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Abstract

In this paper, we collect the fundamental basic properties of jet-

modules in algebraic geometry and related properties of differential

operators. We claim no originality but we want to provide a reference

work for own research and the research of other people.
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1 Notation and Conventions

Remark 1.1 This is a slightly advanced introduction to the theory of jet
modules in algebraic geometry. For the elementary facts see e.g. [5].

Convention 1 By N we denote the natural numbers, by N0 the set of non-
negative integers.
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We use multi index notation: if x1, ..., xn is a set of variables, we denote

xm : xm1
1 · xm2

2 . . . xmn
n where m := (m1, m2, . . . , mn)

is a multiindex of lenght n. By | m | we denote the number m1+ ...mn . The
partial derivatives of a function f(x1, ..., xm) in the variables xi we denote
by ∂|m|/∂xm(f(x1, ..., xm)) .

Notation 1 Let X −→ S be a morphism of schemes. By Ω(1)(X/S) we
denote the usual sheaf of Kähler differentials. We use this notation, because
there exist higher Kähler differential modules Ω(n)(X/S) see [3]. The direct
sum

⊕
n∈N0

Ω(n)(X/S) is a graded sheaf of OX-algebras whose SpecX is the
well known space of relative arcs (arcs in fibre direction).

Notation 2 Let k −→ A be a homomorphism of commutative rings. By
IA/k we denote the ideal in the ring A ⊗k A which is the kernel of the mul-
tiplication map µ : A⊗k A −→ A . By pi : A −→ A⊗k A, i = 1, 2 we denote
the maps p1 : a 7→ a⊗1 and p2 : a 7→ 1⊗a and likewise for the residue rings
(jet algebras) A⊗k A/I

N+1
A/k .

Notation 3 Let k −→ A be a homomorphism of commutative rings and let
M be an A-module. For each N ∈ N0 ∪ {N} we denote the N th jet-module
of M relative to k by J N(M/k) which is by definition the module

J N(M/k) := A⊗k M/IN+1
A/k · (A⊗k M) if N ∈ N0 and

J N(M/k) := Â⊗k M
IA/k

,

which is the completed module with respect to the diagonal ideal IA/k .
If M = A , this is a ring, which has two A-algebra structures in the obvious
way. J N(M/k) is an J N(A/k)-module in a canonical way.
The derivation

M −→ J N (M/k), m 7→ 1⊗m

is denoted by dNM/k .
Because of Lemma 3.2 proven in section 2.1, it is called the universal deriva-
tion for the A-module M relative to k .
IfM = A , for a ∈ A we denote by d1a the element 1⊗ a−a⊗ 1 ∈ J N(A/k) .
Thus dNA/k(a) = a+ d1(a).
If X −→ S is a morphism of schemes an F is a quasi coherent OX-module,
we denote the N th-jet module by J N(F/S) with universal derivation

dNF/S : F −→ J N(F/S).

Observe that in [2][EGAIV,chapter 16.3-16.4, pp.14-27], these are called the
bundles of higher order principal parts.
If F = OX we denote

JN (X/S) := SpecX J N(X/S)
pX
−→ X

the associated affine bundle over X which is some kind of higher order relative
tangent bundle.
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2 Introduction

The calculus of jet-modules and jet bundles in algebraic geometry is basic for
understanding linear partial differential operators and for a given extension
of commutative rings k −→ A and an A-module M , the N th jet module
J N (M/k) provides infinitesimal information about the A-module M . If
M = A , and A is a local ring, essentially of finite type over a base field k, the
N th jet-algebra J N(A/k) provides further information about the singularity
(A,m, k). This algebra is again a k-algebra, essentially of finite type over
k, and, e.g., the Hilbert-Samuel polynom of this algebra gives higher order
information about the singularity (A,m, k) . So, studying jet modules can be
very fruitful and in this paper we want to give basic elementary properties,
e.g. generalizing properties of the classical module of Kähler differentials. We
claim no originality but want to collect some basic facts that do not occur
in the basic textbooks as [2][EGAIV,chapter 16.3-16.4, pp.14-27] in order to
provide a reference for further own research and the research of other people.

3 Fundamentals of jet-modules and differen-

tial operators in algebraic geometry

3.1 Definition of a linear partial differential operator

Recall that if k is a field and An
k is affine n-space over k, then a homogenous

partial linear differential operator of order N ,

D :

m⊕

i=1

k[x1, ..., xn]ei −→

m⊕

i=1

k[x1, ..., xn]ei

corresponds to a k[x1, ..., xn]-linear map

D̃ : (k[x1, ..., xn][d
1x1, ..., d

1xn]/(d
1x1, ..., d

1xn)
N+1)⊕m −→ k[x1, ..., xn]

⊕m

under the natural correspondence D̃ 7→ D̃ ◦ (dNAn
k/k

)⊕m where dN
AN
k /k

is the

N -truncated Taylor series expansion,

k[x1, ..., xn] −→ k[x1, ..., xn][d
1x1, ..., d

1xn]/(d
1x1, ..., d

1xn)
N+1,

sending xi to xi + d1xi . This is a standard calculation. The k-algebra
k[x][d1x]/(d1x

N+1
) is the N th jet module J N(k[x]/k) of k[x]/k and is a

k[x]-algebra. The inverse limit

J N(k[x]/k) := proj lim
n∈N

J N (k[x]/k) = k[x1, ..., xn][[d
1x1, ..., d

1xn]]

∼= k[x1, ..., xn]⊗̂k[x1, ..., xn]

is the universal jetalgebra of k[x] where the last expression is the tensor
product completed with respect to the ideal Ik[x]/k which is the kernel of
the algebra multiplication map. Over k[x] each projective module is free, so
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the standard definition from the C∞-case carries over to the algebraic case.
For k = R,C these are just the linear partial differential operators with
polynomial coefficients. Via the above corresondence each partial differential
operator corresponds to an A-linear map

D̃ : J N(A⊕m/k) −→ A⊕m (A = k[x]).

Since the formation of the jet modules commutes with localization, they give
rise to a coherent sheaf on An and we define the algebraic differential opera-
tors for a free A = Γ(U,OAn)-module A⊕m for U ⊂ An

k a Zariski open subset
to be the A-linear homomorphisms Γ(U,J N(k[x]/k))⊕m −→ A⊕m .
In particular, if U = Spec k[x]f for some polynomial f , this definition gives
linear partial differential operators with rational function coefficients g

fn .

3.2 Supplements to the calculus of jet modules

Definition 3.1 Let k −→ A be a homomorphism of commutative rings, let
N ∈ N0 ∪ {N}, M be an A-module and Q be a J N(A/k)-module. A filtered
derivation tM :M −→ Q is an A-linear homomorphism where Q is given the
A-module structure via the second factor A −→ A⊗k A/I

N+1
A/k .

The notation filtered derivation, introduced in [3], is used because for each
a ∈ A, m ∈M , t(am)− am ∈ IA/k ·Q .

Lemma 3.2 Let A −→ B be a homomorphism of rings, M be a B-module,
and Q be a J N(B/A) -module and t : M −→ Q be a B-linear map with
respect to the second B-module structure on J N (B/A), i.e., a filtered deriva-
tion. Then, there is a unique homomorphism of J N(B/A) -modules

φ : J N(M/A) −→ Q such that t = φ ◦ dNM/A.

Proof: We have J N(B/A) = B ⊗A B/I
N+1
B/A and natural homomorphisms

p1, p2 : B −→ J N(B/A) . Then, by definition

J N(M/A) =M ⊗B,p2 J
N(B/A).

The statement reduces to the easy fact, that, given a homomorphism of
rings k −→ l, given a k-module Mk and an l-module Ml, and a k-linear
homomorphism Mk −→Ml , there is a unique l-linear homomorphism Mk⊗k

l −→ Ml which follows by the adjunction of restriction and extension of
scalars. �

3.3 Fundamental properties of the jet-modules

Recall e.g. from [3], that if k −→ A is a k-algebra with presentation

A ∼= k[xi|i ∈ I]/(fj|j ∈ J),

then the N th jet algebra J N(A/k) possesses the presentation

J N (A/k) := k[xi, d
1xi|i ∈ I]/(IN+1

A/k + (fj, d
1fj |j ∈ J)).
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This can also be taken as the definition of the N th-jet-algebra. One then has
to show that this is independend of the choosen presentation for A. We have
the following easy consequences.

Lemma 3.3 (Base change 0) Let k −→ A and k −→ A′ be homomorphisms
of commutative rings. Then for each N ∈ N0∪{N} , there is an isomorphism

J N (A⊗k A
′/A′)

∼=
−→ J N(A/k)⊗A A

′.

Proof: This follows from the fact, that if A = k[xi|i ∈ I]/(fj|j ∈ J) is a
presentation of A/k, then

A⊗k A
′ = A′[xi|i ∈ I]/(fj|j ∈ J)

is a presentation for A ⊗k A
′/A′ and the corresponding presentation of the

jet-algebras.
This isomorphism can be made canonical by observing that

A⊗k A
′
dN
A/k

⊗kidA′

−→ J N (A/k)⊗k A
′ −→ J N(A/k)⊗A A

′

is a filtered module derivation which by the universal property of the jet-
modules induces a canonical isomorphism J N (A⊗kA

′/A′) ∼= J N(A/k)⊗AA
′.
�

Corollary 3.4 If A is a finitely generated k-algebra, then for each N ∈ N0 ,
J N (A/k) is a finitely generated A-algebra.

