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Abstract The vast majority of the literature on stochastic semidefinite programs
(stochastic SDPs) with recourse is concerned with risk-neutral models. In this
paper, we introduce mean-risk models for stochastic SDPs and study structural
properties as convexity and (Lipschitz) continuity. Special emphasis is placed on
stability with respect to changes of the underlying probability distribution. Pertur-
bations of the true distribution may arise from incomplete information or working
with (finite discrete) approximations for the sake of computational efficiency. We
discuss extended formulations for stochastic SDPs under finite discrete distribu-
tions, which turn out to be deterministic (mixed-integer) SDPs that are (almost)
block-structured for many popular risk measures.

Keywords Stochastic Semidefinite Programming · Mean-Risk Models · Stability
Analysis · Extended Formulations

1 Introduction

Stochastic semidefinite programs with recourse were first considered by Ariyawansa
and Zhu in [1], where, for finite discrete distributions, the authors reformulate the
risk-neutral stochastic SDP as a block-structured deterministic SDP and discuss
an application to the stochastic version of the minimum-volume covering ellipsoid
problem (cf. [22], [24]). In [27], the same authors give a multitude of other appli-
cations, including problems in geometry, location aided routing, RC circuit design
and structural optimization.
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Some approaches to the algorithmic treatment of risk neutral programs with linear
recourse carry over to expectation based stochastic SDPs. Extending the results of
Zhao (cf. [25]), Mehrotra and Özevin derive a polynomial logarithmic barrier algo-
rithm employing Bender’s decomposition (cf. [13]). Using the volumetric barrier of
Vaidya (cf. [23]), Ariyawansa and Zhu construct algorithms of similar complexity in
[2]. Furthermore, in [10], Jin, Ariyawansa and Zhu propose homogeneous self-dual
algorithms with complexities comparable to the ones of the methods mentioned
before. Motivated by an application in multi-antenna wireless networks, Gaujal
and Mertikopoulos establish a stochastic approximation algorithm in [9].

Chance constrained SDP models have been introduced by Ariyawansa and Zhu in
[26, Chapter 3], where an application to the stochastic minimum-volume covering
ellipsoid problem is considered. A different approach towards risk-aversion is taken
by Schultz andWollenberg, who consider stochastic mixed-integer semidefinite pro-
grams arising from unit commitment problems in AC transmission systems. Based
on Lagrangian relaxation of the nonanticipativity constraint, a decomposition al-
gorithm for minimizing a weighted sum of the expectation and the probability of
exceeding a certain threshold is proposed in [19].

The present work extends the models of [19] and [2] by considering more general
risk measures. Instead of focussing on a certain application, we discuss structural
properties as convexity and (Lipschitz) continuity of the resulting objective func-
tions. Consequences for quantitative stability of the stochastic SDP models under
perturbations of the underlying distribution are pointed out. Such perturbations
may arise from incomplete information about the distribution or the choice to
work with a simpler (possibly finite discrete) approximation for reasons of compu-
tational efficiency.

Furthermore, we establish sufficient conditions for differentiabiliy in the risk neu-
tral setting. Finally, for finite discrete distributions, we establish equivalent SDPs
for various risk measures and give indications on how to exploit their special struc-
ture for numerical treatment.

2 Two-Stage Stochastic SDPs with Continuous Recourse

Let Sk
+ denote the cone of symmetric positive semidefinite matrices in Rk×k. The

componentwise Frobenius product of A = (a1, . . . as)
⊤ ∈ (Sk

+)
l and x ∈ Sk

+ is

defined as A •x :=
(

tr(a1x), . . . , tr(asx)
)⊤ ∈ Rs. Furthermore, the Frobenius norm

on Sk
+ is given by ‖x‖ :=

√
x • x.

We shall consider the parametric SDP

(P(z)) min
x,y

{c • x+ q • y | T • x+W • y = z, x ∈ X, y ∈ Sm
+ },

where z ∈ Rs enters as a parameter. The data is comprised of c ∈ Sn
+, q ∈ Sm

+ ,
T ∈ (Sn

+)
s, W ∈ (Sm

+ )s and a nonempty, closed, convex set X ⊆ Sn
+. The set X

is usually given as a spectrahedron, i.e. the intersection of the solution sets of a
finite number of affine matrix inequalities with the cone of positive semidefinite
matrices.

Let z = Z(ω) be the realization of a random vector Z : Ω → Rs on some probability
space (Ω,F ,P). A two-stage stochastic SDP arises from (P(z)) if the decision x
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has to be taken without knowledge of the particular realization Z(ω), while y can
be chosen after observing the previously unknown parameter. In this setting, the
optimal decision y is governed by the recourse problem

min
y

{q • y | W • y = Z(ω)− T • x, y ∈ Sm
+ }. (1)

Let ϕ : Rs → R denote the optimal value function of (1) with respect to the
right-hand side of the system of matrix equations in its constraints, i.e.

