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Maximum number of Fq-rational points on nonsingular threefolds in P
4

Mrinmoy Datta

Abstract. We determine the maximum number of Fq-rational points that a nonsingular
threefold of degree d in a projective space of dimension 4 defined over Fq may contain. This

settles a conjecture by Homma and Kim concerning the maximum number of points on a
hypersurface in a projective space of even dimension in this particular case.

1. Introduction

For a prime power q, we denote by Fq a finite field with q elements and by F̄q a fixed
algebraic closure of Fq. Let m, d be positive integers. We revisit the question of determining the
maximum number of Fq-rational points on a nonsingular hypersurface defined over Fq contained
in an m-dimensional projective space over an algebraic closure of Fq. More specifically we look
at the following question:

Question 1.1. Let X ⊂ P
m(F̄q) be a nonsingular hypersurface of degree d defined over Fq.

What is the maximum number of Fq-rational point that X may have?

From now on, we will restrict our attention to the case when 2 ≤ d ≤ q. If m = 2, then X is
a nonsingular plane curve defined over Fq and from the famous Hasse-Weil Theorem, we know
that |X (Fq)| ≤ 1 + q + (d− 1)(d− 2)

√
q and this bound is attained by the Hermitian curve.

Recently, Homma and Kim have addressed the Question 1.1 and made significant progress
towards answering the same. They have proved [6] the following inequalities:

(1) |X (Fq)| ≤ θq
(m− 1

2

)(

(d− 1)q
m−1

2 + 1
)

, if m ≥ 3 and m is odd,

and

(2) |X (Fq)| ≤ θq
(m

2

)

(d− 1)q
m
2
−1 + θq

(m

2
− 1

)

, if m is even,

where θq(j) = 1 + q + · · · + qj if j ≥ 0 and 0 if j < 0. A complete list of hypersurfaces that
attain the upper bound in (1) is given in ([6, Theorem 1.1]). However, it turns out that the
upper bound in (2) is never attained (see [6, Annotation]). To this end, the following conjectural
bound was proposed [6, Conjecture].

Conjecture 1. Suppose m ≥ 4 is an even integer and X ⊂ P
m be a hypersurface of degree

d defined over Fq. Then

|X (Fq)| ≤ θq
(m

2
− 1

)(

(d− 1)q
m
2 + 1

)

.
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In Theorem 4.8, we prove Conjecture 1 in the case when m = 4 and 2 ≤ d ≤ q, except when
(d, q) = (4, 4). More precisely, we show that if X ⊂ P

4 is a nonsingular threefold of degree d

defined over Fq, then |X (Fq)| ≤ (d− 1)q3 + (d− 1)q2 + q + 1.
The paper is organized as follows: In Section 2, we recall various upper bounds on the number

of Fq-rational points on hypersurfaces defined over Fq. In Section 3, we derive an upper bound
on the number of lines contained in a surface each containing a common point of intersection.
Finally, in Section 4, we prove our main result.

2. Preliminaries

In this section, we recall some well-known upper bounds on the number of Fq-rational points
on a hypersurface defined over Fq in terms of its degree and dimension. For a positive integer
m, we will denote by P

m (resp. A
m) the projective space (resp. affine space) of dimension m

over the field F̄q, while P
m(Fq) (resp. A

m(Fq)) will denote the set of all Fq-rational points in
P
m(resp. Am). Given a variety X , we will denote by X (Fq) the set of its Fq-rational points. We

recall an optimal upper bound for the number of Fq-rational points on an affine hypersurface
defined over Fq. We also record, for ease of reference, a result by Geil [3] concerning the second
highest number of Fq-rational points on an affine hypersurface defined over Fq.

Theorem 2.1. Let X ⊂ A
m be an affine hypersurface of degree d defined over Fq.

(a) [11, Thm. 6.13] if 1 ≤ d ≤ q then |X(Fq)| ≤ dqm−1, and

(b) [3, Prop. 2] if 2 ≤ d ≤ q−1 and |X(Fq)| < dqm−1 then |X(Fq)| ≤ dqm−1−(d−1)qm−2.

