1 dl—l
)+ Z dtl*1 Wf(% w)l|,-

Tl dl—l

[l a1 [Az + [ (2, u)lls, (79)

where i( )_% d_x+8f i
{ ag) W = on gy T ou T a (80)
o (az:,u):dt[dtn_1 (x,u)], n>2

Under the ZOH assumption, % = 0 in each sampling interval and thus:

dl 1 dlfl
z(k+1) = x( +Z Wf(xvu)”tk

dtl_l
(81)
d of da: af o d dvlf
a _9of dz _ @ > 9.
gl =g g = al g 2

The first order approximation, (I = 1) leads to the well-known Euler ap-
proximate model.

The robust nonlinear observer design results can be extended to higher-
order approximate models as well, which is a topic for further research.

6 Conclusion

In this paper, a new algorithm for robust H,, nonlinear observer design for
nonlinear discrete-time systems was proposed based on an LMI approach.
The observer is robust in the sense that it can achieve convergence to the
true state, despite nonlinear model uncertainty with guaranteed exogenous
disturbance rejection ratio. In addition, when the exact discrete-time model
of the system is not available, the same algorithm can still be used for
the Euler approximated model. In the proposed algorithms, the admissible
Lipschitz constant and the disturbance attenuation level can be maximized
through LMI optimization. These features make the proposed algorithm an
efficient design method.
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