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Abstract

The independence polynomial of a graph is the generating polynomial

for the number of independent sets of each size and its roots are called in-

dependence roots. We bound the maximum modulus, maxmod(n), of an

independence root over all graphs on n vertices and the maximum modulus,

maxmodT (n), of an independence root over all trees on n vertices in terms

of n. In particular, we show that

log3(maxmod(n))

n
=

1

3
+o(1)

and
log2(maxmodT (n))

n
=

1

2
+o(1).

1 Introduction

The independence number of a graph G, denoted α(G), is the maximum size of

an independent of G. The independence polynomial of G, denoted i(G,x), is the

generating polynomial for the number of independence sets of each size:

i(G,x) =
α(G)

∑
k=0

ikxk,
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where ik denotes the number of independent sets of size k in G. (When dealing

with the independence polynomials of multiple graphs, we will distinguish the

coefficients with a superscript to avoid confusion, so that iGk is the number of

independent sets of size k in G.) The roots of i(G,x) are called the independence

roots of G.

The independence polynomial was first introduced by Gutman and Harary in

1983 [15] and has been a fascinating object of study ever since (see Levit and

Mandrescu’s survey [18]). One topic that has generated much research is on the

independence roots [1, 2, 4, 5, 7, 9, 10, 19, 23].

The roots of other graph polynomials have also been of interest and the nature

and location in C of these roots can vary considerably depending on the polyno-

mial (see [20]). Determining bounds on the moduli of these roots is an important

question. In 1992, the first author and Colbourn [3] conjectured that the roots

of reliability polynomials lie in the unit disk. The Brown-Colbourn conjecture

stood for 12 years until it was shown to be false (although just barely) in [25]. It

was later shown that if G is a connected graph on n vertices and q is a reliability

root, then |q| ≤ n−1, yet the largest known reliability root has modulus approx-

imately 1.113486 [6]. It is still believed that the reliability roots are bounded by

some constant although the problem remains open. A polynomial that is more

closely related to the independence polynomial is the edge cover polynomial and

it was recently shown that its roots are bounded, in fact contained in the disk

|z|< (2+
√

3)2

1+
√

3
[11]. In contrast, the collection of all roots of independence polyno-

mials [5], domination polynomials [8], and chromatic polynomials [28] are each

dense in C.

Although these polynomials have roots with arbitrarily large moduli, an in-

teresting question to ask is: for fixed n, how large can the modulus of a root of

one of these polynomials be for a graph in n vertices? Sokal [27] showed that

all simple graphs on n vertices have their chromatic roots contained in the disk

|z| ≤ 7.963907(n−1), so that the maximum moduli of chromatic roots grows at

most linearly in n. The growth rate of domination roots is unknown. There has

been work done on bounding the independence roots; for example, it was shown

in [7] that for fixed α , the largest modulus of an independence root of a graph

with independence number α on n vertices is
(

n
α−1

)α−1
+O(nα−2). Although

this bound is tight, the O(nα−2) term hides enough information to make it unclear

if the maximum moduli of independence roots is a polynomial in n or exponen-

tial in n. In this paper, we consider the problem of fixing n as the number of

vertices and determining the maximum modulus of an independence root over all
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graphs on n vertices. We will show that the growth rate is indeed exponential. To

that end, let maxmod(n) denote the maximum modulus of an independence root

over all graphs on n vertices and maxmodT (n) denote the maximum modulus of

an independence root over all trees on n vertices. We show that, in contrast to

Sokal’s linear bound for chromatic roots, maxmod(n) and maxmodT (n) are both

exponential in n: in Section 2, we prove that

3
n−r+3

3 ≤ maxmod(n)≤ 3
n
3 +n−1,

where 1 ≤ r ≤ 3, while in Section 3, we prove that

2
n−1

2 ≤ maxmodT (n)≤ 2
n−1

2 +
n−1

2

if n is odd and

2
n−6

2 ≤ maxmodT (n)≤ 2
n−2

2 +
n

2

if n is even.

We shall need some notation. The number of maximum independent sets in

G is denoted by ξ (G). The number of maximal independent sets in G is denoted

µ(G). Note that ξ (G) = iGα(G), the leading coefficient of the independence poly-

nomial of G. For S ⊆V (G), let G−S be the graph obtained from G by deleting all

vertices of S as well as their incident edges. If S = {v}, we will use the shorthand,

G− v to denote G−{v}.

2 Bounds on the maximum modulus of independence

roots

To bound the roots of independence polynomials, we will make extensive use

of the classical Eneström-Kakeya Theorem which uses the ratios of consecutive

coefficients of a given polynomial to describe an annulus in C that contains all its

roots.