The following result, concerning the maximum number of Fq-rational points on a projective
hypersurface defined over Fq, was proved by Serre [12] and independently by Sørensen [13].

Theorem 2.2 (Serre-Sørensen). Let X ⊂ P
m be a hypersurface of degree d defined over Fq.

If d ≤ q then

|X (Fq)| ≤ S (d,m) = dqm−1 + θq(m− 2).

Further, the bound is attained by a hypersurface X if and only if X is a union of d hyperplanes

defined over Fq, each containing a common codimension 2 linear subspace defined over Fq.

We also recall a result by Homma and Kim, referred to as the elementary bound [5, Theorem
1.2] concerning the number of Fq-rational points on a hypersurface defined over Fq that does not
contain a Fq-linear component.

Theorem 2.3 (Homma-Kim). Let X ⊂ P
m be a hypersurface of degree d defined over Fq. If

X has no Fq-linear component, then |X (Fq)| ≤ E (d,m) = (d− 1)qm−1 + dqm−2 + θq(m− 3).

Next, we recall an upper bound on the number of Fq-rational points on a nonsingular hyper-
surface which is a consequence of Deligne’s work [2] towards establishing the Weil conjecture.

Theorem 2.4 (Deligne). Let X ⊂ P
m be a nonsingular hypersurface of degree d defined over

Fq. Then

|X (Fq)| ≤ W (d,m) =
d− 1

d

(

(d− 1)m − (−1)m
)

q
m−1

2 + θq(m− 1).

Remark 2.5. The upper bound E (d,m) above, often referred to as the elementary bound,
deserves a few more remarks. First of all, a complete list of hypersurfaces that can attain the
bound is known and can be found in [15]. It turns out that a hypersurface of degree d, with no
linear component defined over Fq, attains the elementary bound only if d = 2,

√
q + 1 or q + 1.

More remarkably, we have E (d,m) < W (d,m) whenever d ≥ √q+2. We refer to [5, Proposition
4.2] for the proof of this fact.
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Let X ⊂ P
m be a hypersurface defined over Fq. We recall that the Koen Thas invariant [14]

of X , denoted by kX , is given by

kX := max{dimL | L ⊂ X , L is a linear subspace of Pm defined over Fq}.
We refer to [16] for upper bounds on the number of Fq-points on hypersurfaces depending on

the Koen Thas invariant. The following proposition which is a direct consequence of [6, Lemma
2.1] gives an upper bound on kX where X is a nonsingular projective hypersurface.

Proposition 2.6. Let X be a nonsingular hypersurface in P
m. Then kX ≤

⌊

m−1
2

⌋

.

We will also use an upper bound on the number of Fq-rational points on a plane curve defined
over Fq that does not contain a line defined over Fq. In a series of three papers [7, 8, 9], Homma
and Kim proved the following result.

Theorem 2.7. Let C be a plane curve of degree d defined over Fq not containing any lines

defined over Fq. Then

|C(Fq)| ≤ (d− 1)q + 1,

except for the curve defined over F4 given by the vanishing set of the quartic polynomial

(X + Y + Z)4 + (XY + Y Z + ZX)2 +XYZ(X + Y + Z).

It is worth noting that the bound in Theorem 2.7 is better than that given by Theorem 2.3
in this case. We conclude this section with a few observations that will be helpful in the sequel.

Remark 2.8.

(a) Fix a positive integer d ≤ q. Let X ⊂ P
m be a hypersurface of degree d defined

over Fq. Suppose, X is given by the vanishing set of a homogeneous polynomial F ∈
Fq[x0, . . . , xm] with degF = d. If L is a linear subspace of Pm such that L 6⊂ X , then
F |L 6= 0. In particular, if X = V (F ) ⊂ P

3 is a surface defined over Fq and there is a
plane Π ⊂ P

3 with Π 6⊂ X , then F |Π 6= 0. Furthermore, the plane curve X ∩ Π may
contain at most d lines.

