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COBORDISM-FRAMED CORRESPONDENCES AND THE

MILNOR K-THEORY

ALEKSEI TSYBYSHEV

Abstract. In this paper, we compute the 0th cohomology group of a com-
plex of groups of cobordism-framed correspondences. In the case of ordinary
framed correspondences, an analogous computation has been completed by
A. Neshitov in his paper "Framed correspondences and the Milnor—Witt K-
theory".

Neshitov’s result is, at the same time, a computation of the homotopy
groups πi,i(S

0)(Spec(k)), and the present work could be used in the future as
basis for computing homotopy groups πi,i(MGL•)(Spec(k)) of the spectrum
MGL•.

1. Introduction

The theory of framed correspondences and framed transfers was conceived by
V. Voevodsky in [Voev]. In the course of developing that theory, G. Garkusha
and I. Panin in [GP] defined and studied framed motives of algebraic varieties.
One application of that theory is an explicit fibrant replacement of the suspension
bispectrum Σ∞

S1Σ∞
Gm

X+ of a smooth variety X ∈ Smk.
as a corollary, one can reduce the computation of motivic homotopy groups

πn,n(Σ∞
S1Σ∞

Gm
S0)(k) to the computation of the 0th cohomology group H0(ZF (∆•

k,G
∧n
m ))

of an explicit simplicial abelian group ZF (∆•
k,G

∧n
m ) (see [GP, следствие 10.7]).

That computation was completed by Neshitov in his paper [Nes].
It appears that, using [GarNesh], one can computa an analogous motivic homo-

topy group πn,n(MGL•)(k) as the 0th cohomology group of the complex ZF cob(∆•
k,G

∧n
m ).

The groups ZF cob are defined in Section 2. The goal of the present paper is to cal-
culate these 0th cohomology groups, or, more precisely, to prove Theorem 2.19, in
which we present an explicit isomorphism of graded rings.

⊕σm :
⊕

KM
m (k) →

⊕
H0
(
C∗ZF

cob(pt,G∧m
m )

)
.

The author thanks professor Panin for presenting the problem to him, and for
advice on the properties of Milnor K-groups on curves.

2. Definition of cobordism-framed correspondences and statement of

the main result

We begin with repeating the definitions of some basic objects.

Definition 2.1. Let Z ⊆ X be a closed subscheme. An étale neighbourhood of Z
in X is an étale morphism e : W → X, such that W ×X Z → Z is an isomorphism.

In that context, sometimes the scheme W itself, in that case the morphism e is
implicit.
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2 ALEKSEI TSYBYSHEV

Definition 2.2. Let e, e′ be two étale neighbourhoods of Z in X. The neighbourhood
e′ is called a refinement of e, if e′ factors through e, i.e. there exists a morphism
f (which is by necessity étale), such that e′ = e ◦ f.

The following is a basic definition of the theory of framed correspondences, and
was originally given by Voevodsky in [Voev, раздел 2] as a “globally framed corre-
spondence”.

Definition 2.3. Let X,Y be schemes. An explicit framed correspondence of level
n is comprised of the following data:

• a closed subset Z ⊆ An
X , finite over X, called the support of the correspon-

dence;
• an étale neighbourhood W ⊃ Z of Z in An

X ;
• a morphism of schemes φ : W → An, such that the subset Z ⊆ W is the

preimage of 0 under φ;
• a morphism g : W → Y .

Such an explicit framed correspondence is denoted by a tuple (Z,W, φ, g).
Two explicit framed correspondences of the same level n are called equivalent:

(Z,W, φ, g) ∼ (Z,W ′, φ′, g′),

if they have the same support Z and there exists a refinement W ′′ of both W and
W ′ (implying morphisms i : W ′′ → W and i′ : W ′′ → W ′ over An

X ), such that

φ ◦ i = φ′ ◦ i′,

g ◦ i = g′ ◦ i′.

The set Frn(X,Y ) of level n framed correspondences from X to Y is the set
of equivalence classes with respect to that equivalence relation. By abuse of no-
tation, the class of the explicit framed correspondence (Z,W, φ, g) is also denoted
by (Z,W, φ, g). Single letters, such as c, are also used to denote framed correspon-
dences.

Note 2.4. The set Frn(X,Y ) is naturally pointed with the correspondence ∅, the
only equivalence class of correspondences with empty support.

Note 2.5. Based on that definition Voevodsky in [Voev] defined pointed sets Fr(X,Y )
of stable framed correspondences. On the same basis, in [GP, Definitions 2.8,
8.3, 8.5] the groups of linear and stable linear framed correspondences ZFn(X,Y ),
ZF (X,Y ) cоответственно. All of these definitions are repeated in [Nes, Section
1]. These objects are used in the present paper.

We now give an analogous definition, central for the present paper.

Definition 2.6. Let X be a smooth variety over the field k of characteristic 0, and
let Y be a presheaf on the category of smooth varieties over k.

