THE CLASSIFICATION OF HYPERELLIPTIC THREEFOLDS

FABRIZIO CATANESE AND ANDREAS DEMLEITNER

ABSTRACT. We complete the classification of hyperelliptic threefolds, describing in an elementary way the hyperelliptic threefolds with group D_4 . These are algebraic and form an irreducible 2-dimensional family.

INTRODUCTION

A Generalized Hyperelliptic Manifold X is defined to be a quotient X = T/Gof a complex torus T by the free action of a finite group G which contains no translations. We say that X is a Generalized Hyperelliptic Variety if moreover the torus T is projective, i.e., it is an Abelian variety A.

The main purpose of the present paper is to complete the classification of the Generalized Hyperelliptic Manifolds of complex dimension three. The cases where the group G is Abelian were classified by H. Lange in [La01], using work of Fujiki [Fu88] and the classification of the possible groups Ggiven by Uchida and Yoshihara in [UY76]: the latter authors showed that the only possible non Abelian group is the dihedral group D_4 of order 8.

This case was first excluded but it was later found that it does indeed occur (see [CD18] for an account of the story and of the role of the paper [DHS08]). Our paper is fully self-contained and show that the family described in [CD18] gives all the possible hyperelliptic threefolds with group D_4 .

Our main theorem is the following

Theorem 0.1. Let T be a complex torus of dimension 3 admitting a fixed point free action of the dihedral group

$$G := D_4 := \langle r, s | r^4 = 1, s^2 = 1, (rs)^2 = 1 \rangle,$$

such that $G = D_4$ contains no translations. Then T is algebraic. More precisely, there are two elliptic curves E, E' such that:

(I) T is a quotient T := T'/H, $H \cong \mathbb{Z}/2$, where

$$T' := E \times E \times E' =: E_1 \times E_2 \times E_3,$$

$$H := \langle \omega \rangle, \quad \omega := (h+k, h+k, 0) \in T'[2],$$

and h, k are 2-torsion element $h, k \in E[2]$, such that $h, k \neq 0, h + k \neq 0$;

Date: December 27, 2018.

AMS Classification: 14K99, 14D99, 32Q15

The present work took place in the framework of the ERC Advanced grant n. 340258, 'TADMICAMT' .

(II) there is an element $h' \in E'$ of order precisely 4, such that, for $z = (z_1, z_2, z_3) \in T'$:

$$r(z) = (z_2, -z_1, z_3 + h') = R(z_1, z_2, z_3) + (0, 0, h'),$$

$$s(z) = (z_1 + h, -z_2 + k, -z_3) = S(z_1, z_2, z_3) + (h, k, 0)$$

Conversely, the above formulae give a fixed point free action of the dihedral group $G = D_4$ which contains no translations. In particular, we have the following normal form:

$$E = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \quad E' = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau'), \quad \tau, \tau' \in \mathcal{H} := \{z \in \mathbb{C} | Im(z) > 0\},$$
$$h = 1/2, k = \tau/2, h' = 1/4$$
$$r(z_1, z_2, z_3) := (z_2, -z_1, z_3 + 1/4)$$
$$s(z_1, z_2, z_3) := (z_1 + 1/2, -z_2 + \tau/2, -z_3).$$

In particular, the Teichmüller space of hyperelliptic threefolds with group D_4 is isomorphic to the product \mathcal{H}^2 of two upper halfplanes.

1. Proof of the main theorem

We use the following notation: $T = V/\Lambda$ is a complex torus of dimension 3, which admits a free action of the group

$$G = \langle r, s | r^4 = s^2 = (rs)^2 = 1 \rangle \cong D_4,$$

such that the complex representation $\rho: G \to \operatorname{GL}(3, \mathbb{C})$ is faithful. A first observation is that the complex representation ρ of G must contain the 2-dimensional irreducible representation V_1 of G (else, ρ would be a direct sum of 1-dimensional representations: this, by the assumption on the faithfulness of ρ , would imply that G is Abelian, a contradiction). Hence we have a splitting

$$V = V_1 \oplus V_2$$

where V_2 is 1-dimensional, and we can choose an appropriate basis so that, setting $R := \rho(r), S := \rho(s)$, we are left with the two cases

Case 1:
$$R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & 1 \end{pmatrix}$$
, $S = \begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$,
Case 2: $R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & & 1 \end{pmatrix}$, $S = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}$.

which are distinguished by the multiplicity of the eigenvalue 1 of S. Indeed R is necessarily of the form above, since the freeness of the G-action implies that $\rho(g)$ must have eigenvalue 1 for every $g \in G$.

