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Abstract

In the paper Infinite product representations for kernels and iterations of functions, the authors
associate certain Fatou subsets with reproducing kernel Hilbert spaces. They also present a method for
constructing an orthonormal basis for said Hilbert space, but the method depends on the polynomial
of the given Fatou set. We provide a partial classification of those polynomials the method applies to.

1 Introduction

Complex Dynamics

Recall that R : C → C has an attracting fixed point at z0 ∈ C if |R′(c)| < 1. The point z0 is called
an attracting fixed point because all points within a certain neighborhood of z0 are “attracted” to z0
under repeated iteration of R. The nth iterate of R is denoted by

R◦n(z) = R ◦R ◦ · · · ◦R(z)︸ ︷︷ ︸
n times

The basin of attraction of R at the attracting fixed point z0 is the following subset of C:

BR,z0 = {z ∈ C : lim
n→∞

R◦n(z) = z0}

For many polynomials with an attracting fixed point, the basin of attraction is a fractal.

Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space (RKHS) on C is a Hilbert space of functions on C in which
every linear evaluation functional is bounded. Uniquely associated to each RKHS is a kernel function
K : C× C→ C with the reproducing property:

〈f(z),K(z, w)〉H = f(w)

Since a RKHS is, in particular, a Hilbert space, it must have an orthonormal basis (ONB). Although
ONBs are guaranteed to exist, explicitly constructing an ONB is a much harder task.
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1 INTRODUCTION

Kernel Functions on Basins of Attraction

If R satisfies sufficient conditions, then one may construct a kernel function, represented as an infinite
product, on a subset of BR,z0 . See [1] for the general result. In particular, if R is a polynomial and
z0 = 0, then the map K : C× C→ C defined by

K(z, w) =

∞∏
n=0

(
1 +R◦n(z)R◦n(w)

)
(1)

is a kernel function on all of BR,0 [3]. The infinite product involves iterates of the map R and the
map 1 + zw, which is a kernel function on C. The kernel function 1 + zw can be used to construct an
ONB under certain circumstances.

The ONB Construction

First we take a moment to recall multi-index notation. Suppose J is an index set, then

J∞ = {v : v ∈ JN for some N = 1, 2, . . . }

Denote the RKHS associated to the previous kernel function (1) by H. The constant function 1(z) = 1
plays a crucial role in the construction, and in fact belongs to H. Consider a family of operators on
H, {Si : H → H}. For each v = (v1, v2, . . . , vN ) ∈ JN , define bv : C→ C

bv(z) = (Sv1Sv2 · · ·SvN 1)(z)

The next theorem, due to the authors of [1], gives sufficient conditions for the functions bv to form an
ONB.

Theorem 1. If a family of operators {Si : H → H}Ni=1 satisfies the Cuntz relations:

S∗i Sj = δijI,
N∑
i=1

SiS
∗
i = I

then B = {bv : v ∈ J∞} is an ONB for H.

In our particular set-up, the family we wish to consider is F = {S1, S2} where S1f(z) = f(R(z))
and S2f(z) = zf(R(z)). This family of operators can be shown to satisfy the Cuntz relations when
certain conditions are met, which we discuss now.

The Dagger Conditions

The family F of interest depends on the map R that is chosen. It can be shown that if R satisfies for
all z ∈ BR,0,

M(z) <∞

where M(z) is the number of solutions to R(ζ) = z, counting multiplicity, and either

1

M(z)

∑
R(ζ)=z

ei(ζ)ej(ζ) = δij , ∀i, j ∈ J (†)

or

1

M(z)

∑
R(ζ)=z

ei(ζ)ej(ζ) = δij , ∀i, j ∈ J, (‡)
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then F satisfies the Cuntz relations [1]. The functions, ei(z), are taken from any ONB for the RKHS
associated to the underlying kernel function of the infinite product kernel function. For the family F
that we are interested in, we have that e1(z) = 1 and e2(z) = z; this comes from the underlying kernel
function 1 + zw mentioned earlier. For ease of exposition we will refer to the above conditions as the
dagger conditions. A natural question is when does the map R satisfy either of the above conditions?

In the context of the underlying kernel function 1 + zw, the † condition becomes∑
R(ζ)=z

1 = M(z) (†1)∑
R(ζ)=z

ζ = 0 =
∑

R(ζ)=z

ζ (†2)∑
R(ζ)=z

|ζ|2 = M(z), (†3)

and the ‡ condition becomes ∑
R(ζ)=z

1 = M(z) (‡1)∑
R(ζ)=z

ζ = 0 (‡2)∑
R(ζ)=z

ζ2 = M(z) (‡3)

We examine which polynomials R satisfy the dagger conditions and offer a classification for R to
satisfy the ‡ condition.