An explicit cobordism-framed correspondence of level (n,N) is comprised
of the following data:

• A closed subset Z ⊆ An
X finite over X

• An étale neighbourgood W ⊃ Z in An
X
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• A regular map φ : W → τn,N , where τn,N is the total space of the tautolog-
ical bundle τSh

n,N over the Grassmann variety Grn,N ; such that the subset
Z ⊆ W is the preimage of the zero-section under φ

• A morphism g : W → Y, i.e. g ∈ Γ(W,Y )

Such an explicit cobordism-framed correspondence is denoted by a tuple (Z,W, φ, g).
Two explicit cobordism-framed correspondences of the same level (n,N) are called

equivalent:

(Z,W, φ, g) ∼ (Z,W ′, φ′, g′),

if they have the same support Z and there exists a refinement W ′′ of both W and
W ′ (implying morphisms i : W ′′ → W and i′ : W ′′ → W ′ over An

X ), such that

φ ◦ i = φ′ ◦ i′,

g ◦ i = g′ ◦ i′.

The set Frcobn,N (X,Y ) of level (n framed correspondences from X to Y is the set
of equivalence classes with respect to that equivalence relation. By abuse of no-
tation, the class of the explicit framed correspondence (Z,W, φ, g) is also denoted
by (Z,W, φ, g). Single letters, such as c, are also used to denote framed correspon-
dences.

The set Frcobn,N (X,Y ) of cobordism-framed correspondences of level (n,N) from
X to Y is the set of equivalence classes with respect to that equivalence relation.
By abuse of notation, the class of the explicit cobordism-framed correspondence
(Z,W, φ, g) is also denoted by (Z,W, φ, g). Single letters, such as c, are also used to
denote cobordism-framed correspondences.

Note 2.7. While regular maps X → Grn,N correspond to epimorphisms ON
X → E,

where E is a locally free sheaf of rank n, regular maps X → τn,N correspond to the
same data (since there is a canonical morphism τn,N → Grn,N ), plus a choice of a
section s ∈ Γ(X,E).

Note 2.8. The notation (Z,W, φ, g) is brief but implicit, because "W ⊃ Z being
an étale neighbourhood in An

X" implies an étale morphism W → An
X , and a closed

embedding Z → W making the triangle commute:

Z W

An
X

.

Definition 2.9. The set Frcob(X,Y ) of stable cobordism-framed correspondences
from X to Y is the limit of Frcobn,n+N (X,Y ) when N → ∞ and n → ∞ along the
following maps:

along N: τn,n+N → τn,n+N+1 is given on the represented functors by the natural
transformation

(
On+N ։ E, s

)
7→
(
On+N+1 ։ E, s

)
, where the resulting epimor-

phism is zero on the last coordinate.
Along n: (Z,W, φ, g) 7→ (Z ′,W ′, φ′, g′), where:

• The subset Z ′ is taken to be the image of Z →֒ An i2
−֒→ A1 × An ≃ A1+n,

where i2 is the embedding as the second factor, equaling zero on the first
coordinate.
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• The neighbourhood W ′ is A1 ×W .
• The map φ′, supposing φ corresponds to On+N ։ E and s ∈ Γ(X,E), is

given by O1+n+N ≃ O⊕On+N ։ O⊕E and the section (x−n−1, s), where
x−n−1 is the coordinate function pr1 : A1 ×W → A1

• The morphism g′ is A1 ×W → W → Y

Note 2.10. One has to check that the stabilization maps in this definition are well-
defined: Z is set-theoretically the preimage of the zero-section because one of the
coordinate functions cuts out W in A1 ×W , and the rest of them cut out Z in W .
Also, to simultaneously pass to the limit along n and N , one has to check that the
stabilization maps commute with each other. This is achieved by noticing that they
add coordinates on different sides — one on the left, the other on the right.

Definition 2.11. The group ZF cob(X,Y ) of linear stable cobordism-framed cor-
respondences from X to Y is the abelian group with generators Frcob(X,Y ) and
relations

[(Z,W, φ, g)] + [(Z ′,W ′, φ′, g′)] = [(Z ∐ Z ′,W ∐W ′, φ∐ φ′, g ∐ g′)] .

The representatives here are taken on some finite level, in one particular Frcobn,N (X,Y ),

and the relation only makes sense if Z ∩ Z ′ = ∅.

Note 2.12. ZF cob
n,n+N (X,Y ) is also a free abelian group with basis comprised of the

correspondences with connected support.

Definition 2.13. The group ZF cob(X,Y ) of stable linear cobordism-framed cor-
respondences from X to Y is the inductive limit of the groups ZF cob

n,n+N (X,Y ) as
N → ∞ and n → ∞.

Taking X in the definition above to be the members of a cosimplicial object
∆•

k ×X , we get a complex C∗ZF
cob(X,Y ), which we denote by C∗ZF

cob(X,Y ).

Lemma 2.14. Inside the complex C∗ZF
cob(X,G

{1...m}
m ) the sum of the subcom-

plexes

C∗ZF
cob
(
X,G{1...̂i...m}

m

)

can be split out as a direct summand.

Proof. Denote the idempotent correspondence (which is actually a map)

Gm → pt
1
−→ Gm

as e. On G×m
m there are m idempotent correspondences, one for each factor. Denote

them as e1, . . . , em. Note that the ei commute pairwise, since the product of any
collection {ei, i ∈ I} is a result of adding factors with the identity morphism to the
morphism

GI
m → pt

(1...1)
−−−−→ GI

m.