(b) Let X ⊂ P
m be a nonsingular hypersurface containing a line ℓ. If P ∈ ℓ then ℓ ⊂ TP (X ),

where TP (X ) is the tangent hyperplane to X at P .

3. An upper bound on number of lines passing through a point on a surface

In this section, we prove a fundamental result concerning the number of lines passing through
a given point on a surface. This result will turn out to be instrumental in proving the main
Theorem of this paper.

Theorem 3.1. Let Y ⊂ P
3 be a surface of degree d defined over Fq and P ∈ Y (Fq). Then

one of the following holds:

(a) Y contains a plane defined over Fq,

(b) Y contains a cone over a plane curve defined over Fq with center at P ,

(c) #{ℓ ⊂ P
3 | ℓ is a line such that P ∈ ℓ ⊂ Y } ≤ d(d− 1).

Proof. We assume that the conditions (a) and (b) are not satisfied. Let Π ⊂ P
3 be a plane

defined over Fq that does not pass through P . By a suitable linear change of coordinate systems
over Fq, we may assume that P = [1 : 0 : 0 : 0] and Π = V (x0). We may further assume that
Y = V (F ), where F ∈ Fq[x0, x1, x2, x3] and degF = d. Write

F (x0, x1, x2, x3) = xd−1
0 F1(x1, x2, x3) + · · ·+ Fd(x1, x2, x3),

where Fi ∈ Fq[x1, x2, x3] are homogeneous polynomials of degree i for i = 1, . . . , d. First note
that Fd 6= 0, for otherwise Π ⊂ Y . Furthermore, (F1, . . . , Fd−1) 6= (0, . . . , 0), since the condition
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F1 = · · · = Fd−1 = 0 implies that Y is a cone over the plane curve V (x0, Fd), a contradiction to
our assumption. Moreover, the polynomials F1, . . . , Fd are coprime. For otherwise, there exists
a polynomial G ∈ Fq[x1, x2, x3] such that G | Fi for i = 1, . . . , d, so Y contains a cone over the
plane curve given by V (x0, G), which violates our assumption.

Define LY (P ) := {ℓ | ℓ is a line with P ∈ ℓ ⊂ Y }. There is a natural bijection S ←→ LY (P ),
where S :=

(
⋃

ℓ∈LY (P ) ℓ
)

∩ Π. Hence, it is enough to show that |S| ≤ d(d− 1).

We claim that S = V (F1, . . . , Fd, x0). Let Q = [0 : a1 : a2 : a3] ∈ S. Since the line ℓ′

joining P and Q is contained in Y , we see that [t : a1 : a2 : a3] ∈ Y for all t ∈ Fq. In particular,
F (t, a1, a2, a3) = 0 for all t ∈ F̄q. Since F (T, a1, a2, a3) is a polynomial in T of degree at most
d − 1, we must have Fi(a1, . . . , am) = 0 for all i = 1, . . . , d − 1. Thus, S ⊂ V (F1, . . . , Fd, x0).
The converse is trivial.

We write Fd = G1 · · ·Gr, where r ≥ 1 and G1, . . . , Gr ∈ Fq[x1, x2, x3] are irreducible poly-
nomials. Since F1, . . . , Fr are coprime, for each i = 1, . . . , r, there exists 1 ≤ ji ≤ d− 1 such that
Gi and Fji are coprime. By Bezout’s theorem |V (x0, Gi, Fji)| ≤ degGi degFji ≤ degGi(d− 1).
Hence,

|S| ≤ |V (x0, F1, . . . , Fd)| ≤
r

∑

i=1

|V (x0, F1, . . . , Fd−1, Gi)|

≤
r

∑

i=1

|V (x0, Gi, Fji)|

≤
r

∑

i=1

degGi(d− 1) = d(d − 1).

This completes the proof. �

For the purpose of this paper, we have proved the above theorem for the field Fq. However,
it is worth mentioning that the proof goes through when Fq is replaced by an arbitrary field k.