ϕ(t) := min
y

{q • y | W • y = t, y ∈ Sm
+ }.

Introducing the function f : Sn
+ × Rs → R, f(x, z) := c • x+ ϕ(z − T • x) we may

rewrite (P(Z(·)) as
min
x

{f(x, Z(·)) | x ∈ X}. (2)

Due to the assumed interplay between decision and observation, problem (2) is
not well-defined without further modelling choices. For any x, f(x, Z(·)) belongs to
the space L0(Ω,F ,P) of extended real-valued random variables on the underlying
probability space. We thus may fix any functional R : X → R satisfying

{f(x, Z(·)) | x ∈ X} ⊆ X ⊆ L0(Ω,F ,P)

and consider the optimization problem

min
x

{QR(x) | x ∈ X}, (3)

where the mapping QR : Sn
+ → R is given by QR(x) = R[f(x,Z(·))].

We shall work with the following assumptions:

A1 (Complete recourse) W • Sm
+ = Rs.

A2 (Strict dual feasibility) There is some u ∈ Rs such that q −W⊤u is positive
definite.

Similar, yet more restrictive assumptions are also made in [13].

Lemma 1 Assume A2, then A1 holds if and only if MD := {u ∈ Rs | q−W⊤u ∈ Sm
+ }

is compact.

Proof MD is closed due to the closedness of Sm
+ . Suppose that MD is unbounded,

i.e. that there exists a sequence {uk}k∈N ⊆ MD with limk→∞ ‖uk‖ = ∞. Define
vk := uk/‖uk‖, then ‖vk‖ = 1 holds for all k ∈ N. Therefore, the sequence {vk}k∈N

can be assumed to converge to some v 6= 0 without loss of generality. By uk ∈ MD

we have q −W⊤uk ∈ Sm
+ for all k ∈ N. Thus,

−W⊤v = lim
k→∞

−W⊤vk = lim
k→∞

1

‖uk‖
(

q −W⊤uk
)

∈ Sm
+ .

Now select any u0 ∈ MD. Then u0 + αv ∈ MD holds for any α ≥ 0 and we have

lim
α→∞

v⊤(u0 + αv) = lim
α→∞

v⊤u0 + α‖v‖2 = ∞,

verifying sup{v⊤u | q−W⊤u ∈ Sm
+ } = ∞. By duality, the set {y ∈ Sm

+ | W • y = v}
has to be empty, which contradicts A1.

Let MD be compact, then once again by duality for arbitrary t ∈ Rs, there exists
u ∈ MD with min{q • y | W • y = t, y ∈ Sm

+ } = t⊤u, which implies t ∈ W • Sm
+ and

thus A1. ⊓⊔
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The lemma above shows that sup{t⊤u | q−W⊤u ∈ Sm
+ } is attained for any t ∈ Rs

whenever A1 and A2 hold true.

Lemma 2 Assume A1 and A2, then ϕ is finite, convex and Lipschitz continuous on

Rs.

Proof Due to A1 and A2, strong duality holds true for the SDP defining ϕ. We
thus have

ϕ(t) = max
u

{t⊤u | u ∈ MD} ∀t ∈ Rs.

As MD is nonempty and compact by Lemma 1, ϕ is finite on Rs.

Furthermore, for arbitrary λ ∈ [0, 1] and t1, t2 ∈ Rs, strong duality implies

ϕ(λt1 + (1− λ)t2) = max
u∈MD

(λt1 + (1− λ)t2)
Tu

≤ λ max
u∈MD

tT1 u+ (1− λ) max
u∈MD

tT2 u

= λϕ(t1) + (1− λ)ϕ(t2),

which proves the asserted convexity of ϕ.

To establish Lipschitz continuity, let t1, t2 ∈ Rs be arbitrary and fixed. Then by
strong duality and the compactness of MD, there exists u1, u2 ∈ MD such that
ϕ(t1) = t⊤1 u1 and ϕ(t2) = t⊤2 u2. By t⊤1 u1 ≥ t⊤1 u2 and t⊤2 u2 ≥ t⊤2 u1 we have

−‖u2‖ · ‖t1 − t2‖ ≤ t⊤1 u2 − t⊤2 u2 ≤ ϕ(t1)− ϕ(t2) ≤ t⊤1 u1 − t⊤2 u1 ≤ ‖u1‖ · ‖t1 − t2‖

and thus |ϕ(t1)−ϕ(t2)| ≤ max{‖u1‖, ‖u2‖}‖t1 − t2‖. Set Lϕ := maxu∈MD
‖u‖ < ∞,

then
|ϕ(t1)− ϕ(t2)| ≤ Lϕ · ‖t1 − t2‖

holds for all t1, t2 ∈ Rs, which completes the proof. ⊓⊔

Remark 1 Under assumptions A1 and A2, ϕ is finite and convex, which implies
directional differentiability by [16, Theorem 25.4]. Furthermore, the subdifferential
of ϕ is convex, compact and admits the representation

∂ϕ(t) = Argmax{u⊤t | u ∈ MD}.