In particular, the products of the ei are also idempotents. The same is true for
(1−ei). The composition with these idempotents gives us corresponding idempotent
maps on

C∗ZF
cob
(
X,G{1...m}

m

)
.
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The idempotent

1−
m∏

i=1

(1 − ei)

splits out as a direct summand the sum of subcomplexes C∗ZF
cob(X,G

{1...̂i...m}
m ),

and, respectively, the idempotent

m∏

i=1

(1− ei)

splits out its complement. �

Definition 2.15. Following [SV] and [Nes], the direct complement in

C∗ZF
cob
(
X,G{1...m}

m

)

of the sum of the subcomplexes

C∗ZF
cob
(
X,G{1...̂i...m}

m

)

(split out by the idempotent
∏m

i=1(1 − ei) from the proof above) is denoted by

C∗ZF
cob(X,G∧m

m ).

We consider the case when X = pt is one rational point in more detail: the main
result of the paper is the identification in this case of the 0th group of the complex
above with the mth K-group of the field k. (Recall that Neshitov in [Nes] identified
the 0th cohomology group of the complex ZF (∆•

k;G
∧m
m ) with the Milnor-Witt K-

group KMW
m (k).)

To state the claim more preciselym we introduce an external product structure
on the groups H0(C∗ZF

cob(X,Y )). The construction is analogous to [Nes, Section
3], but it uses the direct summation map.

Definition 2.16. Let

c = (Z,W, φ, g) ∈ Frcobn,N (X,Y ),

c′ = (Z ′,W ′, φ′, g′) ∈ Frcobn′,N ′(X ′, Y ′).

Then their external product is the class of the explicit cobordism-framed correspon-
dence

c×c′=
(
(Z×Z ′,W×W ′, i((n,N),(n′,N ′))) ◦ (φ×φ′), g×g′∈Frcobn+n′,N+N ′(X×X ′, Y×Y ′)

)
,

where the morphism i((n,N),(n′,N ′))) : τn,N × τn′,N ′ → τn+n′,N+N ′ is defined on the
represented functors by taking the direct sum as follows:

τn,N × τn′,N ′

(
(p : On+N ։ E, s

)
,
(
p′ : On′+N ′

։ E′, s′)
)

τn+n′,N+N ′

(
p⊕ p′ ◦ Tn,N,n′,N ′ : On+n′+N+N ′

։ E ⊕ E′, (s, s′)
)
.
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Here
Tn,N,n′,N ′ :

On+N+n′+N ′

On ⊕ON ⊕On′

⊕ON ′

On ⊕On′

⊕ON ⊕ON ′

On+n′+N+N ′

≃

≃

≃

swaps the places of the two direct summands.

Note 2.17. This multiplication operation does not respect the stabilisation maps,
so it does not give rise to an external multiplication on stable cobordism-framed
correspondences. However, it does respect the stabilisation maps up to homotopy,
so the following lemma is true.

Lemma 2.18. The external multiplication of cobordism-framed correspondences
gives rise to a well-defined external multiplication operation

H0(C∗ZF
cob(X,Y ))⊗H0

(
C∗ZF

cob(X ′, Y ′)
)
→ H0

(
C∗ZF

cob(X ×X ′, Y × Y ′)
)
.

Theorem 2.19. Sending a symbol {g1, . . . , gm} to a level 0 correspondence, specif-
ically, a map

σ̃m(g1, . . . , gm) : pt → Gm
m,

given by the coordinates (g1, . . . , gm), and then taking the class of that correspon-
dence in H0(C∗ZF

cob(pt,G∧m
m )) (first according to the stabilisation, then when

going to the quotient G∧m of Gm, and, finally, according to homotopy), gives rise
to a well-defined group homomorphism

σm : KM
m (k) → H0

(
C∗ZF

cob(pt,G∧m
m )

)
.

Together these homomorphisms form a graded ring homomorphism

⊕σm :
⊕

KM
m (k) →

⊕
H0
(
C∗ZF

cob(pt,G∧m
m )

)
.

This homomorphism is an isomorphism.

3. Comparison with the framed correspondence case

In this section, we use some notation and definitions from the paper [Nes].
Let us define maps, for all N > n,

cobn,N : Frn(X,Y ) → Frcobn,N (X,Y ),

that are natural in X and Y (from the categories of varieties and presheaves
respectively), and that, as a whole, commute with the stabilisation maps.

Take the image of the correspondence (Z,W, φ, g) to be (Z,W, in,N ◦φ, g), where
in,N is defined as follows: The point ∗ ∈ Grn,N is given by the projection to the
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first n coordinates kN → kn. So the fiber τSh
N,n|∗ of the tautological bundle on

GrN,n is canonically isomorphic to kn. Accordingly, the fiber of the total space is
An ≃ τn,N ×Grn,N

∗ canonically. Taking the composition of this isonorphism with
the embedding of the fiber, we get

in,N : An ≃ τn,N ×Grn,N
∗ →֒ τn,N .

A simple check shows that the maps cobn,N commute with stabilisation maps,
and that they preserve the extra additivity relations for ZF and ZF cob, which lets
us define the natural maps

cob : Fr(X,Y ) → Frcob(X,Y )

and natural homomorphisms

Zcob : ZF (X,Y ) → ZF cob(X,Y ).

Thus, there is a homomorphism

H̃0-cobX,Y : H0(C∗ZF (X,Y )) → H0(C∗ZF
cob(X,Y )),

and, for each m, the principal direct summand in H̃0-cobpt,G×m
m

:

H0-cob : H0(C∗ZF (pt,G∧m
m )) → H0(C∗ZF

cob(pt,G∧m
m )).