2 Partial Classification of the Dagger Conditions

The purpose of the dagger conditions is to construct an ONB for the RKHS corresponding to the
kernel function on BR,0. Thus our interest lies only with those polynomials with an attracting fixed
point at 0, even though the dagger conditions do not require R to have such a property. The first two
cases of either dagger condition is quite easily characterized.

Proposition 2. If P (z) is a degree n polynomial with an attracting fixed point at 0 then the following
hold:

a) P (z) satisfies †1 and ‡1.

b) P (z) satisfies †2 and ‡2 if and only if an−1 = 0.

Proof.

a) Since BP,0 is completely invariant with respect to P , we know that if P (ζ) = z for some z ∈ BP,0,
then we must have that ζ ∈ Ω. By the Fundamental Theorem of Algebra there are n solutions
to P (ζ) = z, counting multiplicity. Thus

∑
P (ζ)=z

1 = n = M(z).

b) We have that P (z) satisfies †2 and ‡2 if and only if
∑

P (ζ)=z

ζ = 0 =
∑

P (ζ)=z

ζ which by Vieta’s

formulas is equivalent to an−1 = 0.
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2 PARTIAL CLASSIFICATION OF THE DAGGER CONDITIONS

Note: The conditions †2 and ‡2 are equivalent to each other since
∑

P (ζ)=z

ζ =
∑

P (ζ)=z

ζ

The next proposition will complete our characterization of ‡.

Proposition 3. A polynomial P of degree n ≥ 3, with an attracting fixed point at 0, satisfies ‡3 if

and only if an−2 =
−nan

2

Proof. The polynomial P satisfies ‡3 if and only if∑
R(ζ)=z

ζ2 = n

which is equivalent to an−2 = −nan
2 , since Vieta’s formulas and the Newton-Girard formulas give

n =
∑

R(ζ)=z

ζ2 = −2e2 =
−2an−2
an

Combining the last two propositions, we may characterize those polynomials satisfying the ‡ con-
dition:

Theorem 4. Suppose P is a polynomial of degree n ≥ 3 with an attracting fixed point at 0. The

polynomial P satisfies ‡ if and only if P (z) =
n∑
k=1

akz
k where an−1 = 0, and an−2 = −nan

2 .

Note: Since P has an attracting fixed point at 0, we have also that |a1| < 1.

Characterizing the †3 condition seems to be more challenging. It is easy to find polynomials which
satisfy †3 at a particular point. But the dagger conditions are required to hold for all z ∈ BP,0. As such
we introduce “partial” conditions, †c and ‡c, each meaning that the corresponding set of equations
hold precisely at the point c ∈ C. The next proposition will help us determine which polynomials
might satisfy †.

Proposition 5. Suppose c ∈ BP,0.

a) If P (z) satisfies ‡c, then P (z) satisfies ‡.
b) If P (z) satisfies both †c and ‡c then the equation P (z) = c has only real solutions.

Proof.

a) If P (z) satisfies ‡c, then we must have that∑
P (ζ)=c

1 = n,
∑

P (ζ)=c

ζ = 0,
∑

P (ζ)=c

ζ2 = n

By Vieta’s formulas, we have that an−1 = 0. Thus we have that ‡1 and ‡2 hold by an application
of Proposition 1. By an application of the Newton-Girard formulas we have that

n =
∑

P (ζ)=c

ζ2 = −2e2 =
−2an−2
an

Applying the same formula again we find that∑
P (ζ)=z

ζ2 =
−2an−2
an

= n

So P actually satisfies ‡.
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b) Suppose that P (z) satisfies both †c and ‡c, so in particular, we have that∑
R(ζ)=c

ζ2 =
∑

R(ζ)=c

|ζ2|

which requires that
∑

R(ζ)=c

Im ζ2 = 0. Thus we have that

∑
R(ζ)=c

Re ζ2 =
∑

R(ζ)=c

|ζ2|

If ζ2 is not real, then |ζ2| > Re ζ2, so the above equality holds only if all solutions to P (ζ) = c
are real.

So if P (z) has a non-real zero, then P (z) cannot satisfy both † and ‡. The only interesting polyno-
mials which might satisfy † are those P (z) which have the property that ‡c is not satisfied for any c ∈ Ω.
Such a polynomial requires the property that P (z) + c has at least one non-real zero for all c ∈ Ω.
An example of a polynomial with this property is any cubic of the form P (z) = az3 + bz + c with b a
scalar multiple of a. We show now that no polynomial can satisfy both † and ‡. This fact can be used
in turn to show that the aforementioned property is a necessary condition for a polynomial to satisfy †.

