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CONVEX CATERPILLARS ARE SCHUR-POSITIVE

YUVAL H. KHACHATRYAN-RAZIEL

Abstract. A remarkable result of Stanley shows that the set of
maximal chains in the non-crossing partition lattice of type A is
Schur-positive, where descents are defined by a distinguished edge
labeling. A bijection between these chains and labeled trees was
presented by Goulden and Yong. Using Adin-Roichman’s vari-
ant of Björner’s EL-labeling, we show that the subset of maximal
chains in the non-crossing partition lattice of type A, whose un-
derlying tree is a convex caterpillar, is Schur-positive.
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1. Introduction

A symmetric function is called Schur-positive if all the coefficients in
its expansion in the basis of Schur functions are nonnegative. Deter-
mining whether a given symmetric function is Schur-positive is a major
problem in contemporary algebraic combinatorics [19].

With a set A of combinatorial objects, equipped with a descent map
Des : A → 2[n−1], one associates the quasi-symmetric function

Q(A) :=
∑

π∈A

Fn,Des(π)
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where Fn,D (for D ⊆ [n−1]) are Gessel’s fundamental quasi-symmetric
functions; see Subsection 2.2 for more details. The following problem
is long-standing.

Problem 1.1. Given a set A, equipped with a descent map, is Q(A)
symmetric? In case of an affirmative answer, is it Schur-positive?

Of special interest are Schur-positive sets of maximal chains. Max-
imal chains in a labeled poset P are equipped with a natural descent
map. A well-known conjecture of Stanley [16, III, Ch. 21] implies that
all examples of Schur-positive labeled posets in this sense correspond
to intervals in the Young lattice.

Another way to equip the set of maximal chains with a descent map is
using a labeling of the edges in the Hasse diagram. A classical example
of a Schur-positive set of this type, the set of all maximal chains in
the non-crossing partition lattice of type A, was given by Stanley [17].
An EL edge-labeling of this poset was presented in an earlier work of
Björner [3]; see also [4, 12, 1].

The goal of this paper is to present an interesting set of maximal
chains in the non-crossing partition lattice NCn (equivalently: a set of
edge-labeled trees) which is Schur-positive. We will use a variant of
Björner’s EL-labeling, presented in [1].

It is well known that maximal chains in the non-crossing partition
lattice may be interpreted as factorizations of the n-cycle (1, 2, . . . , n)
into a product of n− 1 transpositions.

Definition 1.2. A factorization t1 · · · tn−1 of the n-cycle (1, 2, . . . , n)
as a product of transpositions is called linearly ordered if, for every
1 ≤ i ≤ n− 2, ti and ti+1 have a common letter.

This definition is motivated by Theorem 4.1 below. Denote the set
of linearly ordered factorizations of (1, 2, . . . , n) by Un.

Proposition 1.3. For every n ≥ 1, the number of linearly ordered
factorizations of the n-cycle (1, 2, . . . , n) is

|Un| = n2n−3.

Our main result is

Theorem 1.4. The set of linearly ordered factorizations of the n-cycle
(1, 2, . . . , n) satisfies

Q(Un) =
n−1
∑

k=0

(k + 1)s(n−k,1k),

where the descent set of any u ∈ Un is defined by the edge labeling of [1].
In particular, Un is Schur-Positive.
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It should be noted that Theorem 1.4 does not follow from Stanley’s
proof of the Schur-positivity of the set of all maximal chains in NCn.
In fact, Stanley’s action on maximal chains does not preserve linearly
ordered chains.

We prove Theorem 1.4, by translating it into the language of geo-
metric trees called convex caterpillars.

Definition 1.5. A tree is called a caterpillar if the subgraph obtained
by removing all its leaves is a path. This path is called the spine of
the caterpillar.

Definition 1.6. A convex caterpillar of order n is a caterpillar drawn
in the plane such that

(a) the vertices are in convex position (say, the vertices of a regular
polygon) and labeled 1, . . . , n clockwise;

(b) the edges are drawn as non-crossing straight line segments; and
(c) the spine forms a cyclic interval (a, a+1), (a+1, a+2), . . . , (b−

1, b) in [n].

Denote by Ctn the set of convex caterpillars of order n.

Example 1.7. Figure 1 shows a convex caterpillar c ∈ Ct8, with spine
consisting of the edges (8, 1) and (1, 2), forming a cyclic interval.

1

2

3

45

6

7

8

Figure 1. A convex caterpillar and its spine

Goulden and Yong [7] introduced a mapping from factorizations of
(1, 2, . . . , n) to non-crossing geometric trees. This mapping is not in-
jective: in order to recover the factorization from the tree, one has to
choose a linear extension of a certain partial order on the edges, which
we call the Goulden-Yong partial order; see Definition 3.2 below.