Theorem 2.1 (Eneström-Kakeya [12, 17]) If f (x) = a0 + a1x + · · ·+ anxn has

positive real coefficients, then all complex roots of f lie in the annulus r ≤ |z| ≤ R

where

r = min

{

ai

ai+1
: 0 ≤ i ≤ n−1

}

and R = max

{

ai

ai+1
: 0 ≤ i ≤ n−1

}

.

3



We will also need to make use of two basic results on computing the indepen-

dence polynomial.

Proposition 2.2 ([15]) If G and H are graphs and v ∈V (G), then:

i) i(G,x) = i(G− v,x)+ x · i(G−N[v],x).

ii) i(G∪H,x) = i(G,x)i(H,x).

Note that from Proposition 2.2, ξ (G∪H) = ξ (G) · ξ (H). Our proofs are in-

ductive and often require upper bounds ξ (G) for all graphs on n vertices, a col-

lection of which can be found in [16].

Theorem 2.3 ([22]) If G is a graph of order n ≥ 2, then

ξ (G)≤ µ(G)≤ g(n) =



























3
n
3 if n ≡ 0 mod 3

4 ·3 n−4
3 if n ≡ 1 mod 3

2 ·3 n−2
3 if n ≡ 2 mod 3

.

Note that an easy corollary of this is that for a graph on n vertices, ξ (G) ≤
µ(G)≤ 3

n
3 , since ξ (K1) = µ(K1) = 1 ≤ 3

1
3 , 3

n
3 ≥ 4 ·3 n−4

3 , and 3
n
3 ≥ 2 ·3 n−2

3 for all

n ≥ 1.

Proposition 2.4 For all n ≥ 1,

maxmod(n)≥



























3
n−3

3 if n ≡ 0 mod 3

3
n−1

3 if n ≡ 1 mod 3

3
n−2

3 if n ≡ 2 mod 3

.

Proof The proof is in three cases depending on n mod 3. Each relies on in-

dependence polynomials of the graphs G0,G1, and G2, respectively, in Figure 1

where G1 is obtained by joining a central vertex to all but one vertex in each of

k copies of K3, G0 is obtained by joining one vertex in K2 to the central vertex in

G1, and G2 is obtained by joining one vertex in another copy of K2 to the central

vertex in G0. Note that the orders of G0, G1, and G2 are congruent to 0, 1, and 2,

4
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Figure 1: Graphs with independence roots of large moduli.

respectively, mod 3. We then use the Intermediate Value Theorem (IVT) to find

that each has a real root of large modulus.

From Proposition 2.2, it easily follows that

i(G0,x) = (1+3x)k(1+2x)+ x(1+ x)k+1

i(G1,x) = (1+3x)k + x(1+ x)k

i(G2,x) = (1+3x)k(1+2x)2 + x(1+ x)k+2.

5



It is now straightforward to determine that

sign

(

lim
x→−∞

i(G0,x)

)

= (−1)k

sign

(

lim
x→−∞

i(G1,x)

)

= (−1)k+1

sign

(

lim
x→−∞

i(G2,x)

)

= (−1)k+1.

We now prove the lower bounds for maxmod(n) by exhibiting, in each one

of the cases, a graph with a real independence root with modulus larger than the

bound.

Case 0: n ≡ 0 mod 3

If n = 3, then we can use the quadratic formula to find that P3 has a real

independence root with modulus approximately 2.618 > 1. So we may assume

that n ≥ 6 and thus k ≥ 1 for our analysis of G0. For all k ≥ 1, we have that

i(G0,−3k) =
(

1−3k+1
)k(

1−2 ·3k+1
)

−3k
(

1−3k
)k

= (−1)k
[

(1−3k)
(

(3k+1 −1)k − (3k+1 −3)k
)

−3k(3k −1)k
]

which has the same sign as (−1)k+1 since 0 > (3k+1 − 1)k − (3k+1 − 3)k. Thus,

i(G0,x) alternates sign on (−∞,−3k] and by the IVT and since k = n−3
3

, i(G0,x)

has a root in the interval (−∞,−3
n−3

3 ).

Case 1: n ≡ 1 mod 3

If n = 1, then K1 is the only graph to consider and the result clearly holds.

So we may assume that n ≥ 4 and therefore k ≥ 1 for our analysis of G1. Since

i(G1,−3k) = (−1)k((3k+1 −1)k − (3k+1 −3)k), it follows that i(G1,−3k) has the

same sign as (−1)k. Thus i(G1,x) alternates sign on (−∞,−3k] and by IVT it

must have a root in the interval (−∞,−3
n−1

3 ).