Proposition 6. If P is a polynomial with an attracting fixed point at 0, then P cannot satisfy both †
and ‡.

Proof. Suppose to the contrary that P satisfies both † and ‡. By Proposition 5, P (z) = c has only real
solutions, for any c ∈ BP,0. Thus the inverse image of BP,0 under P must be a subset of R. However,
BP,0 is an open set, and P is a continuous map, so that the inverse image of BP,0 under P must be
an open set. But no subset of R is open as a subset of C. Thus it cannot be that P satisfies both †
and ‡.

We can now state a necessary condition for a polynomial to satisfy †.

Proposition 7. If P is a polynomial with an attracting fixed point at 0 that satisfies †, then for all
c ∈ BR,0, the equation P (z) = c has at least one non-real solution.

Proof. Suppose that P satisfies †, and to the contrary, that P (z) = c has only real solutions. If ζ is
such a solution, then |ζ|2 = ζ2. Since P satisfies †3, we have also that, by the previous observation,
that P satisfies ‡3. By Proposition 2, P also satisfies ‡1 and ‡2, so that P must satisfy ‡. But P
cannot satisfy both † and ‡, so that P (z) = c must have at least one non-real solution.

Another approach to showing that a polynomial satisfies one of the dagger conditions is to write it
as a product of two polynomials, each of which satisfy the same dagger condition. This is equivalent
to determining whether the product of two polynomials, both satisfying the same dagger condition,
will satisfy a dagger condition. This works quite well for the ‡ condition.

Proposition 8. If R(z) and Q(z) satisfy ‡, then R(z)Q(z) satisfies ‡.

Proof. Suppose that R and Q both satisfy ‡ and let S(z) = R(z)Q(z). Let ai denote the coefficients of
R, bi denote the coefficients of Q, and suppose degR = r, degQ = q so that degS = r+ q. Theorem 4

tells us that ar−2 =
−rar

2
, bq−2 =

−rbq
2

, and ar−1 = 0 = bq−1. If ci denotes the coefficients of S, then

we have that cr+q = arbq, cr+q−1 = 0, and cr+q−2 =
−(r + q)cr+q

2
. By Theorem 4, the polynomial S

satisfies the ‡ condition.
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3 EXAMPLES

Figure 1: The domain of K(z,w): BR,0

3 Examples

Here we present an example of a polynomial satisfying ‡, and an example of a polynomial satisfying
†0.

Example 9. Consider the polynomial R(z) = iz4 − 2iz2 − 1+i
2 z. We see that 0 is an attracting fixed

point of R since R(0) = 0 and |R′(0)| =
√

2

2
< 1. So we have that the map

K(z, w) =
∞∏
n=0

(
1 +R◦n(z)R◦n(w)

)
is a kernel function on BR,0. The polynomial R has coefficients: a4 = i, a2 = −2i, a1 = −1+i

2 , and
a3 = a0 = 0. Since a3 = 0 and a2 = −4a4

2 , Theorem 4 tells us that R satisfies ‡. This in turn shows
that the operators S1 and S2, defined by:

S1f(z) = f(R(z)) and S2f(z) = zf(R(z))

satisfy the Cuntz relations. So we may apply Theorem 1 to conclude that the functions bv(z) form an
ONB for the Hilbert space associated to K. Recall that

bv(z) = (Sv1Sv2 · · ·SvN 1)(z)

where v ∈ J∞. The first few basis elements are:

1, z, R(z), zR(z), R◦2(z), zR◦2(z), R(z)R◦2(z), zR(z)R◦2(z), . . .

So the basis elements may be calculated recursively, but obtaining a general formula appears to require
a general formula for R◦n.

Example 10. Consider the polynomial Q(z) = 1
2z

3 + 3
4z which also has an attracting fixed point at

0. So the map

K(z, w) =

∞∏
n=0

(
1 +Q◦n(z)Q◦n(w)

)
is a kernel function on BQ,0. There is a RKHS associated to K, however, we can’t use the dagger
conditions to construct an ONB. By Theorem 4, Q doesn’t satisfy ‡, in particular, the condition ‡3.
It turns out that Q does satisfy †0; this follows from Proposition 2 and the following observation:∑

Q(ζ)=0

|ζ|2 =
∣∣∣0∣∣∣2 +

∣∣∣i√3/2
∣∣∣2 +

∣∣∣− i√3/2
∣∣∣2 = 3
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Figure 2: The domain of K(z,w): BQ,0

It can be shown in a similar fashion that Q satisfies †c for c =
i

2
√

2
. However Q doesn’t satisfy †c for

all c ∈ BQ,0: for c = i ∈ BQ,0 and with the aid of WolframAlpha, we have that∑
Q(ζ)=i

|ζ|2 > 3

4 Open Questions

Here we discuss some open questions pertaining to this paper.

