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Abstract

Many modern learning tasks involve fitting nonlinear models to data which are trained in an overpa-
rameterized regime where the parameters of the model exceed the size of the training dataset. Due to
this overparameterization, the training loss may have infinitely many global minima and it is critical to
understand the properties of the solutions found by first-order optimization schemes such as (stochastic)
gradient descent starting from different initializations. In this paper we demonstrate that when the loss
has certain properties over a minimally small neighborhood of the initial point, first order methods such
as (stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric
rate to a global optima even when the loss is nonconvex, (2) among all global optima of the loss the
iterates converge to one with a near minimal distance to the initial point, (3) the iterates take a near
direct route from the initial point to this global optima. As part of our proof technique, we introduce a
new potential function which captures the precise tradeoff between the loss function and the distance to
the initial point as the iterations progress. For Stochastic Gradient Descent (SGD), we develop novel
martingale techniques that guarantee SGD never leaves a small neighborhood of the initialization, even
with rather large learning rates. We demonstrate the utility of our general theory for a variety of problem
domains spanning low-rank matrix recovery to neural network training. Underlying our analysis are
novel insights that may have implications for training and generalization of more sophisticated learning
problems including those involving deep neural network architectures.

1 Introduction

1.1 Motivation
In a typical statistical estimation or supervised learning problem, we are interested in fitting a function
f(⋅;θ) ∶ Rd ↦ R parameterized by θ ∈ Rp to a training data set of n input-output pairs xi ∈ Rd and yi ∈ R
for i = 1,2, . . . , n. The training problem then consists of finding a parameter θ that minimizes the empirical
risk 1

n ∑ni=1 `(f(xi;θ),yi). The loss `(ỹ, y) measures the discrepancy between the output(or label) y and the
model prediction ỹ = f(xi;θ). For regression tasks one typically uses a least-squares loss `(ỹ, y) = 1

2
(ỹ − y)2

so that the training problem reduces to a nonlinear least-squares problem of the form

min
θ∈Rp L(θ) ∶= 1

2

n∑
i=1

(f(xi;θ) − yi)2
. (1.1)

In this paper we mostly focus on nonlinear least-squares problems. In Section 5 we discuss results that apply
to a broader class of loss functions L(θ).

Classical statistical estimation/learning theory postulates that to find a reliable model that avoids
overfitting, the size of the training data must exceed the intrinsic dimension1 of the model class f(⋅;θ)

∗Department of Electrical and Computer Engineering, University of California, Riverside, CA
†Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA

1Some common notions of intrinsic dimension include Vapnik–Chervonenkis (VC) Dimension [1], Rademacher/Gaussian
complexity [2–4], as well as naive parameter counting.
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used for empirical risk minimization (1.1). For many models such notions of intrinsic dimension are at
least as large as the number of parameters in the model p, so that this literature requires the size of the
training data to exceed the number of parameters in the model i.e. n > p. Contrary to this classical literature,
modern machine learning models such as deep neural networks are often trained via first-order methods in an
over-parameterized regime where the number of parameters in the model exceed the size of the training data
(i.e. n < p). Statistical learning in this over-parameterized regime poses new challenges: Given the nonconvex
nature of the training loss (1.1) can first-order methods converge to a globally optimal model that perfectly
interpolate the training data? If so, which of the global optima do they converge to? What are the statistical
properties of this model and how does this model vary as a function of the initial parameter used to start the
iterative updates? What is the trajectory that iterative methods such as (stochastic) gradient descent take to
reach this point? Why does a model trained using this approach generalize to new data and avoid overfitting
to the training data?

In this paper we take a step towards addressing such challenges. We demonstrate that in many cases
first-order methods do indeed converge to a globally optimal model that perfectly fits the training data.
Furthermore, we show that among all globally optimal parameters of the training loss these algorithms tend
to converge to one which has a near minimal distance to the parameter used for initialization. Additionally,
the path that these algorithms take to reach such a global optima is rather short, with these algorithms
following a near direct trajectory from initialization to the global optima. We believe these key features of
first-order methods may help demystify why models trained using these simple algorithms can achieve reliable
learning in modern over-parametrized regimes without over-fitting to the training data.

1.2 Insights from Linear Regression
As a prelude to understanding the key properties of (stochastic) gradient descent in over-parameterized
nonlinear learning we begin by focusing on the simple case of linear regression. In this case the mapping in
(1.1) takes the form f(xi;θ) = xTi θ. Gathering the input data xi and labels yi as rows of a matrix X ∈ Rn×d
and a vector y ∈ Rn, the fitting problem amounts to minimizing the loss L(θ) = 1

2
∥Xθ − y∥2

`2
. Therefore,

starting from an initialization θ0, gradient descent iterations with a step size η take the form

θτ+1 = θτ − η∇L(θτ) = θτ − ηXT (Xθτ − y) .
As long as the matrix X has full row rank the set G ∶= {θ ∈ Rp ∶Xθ = y} is nonempty and the global minimum
of the loss is 0. Using simple algebraic manipulations the residual vector rτ =Xθτ+1 − y obeys

rτ+1 = (I − ηXXT )rτ ⇒ ∥rτ+1∥`2 ≤ ∥I − ηXXT ∥ ∥rτ∥`2 .
Therefore, using a step size of η ≤ 1∥X∥2 the residual iterates converge at a geometric rate to zero. This yields
the first key property of gradient methods for over-parametrized learning:

Key property I: Gradient descent iterates converge at a geometric rate to a global optima.