Case 2: n ≡ 2 mod 3

6



If n = 2, then the graph K2 has and −1 as an independence root and |−1| =
1 = 30. If n = 5, then P5 has a real independence root of modulus approximately

5.0489173 which is greater than 3. So we may assume n ≥ 8 and therefore k ≥ 1

for the our analysis of the graph G2. We now have,

i(G2,−3k) = (−1)k
[

(1−2 ·3k)2(3k+1 −1)k −3k(1−3k)2(3k −1)k
]

= (−1)k
[

(1−4 ·3k+4 ·32k)(3k+1 −1)k − (1−3k)2(3k+1 −3)k
]

= (−1)k
[

(1−4 ·3k+32k +32k+1)(3k+1 −1)k − (1−3k)2(3k+1 −3)k
]

= (−1)k
[

(1−3k)2
(

(3k+1 −1)k − (3k+1 −3)k
)

+

(32k+1 −2 ·3k)(3k+1 −1)k
]

which has sign (−1)k since (3k+1 − 1)k − (3k+1 − 3)k > 0, (1− 3k)2 > 0, and

(32k+1 −2 ·3k)(3k+1 −1)k > 0.

Therefore, IVT gives that i(G2,x) must have a root in the interval (−∞,−3
n−2

3 ).
This completes the proof.

Therefore, maxmod(n) is at least exponential in n. We require the next two

lemmas to put an upper bound on maxmod(n).

Lemma 2.5 For all graphs G with at least one edge, there exists a non-isolated

vertex v such that α(G) = α(G− v)≥ α(G−N[v])+1.

Proof Let G be a graph with at least one edge. It is clear that for any vertex v

of G, α(G) ≥ α(G−N[v])+1, since any maximum independent set in G−N[v]
will still be independent in G with the addition of v. Suppose that for all vertices

v ∈ V (G), that α(G) > α(G− v). Then every vertex belongs to every maximum

independent set. However, G has at least one edge, so the vertices incident with

this edge cannot belong to the same independent set, which contradicts both of

these vertices being in every maximum independent set. Therefore, there exists

some v ∈V (G) incident with some edge such that

α(G) = α(G− v)≥ α(G−N[v])+1.
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Lemma 2.6 If G is a graph on n vertices such that ξ (G) = 1, then iα(G)−1 ≤
3

n
3 +n−1.

Proof Let G be a graph on n vertices such that ξ (G) = 1. Every independent set

of size α(G)−1 is either maximal or is a subset of the one independent set of size

α(G). Therefore, iα(G)−1 ≤ µ(G)− 1+α(G) ≤ 3
n
3 + n− 1 (subtracting 1 from

µ(G) to account for the one maximum independent set) by the note following

Theorem 2.3.

Theorem 2.7 For all n ≥ 1, maxmod(n)≤ 3
n
3 +n−1.

Proof We actually prove the stronger result that for a graph on n vertices, the

ratios of coefficients, given by R in the statement of Theorem 2.1 (the Eneström-

Kakeya Theorem), of its independence polynomial are bounded above by 3
n
3 +

n−1. It then follows directly from the Eneström-Kakeya Theorem that the roots

are bounded by this value. We proceed by induction on n.

The results hold for graphs on n ≤ 5 vertices by straightforward checking the

ratios of consecutive coefficients of the independence polynomials of all 52 graphs

in Maple. Now suppose the result holds for all 3 ≤ k < n, and let G be a graph

on n vertices. If G has no edges, then we are done, since G has only −1 as an

independence root in this case. Therefore, suppose G has at least one edge. Let

v be a nonisolated vertex in G such that α(G) = α(G− v) ≥ α(G−N[v]) + 1,

noting that v exists by Lemma 2.5. Now, by Proposition 2.2,

i(G,x) = i(G− v,x)+ x · i(G−N[v],x)

=
α(G−v)

∑
k=0

iG−v
k xk + x

α(G−N[v])

∑
k=0

i
G−N[v]
k xk

= 1+
α(G−v)

∑
k=1

iG−v
k xk +

α(G−N[v])+1

∑
k=1

i
G−N[v]
k−1 xk. (1)

We now have two cases.

Case 1: α(G) = α(G− v) = α(G−N[v])+1.

8



In this case, (1) gives

i(G,x) = 1+
α(G−v)

∑
k=1

(

iG−v
k + i

G−N[v]
k−1

)

xk.

This gives the following ratios between coefficients,

1

n
and

iG−v
k + i

G−N[v]
k−1

iG−v
k+1 + i

G−N[v]
k

for k = 1,2, . . . ,α(G−N[v]).