Proof: �

Proposition 3.5 Let k −→ A be a homomorphism of noetherian rings
that makes A a smooth, finite type k-algebra. Let M be a finitely generated
projective A-module. Then for each N ∈ N0 , J

N(M/k) is a projective A-
module.

Proof: First, consider the case M = A . We prove the result by induction
on N ∈ N0 . For N = 0, J 0(A/k) ∼= A the result is trivially true. From the
jet-bundle exact sequence jNA/k,

0 −→ INA/k/I
N+1
A/k −→ J N(A/k) −→ J N−1(A/k) −→ 0,

suppose we know that J N−1(A/k) is a projective A-module. Since A is a
smooth k-algebra, the diagonal ideal IA/k corresponds to the regular embed-
ding

X = SpecA →֒ X ×Spec k X.

In this case,

INA/k/I
N+1
A/k

∼= (IA/k/I
2
A/k)

⊗sN ∼= Ω(1)(A/k)⊗
sN

which is well known to be a projective A-module. The induction step is then
complete by observing that an extension of projective A-modules is again a
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projective A-module.
For the general case, if M is a free A-module, the claim is true since taking
jet-modules commute with taking direct sums.
For arbitrary projective M , since by Corollary 3.18 taking jet modules com-
mute with Zariski localizations, choosing a Zariski-open covering SpecA =⋃

i∈I SpecAi such that M is free on SpecAi , we know that J N(M/k) is
Zariski-locally a projective A-module, hence a projective A-module. �

We now prove some fundamental properties.

Proposition 3.6 (Exterior products I) Let k −→ A and k −→ B be ho-
momorphisms of commutative rings. Then, there is a canonical isomorphism

γA,B : J N(A/k)⊗k J
N(B/k) ∼= J N(A⊗k B/k).

Proof: This follows from the explicite presentations of the jet modules for
a given presentation of A and B, respectively (see [3][chapter 6.5, pp. 101-
119]).
Choose N ∈ N0 . If

A = k[xi|i ∈ I]/(fj|j ∈ J) and B = k[yk|k ∈ K]/(gl|l ∈ L)

are presentations for A and B, then

A⊗k B = k[xi, yk | i ∈ I, k ∈ K]/(fj , gl | j ∈ J, l ∈ L)

is a presentation for A⊗k B and

J N(k[xi | i ∈ I]/(fj | j ∈ J)/k)⊗k J
N (k[yk | k ∈ K]/(gl | l ∈ L)/k) ∼=

k[xi, d
1xi|i ∈ I]/((fj, d

1fj | j ∈ J) + IN+1
A/k )

⊗kk[yk, d
1yk|k ∈ K]/((gl, d

1gl | l ∈ L) + IN+1
B/k ) and

J N(A⊗k B/k) ∼=

k[xi, yk, d
1xi, d

1yk|i ∈ I, k ∈ K]/((fj, d
1fj , gl, d

1gl|k ∈ K, l ∈ L) + IN+1
A⊗kB/k)

We have the identity IA⊗kB/k = (IA/k + IB/k) which follows from the well
known fact that the diagonal ideal is generated by all 1⊗a−a⊗1 = d1a . Thus
IA/k is generated by all 1⊗xi−xi⊗1, IB/k is generated by all 1⊗yj−yj⊗1.
Obviously, we have an inclusion

(IN+1
A/k + IN+1

B/k ) · (A⊗k B) ⊆ IN+1
A⊗kB

.

Conversely, there is an inlcusion

I2N+1
A⊗kB/k ⊆ (IN+1

A/k + IN+1
B/k ) · (A⊗k B)

because 2N +1-fold products of elements xi ⊗ 1− 1⊗ xi and yj ⊗ 1− 1⊗ yj
must either contain an N +1 fold product of the xi ⊗ 1− 1⊗ xi or an N +1
fold product of the yj ⊗ 1− 1⊗ yj .
It follows, taking the projective limit over the natural homomorphisms

γNA,B : J N (A/k)⊗k J
N(B/k) −→ J N(A⊗k B/k),
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we get an isomorphism

γA,B : J N(A/k)⊗k J
N(B/k)

∼=
−→ J N(A⊗k B/k).

�

Lemma 3.7 Let k −→ A be a homomorphism of commutative rings. Then
the functor

J N(−/k) : (A−Mod) −→ (J N(A/k)−Mod), M 7→ J N(M/k)

is right exact.

Proof: This follows from the functorial isomorphism J N (M/k) ∼= M ⊗A,p2

J N (A/k) and the right exactness of the tensor product. �

Corollary 3.8 With the previous notation, if

A⊕J φ
−→ A⊕I

։M

is a presentation for the A-module M , with φ given by the matrix (aij), then
J N (M/k) is given by the presentation

J N (A/k)⊕J JN (φ/k)
−→ J N(A/k)⊕I

։ J N(M/k),

where J N(φ/k) is given by the matrix (aij + d1aij) .

Proof: This follows from the easy fact, that the functor J N(−/k) com-
mutes with direct sums. �

Proposition 3.9 (Exterior Products II) Let k −→ A and k −→ B be
homomorphisms of commutative rings. Let M be an A-module and N be a
B-module. Then, there is a canonical isomorphism

γM,N : J N(M/k)⊗k J
N(N/k) ∼= J N(M ⊗k N/k).

Proof: The standard arguement shows that there is a canonical transfor-
mation of bi-functors

γM,N : J N(M ⊗k N/k) −→ J N(M/k)⊗k J
N(N/k)

that comes from the fact the the tensor product dNM/k ⊗k d
N
N/k is a filtered

derivation and the universal representing property of the jet-modules. If M
and N are free A- and B-modules respectively, the fact that γM,N is an
isomorphism, follows from (Exterior products I) and the fact that the jet-
modules commute with direct sums. Then both sides are right exact in each
variable M,N and choosing free presentations of M and N respectively, the
claim follows by the five lemma. �
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Proposition 3.10 (Base change I) Let A −→ B, A −→ A′ be homo-
morphisms of commutative rings and M be a B-module. Then, for each
N ∈ N0 ∪ {N} , there is a canonical isomorphism

βM : J N(M ⊗A A
′/A′) ∼= J N(M/A)⊗A A

′.

Proof: Both sides are right exact functors from B−Mod to J N(B⊗AA
′)−

Mod . This follows from (Base change 0)( see Lemma 3.3).
There is an A′-linear map

tN : dNM/A ⊗A IdA′ :M ⊗A A
′ −→ J N(M/A)⊗A A

′

which is a filtered module-derivation. If IB/A is the diagonal ideal, we have
that

tN (b ·m⊗ a′)− b ·m⊗ a′ = dNM(bm)⊗ a′ − bm⊗ a′

∈ IB/A · J N (M/A)⊗A A
′ ⊆ IB⊗AA/A · (J N(M/A)⊗A A

′),

which is the definition of a filtered module derivation. By the universal
property of the jet modules, there is a functorial homomorphism (natural
transformation)

βM : J N (M ⊗A A
′/A′) −→ J N(M/A)⊗A A

′

of functors from B − Mod to J N(B ⊗A A
′) − Mod . If M ∼= B, by (Base

change 0) (see Lemma 3.3), there is an isomorphism

βB : J N(B ⊗A A
′) ∼= J N(B/A)⊗A A

′.

Since the jet-modules commute with direct sums, βM is an isomorphism for
each free B-module B⊕I . If M is arbitrary, choose a presentation

B⊕I −→ B⊕J −→M −→ 0

Since βB⊕I and βB⊕J are isomorphisms, βM is an isomorphism by the five-
lemma. �

Proposition 3.11 (Base change II) Let A −→ B be a homomorphism of
rings, M be a B-module and N be an A-module. Then, there is a canonical
isomorphism

αN : J N(M/A)⊗A N ∼= J N(M/A)⊗A N.

Proof: Fixing the B-module M , both sides can be considered as functors
from A − Mod to J N(B/A) − Mod . For each A-module N , there is an
A-linear map

M ⊗A N
dNM⊗AIdN
−→ J N(M/A)⊗A N.

This is a filtered module derivation, i.e., if IB/A is the diagonal ideal, then

dN(b · (m⊗ n))− b · (m⊗ n) = dNM/k(b ·m)⊗ n− b ·m⊗ n ∈

IB/A · (J N(M/A)⊗A N) ⊆ IB⊗AA′ · (J N(M/A)⊗A N,
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because dNM/A is a module derivation. By the representing property of the

jet-modules, there is a unique homomorphism of J N(B/A)-modules

αN : J N(M ⊗A N/A) −→ J N(M/A)⊗A N.

This homomorphism is in fact a natural transformation of functors from
A − Mod to J N (B/A) − Mod. Both functors are right exact functors. If
N = A⊕I is a free A-module, then both sides are isomorphic to J N(M/A)⊕I

because the jet-modules commute with direct sums.
In the general case, choose a presentation

A⊕I −→ A⊕J −→ N −→ 0.