We will soon show that this homomorphism is onto.
We begin by naturally parameterising the data Frcobn,N (X,Y ), that have the bun-

dle E be trivial, by some data including a choice of the trivialisation ; we explore
the properties of this parameterisation.

Definition 3.1. The set Frcob,trivn,N (X,Y ) of trivialised cobordism-framed cor-

respondences consists of classes of tuples (Z,W,A, v, g), where Z,W and g are
the same as in Definition 2.6, and the equivalence relation is defined similarly (by
refining W ), but instead of φ the following "numerical" datum is used: A matrix
A N × n and rank n (at all points) and a vector v — a column of height n. The
entries of A and v are in the ring k[W ]. It is required that {v = 0} = Z.

That datum gives rize to a regular map φA,v : W → τn,N , taking for the bundle
E the trivial bundle On, and for the epimorphism, the linear operator ON → On

given by the matrix A, which is an epimorphism, by the rank requirement; the
section s is given by the vector v. In fact, choosing a preimage of φ = (ON ։ E, s)
under the map (A, v) → φA,v is equivalent to choosing a trivialisation of E. Applied

to Frcob,trivn,N (pt, Y ), W is an arbitrarily small neighbourhood of a finite number of
points. Any bundle E is trivial on a small enough W, so

Lemma 3.2. If X = pt, then the map

Forgetn,N : Frcob,trivn,N (X,Y ) → Frcobn,N (X,Y )

is onto.

For N > n Gaussian elimination for columns reduces A to the matrix of pro-
jection onto the first n coordinates, using elementary operations of type 1. To
each elementary operation ti,j(λ) corresponds an elementary operation ti,j(λx) over
k[W ][x]. Consider the element
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(
Z × A1,W × A1, A · ti,j(λx), v, g

)
∈ Frcob,trivn,N (A1, Y ).

It gives a homotopy between (Z,W,A, v, g)
and (Z,W,A · ti,j(λ), v, g).
From this and the previous note, it follows that

(1) [(Z,W,A, v, g)] = [(Z,W,P, v, g)] ∈ π0

(
Frcob,trivn,N (X ×∆•

k, Y )
)
,

where P is the matrix of projection onto the first n coordinates.
Note that, denoting the map W → An corresponding to v by universal property

by av,

φP,v = in,N ◦ av.

Thus

(2) Forgetn,N (Z,W,A, v, g) = cobn,N(Z,W, av, g)

Corollary 3.3. The homomorphism H̃0-cobX,Y is onto if X = pt. Hence the
homomorphism H0-cob is onto, as it is a direct summand.

Proof. The maps Forgetn,N are onto by Lemma 3.2. Suppose the element in ques-
tion can be written as

Forgetn,N (Z,W,A, v, g).

Equality 1 shows that it is homotopic to a "trivial" correspondence

Forgetn,N (Z,W,P, v, g).

Equality 2 shows that this is in the image of cobn,N . �

Any change of basis in E provides another parameter with the same image under
Forgetn,N . Hence the equality:

(3) ∀M ∈ GLn(k[W ]),Forgetn,N (Z,W,A, v, g) = Forgetn,N (Z,W,MA,Mv, g).

The following lemma can be interpreted as the statement that for X = pt, the
class of a correspondence in H0(ZF cob(pt, Y )) is independent on the differential
map of the framing map φ.

Lemma 3.4. For X = pt,

∀M ∈ GLn(k), cobn,N (Z,W, av, g) ∼ cobn,N(Z,W, aMv, g),

i.e. their classes in H0(ZF cob(X,Y ) are equal.

Proof.

cobn,N (Z,W, av, g)
equality 2

= Forgetn,N(Z,W,P, v, g)

equality 3
= Forgetn,N(Z,W,MP,Mv, g)

equality 1
∼ Forgetn,N(Z,W,P,Mv, g)

equality 2
= cobn,N (Z,W, aMv, g). �
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This allows us to reduce various correspondences to maps:

Proposition 3.5. If X = pt, and Y is an open subvariety in an affine space,
then any cobordism-framed correspondence Z,W, φ, g with Z ≃ Spec(k) a single
rational point, cut out transversally by the zero-section, has the same class in
H0(C∗ZF

cob(pt, Y )) as the map (correspondence of level 0) g|Z

Proof. By Corollary 3.3, the class of the correspondence in question is the image of

some framed correspondence with the same Z and g|Z under the map H̃0-cobX,Y

By [Nes][4.10] (Where, in fact, the correspondence is proven to be equivalent to
a single correspondence of level 1, and not their sum, and the map g|Z stays the
same), we reduce to the case of a level 1 correspondence. By [Nes][Lemma 5.2], this
correspondence is equivalent, as a cobordism-framed correspondence, to

A1
k, {µ(t− λ) = 0}, i1,1 ◦ aµ(t−λ), g({µ(t− λ) = 0}).

By Lemma 3.4, µ can be homotopied to 1. Then it is easy to present a (trans-
lation) homotopy taking λ to 0. As a result, we get exactly the image of thelevel 0
correspondence

(Spec(k), Spec(k), id, g(Z))

under the n-wise stabilisation map. �

The natural transformation H̃0-cob−,− respects the external multiplication op-
erations on framed correspondences and cobordism-framed correspondences.