For all n ≥ 1, 1
n
< 3

n
3 +n−1, and by the inductive hypothesis,

iG−v
k + i

G−N[v]
k−1

iG−v
k+1 + i

G−N[v]
k

<

(

3
n−1

3 +n−2
)

iG−v
k+1 +

(

3
n−|N[v]|

3 +n−1−|N[v]|
)

i
G−N[v]
k

iG−v
k+1 + i

G−N[v]
k

≤

(

3
n−1

3 +n−2
)(

iG−v
k+1

+ i
G−N[v]
k

)

iG−v
k+1 + i

G−N[v]
k

= 3
n−1

3 +n−2

< 3
n
3 +n−1.

Case 2: α(G) = α(G− v)> α(G−N[v])+1.

In this case, the independence polynomial is obtained from (1) as, In this case,

(1) gives

i(G,x) = 1+
α(G−N[v])+1

∑
k=1

(

iG−v
k + i

G−N[v]
k−1

)

xk +
α(G−v)

∑
α(G−N[v])+2

iG−v
k xk.

This gives four different forms for
iG
k

iG
k+1

. The first two, namely 1
n

and
iG−v
k

+i
G−N[v]
k−1

iG−v
k+1 +i

G−N[v]
k

,

are less than or equal to 3
n
3 +n−1 for each k = 1,2, . . . ,α(G−N[v]) by the same

argument as Case 1. This leaves,

iG−v
α(G−N[v])+1

+ i
G−N[v]
α(G−N[v])

iG−v
α(G−N[v])+2

, and
iG−v
k

iG−v
k+1

for k ≥ α(G−N[v])+2

9



By the inductive hypothesis,
iG−v
k

iG−v
k+1

≤ 3
n−1

3 +n−2 < 3
n
3 +n−1, so we are left only

with
iG−v
α(G−N[v])+1

+i
G−N[v]
α(G−N[v])

iG−v
α(G−N[v])+2

.

In this case, we first show that |N[v]| ≥ 3. As v is not isolated, |N[v]| ≥ 2.

If |N[v]| = 2, then v is a leaf, and since v was chosen such that α(G) = α(G−
v) ≥ α(G −N[v]) + 1, v is not in every maximum independent set in G. But

every maximum independent set in G must contain either v or its neighbour, so

α(G− v) = α(G−N[v]) + 1 as covered in Case 1. Therefore, we may assume

|N[v]| ≥ 3. We also note that

iG−v
α(G−N[v])+1

+ i
G−N[v]
α(G−N[v])

iG−v
α(G−N[v])+2

=
iG−v
α(G−N[v])+1

iG−v
α(G−N[v])+2

+
ξ (G−N[v])

iG−v
α(G−N[v])+2

.

There are three subcases to consider.

Case 2a: α(G−N[v])+2 < α(G− v) = α(G).

If α(G−N[v]) + 2 < α(G − v), then G − v has an independent set of size

α(G−N[v])+3. Therefore, iG−v
α(G−N[v])+2

≥ α(G−N[v])+3 ≥ 3, since any inde-

pendent set of size k, contains at least
(

k
k−1

)

= k independent sets of size k− 1.

Now by the inductive hypothesis and the note following Theorem 2.3,

iG−v
α(G−N[v])+1

iG−v
α(G−N[v])+2

+
ξ (G−N[v])

iG−v
α(G−N[v])+2

≤ 3
n−1

3 +n−2+
ξ (G−N[v])

3

≤ 3
n−1

3 +n−2+3
n−|N[v]|−3

3

≤ 3
n−1

3 +n−2+3
n−6

3

= 3
n
3

(

3
−1
3 +

1

9

)

+n−2

≤ 3
n
3 +n−1.

Case 2b: α(G−N[v])+2 = α(G− v) = α(G) and |N[v]| ≥ 4.

In this case, by the inductive hypothesis and the note following Theorem 2.3,

10



iG−v
α(G−N[v])+1

iG−v
α(G−N[v])+2

+
ξ (G−N[v])

iG−v
α(G−N[v])+2

≤ 3
n−1

3 +n−2+ξ (G−N[v])

≤ 3
n−1

3 +n−2+3
n−|N[v]|

3

≤ 3
n−1

3 +n−2+3
n−4

3

= 3
n
3

(

3
−1
3 +3

−4
3

)

+n−2

< 3
n
3 +n−1.

Case 2c: α(G−N[v])+2 = α(G− v) and |N[v]|= 3.