We know that αA⊕I and αA⊕J are isomorphisms, so by the five lemma , it
follows that αN is an isomorphism. �

Proposition 3.12 (Tensor Products)
Let k −→ A be a homomorphism of commutative rings and M,N be two
A-modules. Then, for each N ∈ N0 ∪ {N} , there is a canonical functorial
isomorphism

θM,N : J N (M ⊗A N/k)
∼=

−→ J N(M/k)⊗JN (A/k) J
N(N/k),

in the sense that both sides are bi-functors to J N (A/k) − Mod and θM,N

is a natural transformation of bifunctors that is for each object (M,N) an
isomorphism.

Proof: The arguement is standard. There is a canonical homomorphism

tNM⊗AN : M ⊗A N
dKM⊗AdKN−→ J N(M/k)(2) ⊗A J N(N/k)(2)

։ J N(M/k)⊗JN (A/k) J
N(N/k),

where the superscript (−)(2) indicates that the jet-modules are considered
with respect to the second A-module structure. By the universal property of
J N (M ⊗A N/k), there is a unique homomorphism of J N (A/k)-modules

θM,N : J N (M ⊗A N/k) −→ J N(M/k)⊗JN (A/k) J
N(N/k).

That this is a natural transformation of bi-functors follows from the unique-
ness of θM,N .
Now, if M = A⊕I is free, then θM,N is an isomorphism (both sides are iso-
morphic to

⊕
i∈I J

N(N/k) . Furthermore, both sides are right exact functors
in theM-variable for fixed N , so the result follows by choosing a presentation
A⊕I −→ A⊕J

։M. �

Combining (Base change I) and (Base change II) we get

Proposition 3.13 (Base change III) Let A −→ B and A −→ A′ be homo-
morphisms of commutative rings, M be a B-module and N be an A′-module.
Then, for each N ∈ N0 ∪ {N}, functorial in N , there are isomorphisms of
J N (B ⊗A A

′/A′)-modules

αM,N : J N (M ⊗A N/A
′)

∼=
−→ J N(M/A)⊗A N.

9



Proof: The arguement is now standard. We fix the B-module M . One
checks that

dNM/A ⊗A idN :M ⊗A N −→ J N(M/A)⊗A N

is a filtered module dervation relative to A′, giving rise to a functorial homo-
morphism of J N(B ⊗A A

′)-modules

αN : J N(M ⊗A N/A
′)

∼=
−→ J N(M/A)⊗A N.

By (Base change II), αA′ is an isomorphism. It then follows αN is an iso-
morphism for a free A′-module N , and αN is then an isomorphism for each
N by taking free presentations and application of the five-lemma. �

Lemma 3.14 Let A −→ B be a smooth homomorphism (of finite type) of
noetherian rings and M be a projective B-module. If

0 −→ N1 −→ N −→ N2 −→ 0

is an exact sequence of A-modules, then for each N ∈ N0 ∪ {N}, there is an
exact sequence of J N (B/A) modules

(∗)M : 0 −→ J N(M⊗AN1/A) −→ J N(M⊗AN/A) −→ J N (M⊗AN2/A) −→ 0.

Furhtermore, the exact sequence (∗)M is functorial in M i.e., (∗)M is a
functor from A−Mod to the category of exact sequences in J N (B/A)−Mod .

Proof: Follows from (Base change III) and the functor properties of the jet-
modules and the fact, that in this case J N (M/A) is a projective B-module,
hence a flat A-module. (see Proposition 3.5) �

Remark 3.15 We have only proved the fundamental properties of the jet-
modules (tensor products, base change ...) for N ∈ N0 . But the result for
N = N follows by taking projective limits of the isomorphisms obtained for
N ∈ N0.

Because of lack of reference, we want to prove the following inocuous gener-
alization of the formal inverse function theorem.

Lemma 3.16 Let A be a noethrian ring and let C := A[[y1, ..., yn]]/(f1, ..., fm)
with m ≥ n be a formal power series ring such that some (n× n)-minor has
a determinant which is a unit in A. Then C ∼= K .

Proof: Without loss of generality, let this be the left upper most minor .
But then, in the power series ring A[[d1x1, ..., d

1xn]] , by the formal inverse
function, theorem d1f1, ..., d

1fn are formal coordinates and

A[[d1x1, ..., d
1xn]]/(d

1f1, ..., d
1fn) ∼= A

10



and a fortiori A[[d1x1, ..., d
1xn]]/(d

1f1, ..., d
1fm) ∼= A . The proof in [4] in

the introductory chapter given for the case where A is a field carries over
verbatim. One has to develop d1xi into a formal power series in the d1fj ,

d1xi =
n∑

j=1

bjid
1xi +

∑

J

(d1f)J .

By the Cramer rule one determines the bji and then, inductively one deter-
mines the bJ , | J |≥ 2 . �

Lemma 3.17 ( etale invariance of the jet modules). Let k −→ A −→ B be
homomorphism of finite type of noetherian rings with A −→ B being etale.
Let M be an A-module. Then, there is a canonical isomorphism

αM : J N(M ⊗A B/k)
∼=

−→ J N(M/A)⊗A B

which is a natural transformation of right exact functors from (A−Mod) to
J N (B/k)−Mod .

Proof: We first treat the case M = A . It suffices to show the claim for the
full jet module. For finite N ∈ N0 , the result follows by taking truncations.
We choose a presentation B = A[x1, ..., xn]/(f1, ..., fm) . By elementary di-
mension theory, we must have m ≥ n . We then have

J N(B/k) = J N(A/k)⊗A B ⊗B B[[d1x1, ..., d
1xn]]/(d

1f1, ..., d
1fm),

by choosing an appropriate presentation of A/k. So it suffices to show, that

B[[d1x1, ..., d
1xn]]/(d

1f1, ..., d
1fm) ∼= B

and we get
J N(B/k) ∼= J N(A/k)⊗A B.

We use the Jacobian criterion for smoothness. Considering the Jacobian
matrix 



∂1/∂1x1(f1) ∂1/∂1x2(f1) . . . ∂1/∂1xn(f1)
∂1/∂1x1(f2) ∂1/∂1x2(f2) . . . ∂1/∂1xn(f2)

...
...

. . .
...

∂1/∂1x1(fm) ∂1/∂1x2(fm) . . . ∂1/∂1xn(fm)




We then have that the nth Fitting ideal of this matrix, generated by the
(n× n)-minors is equal to the unit ideal in B, because it is nonzero modulo
each maximal ideal of B, and otherwise, if the fitting ideal where not the
unit ideal, there would be a maximal ideal containing it, a contradiction.
We want to consider the nth-fitting ideal of the Jacobian matrix J (d1f/d1x).
To make sense of this, recall that by definition for the jet algebras for free
polynomial algebras (see [3])[chapter 6.5, pp. 116-119], and simply by the
fact that the universal derivation is a k-algebra homomorphism,

fi + d1fi = fi(x1 + d1x1, ..., xn + d1xn) =∑

I

∂|I|/∂xI(f) · d1x
I
.
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Observe that this sum is finite, since the fj are polynomials and considering
the B-algebra B[d1x1, ..., d

1xn]/(d
1f1, ..., d

1fm) makes sense. So we can write
d1fi as a polynomial in the d1xi with zero constant term and coefficients in
B.
By the above formula, if I = (0, ..., 1, ..., 0) , we get that the first partial
derivative of d1fi with respect to the free variable d1xj is just ∂1/∂1xj(fi) ∈
B . For an arbitrary multi-index I, this equality only holds up to a constant
factor c ∈ N . Thus, we can apply the Jacobian criterion for smoothness in
order to conclude that B[d1x1, ..., d

1xn]]/(d
1f1, ..., d

1fm) is etale over B, i.e.,
smooth of relative dimension zero.
We consider the nth fitting ideal Fittn of J (d1f/d1x) . The coefficients of the
n×n-minors lie actually in B. Let p ∈ Spec(B) be given with Bp/p ·Bp = K
being the residue field. We consider the reduced ring

K[[d1x1, ..., d
1xn]]/(d

1f1, ..., d
1fm).

The nth fitting ideal of the Jacobian J (d1f/d1x) modulo p is then the unit
ideal in K which precisely means that the determinant of some n× n-minor
must be nonzero. But then, the determinant of this minor is a unit in Bp

and there exists an open affine SpecC ⊂ SpecB such that this determinant
is a unit in A. By the previous lemma, we conclude

A[[d1x1, ..., d
1xn]/(d

1f1, ..., d
1fm) ∼= A.