Let θ∗ denote the global minima we converge to and ΠR and ΠN denote the projections onto the row
space and null space of X, respectively. Since the gradients lie on the row space of X and X is full row rank,
denoting the unique pseudo-inverse solution by θ†, we have

ΠN (θ∗) = ΠN (θ0) and ΠR(θ∗) = θ†.

The equalities above imply that θ∗ is the closest global minima to θ0; which highlights the second property:

Key property II: Gradient descent converges to the closest global optima to initialization.

Finally, it can also be shown that the total path length ∑∞
τ=0 ∥θτ+1 − θτ∥`2 can be upper bounded by the

distance ∥θ∗ − θ0∥`2 (up to multiplicative factors depending on condition number of X). This leads us to:

Key property III: Gradient descent takes a near direct trajectory to reach the closest global optima.

In this paper we show that similar properties continue to hold for a broad class of nonlinear over-
parameterized learning problems.
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1.3 Contributions
Our main technical contributions can be summarized as follows:

• We provide a general convergence result for overparameterized learning via gradient descent, that comes
with matching upper and lower bounds, showing that under appropriate assumptions over a small
neighborhood of the initialization, gradient descent (1) finds a globally optimal model, (2) among all
possible globally optimal parameters it finds one which is approximately the closest to initialization
and (3) it follows a nearly direct trajectory to find this global optima.

• We show that SGD exhibits the same behavior as gradient descent and converges linearly without ever
leaving a small neighborhood of the initialization even with rather large learning rates.

• We demonstrate the utility of our general results in the context of three overparameterized learning
problems: generalized linear models, low-rank matrix regression, and shallow neural network training.

2 Convergence Analysis for Gradient Descent

The nonlinear least-squares problem in (1.1) can be written in the more compact form

min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
, (2.1)

where

y ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2⋮
yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn and f(θ) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(x1;θ)
f(x2;θ)⋮
f(xn;θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn.

A natural approach to optimizing (2.1) is to use gradient descent updates of the form

θτ+1 = θτ − ητ∇L(θτ),
starting from some initial parameter θ0. For the nonlinear least-squares formulation (2.1) above the gradient
takes the form

∇L(θ) = J (θ)T (f(θ) − y). (2.2)

Here, J (θ) ∈ Rn×p is the Jacobian matrix associated with the mapping f(θ) with entries given by Jij = ∂f(xi,θ)
∂θj

.
We note that in the over-parameterized regime (n < p), the Jacobian has more columns than rows.

The particular form of the gradient in (2.2) suggests that the eigenvalues of the Jacobian matrix may
significantly impact the convergence of gradient descent. Our main technical assumption in this paper is
that the spectrum of the Jacobian matrix is bounded from below and above in a local neighborhood of the
initialization.

Assumption 1 (Jacobian Spectrum) Consider a set D ⊂ Rp containing the initial point θ0 (i.e. θ0 ∈ D).
We assume that for all θ ∈ D the following inequality holds

α ≤ σmin (J (θ)) ≤ ∥J (θ)∥ ≤ β.
Here, σmin(⋅) and ∥⋅∥ denote the minimum singular value and the spectral norm respectively.

Our second technical assumption ensures that the Jacobian matrix is not too sensitive to changes in the
parameters of the nonlinear mapping. Specifically we require the Jacobian to have either bounded or smooth
variations as detailed next.
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Assumption 2 (Jacobian Deviations) Consider a set D ⊂ Rp containing the initial point θ0 (i.e. θ0 ∈ D).
We assume one of the following two conditions holds:
(a) Bounded deviation: For all θ1,θ2 ∈ D

∥J (θ2) − J (θ1)∥ ≤ (1 − λ)α2

β
,

holds for some 0 ≤ λ ≤ 1. Here, α and β are the bounds on the Jacobian spectrum over D per Assumption 1.
(b) Smooth deviation: For all θ1,θ2 ∈ D

∥J (θ2) − J (θ1)∥ ≤ L ∥θ2 − θ1∥`2 .2
With these assumptions in place we are now ready to state our main result.

Theorem 2.1 Consider a nonlinear least-squares optimization problem of the form

min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
,

with f ∶ Rp ↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys Assumption 1 over a ballD of radius R ∶= 4∥f(θ0)−y∥`2
α

around a point θ0 ∈ Rp.3 Furthermore, suppose one of the following statements
is valid.