By [16, Theorem 25.1], ϕ is differentiable at t if and only if ∂ϕ(t) is a singleton. In
that case, we have ∂ϕ(t) = {∇ϕ(t)}.

Remark 2 In two-stage stochastic linear programming, the counterpart of ϕ is the
optimal value function of a linear program:

ϕl : R
s → R, ϕl(t) := min{q⊤l yl | Wlyl = t, yl ∈ Rm

+}

with ql ∈ Rm and Wl ∈ Rs×m. By linear programming theory, ϕl is finite on Rs

iff Wl(R
m
+ ) = Rs and MDl

= {u ∈ Rs | W⊤
l u ≤ q} 6= ∅. In this situation, ϕl admits

the representation
ϕl(t) = max

j=1,...,N
d⊤j t,

where d1, ..., dN denote the vertices of the polytope MDl
. In particular, ϕl is piece-

wise linear, convex and Lipschitz continuous.
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The following example shows that the assumptions A1 and MD 6= ∅ are not suffi-
cient to ensure that the optimal value in the problem defining ϕ(t) is attained for
all t ∈ Rs.

Example 1 For t ∈ R, consider the SDP

min
{

[

1 0 0 0
]

• y |
[

0 1
2

1
2 0

]

• y = t, y ∈ S2
+

}

. (4)

For any t ∈ R we have
[

|t|+ 1 t

t |t|+ 1

]

∈ int S2
+ and

[

0 1
2

1
2 0

]

•
[

|t|+ 1 t

t |t|+ 1

]

= t.

Consequently, A1 is fulfilled. Moreover, we have

MD =
{

u ∈ R |
[

1 0 0 0
]

−
[

0 1
2

1
2 0

]

· u ∈ S2
+

}

= {0}. (5)

As (4) is strictly feasible for any right-hand side t ∈ Rs, strong duality holds and
(5) implies that the infimum of (4) is zero. Furthermore, for any t ∈ R \ {0} we
have

[

y11
t
2

t
2 y22

]

∈ S2
+ ⇔ y11 > 0, y22 > 0, y11y22 −

(

t

2

)2

≥ 0,

which yields the lower bound y11 ≥ t2/(4y22) > 0 for any y that is feasible for (4).
Consequently, the optimal value in (4) is not attained if t 6= 0.

3 Structure of Risk-Averse Stochastic SDPs

Let us now return to problem (3) and consider various choices of R. To ensure
finiteness, we shall work with moment conditions on the Borel probability measure
P◦Z−1 induced by the underlying random vector Z(·). Let P(Rs) denote the space
of all Borel probability measures on Rs and

Mp
s := {µ ∈ P(Rs) |

∫

Rs

‖t‖p µ(dt) < ∞}

be the subspace of measures having finite moments of order p ≥ 1.

Lemma 3 Assume A1, A2 and P ◦Z−1 ∈ M1
s. Then f(x, Z(·)) ∈ L1(Ω,F ,P) for all

x ∈ Sn
+ and the mapping F : Sm

+ → L1(Ω,F ,P), F (x) := f(x, Z(·)) is convex and

Lipschitz continuous with constant ‖c‖+ Lϕ · ‖T‖.

Proof For any x ∈ Sn
+ we have

‖F (x)‖L1 =

∫

Rs

|c • x+ ϕ(z − T • x)| (P ◦ Z−1)(dz)

≤ |c • x|+ |ϕ(0)|+
∫

Rs

|ϕ(z − T • x)− ϕ(0)| (P ◦ Z−1)(dz)

≤ |c • x|+ |ϕ(0)|+ Lϕ‖T • x‖+ Lϕ

∫

Rs

‖z‖ (P ◦ Z−1)(dz) < ∞

by Lemma 2.
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For any x1, x2 ∈ Sn
+, λ ∈ [0,1] and z ∈ Rs, the convexity of ϕ yields

f(λx1 + (1− λ)x2, z) ≤ λf(x1, z) + (1− λ)f(x2, z)

and thus in particular F (λx1+(1−λ)x2) ≤ λF (x1)+ (1−λ)F (x2) with respect to
the P-almost sure partial order, proving the asserted convexity of F .

Finally,

‖F (x1)− F (x2)‖L1 =

∫

Rs

|c • (x1 − x2) + ϕ(z − T • x1)− ϕ(z − T • x2)| (P ◦ Z−1)(dz)

≤ ‖c‖ · ‖x1 − x2‖+ Lϕ · ‖T‖ · ‖x1 − x2‖

holds for all x1, x2 ∈ Sn
+. ⊓⊔

Definition 1 A mapping R : X → R ∪ {∞} defined on some linear subspace X
of L0(Ω,F ,P) containing the constants is called a convex risk measure if the
following conditions are fulfilled:

1. (Convexity) For any Z1, Z2 ∈ X and λ ∈ [0,1] we have

R[λZ1 + (1− λ)Z2] ≤ λR[Z1] + (1− λ)R[Z2].