We break this final case into two subcases bases on the size of iG−v
α(G−N[v])+2

.

First, if iG−v
α(G−N[v])+2

≥ 2, then by the inductive hypothesis and the note following

Theorem 2.3,

iG−v
α(G−N[v])+1

iG−v
α(G−N[v])+2

+
ξ (G−N[v])

iG−v
α(G−N[v])+2

≤ 3
n−1

3 +n−2+
ξ (G−N[v])

2

≤ 3
n−1

3 +n−2+
3

n−3
3

2

= 3
n
3

(

3
−1
3 +

1

3

)

+n−2

≤ 3
n
3 +n−1.

Note if some maximum independent set in G contained v, then this set with

v removed would be an independent set of size α(G)− 1 = α(G−N[v])+ 1 in

G−N[v], which is a contradiction. Therefore, the maximum independent sets in

G and G− v are exactly the same sets and, in particular, ξ (G) = ξ (G− v). Now,

if

1 = iG−v
α(G−N[v])+2

= ξ (G− v) = ξ (G),

then Lemma 2.6 applied to G gives a bound on iGα(G)−1
in the last line of the

following,

11



iG−v
α(G−N[v])+1

+ i
G−N[v]
α(G−N[v])

iG−v
α(G−N[v])+2

=
iG
α(G)−1

iG
α(G)

= iGα(G)−1

≤ 3
n
3 +n−1.

Now, if z is an independence root of G, then, by the Eneström-Kakeya Theo-

rem, |z| ≤ 3
n
3 +n−1.

Proposition 2.4 and Theorem 2.7 give the following corollary.

Corollary 2.8
log3(maxmod(n))

n
=

1

3
+o(1).

3 Bounds for trees of order n

Now that we have determined bounds on maxmod(n), a natural extension of this

is to determine the largest modulus an independence root can obtain among all

graphs of order n in a specific family of graphs. In particular, the bound we

obtained for maxmod(n) seems to be much too large when we restrict our attention

to trees. In this section, we consider maxmodT (n), the maximum modulus of an

independence root over all trees on n vertices.

Let Tk be the tree obtained by gluing k copies of P3 together at a leaf (see Fig-

ure 2). This tree is known [26] to have the largest number of maximal independent

sets among trees on 2k+ 1 vertices and we will show that it also has the largest

ratio of consecutive coefficients among all such trees, and therefore provides an

upper bound on maxmodT (n).

Theorem 3.1 ([29]) If G is a tree of order n ≥ 2, then

ξ (G)≤ t ′(n) =











2
n−3

2 if n is odd

2
n−2

2 +1 if n is even

.

12
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y1 x1
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...

Figure 2: The tree Tk on 2k + 1 vertices that has independence root in [−2k −
k,−2k).

We need to extend our notation to maxmodF(n), the maximum modulus of an

independence root of a forest of order n; clearly maxmodT (n) ≤ maxmodF(n).
The following lemma will be required in proving an upper bound on the ratio of

consecutive coefficients of the independence polynomials of forests.

Lemma 3.2 If F is a forest on n vertices, n ≥ 2, and v ∈V (F), then

ξ (F)

ξ (F − v)
≤











2
n−3

2 +1 if n is odd

2
n−2

2 +1 if n is even

.

Proof Let F = H1 ∪H2 ∪ · · · ∪ Hk, where k ≥ 1, and each Hi is a connected

component of F . Suppose, without loss of generality, that v ∈ Hk. Then

F − v = H1 ∪H2 ∪· · ·Hk−1 ∪F ′,

where F ′ is the forest obtained from deleting v from Hk (note that if v was an

isolated vertex in F , then F ′ may have no vertices and ξ (Hk) = 1). Now we have,

13



ξ (F)

ξ (F − v)
=

ξ (H1) ·ξ (H2) · · ·ξ (Hk)

ξ (H1) ·ξ (H2) · · ·ξ (Hk−1) ·ξ (F′)

=
ξ (Hk)

ξ (F ′)

≤ ξ (Hk)

≤ max{t ′(i) : 1 ≤ i ≤ n} (from Theorem 3.1)

=















max
{

2
n−(2i+1)

2 +1 : i = 1,2, . . . ,n
}

if n is odd

max
{

2
n−2i

2 +1 : i = 1,2, . . . ,n
}

if n is even

=











2
n−3

2 +1 if n is odd

2
n−2

2 +1 if n is even

.

Theorem 3.3 For n ≥ 1,

maxmodF(n)≤











2
n−1

2 + n−1
2

if n is odd

2
n−2

2 + n
2

if n is even

.