Lemma 1.1. In both Cases 1 and 2, the complex torus $T = V/\Lambda$ is isogenous to a product of three elliptic curves, $T \sim_{isog.} E_1 \times E_2 \times E_3$, where $E_i \subset T$, for i = 1, 2, 3 and E_1 and E_2 are isomorphic elliptic curves. In other words, writing $E_j = W_j/\Lambda_j$, the complex torus T is isomorphic to

$$(E_1 \times E_1 \times E_3)/H, \quad H = \Lambda/(\Lambda_1 \oplus \Lambda_2 \oplus \Lambda_3).$$

 $\mathbf{2}$

Proof. Let I be the identity of T.

In Case 1, we set $E_1 := \ker(S-I)^0 = \operatorname{im}(S+I)$, $E_3 := \ker(R-I)^0$ and $E_2 := R(E_1)$ (here, the superscript zero denotes the connected component of the identity). Then it is clear that $E_1 \cong E_2$, and that T is isogenous to $E_1 \times E_2 \times E_3$.

In Case 2, we define similarly $E_2 := \ker(S+I)^0 = \operatorname{im}(S-I)$, $E_3 := \ker(R-I)_0$ and $E_1 := R(E_2)$. We obtain again $E_1 \cong E_2$, and that T is isogenous to $E_1 \times E_2 \times E_3$.

Lemma 1.2. Writing $E_i = W_i / \Lambda_i$, the following statements hold.

(1) In Case 1, the lattice Λ_2 is equal to $W_2 \cap \Lambda$.

(2) In Case 2, the lattice Λ_1 is equal to $W_1 \cap \Lambda$.

Proof. (1) Obviously, $E_2 = R(E_1) = W_2/R(\Lambda_1)$, i.e., $\Lambda_2 = R(\Lambda_1) \subset W_2 \cap \Lambda$. On the other hand, $R(W_2 \cap \Lambda) \subset W_1 \cap \Lambda = \Lambda_1$, and applying the automorphism R of Λ gives $W_2 \cap \Lambda \subset R(\Lambda_1) = \Lambda_2$.

(2) Here, $E_1 = R(E_2) = W_1/R(\Lambda_2)$, i.e., $\Lambda_1 = R(\Lambda_2) \subset W_1 \cap \Lambda$. For the converse inclusion, observe $R(W_1 \cap \Lambda) \subset W_2 \cap \Lambda = \Lambda_2$, and applying R yields again the result.

We can now choose coordinates on V such that r is induced by a transformation of the form

$$r(z_1, z_2, z_3) = (z_2, -z_1, z_3 + c_3),$$

by choosing as the origin in V_1 a fixed point of the restriction of r to V_1 . We can now view r, s as affine self maps of T induced by affine self maps of $E_1 \times E_2 \times E_3$ of the form

$$r(z_1, z_2, z_3) = (z_2, -z_1, z_3 + c_3),$$

$$s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, \pm z_3 + a_3)$$

and sending the subgroup H to itself.

Lemma 1.3. The freeness of the action of the powers of r is equivalent to: H contains no element with last coordinate equal to c_3 , or $2c_3$. Moreover, $(0, 0, 4c_3) \in H$.

Proof. r(z) = z is equivalent to $(z_1 - z_2, z_1 + z_2, -c_3) \in H$. However, the endomorphism

$$(z_1, z_2) \mapsto (z_1 - z_2, z_1 + z_2)$$

of $E_1 \times E_2$ is surjective, hence *H* cannot contain any element with last coordinate equal to c_3 .

Since $r^2(z) = (-z_1, -z_2, z_3+2c_3), r^2(z) = z$ is equivalent to $(-2z_1, -2z_2, 2c_3) \in H$, and we reach the similar conclusion that H cannot contain any element with last coordinate equal to $2c_3$.

Finally, the condition that r^4 is the identity is equivalent to $(0, 0, 4c_3) \in H$.