This holds for each prime ideal p ∈ Spec(B) . Hence, there is a finite Zariski
open affine covering SpecB =

⋃n
i=1 SpecAi such that

Ai[[d
1x1, ..., d

1xn]]/(d
1f1, ..., d

1fm) ∼= Ai

and the claim follows. This shows, that the canonical homomorphism

φM : J N(M/k)⊗A,p1 B −→ J N(M ⊗A B/B),

which is simply the map

Â⊗k M ⊗A,p1 B −→ B̂ ⊗k M −→ ̂B ⊗k (M ⊗A B)

is an isomorphism for M = B . Now, the proof is standard. φM is a natural
transformation of right exact functors from B −Mod to J N(B/k) −Mod .
The result follows for free A-modules M , since taking jet-modules commutes
with taking direct sums and, choosing a free presentation for general M , the
result follows by the five-lemma. �

Corollary 3.18 (invariance under Zariski- localization) Let k be a noethe-
rian ring and k −→ A be k-algebra of finite type. Let S ⊂ A be a multiplica-
tively closed subset. Then, there is a canonical isomorphism

J N(AS/k) ∼= J N(A/k)S,

where S = S ⊗ 1 in J N(A/k).

Corollary 3.19 If (A,m, κ) is a local ring that is a k-algebra essentially
of finite type, then for each N ∈ N0 , J

N(A/k) is an A-algebra essentially
of finite type.
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3.4 Comparison with the C∞-category

It is well known that for C∞-manifolds and vector bundles on them, being a
differential operator is a local property, which is in this category one way to
define them. In this subsection we show that in the algebraic category, an
analogous statement holds, if we use the etale topology on a smooth algebraic
scheme X .

Proposition 3.20 Let S be a noetherian scheme and π : X −→ S be a
smooth S- scheme of finite type of dimension n over S and E be a locally
free coherent OX-module. Let D : E −→ E be a homomorphism of etale
sheaves of π−1OS-modules. Suppose, that for each scheme point x ∈ X, there
is an etale neighbourhood px : Ux −→ X such that there is a trivialization
φx : p∗xE

∼= O⊕r
Ux

plus an etale surjective morphism qx : Ux −→ Vx ⊆ An
S .

Then Vx is Zariski- open in An
S . Let Γ(Ux, D) : O⊕r

Ux
−→ O⊕r

Ux
be the section

over Ux of D with respect to the trivialization of φx of E around x ∈ X .
We say that D is a classical linear partial differential operator if there is a
partial differential operator Dx : O⊕r

Vx
−→ O⊕r

Vx
, that pulls back under qx to

Γ(Ux, D) . Then, there is an OX-linear homomorphism D̃ : J N (E/S) −→ E

such that D = D̃ ◦ dNE/S , and conversely, every D = D̃ ◦ dNE/S is of this form.

Furthermore, every OX-linear homomorphism from Ω≤N(E/S) −→ E (see
[3]) corresponds to a classical differential operator E −→ E .

Proof: Under these assumptions for each scheme point x ∈ X the classical
operator Dx : O⊕r

Vx
−→ O⊕r

Vx
corresponds to a section

D̃x

′
∈ Γ(Vx, HomVx(J

Nx(⊕r
i=1OVx/S),⊕

r
i=1Ovx)

for some Nx ∈ N. Since the jet bundles are invariant under etale pull back
(Lemma 3.17) , for each x ∈ X we get a the pulled back section

D̃x ∈ Γ(Ux, HomUx(J
Nx(E/S), E)),

using the trivialization of E over Ux, such that D̃x composed with Γ(Ux, d
Nx

E/S)

is Γ(Ux, D) . I claim that the D̃x glue to a global section of DON
X/S(E , E) over

X for some N ∈ N. First since X is quasicompact, we can find an etale finite
subcovering {Uxi

−→ X, i ∈ I} with I a finite set. So we can take as our
N the number N = maxi∈I Nxi

. Now the global differential operators are a
subalgebra of the π−1(OS) linear endomorphism algebra of E . We know, that

etale locally, the endomorphism D is given by an OX -linear map D̃x. On etale
overlaps Ux ×X Uy, D is certainly given by an element of Γ(Uxy, DO

N(E), E)
But since each element in Γ(Uxy, DO

N(E , E)) determines uniquely an element
in HomUxy(J

N(E/S), E) the two elements obtained by restrictions from Ux

and Uy to Uxy = Ux×X Uy must agree. Thus since J N(E/S) and E are etale
sheaves (since they are coherent on X), we get a global section in DON(E , E)
over X .
The converse of the statement follows from the fact, that if πx : Ux −→ Vy is
an etale morphism, then

π∗
xDO

N(O⊕r
Vx
/S) ∼= DON(O⊕r

Ux
/S),
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which is a simple consequence of the etale pull back property of the jet-
modules (Theorem 3.45). Thus each differential operator on Ux is the pull
back of a differential operator on Vx , so the local description of a globally
defined differential operator on E/S is always satisfied.
The last statement follows from the local description of differential operators
in the Ω-formalizm on An

k (see [3][chapter 6.4. Theorem 6.55,p.97, chapter
8, Corollary 8.11(2),p. 146], namely locally on An

k they give classical partial
linear differential operators, and the fact, that they form an etale sheaf . �

Remark 3.21 In the same situation, we can prove in the same way, that if
E1 and E2 are locally free sheaves on X, then each linear partial differential
operator between E1 and E2 has either a description via the jet bundle or the
etale local description.

3.5 The global case

By the etale invariance property of the jet-module (and hence invariance
under Zariski-localizations), if q : X −→ S is a morphism of finite type be-
tween noetherian schemes or noetherian algebraic spaces, if F is a coherent
sheaf on X , if we choose affine Zariski-open covers of X and S , the locally
defined jet-modules glue to a global jet-module J N(F/S) . Under the as-
sumptions made, this is a coherent sheaf on X . This follows from the fact,
that the localization isomorphisms are canonical (follows from the universal
representing properties of the jet-modules) and hence, the cocycle conditions
are satisfied).
If X and S are noetherian algebraic spaces, one defines the jet sheaf first in
the case, where the morphism is representable, i.e. we can find an etale cover
{SpecAi −→ S} such that X ×S SpecAi is a scheme. Then, etale locally
over S, the jet-modules are defined by the scheme case.
If the morphism q is not representable we can assume that S = SpecA is a
noetherian affine scheme. Then choose an etale cover {SpecBj −→ X} and

the jet-modules J N (Mj/A) , where F |SpecBj
= M̃j glue to a globally defined

jet sheaf J N(F/S) . All we need is the base change -and etale invariance
property of the jet-modules. Also, the universal filtered derivations

dNMj/Ai
:Mj −→ J N (Mj/Ai), i ∈ I, j ∈ J

glue to a universal derivation

dNF/S : F −→ J N(F/S).

Furthermore, for a fixed quasi coherent sheaf F , the universal represent-
ing property of the pair dNF/S,J

N(F/S) for the moduli problem, sending

a J N(X/S)-module Q to the set of all filtered derivations t : F −→ Q
is satisfied, because the required homomorphism of J N(X/S)-modules φ :
J N (F/S) −→ Q can be constructed etale-or Zariski-locally, and by the uni-
versal property in the affine case, these locally construced φi glue to a global
φ . If φ1, φ2 are two homomorphisms of J N(X/S)-modules with t = φi◦d

N
F/S ,

then they locally agree, hence by the sheaf property they agree globally. We
have proved the following
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Theorem 3.22 Let q : X −→ S be a morphism of finite type of noetherian
schemes, or, more generally of neotherian algebraic spaces and let F be a
quasi coherent sheaf on X. Then, for each N ∈ N0 ∪ {N}, there is a quasi
coherent OX-module J N (F/S) plus a filtered derivation

dNF/S : F −→ J N(F/S)

with respect to the diagonal ideal sheaf IX/S that represents the functor, send-
ing a J N (X/S)-module Q to the set of all filtered derivations t : F −→ Q
with respect to the diagonal ideal sheaf IX/S .

Proof: �

We thus make the following (basically standard) definition.

Definition 3.23 Let X −→ S be an arbitrary morphism of finite type of
noetherian schemes, or more generally of noetherian algebraic spaces and
Fi, i = 1, 2 be quasi coherent sheaves on X. Then, a differential operator of
order ≤ N is an OS-linear map D : F1 −→ F2 that can be factored as

F1

dN
F/S
−→ J N(F1/S)

D̃
−→ F2,

where the homomorphism D̃ is OX-linear, where J N(X/S) is regarded with
respect to the OX-module structure coming from the first tensor factor. A
differential operator of order N is a differential operator that is of order
≤ N but not of order ≤ N − 1 .

Thus, in this situation, there is a 1-1 correspondence between differential
operators F1 −→ F2 relative to S and OX-linear maps J N(F1/S) −→ F2 .

Proposition 3.24 (arbitrary push-forwards) Let X
f

−→ Y
p

−→ S be mor-
phisms of schemes and Fi, i = 1, 2 be quasi coherent sheaves on X. Let

D : F1 −→ F2 be a differential operator relative to S. Then f∗F1
f∗D
−→ f∗F2

is a differential operator between the quasi coherent sheaves f∗Fi relative to
S, where f∗D is taken in the category of sheaves of (π ◦ f)−1OS-modules on
X.

Proof: Let D be given by

D̃ ◦ dNF1/S
: F1 −→ J N (F1/S) −→ F2,

where the first map is (π ◦ f)−1OS-linear and D̃ is OX -linear. Then f∗d
N
F1/S

is an π−1OS-linear map from f∗F1 to f∗J
N(F1/S) and f∗D̃ is f∗OX , and

thus OY linear via the structure homomorphism OY −→ f∗OX .
The morphism f induces a morphism

JN(f/S) : JN(X/S) −→ JN (Y/S),

where JN (X/S) := SpecX J N(X/S) with projection pX : JN (X/S) −→ X ,
such that

pY ◦ JN(f/S) = f ◦ pX .
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and thus we have a homomorphism of sheaves J N(Y/S) −→ f∗J
N(X/S) .