Lemma 3.6. There are external multiplication operations on the groups H0(C∗ZF (−,−))
(see [Nes, Section 3]) and H0(C∗ZF

cob(−,−)) (see 2.16). Those are compatible

with the natural transformation H̃0-cob−,−, which means that the following square
commutes:

H0(C∗ZF (X,Y ))⊗H0(C∗ZF (X ′, Y ′)) H0(C∗ZF (X ×X ′, Y × Y ′))

H0(C∗ZF
cob(X,Y ))⊗H0(C∗ZF

cob(X ′, Y ′)) H0(C∗ZF
cob(X ×X ′, Y × Y ′))

H̃0-cobX,Y ⊗H̃0-cobX′,Y ′

mF

H̃0-cobX×X′,Y ×Y ′

m
Fcob

.

Proof. The statement follows from the commutative square below:

An × An′

τn,N × τn′,N ′

An+n′

τn+n′,N+N ′

in,N×in′,N′

in+n′,N+N′

�

Corollary 3.7. The external multiplication defined above provides a structure of a
graded ring with a unit on

⊕

m>0

H0(ZF cob(pt,G∧m
m )),

and the maps H0-cob provide a homomorphism of graded rings with a unit
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⊕

m>0

H0(ZF (pt,G∧m
m )) →

⊕

m>0

H0(ZF cob(pt,G∧m
m ))

Proof. The unit is the identity map pt → pt. It goes to itself under cob. �

4. Proof of the main result

Plan of proof. In this section we will show that the σm of Theorem 2.19 are
isomorphisms

σm : KM
m (k) ≃ H0(C∗ZF

cob(pt,G∧m
m )).

The proof follows the same general plan as Voevodsky’s proof for the correspon-
dences Cor, and Neshitov’s proof for correspondences ZF.

First we check in Proposition 4.1 that the maps introduced in the statement of
Theorem 2.19 are well-defined and provide a graded ring homomorphism.

After that, in Proposition 4.3 we show that the maps σm are onto.
Then, for each m, in Proposition 4.5 we give a well-defined map

ρm : H0
(
C∗ZF

cob(pt,G∧m
m )

)
→ KM

m (k).

These maps go in the opposite direction of σm:

σm : KM
m (k) → H0

(
C∗ZF

cob(pt,G∧m
m )

)
,

and ρm is a candidate for the inverse map to σm. It is easy to see from the
definitions that ρm ◦ σm = id . The same is not clear for the other composition
σm ◦ ρm, however, σm being onto, these two maps turn out to be mutually inverse
isomorphisms.

Proposition 4.1. Taking the symbol {g1, · · · , gm} to the level 0 correspondence,
specifically a map,

σ̃m(g1, · · · , gm) : pt → Gm
m,

given by the coordinates (g1, · · · , gm), and taking that to its class in H0(C∗ZF
cob(pt,G∧m

m ))
(first by stabilisation, then by passing drom Gm to G∧m, and, finally, by homotopy),
gives a well-defined homomorphism of abelian groups

σm : KM
m (k) → H0(C∗ZF

cob(pt,G∧m
m )).

Together these homomorphisms form a graded ring homomorphism:

⊕σm :
⊕

KM
m (k) →

⊕
H0(C∗ZF

cob(pt,G∧m
m )).

Proof. From the construction of the multiplication operation on

⊕
H0(C∗ZF

cob(pt,G∧m
m )),

it is obvious that taking the noncommutative monomial g1 . . . gm to the level 0
correspondence, i.e. map,

σ̃m(g1 . . . gm) : pt → Gm
m,

gives a homomorphism of (noncommutative) graded rings
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⊕σ̃m : Z{|k∗|} →
⊕

H0(C∗ZF
cob(p,G∧m

m )).

(multiplication in the ring of noncommutative polynomials is denoted by con-
catenation, and in k∗ — with the dot ·).

If we check that the kernel of this homomorphism includes the noncommutative
polynomials corresponding to the relations of linearity along each coordinate and
the Steinberg relations (these are the relations for the Milnor K-theory), one can see
that this homomorphism can be be factored through

⊕
KM

m (k), and it follows from
the definition that it factors into the homomorphism ⊕σm, which, in particular, is
well-defined. First check the multilinearity:

σ̃m(g1 · · · g
′
i · · · gm) + σ̃m(g1 · · · g

′′
i · · · gm) =

σ̃m(g1 · · · (g
′
i · g

′′
i ) · · · gm) + σ̃m(g1 · · · 1 · · · gm).

For this construct a homotopy between the polynomials giving a pair of points
g′i and g′′i and the pair g′i · g

′′
i and 1. It is given by the polynomial

x2 + (−g′i − g′′i + t(g′i + g′′i − g′ig
′′
i − 1)) + g′ig

′′
i .

Considered as a function on A1 × A1, it gives a finite over A1 (along t) set Z
and an invertible function x on its neighbourhood. By Proposition 3.5, the zero-
and unit section of this homotopy are equivalent to the left and right sides of the
equality.

The Steinberg relations are already true in the Milnor—Witt K-theory. In
[Nes][8.9] these relations are proven to hold between level 1 correspondences [x− a]
in

H0(C∗ZF (pt,G∧1
m )).

By Proposition 3.7, H0-cob gives a homomorphism of graded rings with a unit.
Hence the same correspondences hold for the images of these elements in H0(C∗ZF

cob(pt,G∧1
m )).