Proof As in the proof of Theorem 2.7, we actually prove a stronger result,

bounding the ratios of consecutive coefficients. The Eneström-Kakeya Theorem

then applies to obtain the bound the roots. We proceed by induction on n.

For n = 1,2,3,4 the results hold by checking all forests of order at most 4.

Suppose the result holds for all 4 ≤ k ≤ n−1 and let F be a forest on n vertices.

Note that if F = Kn, then the largest ratio of consecutive coefficients of i(F,x) can

easily be verified to be n which is less than the result in either case, so suppose

F has at least one edge and therefore at least one leaf. Let v be a leaf of F and

let u be adjacent to v. Note that α(F −{u,v}) ≤ α(F − v) ≤ α(F −{u,v})+ 1

and for our argument, we assume that α(F −v) = α(F −{u,v}) as our arguments

will hold (and be even shorter) when α(F − v) = α(F −{u,v})+1. To simplify

14



notation, let α = α(F − v) = α(F −{u,v}). By Proposition 2.2, we have

i(F,x) = i(F − v,x)+ x · i(F −{u,v},x)

=
α

∑
k=0

iF−v
k xk + x

α

∑
k=0

i
F−{u,v}
k xk

= 1+
α

∑
k=1

(

iF−v
k + i

F−{u,v}
k−1

)

xk + i
F−{u,v}
α xα+1. (2)

We need to show that
iFk

iF
k+1

is bounded above by the desired value and from (2),

we see that
iFk

iF
k+1

can take on the following forms,

1

n
,
iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

for k = 1,2, . . .α(F −{u,v})−1, and
iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

.

The first ratio, 1
n
, clearly satisfies the desired bound regardless of the parity of

n. We now only need to verify the remaining two forms of
iFk

iF
k+1

. We will do this in

two cases depending on the parity of n.

Case 1: n is odd.

We apply the inductive hypothesis to get,

iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

≤

(

2
n−3

2 + n−1
2

)

iF−v
k+1 +

(

2
n−3

2 + n−3
2

)

i
F−{u,v}
k

iF−v
k+1 + i

F−{u,v}
k

≤

(

2
n−3

2 + n−1
2

)(

iF−v
k+1 + i

F−{u,v}
k

)

iF−v
k+1 + i

F−{u,v}
k

= 2
n−3

2 + n−1
2

< 2
n−1

2 + n−1
2
.

15



For the last ratio, we have,

iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

=
iF−v
α

i
F−{u,v}
α

+
i
F−{u,v}
α−1

i
F−{u,v}
α

≤ ξ (F − v)

ξ (F −{u,v}) +2
n−3

2 + n−3
2

(by the inductive hypothesis)

≤ 2
n−3

2 +1+2
n−3

2 + n−3
2

(by the Lemma 3.2)

= 2
n−1

2 + n−1
2
.

Therefore, the result holds when n is odd by the Eneström-Kakeya Theorem.

Case 2: Suppose that n is even.

Then we apply the inductive hypothesis to get,

iF−v
k + i

F−{u,v}
k−1

iF−v
k+1 + i

F−{u,v}
k

≤

(

2
n−2

2 + n−2
2

)

iF−v
k+1 +

(

2
n−4

2 + n−2
2

)

i
F−{u,v}
k

iF−v
k+1 + i

F−{u,v}
k

≤

(

2
n−2

2 + n−2
2

)(

iF−v
k+1 + i

F−{u,v}
k

)

iF−v
k+1 + i

F−{u,v}
k

= 2
n−2

2 + n−2
2

< 2
n−2

2 + n
2
.

For the last ratio, we have,

iF−v
α + i

F−{u,v}
α−1

i
F−{u,v}
α

=
iF−v
α

i
F−{u,v}
α

+
i
F−{u,v}
α−1

i
F−{u,v}
α

≤ ξ (F − v)

ξ (F −{u,v}) +2
n−4

2 + n−2
2

(by the inductive hypothesis)

≤ 2
n−4

2 +1+2
n−4

2 + n−2
2

(by the Lemma 3.2)

= 2
n−2

2 + n
2
.

Therefore,the result holds when n is even by the Eneström-Kakeya Theorem.
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Corollary 3.4 For n ≥ 1,

maxmodT (n)≤











2
n−1

2 + n−1
2

if n is odd

2
n−2

2 + n
2

if n is even

.

We remark that, at least in terms of the bounds on the ratio of consecutive

coefficients, this is best possible as there are forests that achieve these bounds.