1. Classify the † condition. The main issue lies with †3. Since the sum involves the modulus of
the roots, Vieta’s formula may not be applied.

2. Find a polynomial that satisfies †3 or show that no polynomial satifies †3. Just having
one example would be a nice starting point; but so would knowing that no examples exist.

3. What if we don’t count multiplicity? Much of the theory presented in [1] should still work
if we don’t count the multiplicity of the solutions to P (z) = c. The biggest issue with this change
would be in the application of Vieta’s formula, since it does use multiplicity.

4. Classify polynomials satisfying †0. This could be another starting point for classifying the
† condition. Understanding when †0 is satisfied could help to understand when †c is satisfied.

5. Generalize the results presented here to other “underlying” kernel functions. There
are other underlying kernel functions one could use other than 1 + zw. However, changing the
underlying kernel function will change the dagger conditions. There are some kernel functions
for which the approach presented here might still work, in particular, kernel functions of the
form 1 + (zw)n, where n is a positive integer.

5 Appendix: Newton-Girard Identities and the Vieta

Formula

Here we take a brief look at the Newton-Girard identities and Vieta’s formula; both quintessential
tools in this paper. See [2] for a more in depth historical introduction.

Theorem 11 (Vieta’s formula). Suppose P (z) =
n∑
j=0

ajz
j satisfies an 6= 0. If z1, . . . , zn are the roots

(counting multiplicity) of P , then ∑
1≤j1<···<jk≤n

zi1 · · · zik =
(−1)kan−k

an

7
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Proof. By assumption we have that

n∑
j=0

ajz
j = an

n∏
j=1

(z − zj) = anz
n + an

n∑
k=1

(
(−1)k

∑
1≤j1<···<jk≤n

zi1 · · · zik
)
zn−k

equating coefficients yields Vieta’s formula.

The Newton-Girard identities involve symmetric polynomials, so we start with a few definitions

and notational conventions. The kth power sum in n variables is the polynomial pk,n =
n∑
i=1

zki . The

elementary symmetric polynomials in n variables are defined by

e0 = 1, e1 =

n∑
i=1

zi, e2 =
∑

1≤i<j≤n
zizj , . . . , en = z1z2 · · · zn, ek = 0 ∀k > n

Theorem 12 (Newton-Girard identities). Let em denote the mth elementary symmetric poliynomial
in n variables and Pm denote the mth power sum in n variables. We have that

k−1∑
l=0

(
(−1)lelPk−l

)
+ (−1)kkek = 0 ∀k, n ∈ N

Proof. From the proof of Vieta’s formula we have

n∏
j=1

(z − zj) = zn +
n∑
l=1

(
(−1)l

∑
1≤j1<···<jl≤n

zi1 · · · zil
)
zn−l =

n∑
l=0

(−1)lelz
n−l

where we now think of the zj as free variables. Suppose k = n, set z = zh where h ∈ {1, . . . , k} to
obtain

0 =

k∑
l=0

elz
k−l
h =

k−1∑
l=0

(
(−1)lelz

k−l
h

)
+ (−1)kek

Now sum the right hand side over h to obtain:

0 =
∑
h

(
k−1∑
l=0

(
(−1)lelz

k−l
h

)
+ (−1)kek

)
=

k−1∑
l=0

(
(−1)lelPk−l

)
+ (−1)kkek

Demonstrating the identity for k = n. The case n < k follows from setting k − n of the zh to 0 and
the case k < n follows from setting n− k of the zh to 0.

The first two Newton-Girard identities are:

1. For k = 1: P1 − e1 = 0

2. For k = 2: P2 − e1P1 + 2e2 = 0

Solving the second formula for P2, we obtain P2 = e1P1 − 2e2. Now let n be the degree of some
polynomial R that satisfies †2 or ‡2, and plug the n roots (counting multiplicity) of R into P2. The
identity becomes P2 = −2e2 since †2 (or ‡2) implies that e1 = P1 = 0. By Vieta’s formula, we have
that e2 = an−2

an
. So we may conclude by stating that

P2 =
∑

R(ζ)=0

ζ2 =
−2an−2
an

Although we only made use of the first two identities here, the other identities will likely be of use
when the underlying kernel function is changed.
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