On the other hand, by Lemma 4.2 below, the classes of these correspondences are
equal to the classes of the maps, or level 0 correspondences, σ̃1(a),

�

Lemma 4.2. Let [x − a] be the correspondence implicitly defined in [Nes, Lemma
6.3], i.e. the level 1 framed correspondence pt → Gm given by the data

(X = pt, Y = Gm, Z = pt, id : Z → X,W = A1 \ {0},

W
i
−→ A1, Z

(a)
−−→ W,φ = (x− a) : W → A1, g = id : W → Y.)

Then in H0(C∗ZF (pt,Gm)) it has the same class as the map consta : pt → Gm

Proof. Applying the stabilisation map to consta, we get a level 1 correspondence

β = (X = pt, Y = Gm, Z = pt, id : Z → X,W = A1,W
id
−→ A1,

Z
(0)
−−→ W,φ = (x) : W → A1, g = consta : W → Y.)

Construct two homotopies. The first is given by the data
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H1 = (X = A1, Y = Gm, Z = A1, id : Z → X,W = A1 × A1 − {x− at+ a = 0},

W
i
−→ A1 × A1, Z

(t,at)
−−−→ W,φ = t− x− a : W → A1, g = x− at+ a : W → Gm).

(Here t is the homotopy coordinate, both on X and Z, and x is the second
coordinate on W , i.e. the one giving the coordinate function on the fibers W → X.)
A computation gives H1 ◦ i1 = [x− a].

H1 ◦ i0 = α is given by the data

(X = pt, Y = Gm, Z = pt, id : Z → X,W = A1 − {x = −a},

W
i
−→ A1, Z

(0)
−−→ W,φ = (x) : W → A1, g = x+ a : W → Y.)

The second homotopy is

H2 = (X = A1, Y = Gm, Z = A1, id : Z → X,W = A1 × A1 − {tx = −a},

W
i
−→ A1 × A1, Z

(t,0)
−−−→ W,φ = x : W → A1, g = tx+ a : W → Gm).

A computation shows that H2 ◦ i0 = β,H2 ◦ i1 = α. Thus, with the two homo-
topies, we have connected the two parts of the desired equality. �

σm is obviously a right inverse to ρm. it remains to prove the following:

Proposition 4.3. The map σm is onto for each m.

Proof. Denote canm : KMW
m → KM

m . From Lemma 4.2, it follows, in the notation
of [Nes][8.3], that there is the following commutative square:

KMW
m H0(C∗ZF (pt,G∧m

m )

KM
m H0(C∗ZF

cob(pt,G∧m
m ))

Ψm

canm H0-cob

σm

H0-cob is onto by Corollary 3.3, Ψm is onto by the main result of [Nes]. Hence
σm is onto. �

First let’s construct a map

ρm,n,N : Frcobn,N (pt,G×m
m ) → KM

m .

Take a correspondence (Z,W, φ, g). Since Z consists of a finite number of points
(call them z1, · · · , zk),

φ−1(s0(Grn,N ))

is a scheme which in the neighbourhood of each of these zi is the spectrum
of a local Artin ring of length di. On W , and, in particular, on Z, m invertible
functions g1, . . . , gm are given. If zi ≃ Spec(Fi), then in KM

m (Fi) there is a symbol
{g1|zi , · · · , gm|zi}. Taking the sum of norms of these symbols, multiplied by di

(4)

k∑

i=1

di Tr
∣∣Fi

k
({g1|zi , · · · , gm|zi}) ,
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we get an element in the Milnor K-theory of the field k. It can easily be seen that
the map defined this way easily translates in a well-defined way to Frcobn,N (pt,G∧m

m ),
since any simbol with 1 in it is equal to 0. It is also easily seen to be compatible
with the stabilization maps along n and N, and with the extra additivity relations
on ZF cob(pt,G∧n

m ). Thus, the maps ρm,n,N give rise to a homomorphism

ρ̊m : ZF cob(pt,G∧m
m ) → KM

m .

Note 4.4. For any m ∈ N, and any g1, . . . , gm ∈ Gm(k):

ρ̊m(σ̃m(g1 . . . gm)) = {g1, . . . , gm}.

Proposition 4.5. The map ρ̊m gives rise in a well-defined way to the map

ρm : H0(C∗ZF
cob(pt,G∧m

m )) → KM
m (k).

To prove this itatement, we will have to study the behaviour of elements of K-
groups on the curve Z, which is part of a homotopy between to correspondencespt→
GM

m . So let’s stude the behaviour of K-theory on curves with a morphism to P1,
and prove, in various circumstances, statements that the sum, analogous to the one
in Formula 4, taken for the fiber over 0, will be equal to the same sum for the fiber
over 1. Begin with a smooth curve.

Lemma 4.6. Let C be a smooth projective curve; g1, · · · , gm, f be rational functions
on C, such that f = 1 in the zeros and poles of gi. Let f have zeros

in points p01, · · · , p
0
r0 , with multiplicities mul01, · · · ,mul0r0,

and 1
f

—

in points p∞1 , · · · , p∞r∞, with multiplicities mul∞1 , · · · ,mul∞r∞.

Then

r0∑

i=1

mul0i Tr
∣∣k(p0

i )

k
{g1|p0

i
, · · · , gm|p0

i
} =

r∞∑

i=1

mul∞i Tr
∣∣k(p∞

i )

k
{g1|p∞

i
, · · · , gm|p∞

i
}.