In a previous work [9] we proved that the Goulden-Yong order is
linear if and only if the geometric tree is a convex caterpillar; see The-
orem 4.1 below. It follows that the Goulden-Yong map, restricted to
the set Un of linearly ordered factorizations, is a bijection onto the set
Ctn of convex caterpillars of order n.
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Definition 1.8. The descent set of a linearly ordered factorization
u = (t1, . . . , tn−1) ∈ Un is

Des(u) := {i ∈ [n− 2] : ti = (b, c) and ti+1 = (b, a) with c > a}.

Example 1.9. The convex caterpillar c ∈ Ct8, drawn in Figure 1,
corresponds to the linearly ordered word

u = ((7, 8), (6, 8), (5, 8), (1, 8), (1, 2), (2, 4), (2, 3)) ∈ U8,

for which Des(u) = {1, 2, 3, 4, 6}.

In [1], the authors define a map φ from the set denoted here Un to
the symmetric group Sn−1; for a detailed description see Subsection 4.2
below. The map φ is an EL-labeling of the non-crossing partition
lattice. This property, relations to Björner’s EL-labeling and other
positivity phenomena will be discussed in another paper.

It turns out that our Definition 1.8 above fits nicely with this map.

Lemma 1.10. For any u ∈ Un,

Des(φ(u)) = Des(u).

See Proposition 4.13 below. We further show that the number of
caterpillars with a given descent set depends only on the cardinality of
the descent set.

Lemma 1.11. For every subset J ⊆ [n− 2],

|{c ∈ Ctn : Des(c) = J}| = |J |+ 1.

These two key lemmas are used to prove Theorem 1.4.

2. Background

In this section we provide the necessary definitions and historical
background to explain the main results. More information can be found
in the references.

2.1. Compositions, partitions and tableaux.

Definition 2.1. A weak composition of n is a sequence α = (α1, α2, . . . )
of non-negative integers such that

∑∞
k=1 αk = n.

Definition 2.2. A partition of n is a weakly decreasing sequence of
non-negative integers λ = (λ1, λ2, . . . ) such that

∑∞
k=1 λk = n. We

denote λ ⊢ n.

Definition 2.3. The length of a partition λ = (λ1, λ2, . . . ) is the num-
ber of non-zero parts λi.

For a skew shape λ/µ, let SYT(λ/µ) be the set of standard Young
tableaux of shape λ/µ. We use the English convention, according to
which row indices increase from top to bottom (see, e.g., [14, Ch. 2.5]).
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The height of a standard Young tableau T is the number of rows in T .
The descent set of T is

Des(T ) := {i : i+ 1 appears in a lower row of T than i}.

2.2. Symmetric and quasi-symmetric functions. Let x := (x1, x2, . . .)
be an infinite sequence of commuting indeterminates. Symmetric and
quasi-symmetric functions in x can be defined over various (commuta-
tive) rings of coefficients, including the ring of integers; for simplicity
we define it over the field Q of rational numbers.

Definition 2.4. A symmetric function in the variables x1, x2, . . . is
a formal power series f(x) ∈ Q[[x]], of bounded degree, such that
for any three sequences (of the same length k) of positive integers,
(a1, . . . , ak), (i1, . . . , ik) and (j1, . . . , jk), the coefficients of xa1

i1
· · ·xak

ik

and of xa1
j1
· · ·xak

jk
in f are the same:

[xa1
i1
· · ·xak

ik
]f = [xa1

j1
· · ·xak

jk
]f.

Schur functions, indexed by partitions of n, form a distinguished
basis for Λn, the vector space of symmetric functions which are ho-
mogeneous of degree n; see, e.g., [18, Corollary 7.10.6]. A symmetric
function in Λn is Schur-positive if all the coefficients in its expansion
in the basis {sλ : λ ⊢ n} of Schur functions are non-negative.

The following definition of a quasi-symmetric function can be found
in [18, 7.19].

Definition 2.5. A quasi-symmetric function in the variables x1, x2, . . .
is a formal power series f(x) ∈ Q[[x]], of bounded degree, such that
for any three sequences (of the same length k) of positive integers,
(a1, . . . , ak), (i1, . . . , ik) and (j1, . . . , jk), where the last two are increas-
ing, the coefficients of xa1

i1
· · ·xak

ik
and of xa1

j1
· · ·xak

jk
in f are the same:

[xa1
i1
· · ·xak

ik
]f = [xa1

j1
· · ·xak

jk
]f

whenever i1 < . . . < ik and j1 < . . . < jk.

Clearly, every symmetric function is quasi-symmetric, but not con-
versely:

∑

i<j x
2
ixj , for example, is quasi-symmetric but not symmetric.

For each subset D ⊆ [n− 1] define the fundamental quasi-symmetric
function

Fn,D(x) :=
∑

i1≤i2≤...≤in
ij<ij+1 if j∈D

xi1xi2 · · ·xin .