Proposition 1.1. Case 2 does not occur.

Proof. Since we assume that

$$s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, z_3 + a_3),$$

and that s^2 is the identity, it must be

$$(2a_1, 0, 2a_3) \in H.$$

Consider now rs:

$$rs(z) = (-z_2 + a_2, -z_1 - a_1, z_3 + a_3 + c_3)$$

The condition that $(rs)^2$ is the identity is equivalent to:

$$(a_1 + a_2, -(a_1 + a_2), 2(a_3 + c_3)) \in H.$$

This condition, plus the previous one, imply that

$$(a_2 - a_1, -(a_1 + a_2), 2c_3) \in H,$$

contradicting Lemma 1.3.

Henceforth we shall assume that we are in Case 1, and we can choose the origin in E_3 so that

$$s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, -z_3)$$

Lemma 1.4. If

$$s(z_1, z_2, z_3) := (z_1 + a_1, -z_2 + a_2, -z_3)$$

then

$$(2a_1, 0, 0) \in H$$

and H contains no element of the form

5

 $(a_1, w_2, w_3).$

Proof. The first condition is equivalent to s^2 being the identity, while the second is equivalent to the condition that s acts freely, since s(z) = z is equivalent to $(a_1, -2z_2 + a_2, -2z_3) \in H$.

Proposition 1.2. For each $\lambda \in \Lambda$ there exist $\lambda' \in \Lambda, \lambda_1 \in \Lambda_1, \lambda_2 \in \Lambda_2, \lambda_3 \in \Lambda_3$, such that

$$2\lambda = \lambda_1 + \lambda', \quad 2\lambda' = \lambda_2 + \lambda_3$$

More precisely, we even have:

$$\Lambda \subset (1/2)\Lambda_1 + (1/2)\Lambda_2 + (1/4)\Lambda_3.$$

Proof. Let $\lambda \in \Lambda$: we can write

$$2\lambda = \underbrace{(I+S)\lambda}_{=:\lambda_1 \in \Lambda_1} + \underbrace{(I-S)\lambda}_{=:\lambda' \in \Lambda}.$$

Furthermore, since $\lambda' \in im(I - S)$, we obtain $2\lambda' = (I + R^2)\lambda' + (I - R^2)\lambda'$

$$2\lambda' = \underbrace{(I+R^2)\lambda'}_{=:\lambda_3 \in \Lambda_3} + \underbrace{(I-R^2)\lambda'}_{=:\lambda_2 \in \Lambda \cap W_2 = \Lambda_2}.$$

Hence, $\lambda = \frac{\lambda_1}{2} + \frac{\lambda_2}{4} + \frac{\lambda_3}{4}$ for unique $\lambda_j \in \Lambda_j$.

Applying the automorphism R of Λ and the unicity of the λ_j yields the result, since R exchanges Λ_1 and Λ_2 .

Proposition 1.3. We have

 $\Lambda \subset (1/2)\Lambda_1 + (1/2)\Lambda_2 + (1/2)\Lambda_3.$

Proof. For $\lambda \in \Lambda$ we can write $\lambda = \frac{\lambda_1}{2} + \frac{\lambda_2}{2} + \frac{\lambda_3}{4}$ for unique $\lambda_j \in \Lambda_j$. We now use the property

$$E_i \hookrightarrow T \Rightarrow \forall (0,0,d) \in H, \ d = 0.$$

Indeed, $2\lambda = \lambda_1 + \lambda_2 + \frac{\lambda_3}{2}$, hence $(0, 0, [\frac{\lambda_3}{2}]) \in H$ and $\frac{\lambda_3}{2} = 0$ in E_3 . Equivalently, there is an element $\lambda'_3 \in \Lambda_3$ with

$$\frac{\lambda_3}{4} = \frac{\lambda_3'}{2}$$

Lemma 1.5. Consider the transformation rs:

 $rs(z) = (-z_2 + a_2, -z_1 - a_1, -z_3 + c_3).$

The condition that its square is the identity amounts to

$$(a_1 + a_2, -(a_1 + a_2), 0) \in H,$$

while the freeness of its action is equivalent to the fact that H contains no element of the form

 $(w_1 - a_2, w_1 + a_1, w_3) \Leftrightarrow \forall (d_1, d_2, d_3) \in H: d_1 + a_2 \neq d_2 - a_1.$

Proof. The first condition is straighforward, while the freeness of the action is equivalent to the non existence of (z_1, z_2, z_3) such that

 $(z_1 + z_2 - a_2, z_2 + z_1 + a_1, 2z_3 - c_3) \in H.$

As usual, we observe that for each w_1, w_3 there exist z_1, z_2, z_3 with $z_1 + z_2 = w_1, 2z_3 - c_3 = w_3$.