Hence we have that f∗J
N(F/S) is an f∗J

N(X/S)-module and thus an
J N (Y/S)-module.
By Lemma 3.2, there is a unique homomorphism

φ : J N (f∗F1/S) −→ f∗J
N(F1/S)

such that f∗d
N
F1/S

= φ ◦ dNf∗F1/S
. The π−1OS-linear map f∗D can be written

as

f∗D : f∗F1

dN
f∗F1/S−→ J N(f∗F1/S)

(f∗D̃◦φ)
−→ f∗F2

and is a partial linear differential operator on Y over S. �

Remark 3.25 If q : X −→ S is a morphism of noetherian schemes, D :
E1 −→ E2 is a differential operator relative to S and F is a quasi coherent
OS-module, it follows from the global version of Lemma 3.39 that D ⊗q−1OS

IdF is a differential operator on X relative to S.

Proposition 3.26 (etale pull back) Let X
f

−→ Y
π

−→ S be morphisms of
schemes where f is etale. If D : F −→ F is a differential operator on the
quasi coherent OY -module F , then f ∗D : f ∗F −→ f ∗F is a differential
operator on the quasi coherent OX-module f ∗F .

Proof: This follows from the etale invariance property of the jet modules,
i.e. f ∗J N

Y (F/S) ∼= J N
X (f ∗F/S) (Lemma 3.17.) Then, if D is given as

D = D̃ ◦ dNF/S , the homomorphism of sheaves of (π−1 ◦ f)(OS)-modules
f ∗D, is given by

f ∗D : f ∗F
f∗dN

F/S
=dN

f∗F/S
−→ f ∗J N(F/S) ∼= J N(f ∗F/S)

f∗D̃
−→ f ∗F .

�

To avoid confusion, for each N ∈ N0, the OS-module J N(X/S) can be
regarded as the structure sheaf of the higher tangent bundle JN (X/S) . This
is an OX -bi-module with respect to the two tensor factors, sloppily written
as J N(X/S) = OX ⊗OS

OX/I
N+1
X/S . Denote by p1,X , p2,X the two projections

JN (X/S) −→ X , where we defined in the introduction p1,X = pX . If the
scheme X under consideration is clear from the context, we drop the subscript
(−)X .
To be more precise, there are two OS-linear homomorphisms

OX

p♯1,p
♯
2−→ J N(X/S).

If locally SpecA ⊂ S and SpecB ⊂ X are open affine subsets, SpecB
mapping to SpecA , then

Γ(SpecA,J N(X/S)) = B ⊗A B/I
N+1
B/A

The two maps p♯1, p
♯
2 correspond to the natural maps

B −→ B ⊗A B −→ B ⊗A B/I
N+1
B/A , b 7→ b⊗ 1, 1⊗ b.
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Both homomorphisms give J N(X/S) the structure of a quasi coherent OX -
algebra We have defined in the section Notation and Conventions

JN(X/S) = SpecX p1,,X∗J
N(X/S)

with natural projection p1,X = pX : JN (X/S) −→ X which is a morphism of
schemes over S. There is a second morphism over S, p2,X : JN(X/S) −→ X
whose structure homomorphism

OX −→ p2,X,∗J
N(X/S)

corresponds to the universal filtered derivation. This holds for all N ∈ N0 ∪
{N}.
This we want to make clear by the following

Lemma 3.27 Let q : X −→ S be a morphism of schemes and Q be a
J N (X/S) -module for some N ∈ N0. Then p1,∗Q ∼= p2,∗Q as q−1OS-modules.
In particular,

pX,1,∗OJN (X/S) = pX,2,∗OJN (X/S) = J N(X/S).

Proof: The morphisms p1 and p2 are affine and finite and on the underlying
scheme points a topological isomorphism | JN(X/S) |∼=| X | . Let SpecB ⊂
X and SpecA ⊂ S be open affine subschemes with SpecB mapping to
SpecA . Then

p−1
1 (SpecB) = p−1

2 (SpecB) = Spec(B ⊗A B/I
N+1
B/A ).

Then by definition of push forward of a sheaf, the claim follows. �

Remark 3.28 If Q is an J N(X/S)-module, the sheaf p1,∗Q = p2,∗Q sim-
ply regarded as a sheaf of q−1OS-modules on X, possesses two OX-module
structures. Restricting to an open affine SpecB ⊂ X , if Q corresponds to
the B ⊗A B/I

N+1
B/A -module M , this is simply the A-module M , and the two

OX-module structures on M correspond to the two B-algebra structures on
J N (B/A) .

Lemma 3.29 With notation as above, suppose that supp(F) = Y ( X with

IY = ann(F) . Then, if there is a differential operator F
DY−→ F on Y , i.e.,

F regarded as a sheaf on Y , then too on F regarded as a sheaf on X.

Proof: By assumption, there is some N ∈ N plus an OY -linear map
D̃Y : J N

Y (F/k) −→ F . By looking at the local description of the jet-modules,
there is always an OX -linear surjection pXY : J N

X (F/k) −→ J N
Y (F/k)

(which is locally of the form

(A⊗k M ։ (A/IY )⊗k M)

which is (A, p1)-linear. Composing with pXY , we get D̃X = D̃Y ◦ pXY :
J N

X (F/k) −→ F , that, composed with dNX,F/k, gives the differential operator
over X , DX : F −→ F . �

In order to study the behavior of a differential operator with respect to the
natural torsion filtration on a coherent sheaf, we prove the following
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Lemma 3.30 Let π : X −→ S be a morphism of algebraic schemes and F
be a quasi coherent sheaf on X and F ′ ⊂ F be a coherent subsheaf. For each
N ∈ N, let J N(F ′/S)′ be the subsheaf of J N(F/S) which is the image under

the natural homomorphism J N(F ′/S)
JN (i/S)
−→ J N (F/S), where i : F ′ →֒ F

is the inclusion. We have on X

Ann(J N(F ′/S)′) ⊇ ann(F ′)N+1 ⊗OS
OX ,

where we regard J N (F ′/S) as a coherent sheaf on JN (X/S). Thus, if
dim(F ′) ≤ d, then also dim(J N (F ′/S)′) ≤ d.

Proof: The question is local, so let A −→ B be a homomorphism of finitely
generated k-algebras and letM be an A- module. I claim that ann(M)N+1⊗A

B ⊆ ann(J N (M/A)) . We have

J N (M/A) = B ⊗A M/IN+1
B/A · (B ⊗A M).

Let a = ann(M) and a ∈ a . By definition, we know, that J N(M/A) is
annihilated by B ⊗ a . We have a⊗ 1− 1⊗ a ∈ IB/A and for all m ∈M ,

0 = (a⊗ 1− 1⊗ a)N+1 · 1⊗m = (aN+1 ⊗ 1 + (1⊗ a) · ω) · 1⊗m

and it follows (a⊗ 1)N+1 · 1⊗m = 0 ∀m ∈M and a ∈ a . Thus

ann(M)N+1 ⊗A B ⊆ Ann(J N(M/A)).

If now M ′ ⊂M corresponds over SpecB to F ′ ⊂ F and a′ = ann(M)′ then
Ann(J N(M ′/A) ⊇ a′

N+1 ⊗A B and so the image J N(F ′/S)′ ⊆ J N(F/S) is
also (locally over X annihilated by a′

N+1 ⊗A B . Now the statement about
the dimension follows from the fact that if dim(OX/Ann(F

′)) ≤ d , then also

d ≥ dim(F ′) = dim(OX/Ann(F
′)N+1) ≥

dim(OJN (X/S)/Ann(J
N (F ′/S))′) = dim(J N(F ′/S)′).

�

We have the following important

Corollary 3.31 Let π : X −→ S be a morphism of algebraic schemes
and E be a coherent OX-module. Let T iE , i = 0, ..., dim(E) be the torsion
filtration of E and for some N ∈ N and D : E −→ E be a differential operator
relative to S of order ≤ N . Then, D respects the torsion filtration of E , i.e.
D(T i(E)) ⊆ T iE .

Proof: The question is local so let be as above A −→ B be a homomorphism
of rings and M be a B module and D : M −→ M be a differential operator
of order ≤ N . Let M ′ ⊂ M be a submodule of M of dimension ≤ d . Let
I = ann(M ′) . Then by the previous proposition IN+1⊗B ⊆ ann(J N(M ′/A) .
The differential operator D restricted to M ′ factors over J N(M ′/A)′ ⊂

J N (M/A) . Let D̃ : J N (M/A) −→ M be the B-linear map corresponding
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to D. Then the image of J N(M ′/A) in J N(M/A) is likewise annihilated by

IN+1 ⊗ B and so is D̃(J N(M ′/A)) ⊂ M . Thus, the image of M ′ under D
in M is contained in a submodule annihilated by IN+1 . Since dim(M ′) ≤ d
dim(B · D(M ′)) ≤ d. T d(M) is the maximal submodule of M of dimension
≤ d and we have proved that dim(B · D(T d(M)) ≤ d which implies the
claim. �

Let π : X −→ S be a smooth morphism of finite type of noetherian schemes
and E be a coherent sheaf on X . Let J (N)(E/S) = IX/S · J N(E/S) so in
particular J (N)(X/S) = IX/S/I

N+1
X/S . There is a short exact sequence

(∗) 0 −→ J (N)(E/k) −→ J N(E/k) −→ E −→ 0.