• Assumption 2 (a) holds over D with λ = 1/2 and set η ≤ 1
2β2 .

• Assumption 2 (b) holds over D and set η ≤ 1
2β2 ⋅min(1, α2

L∥f(θ0)−y∥`2 ).
Then, running gradient descent updates of the form θτ+1 = θτ − η∇L(θτ) starting from θ0, all iterates obey.

∥f(θτ) − y∥2
`2
≤(1 − ηα2

2
)τ ∥f(θ0) − y∥2

`2
, (2.3)

1

4
α ∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 ≤∥f(θ0) − y∥`2 . (2.4)

Furthermore, the total gradient path is bounded. That is,

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ 4 ∥f(θ0) − y∥`2
α

. (2.5)

A trivial consequence of the above theorem is the following corollary.

Corollary 2.2 Consider the setting and assumptions of Theorem 2.1 above. Let θ∗ denote the global optima
of the loss L(θ) with smallest Euclidean distance to the initial parameter θ0. Then, the gradient descent
iterates θτ obey

∥θτ − θ0∥`2 ≤ 4
β

α
∥θ∗ − θ0∥`2 , (2.6)

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ 4
β

α
∥θ∗ − θ0∥`2 . (2.7)

2Note that, if ∂J(θ)
∂θ

is continuous, Lipschitzness condition holds over any compact domain (for possibly large L).
3That is, D = B(θ0,

4∥f(θ0)−y∥`2
α

) with B(c, r) = {θ ∈ Rp ∶ ∥θ − c∥`2 ≤ r}
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The theorem and corollary above show that if the Jacobian of the nonlinear mapping is well-conditioned
(Assumption 1) and has bounded/smooth deviations (Assumptions 2) in a ball of radius R around the initial
point, then gradient descent enjoys three intriguing properties.
Zero traning error: The first property property demonstrated by Theorem 2.1 above is that the iterates
converge to a global optima θGD. This hold despite the fact that the fitting problem may be highly nonconvex
in general. Indeed, based on (2.3) the fitting/training error ∥f(θτ) − y∥`2 achieved by Gradient Descent
(GD) iterates converges to zero. Therefore, GD can perfectly interpolate the data and achieve zero training
error. Furthermore, this convergence is rather fast and the algorithm enjoys a geometric (a.k.a. linear) rate of
convergence to this global optima.
Gradient descent iterates remain close to the initialization: The second interesting aspect of these
results is that they guarantee the GD iterates never leave a neighborhood of radius 4

α
∥f(θ0) − y∥`2 around

the initial point. That is the GD iterates remain rather close to the initialization. In fact, based on (2.6) we
can conclude that

∥θGD − θ0∥`2 = ∥ lim
τ→∞θτ − θ0∥

`2

= lim
τ→∞ ∥θτ − θ0∥`2 ≤ 4

β

α
∥θ∗ − θ0∥`2 .

Thus the distance between the global optima GD converges to and the initial parameter θ0 is within a factor
4β
α
of the distance between the closest global optima to θ0 and the initialization. This shows that among all

global optima of the loss, the GD iterates converge to one with a near minimal distance to the initialization.
In particular, (2.4) shows that for all iterates the weighted sum of the distance to the initialization and the
misfit error remains bounded so that as the loss decreases the distance to the initialization only moderately
increases.
Gradient descent follows a short path: Another interesting aspect of the above results is that the total
length of the path taken by gradient descent remains bounded. Indeed, based on (2.7) the length of the path
taken by GD is within a factor of the distance between the closest global optima and the initialization. This
implies that GD follows a near direct route from the initialization to a global optima!

We would like to note that Theorem 2.1 and Corollary 2.2 are special instances of a more general result
stated in the proofs (Theorem 9.3 stated in Section 9.2).4 This more general result requires Assumptions
1 and 2 to hold in a smaller neighborhood and improves the approximation ratios. Specifically, this more
general result allows the radius R to be chosen as small as

∥f(θ0) − y∥`2
α

, (2.8)

and (2.4) to be improved to

α ∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 ≤∥f(θ0) − y∥`2 (2.9)

Also the approximation ratios in Corollary 2.2 can be improved to

∥θτ − θ0∥`2 ≤ βα ∥θ∗ − θ0∥`2 , (2.10)
∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ βα ∥θ∗ − θ0∥`2 . (2.11)

However, this requires a smaller learning rate and hence leads to a slower converge guarantee.
The role of the sample size: Theorem 2.1 provides a good intuition towards the role of sample size in the
overparameterized optimization landscape. First, observe that adding more samples can only increase the
condition number of the Jacobian matrix (larger β and smaller α). Secondly, assuming samples are i.i.d, the
initial misfit ∥y − f(θ0)∥`2 is proportional to

√
n. Together these imply that more samples lead to a more

challenging optimization problem as follows.