Let n be odd, and consider the graph Tn−1
2

as previously defined and pictured in

Figure 2. The independence polynomial of this tree has 2
n−1

2 + n−1
2

as its last ratio

of consecutive coefficients. If n is even then look at the forest Tn−2
2
∪K1, whose

independence polynomial has 2
n−2

2 + n
2

as its last ratio of consecutive coefficients.

We have shown that the bounds on the ratio of consecutive coefficients are

tight, but are these bounds tight on the roots? It is not always the case that the

upper bound on the moduli of the roots of a polynomial is tight, even for trees

and forests. Take for example, the tree K1,30 which has 30 as an upper bound on

the roots from Eneström-Kakeya but its actual root of largest modulus is approx-

imately 2.023777128. It gets even worse when we consider taking the disjoint

union of k copies of K1,30. This forest will have the same root of maximum modu-

lus but the bound on the root from Eneström-Kakeya is 30k, which is unbounded.

Fortunately, it turns out that the bound we found in Theorem 3.3 is asymptotically

tight when n is odd.

For the case where n is even in the next proof we require the definition of the

tree T ′
k as shown in Figure 3. Let T ′

k be the graph obtained by adding two leaves to

each vertex in K2 and then gluing a leaf of the resulting graph to the central vertex

of Tk.

Proposition 3.5 For all n ≥ 1,

maxmodT (n)≥











2
n−1

2 if n is odd

2
n−6

2 if n is even

.
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e

d

c

b

a

yk xk

y2 x2

y1 x1

z

...

Figure 3: The tree T ′
k on 2(k + 3) vertices that has an independence root in

[−2k+1 − k−4,−2k).

Proof The proof is similar to the proof of Proposition 2.4, finding trees that have

real independence roots of large modulus.

Case 1: n is odd.

If n = 1, then the result clearly holds so we may assume n ≥ 1. Let n = 2k+1

(note k ≥ 1), so that k = n−1
2

, and set T = Tk as in Figure 2. A simple calculation

via Proposition 2.2 shows that i(T,x) = (1+ 2x)k + x(1+ x)k. We will use the

Intermediate Value Theorem to show that i(T,x) has a real root to the left of −2k.

Now,

i(T,−2k) = (1−2k+1)k −2k(1−2k)k

= (−1)k
(

(2k+1 −1)k − (2k+1 −2)k
)

,

so i(T,−2k) has the same sign as (−1)k. On the other hand, i(T,x) has sign

(−1)k+1 as x tends to ∞We now compute the limit as x tends to −∞. Thus, i(Tk,x)
alternates sign on (−∞,−2k], so by IVT it must have a real root in the interval

(−∞,−2k). We remark that from Theorem 3.3, that i(T,x) actually has a real root

in the interval [−2k − k,−2k).

Case 2: n is even.

For n= 2 and 4, the result is clear. For n≥ 6, we will show that T ′
k , the graph in

Figure 3, has a real root to the left of −2k. Let n= 2(k+3) for k ≥ 0. If k = 0, then

i(T ′
k ,x) = (1+x)2(1+4x+x2) which has roots −1, −2+

√
3, and −2−

√
3, with

−2−
√

3 being to the left of −2
6−6

2 = −1). If k = 1, then i(T ′
k ,x) = x5 + 9x4 +

18



22x3 + 21x2 + 8x+ 1, which has its largest root at approximately −5.7833861,

which is to the left of −2
8−6

2 = −4. Since the result holds for k = 0,1, we may

now assume that k ≥ 2.

Using Proposition 2.2, we find that

i(T ′
k ,x) = (1+2x)k(1+5x+6x2 +2x3)+ x(1+ x)k(1+4x+4x2 + x3).

Let g(x) = 1+5x+6x2 +2x3 and h(x) = 1+4x+4x2 + x3. We can easily verify

that g(x) < 0 for all x ≤ −2 and h(x) < 0 for all x ≤ −3. Moreover, h(x) =
g(x)− x(x+1)2. We consider the function

f (x) = (−2x−1)k(1+5x+6x2 +2x3)+ x(−x−1)k(1+4x+4x2 + x3),

so that i(T ′
k ,x) = (−1)k f (x). Now,

f (−2k) = (2k+1 −1)kg(−2k)−2k(2k −1)kh(−2k)

= (2k+1 −1)kg(−2k)−2k(2k −1)k(g(−2k)+2k(1−2k)2)

= g(−2k)((2k+1 −1)k − (2k+1 −2)k)−22k(2k −1)k+2

and since g(−2k) and −22k(2k −1)k+2 are both negative for k ≥ 2, it follows that

f (−2k) < 0. Therefore, i(T ′
k ,x) has sign (−1)k(−1) = (−1)k+1. On the other

hand, i(T ′
k ,x) has sign (−1)k+4 = (−1)k as x tends to ∞. Thus, by the IVT, i(T ′

k ,x)
has a real root to the left of −2k. From, Theorem 3.3 and the Eneström-Kakeya

Theorem, i(T,x) has no roots in (−∞,−2k+1/2 − k− 3), so i(T ′
k ,x) has a root in

the interval [−2k+1/2 − k−3,−2k).