For a smooth morphism, it is well known that INX/S/I
N+1
X/S

∼= Ω(1)(X/S)⊗
sN .

Lemma 3.32 With notation as above, the homomorphism

INX/S/I
N+1
X/S ⊗OX

J N (E/S) −→ J N (E/S),

coming from the J N(X/S)-module structure of J N(E/S) descends to a OX-
linear map,

INX/S/I
N+1
X/S ⊗OX

E −→ J N(E/S).

Proof: This follows from the exact sequence (*) and the fact that INX/S/I
N+1
X/S ⊗

IX/S · J N(X/S) −→ J N(E/S) is the zero map. �

We now state here the following basic fact about jet-modules in the global
case.

Proposition 3.33 Let π : X −→ S be a morphism of finite type of noethe-
rian schemes.

1 for each N ∈ N0 ∪ {N} , let J N(−/S) be the functor from quasi co-
herent OX-modules to quasi coherent J N (X/S)-modules, sending F to
J N(F/S) . Then, this functor is right exact and there is a canonical nat-

ural isomorphism J N(−/S)
∼=

−→ p∗2(−).

2 If π : X −→ S is flat, then J N(−/S) is an exact functor.

3 If π : X −→ S is a smooth morphism of noetherian schemes, then for
each N ∈ N0 , the functor J N(−/S), sending quasi coherent OX-modules
to quasi coherent J N(X/S)-modules, is exact and equal to (pN2 )

∗ .

Proof:

1 This follows from the local definition of the jet-modules. Here, of coarse,
p2 : JN(X/S) −→ X is the finite affine morphism which corresponds to
the second OX-module structure.

2 This immediately follows from (1).

3 This follows from the fact, that for X/S smooth, the N th-jet algebra
J N(X/S) is a projective, hence flat OX -module (see Proposition 3.5). So
the assertion follows from (2).
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Proposition 3.34 (Exact sequence I) Let π : X −→ S be a morphism of
finite type between noetherian schemes and Y ⊂ X be a closed subscheme
and F be a quasi coherent OY -module. Let IY be the defining ideal sheaf of
Y . Then for all N ∈ N ∪ {∞} there is an exact sequence

0 −→ (IY ) · J
N
X (F/S) −→ J N

X (F/S) −→ J N
Y (F/S) −→ 0.

Here multiplication with IY is via the first OX-module structure.

Proof: This is a local question , so let A −→ B be a homomorphism of
rings, I ⊂ B be an ideal and M be a B/I-module. We have

J N
B/A(M/A) = B ⊗A M/IN+1

B/A · (B ⊗A M) and

J(B/I)/A(M/A) = (B/I)⊗A M/IN+1
(B/I)/A · (B/I ⊗A M).

B ⊗A M is already a B⊗A (B/I) module, so tensoring with B/I via the first
B-module structure, we obviously get B/I ⊗A M which is J(B/I)/A(M/A) .

�

Proposition 3.35 (Exact sequence II) Let as above π : X −→ S be a mor-
phism of finite type between noetherian schemes and Y →֒ X be a closed sub-
scheme with defining ideal sheaf IY . Let F be a quasi coherent OY -module.
Then for all N ∈ N0 ∪ {N} there is an exact sequence

0 −→ IY · J N
X (F/S) |Y−→ J N

X (F/S) |Y−→ J N
Y (F |Y /S) −→ 0,

where multiplication with IY is via the second OX-module structure on the
jet bundle.

Proof: The question is again local, so let A −→ B be a homomorphism
of rings and M be a B-module and I ⊂ B be the ideal corresponding
to Y ⊂ X . The module J N

Y/S(F |Y /S) then corresponds to the module

(B/I)⊗A (M/IM) (modulo the ideal IN+1
(B/I)/A) and the jet bundle J N

X (F/S) |Y

corresponds to the module B/I ⊗A M so tensoring with B/I via the second
B-module structure we get B/I ⊗M/IM which was the claim. �

Proposition 3.36 (First cotangential sequence)

Let E
i
→֒ X

π
−→ S be morphisms of finite type of noetherian schemes such

that i is a closed immersion. Let F be a quasi coherent OX-module. Then
there is and exact sequence

(∗1) IE · F/I2
E · F −→ J

(1)
X (F/S) |E−→ J

(1)
E (F |E /S) −→ 0.

If π and π ◦ i are smooth and F is locally free, the sequence (∗1) is exact on
the left.
In this case, the first module is isomorphic to IE/I

2
E ⊗OX

F .
These exact sequences are functorial in F ∈ QCoh(X) .
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Proof: In view of the exact sequence II, it is enough to construct a functorial
homomorphism

φ : IE · F/I2
E · F −→ IE · J (1)(F/S) |E .

The question is local, so let k −→ A be a homomorphism of commutative
rings, I ⊂ A be an ideal, and M be an A-module. We have to construct an
A-linear homomorphism

ψM : IM/I2M −→ (A/I)⊗k M/(I2A/k · ((A/I)⊗k M)),

which is functorial in M , i.e., is a natural transformation from A−Mod to
A−Mod . Let f ∈ I,m ∈ M be given. We let ψM(fm) := 1⊗ fm. This is
obviously additive. Secondly, since 0 = (f ⊗ 1− 1⊗ f)2 = f 2 ⊗ 1 + 2f ⊗ f +
1 ⊗ f 2 = 1 ⊗ f 2 , it follows that I2M maps to zero. We have to show that
this is A-linear. So for a ∈ A we have to show that

ψM (afm) = 1⊗ afm = a⊗ fm ∀a ∈ A, f ∈ I,m ∈M.

Now,J 1(M/k) is an J 1(A/k) = A ⊕ Ω(1)(A/k)-module. There is the stan-
dard A-linear homomorphism I/I2 −→ Ω(1)(A/k) ⊗A A/I which is in our
notation the homomorphism ψA with ψA(f) = 1⊗ f − f ⊗ 1 = 1⊗ f . Thus
we have in J 1(A/k) ⊗A A/I the identity 1⊗ af = a⊗ f . Then from the
J 1(A/k)-module structure of J 1(M/k) it follows that 1⊗ afm = a⊗ fm
which is the A-linearity of the map ψM .
Thus we have in any case an exact sequence

IE · F/I2
E · F −→ J

(1)
X/S(F/S) |E−→ J

(1)
E/S(F |E /S) −→ 0.

So let now π and π ◦ i be smooth. From the standard cotangential
sequence, the claim is true for F ∼= OX . Since the assertion is local, the
claim is true for locally free OX -modules in which case

IE/I
2
E ⊗OX

F ∼= IE · F/I2
E · F .

Both sides are right exact functors from OX -modules to OE-modules, so the
claim follows by taking locally a free presentation and the five lemma. �

Proposition 3.37 (Second cotangential sequence))

Let X
f

−→ Y
g

−→ Z be morphisms of finite type of noetherian schemes and
E be a quasi coherent OY -module. Then there is an exact sequence

(∗2) f ∗J (1)(E/Z)
αE−→ J (1)(f ∗E/Z)

βE
−→ f ∗E ⊗OX

J (1)(X/Y ) −→ 0.

If f and g are smooth and E is locally free, then the left hand map is injective.
These sequences are functorial in E ∈ QCoh(Y ).

Proof:
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1 Construction of the exact sequence
The question is local so, let X = SpecA, Y = SpecB Z = SpecC and let
E correspond to the B-module M . The generalized second cotangential
sequence is then a subsequence (the trivial direct summand f ∗E deleted)
of the following sequence

C ⊗B,p1 B ⊗A M = C ⊗A M −→ C ⊗A (C ⊗B M)

−→ C ⊗B (C ⊗B M) = (C ⊗B M)⊗B B ⊗B C,−→ 0

where the last identity comes from the fact that

J N(B/A)⊗A M ∼= J N (B ⊗A M/A)

which is a special case of base change for jet modules. Since the homo-
morphisms of the sequence are canonical, these glue to the sequence (∗2) .
Observe that in J 1(M/k) , J (1)(M/k) sits as a direct summand. Observe
furthermore, that each three terms in the sequence (∗2) are functors from
OY −Mod to OX−Mod that are all right exact and αE and βE are natural
transformations of functors from OY −Mod to OX −Mod .

2 Exactness
If E ∼= OY this is the standard cotangential exact sequence. For arbi-
trary locally free E the question is local , so we may assume that X =
SpecA, Y = SpecB,Z = SpecC are affine such that E is free on SpecB .
Then from the standard cotangential sequence for the situation

SpecA −→ SpecB −→ SpecC

and taking direct sums, we know that the sequence is locally exact, hence
globally exact.
For arbitrary coherent E , we only need to show that the sequence is locally
exact, since this is a statement about sheaves. If Γ(SpecB, E) =M choose
a presentation

B⊕I −→ B⊕J −→M −→ 0.