4Theorem 2.1 and Corollary 2.2 above are a special case of this theorem with λ = 1/2 and ρ = 1.
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θ∗
θGD

1

Figure 1: In the left figure we show that the gradient descent iterates in over-parameterized learn-
ing exhibit a sharp tradeoff between distance to the initial point (∥θ − θ0∥`2) and the misfit error
(∥f(θ) − y∥`2). Our upper (equation (2.9)) and lower bounds (Theorem 2.3) guarantee that the gradient
descent iterates must lie in the green region. Additionally this is the tightest region as we provide
examples in Theorem 2.3 where gradient descent occurs only on the upper bound (green) line or on the
lower bound (red line). Right figure shows the same behavior in the parameter space. Our theorems
predict that the gradient descent trajectory ends at a globally optimal point θGD in the green region
and this point will have approximately the same distance to the initialization parameter as the closest
global optima to the initialization (θ∗). Furthermore, the GD iterates follow a near direct route from
the initialization to this global optima.

• More samples leads to a slower convergence rate by degrading the condition number of the Jacobian,

• The required convergence radius R increases proportional to
√
n and we need Jacobian to be well-behaved

over a larger neighborhood for fast convergence.

A natural question about the results discussed so far is whether the size of the local neighborhood for
which we require our assumptions to hold is optimal. In particular, one may hope to be able to show that a
significantly smaller neighborhood is sufficient. We now state a lower bound showing that this is not possible.

Theorem 2.3 Consider a nonlinear least-squares optimization problem of the form

min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
,

with f ∶ Rp ↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys Assumption 1 over a setD around a point θ0 ∈ Rp. Then,

∥y − f(θ)∥`2 + β∥θ − θ0∥`2 ≥ ∥y − f(θ0)∥`2 , (2.12)

holds for all θ ∈ D. Hence, any θ that sets the loss to zero satisfies ∥θ − θ0∥`2 ≥ ∥y − f(θ0)∥`2/β. Furthermore,
for any α and β obeying α,β ≥ 0 and β ≥ α, there exists a linear regression problem such that

∥y − f(θ)∥`2 + α∥θ − θ0∥`2 ≥ ∥y − f(θ0)∥`2 , (2.13)

holds for all θ. Also, for any α and β obeying α,β ≥ 0 and β ≥ α, there also exists a linear regression
problem where running gradient descent updates of the form θτ+1 = θτ − η∇L(θτ) starting from θ0 = 0 with a
sufficiently small learning rate η, all iterates θτ obey

∥y − f(θτ)∥`2 + β∥θτ − θ0∥`2 = ∥y − f(θ0)∥`2 . (2.14)
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The result above shows that any global optima is at least a distance ∥θ − θ0∥`2 ≥ ∥y−f(θ0)∥`2
β

away from the

initialization so that the minimum ball around the initial point needs to have radius at least R ≥ ∥y−f(θ0)∥`2
β

for convergence to a global optima to occur. Comparing this lower-bound with that of Theorem 2.1 and in
particular the improvement discussed in (2.8) suggests that the size of the local neighborhood is optimal up
to a factor β/α which is the condition number of the Jacobian in the local neighborhood. More generally,
this result shows that the weighted sum of the residual/misfit to the model (∥f(θ) − y∥`2) and distance to
initialization (∥θ − θ0∥`2) has nearly matching lower/upper bounds (compare (2.9) and (2.12)). Theorem 2.3
also provides two specific examples in the context of linear regression which shows that both of these upper
and lower bounds are possible under our assumptions.

Collectively our theorems (Theorem 2.1, Corollary 2.2, improvements in equations (2.8) and (2.9), and
Theorem 2.3) demonstrate that the path taken by gradient descent is by no means arbitrary. Indeed as
depicted in the left picture of Figure 1, gradient descent iterates in over-parameterized learning exhibit a
sharp tradeoff between distance to the initial point (∥θ − θ0∥`2) and the misfit error (∥f(θ) − y∥`2). Our
upper (equation (2.9)) and lower bounds (Theorem 2.3) guarantee that the gradient descent iterates must
lie in the green region in this figure. Additionally this is the tightest region as we provide examples in
Theorem 2.3 where gradient descent occurs only on the upper bound (green) line or on the lower bound
(red line). In the right picture of Figure 1 we also depict the gradient descent trajectory in the parameter
space. As shown, the GD iterates end at a globally optimal point θGD in the green region and this point
will have approximately the same distance to the initialization parameter as the closest global optima to the
initialization (θ∗). Furthermore, the GD iterates follow a near direct route from the initialization to this
global optima.