Let B be a set of combinatorial objects, equipped with a descent
map Des : B → 2[n−1] which associates to each element b ∈ B a subset
Des(b) ⊆ [n− 1]. Define the quasi-symmetric function

Q(B) :=
∑

b∈B

Fn,Des(b).
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With some abuse of terminology, we say that B is Schur-positive when
Q(B) is.

The following key theorem is due to Gessel.

Theorem 2.6. [18, Theorem 7.19.7] For every shape λ ⊢ n,

Q(SYT(λ)) = sλ.

Corollary 2.7. A set B, equipped with a descent map Des : B →
2[n−1], is Schur-positive if and only if there exist nonnegative integers
(mλ,B)λ⊢n such that

(2.1)
∑

b∈B

xDes(b) =
∑

λ⊢n

mλ,B

∑

T∈SYT(λ)

xDes(T ).

There is a dictionary relating symmetric functions to characters of
the symmetric group Sn. The irreducible characters of Sn are indexed
by partitions λ ⊢ n and denoted χλ. The Frobenius characteristic map
ch from class functions on Sn to symmetric functions is defined by
ch(χλ) = sλ, and extended by linearity. Theorem 2.6 may then be
restated as follows:

ch(χλ) =
∑

T∈SY T (λ)

Fn,Des(T ).

2.3. Maximal chains in the non-crossing partition lattice. The
systematic study of noncrossing partitions began with Kreweras [10]
and Poupard [13]. Surveys of results and connections with various
areas of mathematics can be found in [15] and [2].

A noncrossing partition of the set [n] is a partition π of [n] into
nonempty blocks with the following property: for every a < b < c < d
in [n], if some block B of π contains a and c and some block B′ of π
contains b and d, then B = B′. Let NCn be the set of all noncrossing
partitions of [n]. Define a partial order on NCn, by refinement: π ≤ σ
if every block of π is contained in a block of σ. This turns NCn into a
graded lattice.

An edge labeling of a poset P is function from the edges of the Hasse
diagram of P to the set of integers. Several different edge labelings
of NCn were defined and studied by Björner [3], Stanley [17], and
Adin and Roichman [1]. Let Λ be an edge labeling of NCn+1, and let
Fn+1 be the set of maximal chains in NCn+1. For each maximal chain
m : π0 < π1 < · · · < πn define

Λ∗(m) := (Λ(π0, π1), . . . ,Λ(πn−1, πn)) ∈ Nn,

with a corresponding descent set

Des(m) := {i ∈ [n− 1] : Λ(πi−1, πi) > Λ(πi, πi+1)} .

The noncrossing partition lattice is is intimately related to cycle
factorizations. The n-cycle (1, 2, . . . , n) can be written as a product
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of n− 1 transpositions. There is a well known bijection between such
factorizations and the maximal chains in NCn+1; see, for example, [11,
Lemma 4.3]. A classical result of Hurwitz states that the number of
such factorizations is nn−2 [8, 20], thus equal to the number of labeled
trees of order n. In the next section we will describe a connection
between maximal chains and geometric trees.

3. The Goulden-Yong partial order

With each sequence of n−1 different transpositions w = (t1, . . . , tn−1),
associate a geometric graph G(w) as follows. The vertex set is the set
of vertices of a regular n-gon, labeled clockwise 1, 2, . . . , n. The edges
correspond to the given transpositions t1, . . . , tn−1, where the edge cor-
responding to a transposition tk = (i, j) is the line segment connecting
vertices i and j. See Figure 2 for the geometric graph G(w) corre-
sponding to w = ((1, 4), (4, 6), (4, 5), (1, 2), (2, 3)).

1

2

34

5

6

Figure 2. G(w) for w = ((1, 4), (4, 6), (4, 5), (1, 2), (2, 3))

Let Fn be the set of all factorizations of the n-cycle (1, 2, . . . , n) into a
product of n−1 transpositions. Write each element of Fn as a sequence
(t1, . . . , tn−1), where t1 · · · tn−1 = (1, 2, . . . , n). The following theorem
of Goulden and Yong gives necessary and sufficient conditions for a
sequence of n− 1 transpositions to belongs to Fn.

Theorem 3.1. [7, Theorem 2.2] A sequence of transpositions w =
(t1, . . . , tn−1) belongs to Fn if and only if the following three conditions
hold:

(1) G(w) is a tree.
(2) G(w) is non-crossing, namely: two edges may intersect only in

common vertex.
(3) Cyclically decreasing neighbors: For every 1 ≤ i < j ≤ n − 1,

if ti = (a, c) and tj = (a, b) then c >a b. Here <a is the linear
order a <a a+ 1 <a · · · <a a− 1.

For example, the graph in Figure 2 corresponds to a sequence w ∈ F6,
and indeed satisfies the conditions of Theorem 3.1.
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Note that a sequence w = (t1, . . . , tn−1) ∈ Fn carries more informa-
tion than its Goulden-Yong tree G(w): it actually defines a linear order
on the edges, with the edge corresponding to ti preceding the edge cor-
responding to tj whenever i < j. How much of that information can
be retrieved from the tree?