Then the second cotangential sequence for M is the cokernel of the homo-
morphism of the second cotangential exact sequence for A⊕I to A⊕J . (all
three terms are right exact functors from OY −Mod to OX −Mod . Since
the cokernel functor is right exact, the claim follows.
If f and g are smooth and E is locally free, this reduces locally to E ∼= OY

where this is the standard second cotangential exact sequence.

�

Lemma 3.38 Let q : X −→ S be a morphism of finite type of noetherian
schemes where X possesses an ample invertible sheaf and D : F1 −→ F2 be
a differential operator of order ≤ N relative to S for some N ∈ N0 between
quasi coherent sheaves F1 and F2 , Then, there is a filtration F •F1 and a
filtration F•(F2) such that F j(Fi), i = 1, 2 is coherent and D(F j

1) ⊆ F j
2 ,

where j ∈ J and J is the directed index set of the filtration.
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Proof: Under the assumptions made, each quasi-coherent sheaf E is the
direct limit of its coherent subsheaves E i ⊂ E . Write D as

F1

dN
F1−→ J N(F1/S)

D̃
−→ F2.

if F j
1 ⊂ F1 is a coherent subsheaf, then dNF1

(F j
1) ⊂ J N (F1/S) is contained in

the image of the canonical homomorphism J N(F j
1/S) −→ J N(F1/S) since

F j
1 −→ J N(OX/S) · d

N
F1
(F j

1)

is a filtered module derivation and the homomorphism exists by the univer-
sal property of the jet-modules (see Lemma 3.2). It follows that D(F j

1) is
contained in the coherent subsheaf

F j
2 := D̃(J N(X/S) · dNF1

(F j
1)) ⊂ F2.

Thus we can write D as the filtered direct limit of differential operators
Dj : F

j
1 −→ F j

2 for some directed index set J . �

3.6 Basic properties of differential operators

In this subsection, we collect the basic properties of linear algebraic differen-
tial operators which directly follow from the corresponding basic properties
of the jet-modules.

Lemma 3.39 Let A −→ B be homomorphisms of rings,M1,M2 be B-modules
N be an A-module, and D :M1 −→M2 be a differential operator relative to
A. Then, D ⊗A idN : M1 ⊗A N −→ M2 ⊗A N is a differential operator of
B-modules relative to A.

Proof: This follows from the properties of the jet modules J N(M1 ⊗A

N/A) ∼= J N(M/A) ⊗A N (see Proposition 3.11). The operator D is given

by a B-linear map D̃ : J N(M1/A) −→M2 , so we get a B-linear map

D̃ ⊗A idN : J N (M1/A)⊗A N = J N (M1 ⊗A N/A),−→ M2 ⊗A N

where the B-module structures are given by the first tensor factor. �

We can generalize the previous lemma slightly to

Proposition 3.40 (Base change 0) Let A −→ B be homomorphisms of
commutative rings, D : M1 −→ M2 be a differential operator between B-
modules relative to A. Let A −→ A′ be homomorphism of commutative
rings. Then D⊗A idA′ :M1⊗AA

′ −→ M2⊗AA
′ is a differential operator on

B ⊗A A
′-modules relative to A′ .

Proof: This follows from the base change properties of the jet-modules :
we have an isomorphism

J N(M/A)⊗A A
′ ∼= J N (M ⊗A A

′/A′)
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see Proposition 3.10 (Base change I for jet- modules).

D corresponds to a B-linear map D̃ : J N (M1/A) −→ M2 . We get a B⊗AA
′-

linear map

D̃ ⊗A IdA′ : J N(M1 ⊗A A
′/A′) ∼= J N(M1/A)⊗A A

′ −→M2 ⊗A A
′

and the claim follows. �

Proposition 3.41 (Base change I) Let A −→ B and A −→ A′ be homo-
morphisms of commutative rings and N be an A′-module. Given a differential
operator D :M1 −→ M2 of B-modules relative to A, the A′-linear map

D ⊗A idN :M1 ⊗A N −→M2 ⊗A N

is a differential operator of B ⊗A A
′-modules

Proof: This follows in the standard way from the identity J N(M ⊗A

N/A′) ∼= J N(M/A)⊗A N (see Proposition 3.13, Base change III). �

Proposition 3.42 (exterior products) Let k −→ A and k −→ B be ho-
momorphisms of commutative rings, D : M1 −→ M2 and E : N1 −→ N2

be differential operators between A-modules M1,M2 and B-modules N1, N2

respectively. Then, the tensor product over k:

D ⊗k E :M1 ⊗k N1 −→ M2 ⊗k N2

is a differential operator between the A⊗kB-modulesM1⊗kN1 andM2⊗kN2 .

Proof: This follows from the properties of the jet-modules (exterior prod-
ucts II), namely

J N(M/k)⊗k J
N(N/k) ∼= J N(M ⊗k N/k).

If for some N ∈ N0 there is an A-linear map D̃ : J N(M1/k) −→ M1 and a

B-linear map Ẽ : J N(N1/k) −→ N2, for some large N ′ >> N , there is an
A⊗K B-linear map

J N ′

(M1 ⊗k N1/k) −→ J N (M1/k)⊗k J
N (N1/k)

D̃⊗kẼ−→ M2 ⊗k N2.

The proof in the opposite direction is the same, one has only to bear in mind
that the order of the differential operators may change. �

Lemma 3.43 Let k −→ A be a homomorphism of rings andM1,M2, N1, N2,
be A-modules with differential operators Di : Mi −→ Ni, i = 1, 2 and let
φi :Mi −→ Ni, i = 1, 2 be A-linear maps commuting with the Di .
Then, the k-linear maps induced by Di,

ker(φ1) −→ ker(φ2) and coker(φ1) −→ coker(φ2)

are differential operators relative to k. Also an arbitrary direct sum
⊕

i∈I

Di :
⊕

i∈I

Mi −→
⊕

i∈I

Ni

is a differential operator for an arbitrary index set I and differential operators
Di :Mi −→ Ni .
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Proof: The last statement follows from the fact, that the jet-modules com-
mute with direct sums.
For the first statement, observe, that, more generally, if D : G −→ F is a dif-
ferential operator relative to k and G1 ⊂ G and F1 ⊂ F are A-sub-modules
with D(G1) ⊂ F1 , then the restriction of D to G1 is a differential operator
relative to k .
Namely, consider the J N(A/k)- module J N(A/k) · dNG/k(G1) ⊂ J N(G/k) .

Obviously, the restriction of dNG/k to G1 gives a module derivation

tG1/k : G1 −→ J N(A/k) · dNG/k(G1).

By the universal property, ther exists a J N(A/k)-linear homomorphism

φ : J N(G1/k) −→ J N(A/k) · dNG/k(G1), such that tG1/k = φ ◦ dNG1/S.

If D̃ : J N(G/k) −→ F corresponds to D, I claim that

D̃(J N(A/k) · dNG/k(G1)) ⊂ F1.

Indeed, D̃ is A-linear with respect to the first A-module structure of J N(G/k) .
The quantity dNG/k(G1) is an A-submodule with respect to the second A-

module structure of J N(A/k) . Thus, J N(A/k) · dNG/k(G1) = A ·(1) dNG/k(G1)

the superscript (−)(1) indicates that we take the A-module generated by
dNG/k(G1) with respect to the first module structure. But this is then an

A-bi-submodule, (since the bi-module structure is commutative), or, equiva-

lently a J N(A/k)-submodule of J N(G/k) . Since D̃ is A-linear with respect
to the first A-module structure, the claim follows.
Now, the statement for the cokernel.
Let πG : G ։ G2 and πF : F ։ F2 be A-linear surjective maps such that
the given differential operator D : G −→ F descends to a k-linear map
D2 : G2 −→ F2 . The claim is that D2 is a differential operator of A-modules
relative to k . Let G1 and F1 be the kernels of πG and πF respectively, with
inclusions iG and iF .
By the first case, the induced map D1 : G1 −→ F1 is a differential operator
relative to k. By the right exactness of the jet-module-functor we have

J N(G2/k) ∼= J N (G/G1/k) ∼= J N(G/k)/im(J N(iG/k)(J
N (G1/k)))

We know, that D1 factors over a map

D̃1 : im(J N(iG//k))(J
N(G1/k))) −→ F1.

We can form the quotient map

D̃2 : J
N(G2/k) ∼= J N(G/k)/im(J N(iG/k))(J

N(G1/k)) −→ F/F1
∼= F2.

Then, obviously, D2 factors over D̃2 since the quotient map has to factor
over the quotient module of the modules over which the first two maps factor.
This shows that D2 : G2 −→ F2 is a differential operator relative to k. The
case of the map induced on cokernels is a special case of this. �
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3.7 Existence of differential operators in the affine case

We want to investigate the question, under which conditionsDON
A/k(M1,M2) (

DON+1
A/k (M1,M2) , where k −→ A is a homomorphism of commutative rings

M1,M2 are A-modules. We start with a proposition.