Remark 3.2. If d ≤ q, then the upper bound of Theorem 3.1 can not be improved. To see
this, we consider the point P = [1 : 0 : 0 : 0] and Y ⊂ P

3, the surface given by the polynomial

F = x0

d−1
∏

i=1

(x1 − aix2)− x3

d−1
∏

j=1

(x2 − ajx3),

where a1, . . . , ad−1 are distinct non-zero elements of Fq. It is clear that Y does not satisfy the
conditions (a) and (b) in Theorem 3.1 and that X admits exactly d(d− 1) lines containing P .

4. Main result

Let d be a positive integer with 2 ≤ d ≤ q and X ⊂ P
4 be a nonsingular threefold of degree

d defined over Fq. Given a point P ∈ X (Fq), we denote by L(P,X ) (resp. Lq(P,X )) the set of
lines (resp. the set of lines defined over Fq) ℓ satisfying P ∈ ℓ ⊂ X . Also, for P ∈ X , we denote
by TP (X ), the tangent hyperplane to X at P . For a line ℓ ⊂ P

4(Fq), we denote by B(ℓ), the set
of all planes Π ⊂ P

4 defined over Fq such that ℓ ⊂ Π. If ℓ ⊂ P
4 is a line defined over Fq, then

|B(ℓ)| = q2 + q + 1 and P
4(Fq) =

⋃

Π∈B(ℓ)

Π(Fq).

The following proposition, thanks to the well known classification of quadric hypersurfaces [4]
over finite fields, settles the case where d = 2.

Proposition 4.1. If d = 2, then |X (Fq)| = q3 + q2 + q + 1.
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Proof. It is known that (see, for example, [4, Chapter 1]) any non-singular quadric threefold
in P

4 defined over Fq is a parabolic quadric upto a projective linear transformation which has
exactly q3 + q2 + q + 1 rational points. �

Next, we derive an upper bound for the number of Fq-rational points on X that lies outside
the tangent hyperplane to X at a given point P on X .

Lemma 4.2. For any P ∈ X (Fq), we have |X (Fq) ∩ TP (X )C | ≤ (d− 1)q3.

Proof. Let S denote the set of all lines defined over Fq that pass through P and is not

contained in TP (X ). It is easy to show that TP (X )C(Fq) =
⊔

ℓ∈S

(ℓ(Fq) \ {P}), which implies that

|X (Fq) ∩ TP (X)C | = ∑

ℓ∈S |X (Fq) ∩ (ℓ \ {P})|. Clearly, for any ℓ ∈ S, we have ℓ 6⊂ X implying

|X ∩ ℓ| ≤ d, and consequently, |X ∩ (ℓ \ {P})| ≤ d− 1.

Since |S| = q3, we have |X (Fq) ∩ TP (X)C | ≤ (d− 1)q3. �

The above Lemma applies immediately if we can find an Fq-rational point on X such that
Lq(P,X ) = ∅. The following Lemma shows that the conjecture is true in such a case.

Lemma 4.3. Let P ∈ X (Fq). If Lq(P,X ) = ∅, then |X (Fq)| < (d− 1)q3 + (d− 1)q2 + q + 1.

Proof. In view of Lemma 4.2 and the fact |X (Fq)| = |X (Fq)∩TP (X )|+ |X (Fq)∩TP (X )C |,
it is enough to show that |X (Fq) ∩ TP (X )| < (d − 1)q2 + q + 1. Since P is a singular point of
X ∩TP (X ), for each line ℓ with the property that P ∈ ℓ ⊂ TP (X ) we have |X ∩ (ℓ\{P})| ≤ d−2.
Since there are q2 + q + 1 lines defined over Fq in TP (X ) that contain P , we have

|X (Fq) ∩ TP (X )| ≤ 1 + (d− 2)(q2 + q + 1) = (d− 2)q2 + (d− 2)q + d− 1 < (d− 1)q2 + q + 1.