Definition 3.2. Let T be a non-crossing geometric tree (namely, sat-
isfying conditions 1 and 2 of Theorem 3.1) on the set of vertices of a
regular n-gon, labeled clockwise 1, 2, . . . , n. Define a relation ≤T on
the set of edges of T as follows: (a, b) ≤T (c, d) if there exists a se-
quence of edges (a, b) = t0, . . . , tk = (c, d) (k ≥ 0) such that for every
0 ≤ i ≤ k − 1, ti = (x, z) and ti+1 = (x, y) have a common vertex x
and z >x y as in condition 3 of Theorem 3.1.

Lemma 3.3. ≤T is a partial order on the set of edges of T .

We use the following well-known fact to prove the statement.

Fact 3.4. Let R be an anti-symmetric relation on a set S such that for
every x, y ∈ S there is at most one finite sequence x = a0, . . . , an = y
such that ai−1Rai for every 1 ≤ i ≤ n. Then the transitive closure R̄
of R is anti-symmetric.

Proof of Lemma 3.3. Every finite sequence of edges in T , with the
property that every two consecutive edges e and f we have e ≺T f ,
must form a path. Now, between every two edges there is exactly one
path, hence at most one sequence as above. Hence by Lemma 3.4 <T

is anti-symmetric. It is clearly anti-reflexive, hence a strong order on
the edges of T . �

We call ≤T the Goulden-Yong partial order corresponding to T .

Observation 3.5. For every factorization w = (t1, . . . , tn) ∈ Fn, the
order t1 < t2 < . . . < tn is a linear extension of the Goulden-Yong order
<G(w).

Example 3.6. In Figure 2, the tree T = G(w) yields the partial order
satisfying (1, 4) <T (4, 6) <T (4, 5) and (1, 4) <T (1, 2) <T (2, 3). It is
not a linear order. The order (1, 4) < (4, 6) < (4, 5) < (1, 2), (2, 3) is a
linear extension of it.

4. Convex caterpillars

In this section we prove Theorem 1.4 using the properties of convex
caterpillars.

4.1. Basic properties of convex caterpillars. Let us use the follow-
ing conventions. All arithmetical operations on the elements of [n] will
be done modulo n. [a, b] will denote the cyclic interval {a, a+1, . . . , b}.
Using this notation, for edges (a b), (a c) of a geometric non-crossing
tree T , we have (a c) <T (a b) if and only if b ∈ [a, c].
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The following result was proved in [9]. We provide a somewhat
different proof, the details of which will be used later.

Theorem 4.1. [9, Theorem 3.2] The Goulden-Yong order on the edge
set of a non-crossing geometric tree T is linear (total) if and only if T
is a convex caterpillar.

The following observation follows from the fact that a linear exten-
sion of a Goulden-Yong order <T on the edges of geometric non-crossing
tree T corresponds to a factorization of the cycle (1 . . . n) into n − 1
transpositions.

Observation 4.2. If T is a geometric non-crossing tree and <T is
linear, then every two consecutive edges, viewed as transpositions in
Sn, do not commute and therefore have a common vertex.

The following lemma gives sufficient conditions for <T not to be
linear.

Lemma 4.3. Let T be a non-crossing geometric tree. In each of the
following cases, the order <T is not linear.

(1) There are edges (a b), (c d), (e f) of T such that (a b) <T

(c d), (e f) and c, d ∈ [a, b− 1] and e, f ∈ [b, a− 1].
(2) T has edges (a b), (c d), (e f) such that (c d), (e f) < (a b) and

c, d ∈ [b+ 1, a] and e, f ∈ [a+ 1, b].

Proof. We prove the first case, second one being similar by reversing
directions. Suppose that <T is linear and the first case holds. Note
that for every v ∈ [a+1, b−1] the edge (v b) is smaller than (a b) in <T

because of counterclockwise relation of the edges, and the same is true
for any edge (a v) with v ∈ [b+1 a− 1]. Combining with non-crossing
property of T we find that any edge that is larger than (a b) has either
end-points in [a, b − 1] or [b, a − 1]. Since it has both, there must be
adjacent edges with endpoints in [a, b− 1] and [b, a− 1]. However they
are disjoint, hence commute, contradicting the fact that <T is linear
order. �

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. If T is a convex caterpillar. If the spine of T is
empty, then T is a star, hence every two edges are comparable because
they have a common vertex. Otherwise, let (a a+1), (a+1 a+2) . . . , (b−
2 b−1), (b−1 b) be the spine of T . For every two edges (k l) and (k m)
that share a common vertex k, (k l) <T (k m) if m ∈ [k, l] where [k l]
denotes the cyclic interval {k, k+1, . . . , l} where l− k and m− k have
values between 1 and n− 1. Note that it is simply restatement of the
fact that neighbors of k are ordered counterclockwise. Hence, every two
edges in the spine are comparable with (a a+1) <T (a+1 a+2) · · · <T