3 Convergence Analysis for Stochastic Gradient Descent

Arguably the most widely used algorithm in modern learning is Stochastic Gradient Descent (SGD). For
learning nonlinear least-squares problems of the form (2.1) a natural implementation of SGD is to sample
a data point at random and use that data point for the gradient updates. Specifically, let {γτ}∞τ=0 be an
i.i.d. sequence of integers chosen uniformly from {1,2, . . . , n}, the SGD iterates take the form

θτ+1 = θτ − ηG(θτ ;γτ) with G(θτ ;γτ) ∶= (f(xγτ ;θτ) − yγτ )∇f(xγτ ;θτ). (3.1)

Here, G(θτ ;γτ) is the gradient on the γτ th training sample. We are interested in understanding the trajectory
of SGD for over-parameterized learning. In particular, whether the three intriguing properties discussed in
the previous section for GD continues to hold for SGD. Our next theorem addresses this challenge.

Theorem 3.1 Consider a nonlinear least-squares optimization problem of the form min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
,

with f ∶ Rp ↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys Assumption 1 over a ballD of radius R ∶= ν ∥f(θ0)−y∥`2
α

around a point θ0 ∈ Rp with ν a scalar obeying ν ≥ 3. Also assume the rows of
the Jacobian have bounded Euclidean norm over this ball, that is

max
i

∥Ji(θ)∥`2 ≤ B for all θ ∈ D.
Furthermore, suppose one of the following statements is valid.

• Assumption 2 (a) holds over D and set η ≤ α2

νβ2B2 .

• Assumption 2 (b) holds over D and set η ≤ α2

νβ2B2+νβBL∥f(θ0)−y∥`2 .
Then, there exists an event E which holds with probability at least P(E) ≥ 1 − 4

ν
(β
α
) 1
p and running stochastic

gradient descent updates of the form (3.1) starting from θ0, all iterates obey

E [ ∥f(θτ) − y∥2
`2

1E] ≤(1 − ηα2

2n
)τ ∥f(θ0) − y∥2

`2
, (3.2)

7



Furthermore, on this event the SGD iterates never leave the local neighborhood D.
This result shows that SGD converges to a global optima that is close to the initialization. Furthermore, SGD
always remains in close proximity to the initialization with high probability. Specifically, the neighborhood is
on the order of

∥f(θ0)−y∥`2
α

which is consistent with the results on gradient descent and the lower bounds.
However, unlike for gradient descent our approach to proving such a result is not based on showing that
the weighted sum of the misfit and distance to initialization remains bounded per (2.4). Rather we show a
more intricate function (discussed in detail in Lemma 9.11 and illustrated in Figure 4 in the proofs) remains
bounded. This function keeps track of the average distances to multiple points around the initialization θ0.

One interesting aspect of the result above is that the learning rate used is rather large. Indeed, ignoring
an β/α ratio our convergence rate is on the order of 1 − c/n so that n iterations of SGD correspond to
a constant decrease in the misfit error on par with a full gradient iteration. This is made possible by a
novel martingale-based technique that keeps track of the average distances to a set of points close to the
initialization and ensures that SGD iterations never exit the local neighborhood. We note that it is possible
to also used Azuma’s inequality applied to the sequence log ∥f(θτ) − y∥`2 to show that the SGD iterates
stay in a local neighborhood with very high probability. However, such an argument requires a very small
learning rate to ensure that one can take many steps without leaving the neighborhood at which point the
concentration effect of Azuma becomes applicable. In contrast, our proof guarantees that SGD can use
aggressive learning rates (on par with gradient descent) without ever leaving the local neighborhood.

4 Case studies

In this section we specialize and further develop our general convergence analysis in the context of three
fundamental problems: fitting a generalized linear model, low-rank regression, and neural network training.

4.1 Learning generalized linear models
Nonlinear data-fitting problems are fundamental to many supervised learning tasks in machine learning.
Given training data consisting of n pairs of input features xi ∈ Rp and desired outputs yi ∈ R we wish to
infer a function that best explains the training data. In this section we focus on learning Generalized Linear
Models (GLM) from data which involves fitting functions of the form f(⋅;θ) ∶ Rd → R

f(x;θ) = φ(⟨x,θ⟩).
A natural approach for fitting such GLMs is via minimizing the nonlinear least-squares misfit of the form

min
θ∈Rp L(θ) ∶= 1

2

n∑
i=1

(φ(⟨xi,θ⟩) − yi)2
. (4.1)

Define the data matrix X ∈ Rn×p with rows given by xi for i = 1, 2, . . . , n. We thus recognize the above fitting
problem as a special instance of (2.1) with f(θ) = φ (Xθ). Here, φ when applied to a vector means applying
the nonlinearity entry by entry. We wish to understand the behavior of GD in the over-parameterized regime
where n ≤ p. This is the subject of the next two theorems.