We put together the conclusions of Lemmas 1.3, 1.4, 1.5,

- (i) $(0, 0, 4c_3) \in H$
- (ii) $(2a_1, 0, 0) \in H$
- (iii) $(a_1 + a_2, -a_1 a_2, 0) \in H$, hence also $(a_1 a_2, a_1 + a_2, 0) \in H$.
- (1) *H* contains no element of the form (w_1, w_2, c_3) ,
- (2) nor of the form $(w_1, w_2, 2c_3)$
- (3) nor of the form (a_1, w_2, w_3)
- (4) nor of the form (w_1, w_2, w_3) with $w_1 + a_2 = w_2 a_1$.

It follows from (iii) and (3) that $a_2 \neq 0$. While the condition that each element of H which has two coordinates equal to zero is indeed zero (since E_i embeds in T!) imply

$$2a_1 = 0, 4c_3 = 0.$$

By conditions (1), (2), (3) the elements a_1 , c_3 have respective orders exactly 2, 4. Moreover:

- (4) and (i) imply that $a_1 + a_2 \neq 0$
- (ii), (iii) and the fact that H has exponent 2 implies $2a_2 = 2a_1 = 0$, $2a_1 + 2a_2 = 0$. Hence $a_1 \neq a_2$ are nontrivial 2-torsion elements.

We have thus obtained the desired elements

$$h := a_1, k := a_2, h' := c_3.$$

It suffices to show that H is generated by $\omega := (h + k, h + k, 0) = (a_1 + a_2, a_1 + a_2, 0).$

Observe first that $\omega \in H$, by condition (iii).

Condition (4) implies that the first coordinate of an element of H must be a multiple of $(a_1 + a_2)$: since it cannot equal a_1 , by condition (3), and if it equals a_2 , we can add ω and obtain an element of H with first coordinate a_1 . Using R, we infer that both coordinates must be a multiple of $(a_1 + a_2)$. Possibly adding ω , we may assume that $w_1 = 0$: then by (4) we conclude that also $w_2 = 0$. Finally, the condition that each element of H which has two coordinates equal to zero is indeed zero, show that H is then generated by ω , as we wanted to show.

The last assertions of the main theorem follow now in a straightforward way (see [CC17] concerning general properties of Teichmüller spaces of hyperelliptic manifolds).

References

- [CC17] F. CATANESE, P. CORVAJA: Teichmüller spaces of generalized hyperelliptic manifolds. Complex and symplectic geometry, 39-49, Springer INdAM Ser., 21, Springer, Cham (2017).
- [CD18] F. CATANESE, A. DEMLEITNER: Hyperelliptic Threefolds with group D_4 , the Dihedral group of order 8. Preprint (2018), arXiv:1805.01835.
- [DHS08] K. DEKIMPE, M. HALENDA, A. SZCZEPAŃSKI: Kähler flat manifolds. J. Math. Soc. Japan 61 (2009), no. 2, 363-377.
- [Fu88] A. FUJIKI: Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math. Sci., 24 (1988), 1-97.
- [La01] H. LANGE: Hyperelliptic varieties. Tohoku Math. J. (2) 53 (2001), no. 4, 491-510.
- [UY76] K. UCHIDA, H. YOSHIHARA: Discontinuous groups of affine transformations of \mathbb{C}^3 . Tohoku Math. J. (2) 28 (1976), no. 1, 89-94.

LEHRSTUHL MATHEMATIK VIII, MATHEMATISCHES INSTITUT DER UNIVERSITÄT BAYREUTH, NW II, UNIVERSITÄTSSTR. 30, 95447 BAYREUTH

E-mail address: Fabrizio.Catanese@uni-bayreuth.de Andreas.Demleitner@uni-bayreuth.de

6