(b− 1 b). It also implies that if (k k + 1) is an edge in the spine, then
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for every edge (k l) that has k as an end point, (k l) <T (k k + 1)
and for every edge (k + 1 m) that has k + 1 as an endpoint we have
(k k + 1) <T (k + 1 m). It follows that if k and m are endpoints of
edges in the spine with (k k+1), (k+1 k+2) . . . , (m− 1 m), then for
every edge (k j) connected to k and every edge (m l) connected to m
we have (k j) <T (k k+ 1) <T . . . (m− 1 m) · · · <T (m l), hence every
two edges that do not have common vertex are also comparable.

To prove the converse statement, assume that <T has unique linear
extension. Then <T is linear and we can sort the edges (a1 b1), . . . , (an−1, bn−1),
and since every linear extension of <T corresponds to decomposition
of the cycle (1 . . . n) into transpositions, we can view each edge as
transposition. Next, note that since <T is linear, every two adjacent
edges can not commute as transpositions, hence share a common ver-
tex. Now, note that the first edge must be of form (i i + 1) for some
i. Assume that it t1 = (i j) where the length cyclic interval [ij] is
larger than 1 and smaller than n − 1. Since T is a tree, there must
exist a vertex k in the cyclic interval [i+1j− 1] and a vertex m in the
cyclic interval [j + 1i − 1] connected to either i or j. Note that since
every two consequent edges in <T must have a common vertex, t2 must
be connected to either i or j. Assume without loss of generality that
t2 = (jk) for some k ∈ [j+1 i−1]. But every two consecutive edges in
<T must have a common vertex, and every vertex adjacent to t2 must
have vertices in the interval [j i− 1] because of the non-crossing prop-
erty of <T . However, this implies that the first edge in in the interval
[i j−1] has no common vertex with the edge preceding it, which means
that they commute as transpositions which contradicts the fact that
<T is linear.

Now i must be a leaf. For if we have an edge (j i), (i j) <T (i i+1),
contradicting the fact that <T is the first edge in <T . m edges in <T

the following hold:

(1) The end points of the first m edges in <T form a cyclic interval
[j k].

(2) The vertices j, j + 1, . . . , i− 1, i are leaves in T .
(3) The edges are (i i+1), (i+1 i+2), . . . (k− 1 k) are edges in T

and occur among the first m edges.
(4) Every edge that has j, j+1 . . . , k−1 as endpoint occurs among

the first m edges.
(5) For the m-th edge in <T , tm = (k − 1 k) or tm = (k j).

Let tl denote the l-th edge in <T . The statement clearly holds for m =
1. Assume that the statement holds form. By induction hypothesis the
m-th edge of <T is either (k j) or (k−1 k) and linearity of <T and the
induction hypothesis tm+1 must have k as an endpoint, because j and
k can only be endpoints of the first m edges by the hypothesis. Next
we show that tm+1 is either (k k + 1) or (k j − 1). Assume tm = (k l)
for l 6= j, k + 1. Then we have must have edges (k l) <T (s t), (u v)
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with u, v ∈ [k l− 1] and s, t ∈ [l, k− 1] contradicting Lemma 4.3. Now
if tm+1 = (k k + 1), we are done, since the statements 1 and 2 hold by
induction for m, 3 and 5 hold for m+1 and 4 holds because (k k+1) is
the maximal edge in <T that has k as an endpoint. If tm+1 = (k j−1),
then for every v ∈ [k+1, j− 2] we have (j− 1 v) <T (j− 1 k) which is
impossible, since v /∈ [j, k] contradicting the assumption. On the other
hand, for every v ∈ [j k − 1], (j − 1 v) can not be a an edge, since by
the assumption, since edges with endpoints j, . . . k−1 occur among the
first m edges. Hence, j − 1 must be a leaf. Again, it is easy to check
that assumptions 1, 2, 3, 4, 5 still hold for m+ 1. Now if we substitute
m with n − 1, we see that T must be a geometric caterpillar, because
by the construction, vertices that are not leaves are i + 1, i + 2, . . . , k
for some k, with edges (i+1 i+2), . . . , (k−1, k) connecting them. �

For example, the tree in Figure 2 is a caterpillar, but not a convex
one. The corresponding Goulden-Yong order is not linear.

Corollary 4.4. A non-crossing geometric tree T on n vertices is a
convex caterpillar if and only if there is a unique w ∈ Fn such that
G(w) = T .

We shall henceforth identify a convex caterpillar c ∈ Ctn with the
corresponding sequence of transpositions (t1, . . . , tn−1) ∈ Fn.