2. (Monotonicity) R[Z1] ≤ R[Z2] for all Z1, Z2 ∈ X satisfying Z1 ≤ Z2 with
respect to the P-almost sure partial order.

3. (Translation equivariance) R[Z1+z2] = R[Z1]+z2 for all Z1 ∈ X and z2 ∈ R.

A convex risk measure R is coherent if the following holds true:

4. (Positive homogeneity) R[z2Z1] = z2 · R[Z1] for all Z1 ∈ X and z2 ∈ [0,∞).

Definition 2 A mapping R : L0(Ω,F ,P) ⊇ X → R ∪ {∞} is called law-invariant

if for all Z1, Z2 ∈ L0(Ω,F ,P) with P ◦ Z−1
1 = P ◦ Z−1

2 we have R[Z1] = R[Z2].

We shall give some examples of risk-measures frequently used in stochastic pro-
gramming as listed in [17], pp. 447-448, and [21]. Later we will give extensive
formulations of discrete mean-risk SDPs based on these risk-measures:

(i) The expectation E : L1(Ω,F ,P) → R is a law-invariant coherent risk-measure.

(ii) The expected excess over threshold η ∈ R (as used in [18]) is the mapping
EEη : L1(Ω,F ,P) → R defined by

EEη[Y ] =

∫

Ω

max{Y (ω)− η, 0 } P(dω).

This is a non-decreasing, convex and law-invariant risk measure, but in general
not translation-equivariant.

(iii) The conditional value-at-risk at level α ∈ (0, 1)

CV@Rα : L1(Ω,F ,P) → R, CV@Rα[Y ] = min
η∈R

{

η +
1

1− α
EEη(Y )

}

(6)

is law-invariant and coherent (cf. [14]).
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(iv) The value-at-risk at level α ∈ (0, 1)

V@Rα : L0(Ω,F ,P) → R, V@Rα[Y ] = inf{ t | P(Z(ω) ≤ t) ≥ α }

is nondecreasing, law-invariant, translation-equivariant and positively homoge-
nous, but in general non-convex.

(v) The upper semi-deviation of order p is the mapping Mad+
p : Lp(Ω,F ,P) → R

defined by

Mad+
p [Y ] =

(

∫

max{0, Y (ω)− EP[Z]}p P(dω)
)

1

p

.

For ρ ∈ [0, 1] this gives rise to the law-invariant and coherent risk measure
E+ ρMadp (cf. [21], p. 276).

Proposition 1 Assume A1 and A2, let X be a convex subset of L0(Ω,F ,P) that

contains F (Sn
+) and fix a convex and nondecreasing mapping R : X → R. Then QR is

finite and convex on Sn
+. In particular, problem (3) is convex.

Proof Finiteness of QR follows directly from the finiteness of R. Furthermore, for
any x1, x2 ∈ Sn

+ and λ ∈ [0,1] we have

QR(λx1 + (1− λ)x2) = R[F (λx1 + (1− λ)x2)]

≤ R[λF (x1) + (1− λ)F (x2)]

≤ λR[F (x1)] + (1− λ)R[F (x2)].

The first inequality above holds due to the monotonicity of R and the convexity
of F (by Lemma 3), while the second one is justified by the convexity of R. ⊓⊔

Proposition 2 Assume A1, A2 and that the support of P ◦ Z−1 is bounded. Further-

more, let R : L∞(Ω,F ,P) → R ∪ {∞} be a coherent risk measure and assume that

there is some Y ∈ L∞(Ω,F ,P) such that R[Y ] < ∞. Then QR is finite and Lipschitz

continuous with constant ‖c‖+ Lϕ · ‖T‖ on Sn
+.

Proof R is finite and Lipschitz continuous with constant 1 with respect to the
L∞-norm on by L∞(Ω,F ,P) by [8, Lemma 4.3].

For any x ∈ Sn
+, the mapping f(x, ·) is continuous by Lemma 2, which implies

sup
z∈supp(P◦Z−1)

|f(x, z)| < ∞.

Thus, F (Sn
+) ⊆ L∞(Ω,F ,P), which implies the asserted finiteness of QR.

Furthermore, for any x1, x2 ∈ Sn
+, we have

|QR(x1)−QR(x2)| = |R[F (x1)]−R[F (x2)]|
≤ ‖F (x1)− F (x2)‖L∞

≤ ‖F (x1)− F (x2)‖L1

≤ (‖c‖+ Lϕ · ‖T‖) · ‖x1 − x2‖

by Lemma 3. ⊓⊔
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If the support of P◦Z−1 is unbounded, F (Sn
+) may fail to be a subset of L∞(Ω,F ,P).

While Lipschitz continuity with respect to any Lp-norm with p < ∞ does not hold
for general coherent risk measures, the Conditional Value-at-Risk CVaRα is known
to be Lipschitz continuous with respect to the L1-norm with constant 1

1−α (cf. [15,
Corollary 3.7]). Using the Kusuoka representation (cf. [12]), this allows to replace
the boundedness of the support of P ◦ Z−1 with a less restrictive assumption on
the moments of P ◦ Z−1 for special classes of risk measures.