This completes the proof. �

Definition 4.4. Let P ∈ X (Fq) and ℓ ∈ Lq(P,X ). For each Q ∈ ℓ(Fq) we define,

Ωℓ(Q) := {Π ∈ B(ℓ) | X ∩ Π = ℓ ∪ ℓ1 ∪ · · · ∪ ℓd−1, ℓi ∈ Lq(Q,X )} and Ω(ℓ) :=
⋃

Q∈ℓ(Fq)

Ωℓ(Q).

Lemma 4.5. Let P ∈ X (Fq) and suppose that there exists ℓ ∈ Lq(P,X ) such that for any

Q ∈ ℓ(Fq) the surface X ∩ TQ(X ) does not contain a cone over a plane curve defined over Fq

with center at Q. Then

|Ωℓ(Q)| ≤ d− 1 for all Q ∈ ℓ(Fq), and consequently, |Ω(ℓ)| ≤ (d− 1)(q + 1).

Proof. Let Q ∈ ℓ(Fq) and tQ = |Ωℓ(Q)|. This implies that there are tQ planes Π1, . . . ,ΠtQ

each defined over Fq containing d−1 lines other than ℓ defined over Fq passing through Q. Then
|Lq(Q,X )| ≥ (d−1)tQ+1. If tQ ≥ d, then |Lq(Q,X )| ≥ d(d−1)+1 > d(d−1). This contradicts
Theorem 3.1. The second inequality follows since |Ω(ℓ)| ≤∑

P∈ℓ(Fq)
|Ωℓ(P )| ≤ (d−1)(q+1). �

Remark 4.6. Let P ∈ X (Fq) and suppose that there exists ℓ ∈ Lq(P,X ) such that for any
Q ∈ ℓ(Fq) the surface X ∩ TQ(X ) does not contain a cone over a plane curve defined over Fq

with center at Q. We define,

S(ℓ) := {Π ∈ B(ℓ) | X ∩Π is a union of d lines defined over Fq}.
Using Theorem 3.1 and a similar argument as in the proof of Lemma 4.5 it is easy to show that
|S(ℓ)| ≤ d(q + 1)− 1. In the special case when d = 3 and Π ∈ B(ℓ) \S(ℓ), then X ∩ (Π \ ℓ) is a
plane curve of degree 2 defined over Fq. Furthermore, X ∩ (Π \ ℓ) does not contain a line defined
over Fq. Using Theorem 2.7, we may conclude that |X ∩ (Π \ ℓ)| ≤ q + 1.
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Lemma 4.7. For Π ∈ B(ℓ), we have

|X (Fq)∩(Π\ℓ)| = (d−1)q if Π ∈ Ω(ℓ) and |X (Fq)∩(Π\ℓ)| ≤ (d−1)q−(d−2) if Π ∈ B(ℓ)\Ω(ℓ).
Proof. If Π ∈ Ω(ℓ) then we see from direct computation that |X (Fq) ∩ Π| = dq + 1. We

note that |X (Fq) ∩ (Π \ ℓ)| = |X (Fq) ∩ Π| − |ℓ| = (d − 1)q, which proves the first assertion.
To prove the second assertion, choose Π ∈ B(ℓ) \ Ω(ℓ). It follows readily that X ∩ Π is not
a union of d lines with a point in common. From the second part of Theorem 2.2 we have
|X (Fq)| < dq + 1. Moreover, X ∩ (Π \ ℓ) is an affine curve of degree d − 1 defined over Fq with
|X (Fq) ∩ (Π \ ℓ)| = |X (Fq) ∩ Π| − |ℓ(Fq)| < dq + 1 − (q + 1) = (d − 1)q. Since d − 1 ≤ q − 1,
Theorem 2.1 (b) applies, and we obtain |X (Fq) ∩ (Π \ ℓ)| ≤ (d− 1)q − (d− 2). �

Theorem 4.8. Fix a positive integer d with 2 ≤ d ≤ q. Let X ⊂ P
4 be a nonsingular

threefold of degree d defined over Fq. If (d, q) 6= (4, 4) we have,

|X (Fq)| ≤ (d− 1)q3 + (d− 1)q2 + q + 1.