Proposition 4.5. In a convex caterpillar c = (t1, . . . , tn−1):

(1) Any two consecutive edges ti and ti+1 share a common vertex.
(2) The first edge t1 is of the form (a, a+1) for some a. The same

holds for the last edge tn−1.

Proof. The first part of the proposition follows from the proof of 4.1.
The second part is simply restatement of 4.2. �

Definition 4.6. Let e be an edge of caterpillar c.

(1) We say that e is a branch if (at least) one of its endpoints is a
leaf.

(2) We say that e is a link if its endpoints have cyclically consecutive
labels.

By cautiously reading the proof of theorem 4.1, we get the following
observation.

Observation 4.7. An edge of a convex caterpillar a c is both a link
and a branch if and only if it is either the first or the last edge of c.

Lemma 4.8. Let c = (t1, . . . , tn−1) ∈ Ctn. The following statements
hold.

(1) The endpoints of the first k edges form a cyclic interval in [n],
for every 1 ≤ k ≤ n− 1.

(2) If the first edge is (i, i + 1) then the endpoints of the first k
branches that are leaves are i, i− 1, . . . , i− k+1, in that order.
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(3) If the first edge is (i, i+1) then the first k links are (i, i+1), (i+
1, i+ 2), . . . , (i+ k − 1, i+ k).

(4) The product of the first k edges, viewed as transpositions, is
equal to the cycle (ℓ, ℓ + 1, . . . , m) where ℓ is the leaf endpoint
of the last branch among the first k edges and (m− 1, m) is the
last link among the first k edges.

Proof. Parts 1, 2 and 3 follow from the proof of theorem 4.1. Part 4
follows by induction and using the fact that that if the product of first
k edges (viewed as transpositions) is the cycle (l l + 1 dotsl + k) and
where the cyclic interval is formed by the endpoints of first k edges,
then the k+1-th edge is either (l+k l+k+1) or (l+k l−1). Multiplying
these we get the desired result. �

Corollary 4.9. Every c = (t1, . . . , tn−1) ∈ Ctn is completely deter-
mined by its first edge t1 and the set of indices i for which ti is a
branch.

4.2. A labeling of maximal chains. The following labeling of maxi-
mal chains in the non-crossing partition lattice was introduced by Adin
and Roichmain in [1] and is closely related to the the EL-labeling in-
troduced by Björner in [3]. In this section we describe this labeling,
denoted by φ. Its connection to the EL-Labeling of Björner will be
discussed elsewhere.

Recall, from Definition 1.8, the notion of descent set of a convex
caterpillar.

Next, we show the connection to the descents defined by the map
φ in [1]. First, let us describe φ. For w = (t1, . . . , tn−1) ∈ Fn define
the partial products σj = tj . . . tn−1 with σn = id. By definition σj =
tjσj+1. For 1 ≤ j ≤ n− 1 define

Aj = {1 ≤ i n− 1 : σj(i) > σj+1(i)} .

By the discussion preceding Definition 3.2 in [1], we get the following
statement.

Proposition 4.10. The following hold.

(1) For each 1 ≤ j ≤ n− 1, |Aj| = 1.
(2) The map πw defined by

πw(j) = i if Aj = {i}

is a permutation in Sn−1.

Definition 4.11. [1, Definition 3.2] Define φ : Fn → Sn−1 by

φ(w) = πw.

Define for each w ∈ Fn :

Des(w) = Des(φ(w)).
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4.3. Descents of convex caterpillars. We proceed to calculate the
restriction of φ to Ctn.

Proposition 4.12. Let c ∈ Ctn and let σj+1 = ( k + 1 . . .m). Then

φ(c)(j) =











l if σj+1(n) 6= n

l if σj+1(n) = n and l < m

m if σj+1(n) = n and m < l

Proof. By Lemma 4.8 the product of the first n− 1− j transpositions
is a cycle of form (l l + 1 . . .m). However, this implies that σj is the
cycle (m m + 1 . . . l − 1). Also, note that (m − 1, m) is the last link
among the first n − j edges of c. Hence tj−1 equals either (m − 1 m)
or (m l).

If tj−1 = (m− 1 m) and m− 1 < m, then

σj−1(m− 1) = m > m− 1 = σj(m− 1)

which implies that φ(c)(j − 1) = m − 1. m − 1 > m then m − 1 = n
and

σj−1(l − 1) = n > m = σj(l − 1),

hence, φ(c)(j − 1) = l − 1. If tj−1 = (m l) then if l < m, we have

σj−1(l) = m > l > σj(l)

and φ(c)(j − 1) = l and if m < l then

σj−1(l − 1) = l > m = σj(l − 1)

and φ(c)(j − 1) = l − 1. Note, that in all four cases, we get following
combinatorial description of φ restricted to Ctn. �

Proposition 4.13. The descent set of a convex caterpillar, defined as
in Definition 1.8, coincides with the descent set defined via the map φ.