Definition 3 Random variables Z1 and Z2 are called comonotonic if (Z1, Z2) is
distributionally equivalent to (F−1

Z1
(U), F−1

Z2
(U)) where U is uniformly distributed

on [0,1].

A coherent risk measure R : X → R is said to be comonotonic if for any two
comonotonic random variables Z1, Z2 ∈ X we have R(Z1 + Z2) = R(Z1) +R(Z2).

For a discussion of comonotonicity we refer to [6] and [7]. A proof of the following
result is given in [20, Theorem 2]:

Theorem 1 A law-invariant coherent risk measure R : Lp(Ω,F ,P) → R with

p ∈ [1,∞) is comonotonic if and only if there exists probability measure ν on [0,1)
such that

R(Y ) =

∫ 1

0

CV@Rα(Y ) ν(dα) (7)

holds for all Y ∈ Lp(Ω,F ,P). Furthermore, the measure ν in representation (7) is

defined uniquely.

Example 2 Using δα0 to denote the Dirac measure at α0 ∈ [0,1)

CV@Rα0(Y ) =

∫ 1

0

CV@Rα(Y ) δα0(dα)

and, in particular,

E[Y ] =

∫ 1

0

CV@Rα(Y ) δ0(dα)

hold for all Y ∈ L1(Ω,F ,P).

Proposition 3 Let R : Lp(Ω,F ,P) → R with p ∈ [1,∞) be a law-invariant, comono-

tonic coherent risk measure. Assume A1, A2, P ◦ Z−1 ∈ Mp
s and

Lν :=

∫ 1

0

1

1− α
ν(dα) < ∞,

where ν denotes the uniquely defined probability measure form representation (7). Then
QR is Lipschitz continuous with constant Lν · (‖c‖+ Lϕ · ‖T‖) on Sn

+.

Proof For any x1, x2 ∈ Sn
+, we have

|QR(x1)−QR(x2)| ≤
∫ 1

0

|CVaRα(F ((x1))−CVaRα(F ((x2))| ν(dα)

≤
∫ 1

0

1

1− α
· ‖F ((x1))− F ((x2))‖L1 ν(dα)

≤
∫ 1

0

1

1− α
· (‖c‖+ Lϕ · ‖T‖) · ‖x1 − x2‖ ν(dα)

= Lν · (‖c‖+ Lϕ · ‖T‖) · ‖x1 − x2‖.
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The second inequality above holds due to [15, Corollary 3.7], while the third one
is justified by Lemma 3. ⊓⊔

We shall now study the dependence of QR on the underlying probability measure
P ◦ Z1. This is motivated by the fact that in applications the true probability
distribution of the random parameter may be unknown. In such situations, one
may work with an approximation if the optimal value function and the optimal
solution set mapping of (3) are at least semicontinuous with respect to changes of
the underlying distribution.

Let (Ω0,F0,P0) be an atomless probability space, i.e. assume that for any A ∈ F0

with P0(A) > 0 there exists some B ( A with B ∈ F0 and P0(B) > 0, and fix
any p ≥ 1. Then for any ν ∈ M1

p there exists some Zν ∈ Lp(Ω0,F0,P0) such that
P0 ◦ Z−1

ν . Thus, given any law-invariant mapping R0 : Lp(Ω0,F0,P0) → R, the
function

ΘR0
: M1

p → R, ΘR0
[ν] := R0[Zν ]

is well-defined. Furthermore, we can construct a mapping RR0
: Lp(Ω,F ,P) → R

by setting RR0
[Z1] := ΘR0

[P ◦ Z−1
1 ]. To ease the notation, we shall assume that

(Ω,F ,P) itself is atomless. Given any law-invariant mapping R : Lp(Ω,F ,P) → R,
we shall consider the function

QR : Sn
+ ×Mp

s → R, QR(x,µ) := ΘR[µ ◦ f(x, ·)−1].

For the following analysis, we equip the space P(Rs) with the topology of weak
convergence, where a sequence {µk}k∈N ⊆ P(Rs) converges to some µ ∈ P(Rs),

written µk
w→ µ if and only if

∫

Rs

h(t) µk(dt) →
∫

Rs

h(t) µ(dt)

holds for any bounded and continuous function h : Rs → R. It is well known
that even for linear recourse one cannot expect weak continuity of QR on the
entire space Sn

+ ×Mp
s. Along the lines of [5], we shall thus restrict the analysis to

appropriate subspaces.

Definition 4 A set M ⊆ Mp
s is called locally uniformly ‖ · ‖p-integrating if for

any µ ∈ M and any ǫ > 0 there exists some open neighborhood N of µ with respect
to the topology of weak convergence such that

lim
a→∞

sup
ν∈N∩M

∫

Rs

1(a,∞)(‖t‖p) · ‖t‖p ν(dt) ≤ ǫ.