Theorem 4.1 (Overparameterized GLM) Consider a data set of input/label pairs xi ∈ Rp and yi for
i = 1, 2, . . . , n aggregated as rows/entries of a matrix X ∈ Rn×p and a vector y ∈ Rn with n ≤ p. Also consider a
Generalized Linear Model (GLM) of the form x↦ φ (⟨x,θ⟩) with φ ∶ R→ R a strictly increasing nonlinearity
with continuous derivatives (i.e. obeying 0 < γ ≤ φ′(z) ≤ Γ for all z). Starting from an initial parameter θ0 we
run gradient descent updates of the form θτ+1 = θτ − η∇L(θτ) on the loss (4.1) with η ≤ 1∥X∥2Γ2 . Furthermore,
let θ∗ denote the closest global optima to θ0. Then, all GD iterates obey

∥θτ − θ⋆∥`2 ≤ (1 − ηγ2λmin (XXT ))τ ∥θ0 − θ⋆∥`2 . (4.2)

8



The above theorem demonstrates that when fitting GLMs in the over-parameterized regime, gradient descent
converges at a linear to a globally optimal model. Furthermore, this convergence is to the closest global
optima to the initialization parameter. Also, we can deduce from (4.2) that the total gradient path length
when using a step size on the order of 1∥X∥2Γ2 is bounded by

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ Γ2

γ2

λmax (XXT )
λmin (XXT ) ∥θ0 − θ⋆∥`2 , (4.3)

so that the total path length is a constant multiple of the distance between initialization and the closest
global optima. Furthermore, applying Theorem 2.1 with a smaller learning rate, the right hand side can be
improved to Γ

γ
∥X∥

σmin(X)∥θ0 − θ⋆∥`2 . Thus, gradient descent takes a near direct route.

4.2 Low-rank regression
A variety of modern learning problems spanning recommender engines to controls involve fitting low-rank
models to data. In this problem given a data set of size n consisting of input/features Xi ∈ Rd×d and labels
yi ∈ R for i = 1,2, . . . , n, we aim to fit nonlinear models of the form

X ↦ f(X;Θ) = ⟨X,ΘΘT ⟩ = trace (ΘTXΘ) ,
with Θ ∈ Rd×r the parameter of the model. Fitting such models require optimizing losses of the form

min
Θ∈Rd×rL(Θ) = 1

2

n∑
i=1

(yi − ⟨Xi,ΘΘT ⟩)2
. (4.4)

This approach, originally proposed by Burer and Monteiro [5], shifts the search space from a large low-rank
positive semidefinite matrix ΘΘT to its factor Θ. In this section we study the behavior of GD and SGD on
this problem in the over-parameterized regime where n < dr.
Theorem 4.2 Consider the problem of fitting a low-rank model of the form X ↦ f(X; Θ) = trace (ΘTXΘ)
with Θ ∈ Rd×r with r ≤ d to a data set (yi,Xi) ∈ R × Rd×d for i = 1,2, . . . , n via the loss (4.4). Assume the
input features Xi are random and distributed i.i.d. with entries i.i.d. N(0,1). Furthermore, assume the
labels yi are arbitrary and denote the vector of all labels by y ∈ Rn. Set the initial parameter Θ0 ∈ Rd×r to a

matrix with singular values lying in the interval [√∥y∥`2
4√rn ,2

√∥y∥`2
4√rn ] Furthermore, let c, c1, c2 > 0 be numerical

constants and assume
n ≤ cdr.

We run gradient descent iterations of the form Θτ+1 = Θτ − η∇L(Θτ) starting from Θ0 with η = c1
√
n

r2d∥y∥`2 .
Then, with probability at least 1 − 4e−n2 all GD iterates obey

n∑
i=1

(yi − ⟨Xi,ΘτΘ
T
τ ⟩)2 ≤ 100(1 − c2

r3/2 )τ ∥y∥2
`2
,

This theorem shows that with modest over-parametrization dr ≳ n, GD linearly converges to a globally
optimal model and achieves zero loss. Note that degrees of freedom of d × r matrices is dr hence as soon as
n > dr, gradient descent can no longer perfectly fit arbitrary labels highlighting a phase transition from zero
loss to non-zero as sample size increases. Furthermore, our result holds despite the nonconvex nature of the
Burer-Monteiro approach.
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4.3 Training shallow neural networks
In this section we specialize our general approach in the context of training simple shallow neural networks.
We shall focus on neural networks with only one hidden layer with d inputs, k hidden neurons and a single
output. The overall input-output relationship of the neural network in this case is a function f(⋅;θ) ∶ Rd → R
that maps the input vector x ∈ Rd into a scalar output via the following equation

x↦ f(x;W ) = k∑̀=1

v`φ (⟨w`,x⟩) .
In the above the vectors w` ∈ Rd contains the weights of the edges connecting the input to the `th hidden
node and v` ∈ R is the weight of the edge connecting the `th hidden node to the output. Finally, φ ∶ R→ R
denotes the activation function applied to each hidden node. For more compact notation we gather the
weights w`/v` into larger matrices W ∈ Rk×d and v ∈ Rk of the form

W =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

wT
1

wT
2⋮

wT
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2⋮
vk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We can now rewrite our input-output model in the more succinct form

x↦ f(x;W ) ∶= vTφ(Wx). (4.5)

Here, we have used the convention that when φ is applied to a vector it corresponds to applying φ to each
entry of that vector. When training a neural network, one typically has access to a data set consisting of n
feature/label pairs (xi, yi) with xi ∈ Rd representing the feature and yi the associated label. We wish to infer
the best weights v,W such that the mapping f best fits the training data. In this paper we assume v ∈ Rk is
fixed and we train for the input-to-hidden weights W . Without loss of generality we assume v ∈ Rk has unit
Euclidean norm i.e. ∥v∥`2 = 1. The training optimization problem then takes the form

min
W ∈Rk×d L(W ) ∶= 1

2

n∑
i=1

(vTφ (Wxi) − yi)2
. (4.6)

The theorem below provides geometric global convergence guarantees for one-hidden layer neural networks in
a simple over-parametrized regime.