Proof. First, show that if ti = (a b) and ti+1 = (b c) then φ(c)(i) >
φ(c)(i + 1). Let σj+2 = (k k + 1, . . . , m) such that (k k + 1) is the
first link in σj+2 and tj = (k − 1 k) is the last link among the first
j − 1 edges. There are two possibilities. We have either b = k or
c = k Suppose that b = k holds then we have tj = (a k), tj+1 = (c k)
with a > k. Then by interval property of σj of a caterpillar we have
b = m + 1 and c = m + 2 with m + 2 > m + 1. By proposition 4.12,
φ(c)(j) = m + 1, phi(c)(j + 1) = m if n /∈ {k, . . . , m} and φ(c)(j) =
m+2, φ(c)(j+1) = m+1. In both cases we have φ(c)(j) > φ(c)(j+1),
hence j is a descent of φ(c). Second possibility is that b 6= k. In that
case we have (b c) = (k−1k) and (a b) = (m+1 k−1) withm+1 > k−1.
This implies that n is not contained in the interval (k − 1 . . .m + 1)
which means that φ(c)(j) = m and φ(c)(j + 1) = k − 1 and again j is
a descent of φ(c).

Now assume that j is descent of φ. Let σj+2 = (k . . . m). Note that
that there are four possibilites for tj , tj+1.
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(1) tj = (k − 2 k − 1), tj+1 = (k + 1 k). In this case we have
σj+1 = (k−1 k . . . m), σj = (k−2 k−1 . . . k). By proposition
4.12, either φ(c)(j+1) = k− 1 or φ(c)(j+1) = m if k− 1 = n.
We φ(j)(c) = m and or k − 2 = m if k − 2 = n. Since we have
φ(c)(j) > φ(c)(j + 1) we can not have φ(j) = k − 2 > k − 1 =
φ(j + 1) because it would imply that φ(k − 2) = n and this is
not possible because φ(c) is permutation on n − 1. Hence the
possibilities that remain are either φ(j) = m > k−1 = φ(j+1)
or φ(j) = k−2 > φ(j+1) = m. If φ(j) = m > k−1 = φ(j+1)
then we have σj = (n k − 1), σj+1 = (k − 1 k) which means
that j is a descent of c. If φ(j) = k − 2 > φ(j + 1) = m, then
σ(j +1) = (n 1) and σ(j) = (n− 1 n) which again implies that
j is a descent of φ.

(2) tj = (k − 1 k), tj+1 = (k m + 1). Again by proposition 4.5
we have either φ(j) = k − 1 or φ(j) = m + 1 if σ(j) = (n 1)
and φ(j + 1) = m or φ(j + 1) = m + 1 if σj+2(n) 6= n. We
must have either φ(c)(j) = m + 1 > m = φ(c)(j + 1). In this
case we have tj = (n 1) and tj+1 − (1 m). Otherwise we have
φ(j) = k−1 > m = φ(j+1) or φ(j) = k−1 > m+1 = φ(j+1).
Both cases imply that k− 1 > m and thus j is again descent of
c.

(3) tj = (k − 1 m + 1), tj+1 = (k − 1 k). By proposition 4.5 we
have either φ(c)(j) = m if k − 1 < m and φ(c)(j) = m + 1 if
k− 1 > m,m+1. We also have φ(c)(j+1) = k− 1 if k− 1 < k
and φ(c)(j + 1) = m if tj+1 = (n 1) = (k − 1 k). Clearly, the
option φ(c)(j) = m + 1 > k − 1 > φ(c)(j + 1) is not possible
because it implies k+1 > m+1 and j is a descent of φ. Hence
we have φ(c)(j) = m > k − 1 = φ(c)(j + 1) which implies that
m+1 > k−1. Hence we have tj = (k−1 m+1), tj+1 = (k−1 k)
with m+ 1 > k − 1 which implies that j is a descent of c.

(4) tj = (k m + 2), tj+1 = (k m + 1). If we have m + 1 > m + 2
then we have m + 1 = n, hence φ(c)(j + 1) = m = n and
φ(c)(j) = 1 which is not possible, since j is a descent. Otherwise
we have either φ(c)(j) = m + 1, φ(c)(j) = m or φ(c)(j) =
m + 2, φ(c)(j + 1) = m + 1 by proposition 4.12. It is easy to
check that in both cases j is also a descent of c.

�

4.4. Schur-positivity of convex caterpillars.

Definition 4.14. Let c = (t1, . . . , tn−1) be a convex caterpillar and let
i be the index of the first edge that has 1 as its endpoint. The edge ti
is called the main edge of c and the index i is called the main index of
c, denoted I(c).

For example, for c = ((4, 5), (5, 6), (3, 6), (1, 6), (1, 2)) we have I(c) =
4.
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Using Lemma 4.8 we prove the following explicit description of the
descents of a convex caterpillar c, based on I(c) and on the geometry
of c.