Example 3 (a) For any K, ǫ > 0 and p ≥ 1, the set

U(ǫ,K) := {ν ∈ Mp
s :

∫

Rs

‖t‖1+ǫ ν(dt) ≤ K}

of measures having uniformly bounded moments of order 1+ ǫ is locally uniformly
‖ · |p-integrating (cf. [4, Lemma 2.69]).

(b) For any p ≥ 1 and compact set Ξ ⊂ Rs, the set

{ν ∈ Mp
s :

∫

Ξ

1 ν(dt) = 1}
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of measures with support in Ξ is locally uniformly ‖·‖p-integrating by [11, Lemma
5.1].

(c) Any singleton {µ} ⊆ Mp
s is locally uniformly ‖ · ‖p-integrating for any p ≥ 1 by

[11, Lemma 5.2].

Theorem 2 Let R : Lp(Ω,F ,P) → R with p ≥ 1 be law-invariant, convex and non-

decreasing. Assume A1 and A2 and let M ⊆ Mp
s be locally uniformly ‖ ·‖p-integrating.

Then the following statements hold true:

1. The restriction of QR to the set Sn
+ × M is continuous with respect to the prod-

uct topology of the the standard topology on Sn
+ and the relative topology of weak

convergence on M.

2. The optimal value function

φ : M → R, φ(µ) := min
x

{QR(x,µ) | x ∈ X}

is weakly upper semicontinuous.

Additionally assume that X is compact. Then

3. φ is weakly continuous.

4. The optimal solution set mapping

Φ : M ⇒ Sn
+, Φ(µ) := Argminx{QR(x,µ) | x ∈ X}

is weakly upper semicontinuous in the sense of Berge, i.e. for any µ0 ∈ M and any

open set O ⊆ Sn
+ with Φ(µ0) ⊆ O there exists a weakly open neighborhood N of

µ0 such that Φ(µ) ⊆ O for all µ ∈ N ∩ M. Furthermore, Φ(µ) is nonempty and

compact for any µ ∈ M.

Proof Invoking Lemma 2, the result follows from [5, Corollary 2]. ⊓⊔

Corollary 1 Let R : Lp(Ω,F ,P) → R with p ≥ 1 be law-invariant, convex and

nondecreasing and assume A1 and A2. Then QR is continuous.

Proof By part (c) of Example 3 we may apply the first part of Theorem 2 to
M = {P ◦Z−1}. The asserted continuity follows from QR(x) = QR(x,P ◦Z−1) for
any x ∈ Sn

+. ⊓⊔

We shall now turn our attention to questions of differentiability, but confine the
analysis to the risk neutral model.

Lemma 4 Assume A1, A2 and P ◦ Z−1 ∈ M1
s, then the functional QE : Sn

+ → R,

QE(x) := E[F (x)] is directionally differentiable and

Q′
E(x; v) :=

∫

Rs

ϕ′(z − T • x; v) (P ◦ Z−1)(dz)

holds for all x, v ∈ Sn
+.

Proof QE is finite valued by Lemma 3, convex by Proposition 1 and thus direction-
ally differentiable (cf. [16, Theorem 25.4]). Furthermore, ϕ′(·−Tx; v) is a pointwise
limit of measurable functions and thus measurable for any x, v ∈ Sn

+. The asserted
representation of the directional derivative is justified by Lemma 2 and [3, Propo-
sition 2.1]. ⊓⊔
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Sufficient conditions for differentiability QE can be obtained using the same argu-
ments as for linear recourse (cf. [21]).

Lemma 5 Assume A1, A2 and P ◦ Z−1 ∈ M1
s and let x0 ∈ Sn

+ be such that

Argmax{u⊤(z − T • x0) | u ∈ MD}

is a singleton for (P ◦ Z−1)-almost all z ∈ Rs. Then QE is differentiable at x0.

Proof For (P ◦ Z−1)-almost all z ∈ Rs, hz : Sn
+ → R, hz(x) = c • x+ ϕ(z − T • x) is

differentiable with measurable derivative

h′z(x) = c+−T⊤ ·Argmax{u⊤(z − T • x0) | u ∈ MD}.

Consider the functions gz : Sn
+ → R defined by

gz(x) :=
hz(x)− hz(x0)− h′z(x0)

⊤(x− x0)

‖x− x0‖
,

then limx→x0 gz(x) = 0 holds for (P◦Z−1)-almost all z ∈ Rs. Furthermore, Lemma
2 implies ‖gz(x)‖ ≤ 2(Lϕ‖T‖+‖c‖) for all x ∈ Sn

+ and z ∈ Rs. Hence, by Lebesgue’s
dominated convergence theorem, we have

lim
x→x0

QE(x)−QE(x0)−
∫

Rs h
′
z(x0)

⊤(x− x0) (P ◦ Z−1)(dz)

‖x− x0‖

= lim
x→x0

∫

Rs

gz(x) (P ◦ Z−1)(dz) =

∫

Rs

lim
x→x0

gz(x) (P ◦ Z−1)(dz) = 0.