Moreover, the bound is attained by a nonsingular threefold X of degree d only if there exists a

point P ∈ X (Fq) such that X ∩TP (X ) is a cone, with center at P , over a plane curve C of degree

d defined over Fq that does not contain a line defined over Fq and |C(Fq)| = (d− 1)q + 1.

Proof. If d = 2, then Proposition 4.1 applies and proves the assertion. Thus, we may
assume that d ≥ 3. If X (Fq) = ∅ there is nothing to prove. Choose P ∈ X (Fq). If Lq(P,X ) = ∅
then the Theorem is proved using Lemma 4.3. Thus, we may assume that Lq(P,X ) 6= ∅. Let
ℓ ∈ Lq(P,X ). We divide the proof into various cases.

Case 1: There exists Q ∈ ℓ(Fq) such that X ∩ TQ(X ) contains a cone over a plane curve C
defined over Fq with center at Q. Suppose that there exists a plane Π defined over Fq such that
C ⊂ Π. Let deg C = d1. We note that C does not contain a line defined over Fq, for otherwise
X ∩ TQ(X ) would contain a plane defined over Fq, contradicting Proposition 2.6. Since d1 ≤ d

and (d, q) 6= (4, 4), we have (d1, q) 6= (4, 4). From Theorem 2.7 we have |C(Fq)| ≤ (d1 − 1)q + 1
and consequently |C∗(Fq)| ≤ (d1 − 1)q2 + q + 1, where C∗ denotes the cone over C with center
at P . If d1 = d, then X ∩ TQ(X ) = C∗. We have |X (Fq) ∩ TQ(X )| ≤ (d − 1)q2 + q + 1 and the
assertion is proved using Lemma 4.2. If d1 < d, then there exists a surface Z of degree at most
d− d1 such that X ∩ TQ(X ) = C∗ ∪Z. Note that Z does not contain any plane defined over Fq.
Using Theorem 2.3 we have |Z(Fq)| ≤ (d− d1 − 1)q2 + (d− d1)q + 1. Hence,

|X (Fq) ∩ TQ(X )| ≤ |C∗(Fq)|+ |Z(Fq)| ≤ (d− 1)q2 + q + 1 +
(

− q2 + (d− d1)q + 1
)

.

Since d1 ≥ 1, we deduce that q2 > (d−d1)q+1. This shows that |X (Fq)∩TQ(X )| < (d−1)q2+q+1.
The assertion of the theorem is now proved using Lemma 4.2.

Case 2: For each Q ∈ ℓ(Fq) the corresponding surface X∩TQ(X ) does not contain a cone over

plane curve defined over Fq with center at Q. Let Ω(ℓ) and S(ℓ) be as above. We first assume
that (d, q) 6= (3, 3). Following the notations above, let r = |B(ℓ)\Ω(ℓ)|. From Lemma 4.5 we have
r ≥ (q2+q+1)−(d−1)(q+1). Also, from Theorem 2.1, we derive that |X (Fq)∩(Π\ℓ)| = (d−1)q
if Π ∈ Ω(ℓ) and |X (Fq) ∩ (Π \ ℓ)| ≤ (d− 1)q − (d− 2) if Π ∈ B(ℓ) \ Ω(ℓ). Hence

|X (Fq)| = |ℓ(Fq)|+
∑

Π∈B(ℓ)

|X (Fq) ∩ (Π \ ℓ)|

= |ℓ(Fq)|+
∑

Π∈Ω(ℓ)

|X (Fq) ∩ (Π \ ℓ)|+
∑

Π∈B(ℓ)\Ω(ℓ)

|X (Fq) ∩ (Π \ ℓ)|

≤ q + 1 + (q2 + q + 1− r)(d − 1)q + r
(

(d− 1)q − (d− 2)
)

= (d− 1)q3 + (d− 1)q2 + q + 1 +
(

(d− 1)q − r(d− 2)
)

.