Lemma 4.15. Let c ∈ Ctn and i ∈ [n− 2]. Then:

(1) For 1 ≤ i < I(c)− 1, i is a descent of c if and only if ti+1 is a
branch of c.

(2) For i = I(c)− 1, i is always a descent of c.
(3) For i = I(c), i is a descent of c if and only if 1 is not a leaf of

c.
(4) For I(c) < i ≤ n − 2, i is a descent of c if and only if ti is a

branch of c.

Proof. We prove each case separately

(1) First suppose that i = I(c). Then ti = (a b) and ti+1 = (b 1)
for some 2 ≤ a, b ≤ n. Obviously, a > 1 and therefore ti is a
descent.

(2) If ti+1 is a branch, then ti = (a b), ti+1 = (a c) for some
a, b, c > 1. If (a b). By lemma 4.8 b = a− 1 if (a b) is a link or
b = c+1 if (a b) is a branch, the endpoints of the first i+1 edges
form the cyclic interval [c, a]. Since i < i(c) we 1 < c < b < a,
therefore i is a descent. On the other hand if ti+1 is a link then
ti = (a, b), ti+1 = (b b + 1) and a is between b+ 1 and b in <b.
Because 1 < a, we have a < b, thus i is not a descent.

(3) Now if i = I(c) and 1 is a leaf. Then we have ti = (a 1), ti+1 =
(a b). Obviously 1 < b and ti is not a descent. In contrast, if
ti is a link, then ti = (1 a), ti+1 = (1 b) and since a and b
are sorted counterclockwise and are both greater than 1 in the
cyclic order <1 we have b < a, thus i is a descent.

(4) Now suppose that i > I(c). Then if ti is a branch we have ti =
(a b) ti+1 = (a c) where b and c are ordered counterclockwise and
a < b, c < n which implies that c < b and that ti is a descent.
On the other hand, if ti is a link we have ti = (a a+ 1), ti+1 =
(a + 1 k) where k > a, and i is not a descent.

�

Combining Lemmas 4.8 and 4.15 and Corollary 4.9, we deduce the
following key proposition.

Proposition 4.16. A convex caterpillar c is determined uniquely by
I(c) and Des(c).

Proof. By Lemma 4.9, it suffices to show that the pair (I(c),Des(c))
determines the first edge and branches. Note that by observation 4.7,
first and last edges are always branches.

Denote k := I(c). For i < k, combine Lemmas 4.15 and 4.8 to
determine whether the i-th edge is a branch or link. By Part 2 of
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Lemma 4.15 we know whether 1 is a leaf or not and whether ek is a
branch or not. In both cases, applying Parts 2 and 3 of Lemma 4.8,
we determine the first edge. The branches with indices larger than k
are determined by Part 3 of Lemma 4.15. Hence the first edge and
the branches are completely determined by the descent set and the
k = I(c) as desired. �

The next lemma describes the possible values of I(c), given the de-
scent set of c.

Lemma 4.17. Let c ∈ Ctn. Then either I(c) = 1 or I(c)−1 ∈ Des(c).

Proof. Let X ⊆ [n− 2] and suppose that Des(c) = X . We show that
I(c) = 1 or I(c) ∈ X + 1. It is clear that if I(c) 6= 1 then there exists
a i ∈ desC(1) + 1 such that I(c) = i by Part 1 of Lemma 4.15. �

Lemma 4.18. For every subset J ⊆ [n− 2] and every i ∈ (1 + J)∪{1},
there exists a unique c ∈ Ctn such that Des(c) = J and I(c) = i.

Proof. Recall that every caterpillar is determined by its first edge and
the true branches, where every J ⊆ {2, . . . , n− 2} can appear as the set
of the true branches of a caterpillar. Placing I(c) after x ∈ J results in
proper set of true branches, which in turns defines a caterpillar. Now,
suppose that i /∈ J . Then (1, 2) can be first edge of the leaf, since 1 is a
leaf, hence 1 is not a descent, and branches correspond to the members
of X . If 1 ∈ X , then (n 1) can be first edge, with the rest of branches
defined by the descents. �

Corollary 4.19. For every subset J ⊆ [n− 2], the number of convex
caterpillars with descent set J is equal to |J |+ 1.

The following observation is well known.

Observation 4.20. For every 0 ≤ k ≤ n− 1

{Des(T ) : T ∈ SYT(n− k, 1k)} = {J ⊆ [n− 1] : |J | = k},

each set being obtained exactly once.

Proof of Theorem 1.4. Combine Corollary 4.19 with Observation 4.20
and Theorem 2.6 to deduce

Q(Ctn) =
n+1
∑

k=0

(k + 1)
∑

J⊆[n−1]
|J |=k

Fn,J =
n+1
∑

k=0

(k + 1)sn−k,1k .

�
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