Consequently, QE is differentiable at x0 and Q′
E(x0) =

∫

Rs h
′
z(x0) (P◦Z−1)(dz). ⊓⊔

Corollary 2 Assume A1, A2 and that P ◦ Z−1 ∈ M1
s is absolutely continuous with

respect to the Lebesgue measure. Then QE is continuously differentiable on Sn
+.

Proof Let Nϕ ⊂ Rs denote the set of points of nondifferentiability of ϕ. By [16,
Theorem 25.5],

Nx := {z ∈ Rs | z − T • x ∈ Nϕ}

is a null set with respect to the Lebesgue measure for any x ∈ Sn
+, which implies

(P ◦ Z−1)[Nx] = 0. Consequently, QE is differentiable on Sn
+. Continuity of the

derivative follows from [16, Theorem 25.5] and the convexity of QE. ⊓⊔

Remark 3 Assuming A1, A2 and P ◦ Z−1 ∈ M1
s, the subdifferential of QE admits

the representation

∂QE(x) = c+

∫ s

R

∂xϕ(z − T • x) (P ◦ Z−1)(dz)

=
{

c+

∫

Rs

ρ(z) (P ◦ Z−1)(dz) | ρ : Rs → Sn
+ measurable, ρ(z) ∈ ∂xϕ(z − T • x) a.s.

}

.

Furhter details are given in [3].



12 Matthias Claus et al.

Corollary 3 Assume A2 and that the underlying random variable Z follows a fi-

nite discrete distribution with realizations z1, . . . , zS ∈ Rs and respective probabilities

π1, . . . , πS > 0. Furthermore, assume that {y ∈ Sm
+ | W • y = zi − T • x} is nonempty

for any i ∈ {1, . . . , S} and x ∈ Sn
+. Then

∂QE(x) = c+
s

∑

i=1

πi · ∂xϕ(zi − T • x)

= c+
s

∑

i=1

−πi · T⊤ ·Argmax{u⊤(zi − T • x) | u ∈ MD}

holds for any x ∈ Sn
+.

Proof The result follows directly from [16, Theorem 23.8]. ⊓⊔

4 Extensive Formulations for Finite Discrete Distributions

Throughout this section, we shall assume A1, A2 and that the underlying random
variable Z follows a finite discrete distribution with realizations z1, . . . , zS ∈ Rs

and respective probabilities π1, . . . , πS > 0. Furthermore, we denote the index set
{1, . . . , S} by IS .
It is well known that in the risk neutral setting, the stochastic SDP admits a
reformulation as a block-structured SDP (cf. [1], [13]):

Proposition 4 The risk neutral stochastic SDP

min {QE(x) | x ∈ X} (8)

is equivalent to the SDP

min
x,y1,...,yS

{

c • x+
S
∑

i=1

πiq • yi | T • x+W • yi = zi ∀i ∈ IS , (9)

x ∈ X, yi ∈ Sm
+ ∀i ∈ IS

}

,

in the sense that the infimal values of the problems coincide. Furthermore, x is an opti-

mal solution for (8) if and only if there exist v and y1, . . . , yS such that (x, v, y1, . . . , yS)
is an optimal solution for (9).

Proof By definition of ϕ,

QE(x) = c • x+
S
∑

i=1

πiϕ(zi − T • x) ≤ c • x+
S
∑

i=1

πiq • yi (10)

holds for any x ∈ X, y1, . . . , yS ∈ Sm
+ satisfying T •x+W •yi = zi for all i ∈ IS . Thus,

the infimal value of (8) is less or equal to the infimal value of (9). Furhtermore,
(10) is satisfied as equality if and only if

yi ∈ Argmin{q • y | T • x+W • y = zi, y ∈ Sm
+ }

holds for all i ∈ IS . The optimal solution set above is nonempty by strong duality,
which holds due to A1 and A2. ⊓⊔
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We continue with extensive formulations of the SDP (3) for mean-risk models
based on the risk measures immediately following Definition 2. In this context,
ρ shall always be a nonnegative, predefined parameter indicating risk-aversion in
the optimization.

Proposition 5

min
{

QE+ρEEη
(x) | x ∈ X

}

, (11)

with η ∈ R as a given parameter, can be equivalently restated as

min
x,v1,...,vS ,
y1,...,yS

{

c • x+
S
∑

i=1

πiq • yi + ρ

S
∑

i=1

πivi | T • x+W • yi = zi ∀i ∈ IS , (12)

v ≥ 0, vi ≥ c • x+ q • yi − η ∀i ∈ IS ,

x ∈ X, yi ∈ Sm
+ ∀i ∈ IS

}

.