Proposition 3.44 Let k −→ A be a homomorphism of noetherian rings
and M1,M2 be finitely generated A-modules.

1 Let Ann(M2) = I . Given any A-linear map D̃ : J N(M1/k) −→ M2

for some N ∈ N0 , there is some K ∈ N such that D̃ factors over D̃′ :
J N((M1/I

K ·M1)/k) −→M2 .

2 Let now Ann(M1) = I . Then there is some K ∈ N such that the image of

D̃ is a submodule annihilated by IK .

Proof: Denote by IA/k the diagonal ideal, generated by all elements (a ⊗
1− 1⊗ a) .

1 Obviously the kernel of D̃ contains I · J N (M1/k) = I ⊗k M1 . We show
that the ideal I ⊗k A contains A⊗k IK for some K ∈ N .
We know that I is finitely generated, I = (f1, ..., fk) . In J N(A/k) we
have IN+1

A/k = 0 containing the elements

(fi ⊗ 1− 1⊗ fi)
N+1 = fi ⊗ ω + 1⊗ fN+1

i and

1⊗ fN+1
i ∈ I ⊗k A .

It follows that there exists someK ∈ N such that I ⊗k A contains A⊗k IK

(one can take K = (N + 1) · k.)

Then, I ⊗k M contains A⊗k M/IK · A⊗M . Thus, the A-linear map D̃
factors through

A⊗M1/A⊗ IK ·M1 = J N ((M1/I
KM1)/k).

2 By the same arguement, if Ann(M1) = I , there is K ∈ N such that
Ann(J N (M1/k)) contains IK ⊗ A . Then, since A⊗ I is contained in the
annihilator of J N(M1/k) = A⊗k M , we have

IK ⊗ A ⊆ A⊗ I ⊂ Ann(J N (M/k)).

Since D̃ is A-linear, the result follows.

�

We prove the following basic

Theorem 3.45 Let k −→ A be a homomorphism of finite type of noetherian
rings of characteristic zero of relative dimension (fibre dimension) ≥ 1 and
M1,M2 be finitely generated A-modules. Then, the inclusion

DON
A/k(M1,M2) ( DON+1

A/k (M1,M2)

is for all N ≥ 0 strict in the following cases:
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1 M1 =M2, or more generally Ann(M1) = Ann(M2) = I and dim(supp(M1))
has fibre dimension greater than zero over k .

2 M1,M2 are nontorsion modules on A.

3 The moduleM1 is nontorsion andM2 is a torsion module with V (Ann(M2)) =
V (I) having fibre dimension greater than zero over k.

Proof:

1 The first case is easily reduced to the case (2). By Lemma 3.29, there is a
surjection

DON
A/k(M1,M2) ։ DON

(A/I)/k(M1,M2)

which induces a surjection

DON
A/k(M1,M2)/DO

N−1
A/k (M1,M2) ։ DON

(A/I)/k(M1,M2)/DO
N−1
(A/I)/k(M1,M2).

2 First, we treat for reasons of intuition the case where A is an integral
k-algebra with k being a field and M1,M2 being torsion free, or more
generally nontorsion A-modules.
If Mi

∼= A⊕ri is free,

DON(M1,M2) = HomA(J
N(A/k)⊕r1, A⊕r2) = DON(A,A)⊕r1·r2

and we are reduced to the case r1 = r2 = 1 . We have the standard exact
sequence

jN(A/k) : 0 −→ IN
∆ /I

N+1
∆ −→ J N(A/k) −→ J N−1(A/k) −→ 0

Let Xns ⊂ X = SpecA be the set of nonsingular points, which is a
nonempty Zariski-open subset. Over Xns , the A-modules J N(A/k),
J N−1(A/k) are projective of different ranks, since, considering the exact
sequence jN(A/k) we know that INA/k/I

N+1
A/k is isomorphic to the N th sym-

metric power of the relative cotangential sheaf. This is nonzero because
the relative dimension of A/k was assumed to be greater than one. Thus,
the duals DON(A/k) and DON−1(A/k) have over Xns different ranks. It
follows that the inclusion DON−1(A/k) ( DON(A/k) is strict, since the
inclusion of the corresponding Zariski- sheaves on SpecA is strict.
This settles the free and projective case.
If M1 and M2 are any nontorsion modules , there is an open subset U ⊂
SpecA where M1 and M2 are free and DON

U/k(M1,M2)/DO
N−1
U/k (M1,M2)

is nonzero. Since
DON

A/k(M1,M2)/DO
N−1
A/k (M1,M2) is finitely generated and coherent, it fol-

lows that this module is nonzero.
We now treat the general nontorsion case. So let k −→ A be a homomor-
phism of noetherian rings which makes A a finitely generated k-algebra
and let M1,M2 be nontorsion modules on A. Let ηi, i = 1, ..., l be the
generic points of A. We want to show that the A-module
DON

A/k(M1,M2)/DO
N−1
A/k (M1,M2) is nonzero. To this aim, it suffices to
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show that this module is nonzero at the generic points of A, which re-
duces by the localization properties of the jet modules to the case, where
(A,m, κ) is an Artinian k-algebra, essentially of finite type over k such
that the resiude field κ has transcendence degree ≥ 1 over k. First, we
show that l(J N−1(A/k)) < l(J N (A/k)) for each N ≥ 1 , where l(−) de-
notes the length function. By the standard jet-module sequence and the
additivity of the lenght function, we only have to show that the A-module
INA/k/I

N+1
A/k is nonzero. Let A ։ κ be the canonical surjection. There is a

surjection IA/k ։ Iκ/k which induces surjections

INA/k/I
N+1
A/k ։ INκ/k/I

N+1
κ/k ∀n ∈ N.

The last module is equal to Ω(1)(κ/k)⊗
sN since we work in characteristic

zero and this module is nonzero, since trdeg(κ/k) is greater or equal to
one. The case for general M1 is basically the same. There is a surjection

INA/k ·M/IN+1
A/k ·M ։ INκ/k ·M/IN+1

κ/k ·M,

where M := M ⊗A κ . Since κ is a field, M is free, and the last quantity
is isomorphic to Ω(1)(κ/k)⊗

sN ⊗κ M which is also nonzero.
Thus for each A-module M and each N ∈ N , we have strict inequality
l(J N−1(M/k)) < l(J N(M/k)) coming from the exact sequence of nonzero
A-modules

jNA/k(M) : 0 −→ INA/k ·M/IN+1
A/k ·M −→ J N(M/k) −→ J N−1(A/k) −→ 0.

By [1][chapter 18, Proposition 18.4, p. 454], for given A-modules N1, N2 ,
the minimal number r such that Ext1A(N1, N2) 6= 0 is given by

r = depth(Ann(N1), N2).

The ideal Ann(N1) is contained in the maximal ideal, unless N1 = 0 which
we want to exclude, and, the maximal ideal consists of zero divisors, since
A was assumed to be Artinian. Thus the depth is always equal to zero.
Consequently, taking HomA(−,M2) of the exact sequence jNA/k(M1) , we
get an exact sequence

doNA/k(M1,M2) : 0 −→ DON−1
A/k (M1,M2) −→ DON

A/k(M1,M2)

−→ HomA(I
N
A/k ·M1/I

N+1
A/k ·M1,M2) −→ 0,

where surjectivity on the right comes from the vanishing of the Ext1 and
the last A-module is nonzero by what has been just said. Thus, the quotient
module

DON
A/k(M1,M2)/DO

N−1
A/k (M1,M2)

is nonzero. The general case where A/k is an arbitrary finite type k-algebra
follows from the fact, that the last quotient is a coherent sheaf on SpecA
which is nonzero at the generic points of SpecA and thus nonzero.
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3 Next, ifM2 is a torsion module with Ann(M2) = I, by the previous propo-

sition , for each N ∈ N there is K2 = K(N) ∈ N such that D̃ factors over
J N((M1/I

K2 ·M1)/k) −→M2 .
But then, D : M1 −→ M2 factors through a differential operator D′ :
M1/I

K2 · M1 −→ M2. Thus, we have shown that for fixed M1,M2 with
Ann(M2) = I and M1 being a nontorsion module, for each N ∈ N there
is a surjection

DON
A/k(M1,M2) ։ DON

(A/IK(N)A)/k((M1/I
K(N) ·M1),M2).

Observe, that if D :M1 −→M2 factors over M1/I
K ·M1 , then it certainly

factors overM1/I
L ·M1 for each L ≥ K . Putting K = max(K(N), K(N−

1)) , we get a surjection

DON
A/k(M1,M2)/DO

N−1
A/k (M1,M2) ։

DON
(A/IK)/k((M1/I

KM1),M2)/DO
N−1
(A/IK)/k

(M1/I
KM1,M2).

Fixing N ∈ N0, we know by case (2), that the module on the left hand side
is nonzero and the claim follows.

�

Remark 3.46 Observe, that, if A/k is a finitely generated Artinian k-algebra,
there is an N ∈ N such that IN∆ = 0 in A⊗kA and so JM(A/k) = A⊗kA for
M ≥ N . In particular DOM(A,A) = HomA(A ⊗k A,A) and the statement
is not true.
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