To prove the assertion it is enough to show that r(d − 2)− (d− 1)q > 0.
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Subcase 1: Let d ≤ q − 1. We have r ≥ (q2 + q + 1)− (q2 − q − 2) = 2q + 3, implying

(d− 2)r − (d− 1)q ≥ (d− 2)(2q + 3)− (d− 1)q = (d− 3)q + 3(d− 2) > 0,

the last inequality follows since d ≥ 3.
Subcase 2: Let d = q. Then r ≥ (q2 + q + 1)− (q2 − 1) = q + 2. Thus,

(d− 2)r − (d− 1)q ≥ (q − 2)(q + 2)− (q − 1)q = q2 − 4− q2 + q > 0,

this follows since d ≥ 3 and (d, q) 6= (3, 3). Furthermore, the strict inequality in subcase 2 is a
consequence of the fact that (d, q) 6= (4, 4).

To deal with the case (d, q) = (3, 3), we would need a better estimate. To this end, let
r = |B(ℓ) \ Ω(ℓ)| as above, and define s = |B(ℓ) \ S(ℓ)|, where S(ℓ) is as in Remark 4.6. It
turns out that, s ≥ q2 + q + 1 − d(q + 1) + 1 = q2 − (d − 1)(q + 1) + 1. In particular, for
(d, q) = (3, 3), we have r ≥ 5 and s ≥ 2. We also note that Ω(ℓ) ⊂ S(ℓ) and consequently,
B(ℓ) = Ω(ℓ) ⊔ (S(ℓ) \ Ω(ℓ)) ⊔ (B(ℓ) \S(ℓ)). We have,

|X (Fq)|
= |ℓ(Fq)|+

∑

Π∈B(ℓ)

|X (Fq) ∩ (Π \ ℓ)|

= |ℓ(Fq)|+
∑

Π∈Ω(ℓ)

|X (Fq) ∩ (Π \ ℓ)|+
∑

Π∈S(ℓ)\Ω(ℓ)

|X (Fq) ∩ (Π \ ℓ)|+
∑

Π∈B(ℓ)\S(ℓ)

|X (Fq) ∩ (Π \ ℓ)|

≤ q + 1 + (q2 + q + 1− r)2q + (r − s)(2q − 1) + s(q + 1)

= 2q3 + 2q2 + q + 1 +
(

2q(1− r) + (r − s)(2q − 1) + s(q + 1)
)

.

It is enough to prove that 2q(1 − r) + (r − s)(2q − 1) + s(q + 1) < 0. But for q = 3, we have
2q(1 − r) + (r − s)(2q − 1) + s(q + 1) = 6 − (r + s) < 0. This completes the proof of the first
assertion. The second assertion is follows from the proof of the first assertion. �

Remark 4.9. As we have observed, the upper bound in the Theorem 4.8 is always attained
by a nonsingular quadric threefold. It is well-known that a nonsingular Hermitian threefold also
attains this bound (see [1] for more on Hermitian varieties in general). Further, if there is a
plane curve C of degree d not containing a line defined over Fq such that |C(Fq)| = (d− 1)q + 1,
then d = 2 or d ≥ √q+1 (see [10, Lemma 2.3]). From the second assertion of Theorem 4.8 it is
now clear that the upper bound is attained by a nonsingular threefold of degree d defined over
Fq only if d = 2 or d ≥ √q + 1.

We conclude this article by comparing the upper bound obtained in Theorem 4.8 to the
upper bounds mentioned in Theorem 2.2, Theorem 2.3, and in Theorem 2.4.

Remark 4.10. We denote by B(d) := (d− 1)q3 + (d− 1)q2 + q + 1. We also have,

S = dq3 + q2 + q + 1 and E (d, 4) = (d− 1)q3 + dq2 + q + 1.

A direct comparison shows that B(d) < E (d, 4) < S (d, 4). As pointed out in Remark 2.5, we
have E (d,m) < W (d,m) whenever m ≥ 3 and d ≥ √q + 2. In particular, this implies that the
upper bound B(d) is better than W (d, 4) whenever d ≥ √q + 2.
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