Proof As the objective function of (12) is increasing with respect to v, any optimal
solution (x, v1, . . . , vS , y1, . . . , yS) satisfies vi = max{c • x + q • yi − η, 0} for all
i ∈ IS . The asserted equivalence of (11) and (12) then follows as in the proof of
Proposition 4. ⊓⊔

Proposition 6

min
{

QE+ρCV@Rα
(x) | x ∈ X

}

can be equivalently restated as

min
x,v1,...,vS ,
y1,...,yS,η

{

c • x+
S
∑

i=1

πiq • yi + ρ η +
ρ

1− α

S
∑

i=1

πivi | (13)

T • x+W • yi = zi ∀i ∈ IS ,
v ≥ 0, vi ≥ c • x+ q • yi − η ∀i ∈ IS ,

η ∈ R, x ∈ X, yi ∈ Sm
+ ∀i ∈ IS

}

.

Proof This follows directly from the variational representation of CV@R in (6).
The expected-excess can be pushed into the restrictions by the same trick as in
Proposition 5. ⊓⊔

As in in the risk-neutral case, problems (12) and (13) exhibit a block structure,
i.e. there is no coupling constraint involving variables associated with different
scenarios. This allows for a direct adaptation of the decomposition algorithms
established for the expectation based model.

Proposition 7 Consider the problem

min
{

QE+ρV@Rα
(x) | x ∈ X

}
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with compact set X. This problem can be equivalently restated as the following SDP

with binary variables

min
x,v1,...,vS ,
y1,...,yS,
δ1,...,δS ,η

{

(1 + ρ) c • x+
S
∑

i=1

πiq • yi + ρ η | (14)

T • x+W • yi = zi ∀i ∈ IS ,
S
∑

i=1

δi πi ≥ α,

η − q • yi ≥ (1− δi)M ∀i ∈ IS

η ∈ R, x ∈ X, δi ∈ {0, 1}, yi ∈ Sm
+ ∀i ∈ IS

}

if M ∈ R is chosen sufficiently big.

Proof As in the preceding propositions introduce a dummy variable η to push
V@R[ϕ(z−T •x)] into the restrictions as η ≥ V@R[ϕ(z−T •x)] and minimize over
η. Note that η ≥ V@R[ϕ(z − T • x)] is equivalent to

µ(ϕ(z − T • x) ≤ η) ≥ α. (15)

As for given x ∈ X feasible points to the second stage problem corresponding to
realization zi are denoted as yi, (15) can be rewritten as

∑

i∈IS : q•yi≤η

πi ≥ α.

This conditional summation can in turn be cast into inequalities with
binary variables δi, i ∈ IS ,

η − q • yi ≥ (1− δi)M, i ∈ IS
∑

i∈IS

δi πi ≥ α

if M is chosen such that η − q • yi < M for all feasible yi and all η close to
V@R[ϕ(zi − T • x)]. Since −q • yi ≤ −ϕ(zi − T • x) the existence of M follows from
compactness of X, as maxx∈X ϕ(zi − T • x) < ∞ for all i ∈ IS . ⊓⊔

Unlike the previous models, (14) does not decompose scenariowise due to the

coupling constraint
∑S

i=1 δi πi ≥ α, which involves variables from all scenarios.
Furthermore, it has an additional binary variable for each scenario. Problems of
a similar structure have been considered in the context of minimizing a weighted
sum of the expectation and the probability of exceeding a fixed threshold in [19],
where Lagrangian relaxation of the coupling constraint enables an approach based
on Bender’s decomposition. This direction seems also very promising for the algo-
rithmic treatment of (14).
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Proposition 8

min
{

Q
E+ρMad+

p
(x) | x ∈ X

}

,

can be equivalently restated as

min
x,v1,...,vS,
y1,...,yS

{

c • x+
S
∑

i=1

πiq • yi + ρ
(

S
∑

i=1

πiv
p
i

)
1

p | T • x+W • yi = zi ∀i ∈ IS ,

v ≥ 0, vi ≥ c • x+ q • yi −
S
∑

j=1

πj q • yj ∀i ∈ IS ,

x ∈ X, yi ∈ Sm
+ ∀i ∈ IS

}

.

Proof Analogous to Proposition 5. ⊓⊔

Unlike (14), the equivalent SDP in Proposition 8 contains an individual coupling
constraint for each scenario. While Lagrangian relaxation still is possible, it re-
mains to be examined whether this approach is sensible form a computational
point of view.
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5. M. Claus, V. Krätschmer and R. Schultz, Weak continuity of risk functionals with applica-

tions to stochastic programming, SIAM Journal on Optimization, 27(1), pp. 91-108 (2017)
6. J. Dhaene, M. Denuit, M. J. Goovaerts, R. Kaas, D. Vyncke, The concept of comonotonicity

in actuarial science and finance: theory, Insurance: Math. Econom., 31, pp. 3-33 (2002)
7. J. Dhaene, S. Vanduffel, M. J. Goovaerts, R. Kaas, Q. Tang, D. Vyncke, Risk Measures

and Comonotonicity: A Review, Stochastic Models, 22, pp. 573-606 (2006)
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