Proof. Consider the symbol

{g1, · · · , gm, f} ∈ Km+1(k(Z)).

By the Weil reciprocity law [BT][Theorem 5.6],

∑

ν∈Z̃

Tr
∣∣k(ν)
k

∂ν{g1, · · · , gm, f} = 0.

The sum goes across all closed points (=discrete valuations). ∂ν is the norm
residue map defined in [BT][p. 22, before Proposition 4.4].

Let’s calculate the residue ∂ν{g1, · · · , gm, f} in each point ν. There are two (com-
patible) possibilities: Either f(ν) = 1, Or g1, · · · gm ∈ O∗

ν .
In the first case, our symbol can be written as an algebraic sum of symbols

{f, h1, · · · , hm}, где h1, · · · , hm−1 ∈ O∗
ν . From [BT][Proposition 4.5 (c)],

∂ν ({f, h1, · · · , hm}) = ν(hm) · {f, h1, · · · , hm−1},

where the overhead line denotes the common residue, or the value at a point.
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In the other case, the same Proposition is applied, without the need for any
preparation. In points where f is invertible, the result is 0. Only the points{f =

0,∞} remain. Denoting for each point pji the corresponding valuation as νji , we see
that

ν0i (f) = m0
i , ν

∞
i (f) = −m∞

i ,

and thus, the Weil reciprocity law, together with the explicit formula for residue
maps, give the statement of the Lemma. �

Lemma 4.7. Let C be a one-dimensional projective scheme over k with no embed-
ded points, such that Cred is a smooth curve; let g1, · · · , gm, f be rational functions
on C, such that f = 1 in all zeros and poles of gi. Let f have zeros

in points p01, · · · , p
0
r0 , with multiplicities mul01, · · · ,mul0r0,

and 1
f

—

in points p∞1 , · · · , p∞r∞ with multiplicities m∞
1 , · · · ,m∞

r∞ .

(Here, generalizing the smooth case, multiplicities are taken to be lengths of local
Artin rings, which are rings of functions of Artin schemes cut out by the function
f or 1

f
.) Then

r0∑

i=1

m0
i Tr

∣∣k(p0
i )

k
{g1|p0

i
, · · · , gm|p0

i
} =

r∞∑

i=1

m∞
i Tr

∣∣k(p∞

i )

k
{g1|p∞

i
, · · · , gm|p∞

i
}.

Proof. Divide C into connected components Ck. The required equality for C is the
sum of equalities for Ck. By the previous Lemma 4.6, the equality is true for each
Cred

k . It suffices to show that the equality for Ck can be acquired from the equality
for Cred

k by multiplying it by some number rk. That is shown to be true in the
following commutative algebra statement: �

Lemma 4.8. Let C be a connected one-dimensional projective scheme over k with
no embedded points, such that Cred is a smooth curve. There exists a number r,
such that for any closed point p ∈ C and a non-nilpotent function f ∈ OC,p, the
multiplicity of the zero of f in p on C is r times larger than the multiplicity of the
zero of f in p on Cred.

Proof. Let I be the nilradical of OC . Define

Mn = (0 : In) ⊂ OC .

OC is torsion free as an OC−module, hence so is its submodule Mn. Let’s prove
that Mn/Mn−1 is also torsion-free.

Indeed, if a · m ∈ Mn−1,m 6∈ Mn−1, a 6∈ I, there exists s ∈ In−1, such that
s · m 6= 0. But at the same time, a · s · m = s · a · m = 0, making s · m a torsion
element, which is a contradiction.

Thus, the graded OC−module associated with the filtration Mn is torsion-
free. Since C has no embedded points, it also means that it is torsion-free as
an OC/I−module. Since the curve Cred is smooth, this means that the module is
locally free. Let r be its rank, and rn the rank of its nth graded component.
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Let p ∈ C be a closed point, f ∈ OC,p. Localising at p gives a filtration Mn,p.
On its intermediate quotients f is a nonzerodivisor, hence (f) ∩Mn,p = f ·Mn,p.
Thus the associated filtration of the module OC,p/(f) is equal to

Mn,p/
(
(f) ∩Mn,p

)
= Mn,p/(f ·Mn,p).

Its intermediate quotients are

Mn,p/Mn−1,p

f · (Mn,p/Mn−1,p)
.

The module

Mn,p/Mn−1,p

f · (Mn,p/Mn−1,p)

is isomorphic to (OC,p/(I + (f)))
⊕rn , hence its length is equal to d · rn, where d

is the length of OC,p/(I+(f)), which is the multiplicity of the zero of f in p on the
curve Cred. Since these spaces are the intermediate quotients of a filtration of the
Artin ring OC,p/(f), its length is equal to the sum of their dimensions

∑
d·ri = d·r.

Which means that the multiplicity of the zero of f in p on C is equal to d · r. �

Let’s proceed to the proof of the Proposition

Proof. It is sufficient to show that for any homotopy

h : (Z,W, φ, g) : A1 → Gm, ρ̊m(h ◦ j0) = ρ̊m(h ◦ j1),

where j0, j1 are the embeddings of 0 1 into A1
k. Denote the structural map Z →

A1 by π.
Note that, since Z is regularly embedded into a smooth variety, it has no em-

bedded points.
Preserving the same notation, substitute ZSch for its projective closure. On ZSch

there are rational functions gi and f = π∗t
π∗t−1 , with the property that g1, · · · , gm

are invertible regular functions on the complement of {f = 1}.