Theorem 4.3 (Overparameterized Neural Nets) Consider a data set of input/label pairs xi ∈ Rd and
yi ∈ R for i = 1, 2, . . . , n aggregated as rows/entries of a matrix X ∈ Rn×d and a vector y ∈ Rn with n ≤ d. Also
consider a one-hidden layer neural network with k hidden units and one output of the form x↦ vTφ (Wx)
with W ∈ Rk×d and v ∈ Rk the input-to-hidden and hidden-to-output weights. We assume the activation φ
is strictly increasing with bounded derivatives i.e. 0 < γ ≤ φ′(z) ≤ Γ and φ′′(z) ≤ M for all z. We assume
v is fixed with unit Euclidean norm (∥v∥`2 = 1) and train only over W . Starting from an initial weight
matrix W0 we run gradient descent updates of the form Wτ+1 = Wτ − η∇L(Wτ) on the loss (4.6) with
η ≤ 1

2Γ2∥X∥2 min (1, γ
2

ΓM
σmin(X)2∥X∥2,∞∥X∥ 1∥f(W0)−y∥`2 ).5 Then, all GD iterates obey

∥f(Wτ) − y∥`2 ≤ (1 − ηγ2σ2
min (X))τ ∥f(W0) − y∥`2 , (4.7)

γσmin(X)
4

∥Wτ∥F + ∥f(Wτ) − y∥`2 ≤ ∥f(W0) − y∥`2 . (4.8)

The theorem above demonstrates that the nice properties discussed in this paper also holds for one-hidden-
layer networks in the over-parameterized regime where n ≤ d. This result establishes convergence from
5Here, ∥X∥2,inf denotes the maximum Euclidean norm of the rows of X.
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arbitrary initialization and the result is independent of number of hidden nodes k. The result holds for strictly
increasing activations where φ′ is bounded away from zero. While this might seem restrictive, we can obtain
such a function by adding a small linear component to any non-decreasing function i.e. φ̃(x) = (1−γ)φ(x)+γx.
We would however like to emphasize that neural networks seem to work with much more modest amounts of
over-parameterization e.g. for one hidden networks like the above kd ≳ n seems to be sufficient. As such there
is a huge gap between our result and practical use (as with many other recent results which also require heavy
but not directly comparable over-parametrization of the form k ≳poly(n)). That said, we believe it may be
possible to utilize more sophisticated techniques from random matrix theory and stochastic processes to prove
variations of Theorems 2.1 and 3.1 that continue to apply for such modestly over-parametrized scenarios.

5 Beyond nonlinear least-squares

In this section we explore generalizations of our results beyond nonlinear least-squares problems. In particular
we focus on optimizing a general loss L(θ) over θ ∈ Rp. For exposition purposes throughout this section we
assume that L is differentiable and the global minimum is zero, i.e. min

θ
L(θ) = 06. This generalization will

be based on a local variant of Polyak-Lojasiewicz (PL) inequality. We begin by discussing this local PL
condition formally.

Definition 5.1 (Local PL condition) We say that the Local PL inequality holds over a set D ⊆ Rp with
µ > 0 if for all θ ∈ D we have ∥∇L(θ)∥2

`2 ≥ 2µL(θ).
Our first result shows that when the PL inequality holds around a minimally small neighborhood of the
initialization, the intriguing properties of gradient descent discussed in Theorem 2.1 and Corollary 2.2 continue
to hold beyond nonlinear least-squares problems.

Theorem 5.2 Let L ∶ Rp → R be a loss function. Let θ0 ∈ Rp be an initialization parameter and define the
set D to a local neighborhood around this point as follows

D = B (θ0,R) with R =
√

8L(θ0)
µ

and µ > 0.

Assume the loss L obeys the local PL condition per Definition 5.1 and is L-smooth over D (∥∇L(θ2) − ∇L(θ1)∥`2 ≤
L ∥θ2 − θ1∥`2 for all θ1,θ2 ∈ D). Then, starting from θ0 running gradient descent updates of the form

θτ+1 = θτ − η∇L(θτ),
with η ≤ 1/L, all iterates θτ obey the following inequalities

L(θτ) ≤(1 − ηµ)τL(θ0), (5.1)√
µ

8
∥θτ − θ0∥`2 +√L(θτ) ≤√L(θ0). (5.2)

Furthermore, the total path length of gradient descent is bounded via

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤
√

8L(θ0)
µ

. (5.3)

Similar to Corollary 2.2 a trivial consequence of the above theorem is the following corollary.