Tables 1 and 2 show values of maxmodT (n) for small values of n in compari-

son to our bounds.

Although the bounds on maxmodT (n) are not as tight for even n as for odd n,

Corollary 3.4 and Proposition 3.5 give the following corollary for all n.

Corollary 3.6
log2(maxmodT (n))

n
=

1

2
+o(1).
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n 2
n−1

2 maxmodT (n) 2
n−1

2 + n−1
2

3 2 2.61803398900000 3

5 4 5.04891733952231 6

7 8 9.49699733952714 11

9 16 17.9705962347393 20

11 32 34.4632033453548 37

13 64 66.9662907779610 70

15 128 131.473379027662 135

17 256 259.980782682655 264

Table 1: Comparing maxmodT (n) to

our bounds for odd n

n 2
n−6

2 maxmodT (n) 2
n−2

2 + n
2

2 0.25 0.5 2

4 0.5 1.77423195656734 4

6 1 3.732050808 7

8 2 5.78338611675281 12

10 4 10.0833151322046 21

12 64 18.5001015662614 38

14 8 34.9710040067543 71

16 16 67.4665144832128 136

Table 2: Comparing maxmodT (n) to

our bounds for even n

4 Conclusion and Open Problems

We were able to prove upper and lower bounds on maxmod(n) and maxmodT (n)
for all n but questions remain about tightening our bounds for all graphs and about

the growth rate of the moduli of independence roots for other families of graphs.

One highly structured and highly interesting family of graphs is the family of

well-covered graphs [13, 14, 24], that is, graphs with all maximal independent

sets of the same size. For each well-covered graph with independence number

α , it is known that all of its independence roots lie in the disk |z| ≤ α and there

are well-covered graphs with independence roots arbitrarily close to the boundary

[4]. This difference between the independence roots of graphs and well-covered

graphs begs the question of what happens for well-covered trees? Finbow et al.

[14] showed that every well-covered tree is obtained by attaching a leaf to every

vertex of another tree. This construction of attaching a leaf to every vertex in a

graph G is know as the graph star operation, the resulting graph denoted G∗. Levit

and Mandrescu [19] proved a formula for i(G∗,x) in terms of i(G,x) for all graphs

G. Using Maple and nauty [21], we were able exploit this formula to verify that

all well-covered trees on n ≤ 40 vertices have their independence roots contained

in the unit disk!

This makes it extremely tempting to conjecture that the independence roots

of all well-covered trees are contained in the unit disk. However, the relationship

between the independence roots of a tree and the independence roots of its well-

covered extension are bound by the properties of Möbius transformations (this

relationship was used by the authors in [1, 2]). Drawing on the theory of these
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transfomrations, it can be shown that any tree T with independence roots to the

right of the line Re(z) = 1
2
, will yield a well-covered tree T ∗ with independence

roots outside of the unit disk. It was shown in [1], that there are trees with indepen-

dence roots arbitrarily far in the right half of C, therefore, there are well-covered

trees with independence roots outside of the unit disk. The tantalizing question

remains:

Question 4.1 What is the maximum modulus of an independence root of a well-

covered tree on n vertices?

Our bounds on log3(maxmod(n)) and log2(maxmodT (n)) are very good asymp-

totically and a fairly good estimate for all n. Nevertheless, from computations with

Maple and nauty [21], we have the following conjectures.

Conjecture 4.2 If G is a graph on n vertices, then for n ≥ 3,

maxmod(n)≤



























2 ·3 n−3
3 + n

3
if n ≡ 0 mod 3

3
n−1

3 + n−1
3

if n ≡ 1 mod 3

4 ·3 n−5
3 + n+1

3
if n ≡ 2 mod 3

Conjecture 4.3 The graphs G0,G1, and G2 are the only graphs to achieve maxmod(n).

Conjecture 4.4 If T is a tree on n vertices with n ≥ 6 even , then,

maxmodT (n)≤ 2
n−4

2 +
n+2

2

Conjecture 4.5 The trees Tn−1
2

and T ′
n−6

2

(see Figures 2 and 3) are the only trees

to achieve maxmodT (n) for n odd and even respectively.
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