The normalisation of Z is a smooth projective curve Z̃. The normalisation of a

curve can be acquired by sequential blowup of points. Let Z̃Sch ⊃ Z̃ be the result
of blowing up ZSch in the same sequence of points.

Each blowup results in the insertion of an effective Cartier divisor (see [FOAG,

Definition 22.2.0.1]), hence on Z̃Sch there are no embedded points. By [FOAG,

Lemma 22.2.6], the proper transform of Z in Z̃Sch is equal to Z̃. Since each blowup

results in an insertion of an effective Cartier divisor, Z̃Sch has no new irreducible

components in comparison with ZSch. Since Z̃Sch

red
has the same number of com-

ponents, the reduced part Z̃Sch

red
= Z̃ is a smooth curve. Thus, Z̃Sch satisfies the

conditions of the previous Lemma 4.7.
Denote the zeros and poles of f on ZSch by

p01, · · · p
0
r0 ; p

∞
1 · · · p∞r∞ , with multiplicities mul01, · · ·mul0r0;mul∞1 , · · ·mul∞r∞ .

On Z̃Sch — by
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p̃01, · · · p̃
0
r̃0 ; p̃

∞
1 · · · p̃∞r̃∞ , with multiplicities m̃ul

0

1, · · · m̃ul
0

r̃0 ; m̃ul
∞

1 , · · · m̃ul
∞

r̃∞ .

We have three equaltites in the following chain, completing which will prove the
Proposition:

ρ̊m(h ◦ j0) ρ̊m(h ◦ j1)

r0∑
i=1

mul0i Tr
∣∣k(p0

i )

k
{g1|p0

i
, · · · , gm|p0

i
}

r∞∑
i=1

mul∞i Tr
∣∣k(p∞

i )

k
{g1|p∞

i
, · · · , gm|p∞

i
}

r̃0∑
i=1

m̃ul
0

i Tr
∣∣k(p̃0

i )

k
{g1|p̃0

i
, · · · , gm|p̃0

i
}

r̃∞∑
i=1

m̃ul
∞

i Tr
∣∣k(p̃∞

i )

k
{g1|p̃∞

i
, · · · , gm|p̃∞

i
}

The two dotted equalities are analogous to each other, so we’ll only prove the

leftmost one. It states that the sum for Z is equal to the analogous sum for Z̃Sch.
This is not obvious, since, for example, a point with nilpotents on ZSch can turn

into several points on Z̃Sch, with other residue fields and nilpotents. Moreover, by

construction of Z̃Sch, the nilpotents over those points "collapse" under the map to
ZSch.

To prove this, pull back to the scheme V = Speck[[t]]. Since outside of the blow-

up points the scheme does not change, −̃V : Z̃SchV → ZSch,V is an isomorphism
over the complement V − v of the closed point.

If Y is a connected component of ZSch,V (a local scheme), and Ỹk are all the

connected components of its preimage in Z̃Sch, then Y and
∐

Ỹk are both finite and
flat (since their structure rings are torsion-free k[[t]]−modules) over V. They alse
have the same degree over V , since they are isomorphic over V − v. The required
equality is given by adding all the equalities from the following Lemma across all

connected components Y (This divides the sum for Z̃Sch into subsums) :

Lemma 4.9. Let S, S̃ be two finite schemes of the same degree over the field k,

such that S is local, and there is a morphism −̃ : S̃ → S. Denote the points of

S and S̃ as s and {s̃i}. Let Si be the component of S̃ containing si. Denote the
induced morphism πi : si → s. Let a ∈ KM

m (k(s)). Denote the length of S as d, and
the length of Si as di. Then

d · Tr
∣∣k(s)
k

(a) =
∑

k

di Tr
∣∣k(si)
k

((πi)
∗a).

Proof. Denote the degrees of field extensions

p = [k(s) : k], pi = [k(si) : k].

Then

Tr
∣∣k(si)
k

= Tr
∣∣k(s)
k

◦ Tr
∣∣k(si)
k(s)

.

Hence
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∑

i

di · Tr
∣∣k(si)
k

((πi)
∗a) =

∑

i

di · Tr
∣∣k(s)
k

(
Tr
∣∣k(si)
k(s)

((πi)
∗a)
)
=

Tr
∣∣k(s)
k

(
∑

i

di · Tr
∣∣k(si)
k(s)

((πi)
∗a)

)

For the Milnor K-theory, the composition of extension of scalars and the norm
map is multiplication by the degree of the field extension,

Tr
∣∣k(si)
k(s)

((πi)
∗a) =

pi
p
a.

Hence

Tr
∣∣k(s)
k

(
∑

i

di · Tr
∣∣k(si)
k(s)

((πi)
∗a)

)
= Tr

∣∣k(s)
k

(
∑

i

di
pi
p
a

)
=

1

p
·
∑

i

(di ·pi) ·Tr
∣∣k(s)
k

a

Since S and S̃ have the same degree,
∑
i

(di · pi) = d · p. Hence

1

p
·
∑

i

(di · pi) · Tr
∣∣k(s)
k

a =
1

p
· d · p · Tr

∣∣k(s)
k

a = d · Tr
∣∣k(s)
k

a.

�

�

Thus ρm and σm are mutually inverse isomorphisms, completing the proof of
Theorem 2.19
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