6Note that this is without loss of generality as for any loss we can apply the results to the shifted loss L̃(θ) = L(θ) −min
θ
L(θ).
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Corollary 5.3 Consider the setting and assumptions of Theorem 5.2 above. Let θ∗ denote the global optima
of the loss L(θ) with smallest Euclidean distance to the initial parameter θ0. Then, the gradient descent
iterates θτ obey

∥θτ − θ0∥`2 ≤ 2
L

µ
∥θ∗ − θ0∥`2 , (5.4)

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ 2
L

µ
∥θ∗ − θ0∥`2 . (5.5)

Similar to their nonlinear least-squares counter parts the theorem and corollary above show that if the loss
function obeys the local PL condition and is smooth in a ball of radius R around the initial point then
gradient descent enjoys three intriguing properties: (i) the iterates converge at a linear rate to a global
optima, (ii) Gradient descent iterates remain close to the initialization and never leave a neighborhood of
radius 2L

µ
∥θ∗ − θ0∥`2 , and (iii) gradient descent iterates follow a near direct route to the global optima with

the length of the path taken by GD iterates within a factor of the distance between the closest global optima
and the initialization.

We end this section by discussing a simple lower bound which demonstrates that the required radius over
which the Local PL result must hold per Theorem 5.2 is optimal up to a factor of two.

Theorem 5.4 Let L ∶ Rp → R be an L-smooth loss function over a ball of radius R centered around a point
θ0 ∈ Rp (B(θ0,R)). Then there is no global minima over B(θ0,R) when R < √

2L(θ0)/L. Furthermore, for
any µ and L obeying L ≥ µ ≥ 0, there exists a loss L such that there is no global minima over the set B(θ0,R)
as long as R < √

2L(θ0)/µ.
The result above shows that any global optima is at least a distance ∥θ − θ0∥`2 ≥ √

2L(θ0)/L away from the
initialization so that the minimum ball around the initial point needs to have radius at least R ≥ √

2L(θ0)/L
for convergence to a global optima to occur. Comparing this lower-bound with that of Theorem 5.2 suggests
that the size of the local neighborhood is optimal up to a factor 2. Collectively our theorems demonstrate
that the path taken by gradient descent is by no means arbitrary. Indeed, under local PL and smoothness
assumptions similar to Figure 1, gradient descent iterates exhibit a sharp tradeoff between distance to the
initial point (∥θ − θ0∥`2) and square root of loss value (

√L(θ0)).
6 Numerical Experiments

To verify our theoretical claims, we conducted experiments on MNIST classification and low-rank matrix
regression. To illustrate the tradeoffs between the loss function and the distance to the initial point, we define
normalized misfit and normalized distance as follows.

Normalized misfit = ∥y − f(θ)∥`2∥y − f(θ0)∥`2 , Normalized distance = ∥θ − θ0∥`2∥θ0∥`2 . (6.1)

6.1 MNIST Experiments

We consider MNIST digit classification task and use a standard LeNet model [6] from Tensorflow [7]7. This
model has two convolutional layers followed by two fully-connected layers. Instead of cross-entropy loss, we
use least-squares loss, without softmax layer, which falls within our nonlinear least-squares framework. We
conducted two set of experiments with n = 500 and n = 5000. Both experiments use Adam with learning
rate 0.001 and batch size 100 for 1000 iterations. At each iteration, we record the normalized misfit and
distance to obtain a misfit-distance trajectory similar to Figure 9.13. We repeat the training 20 times (with
independent initialization and dataset selection) to obtain the typical behavior.
7https://github.com/tensorflow/models/blob/master/research/slim/nets/lenet.py
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Figure 2: The normalized misfit-distance trajectory for MNIST training for different layers of
the network and different sample sizes. The layers from input to output are Conv1, Conv2,
FC1, and FC2. Each curve represents the average normalized distance (for each layer of the
network) corresponding to a fixed normalized misfit value over 20 independent realizations.
The two standard deviation around the average distance is highlighted via the shaded region.

Since layers have distinct goals (feature extraction vs classification), we kept track of the behavior of
individual layers. Specifically, denote the weights of the `th layer of the neural network by W `, we consider
the per-layer normalized distances ∥W `−W `

0 ∥F∥W `
0 ∥F where layer ` is either convolutional (Conv1, Conv2) or fully-

connected (FC1, FC2). In Figure 2, we depict the normalized misfit-distance tradeoff for different layers and
sample sizes. Figure 2a illustrates the heavily overparameterized regime which has fewer samples. During the
initial phase of the training (i.e. misfit ≤ 0.2) all layers follow a straight loss-distance line which is consistent
with our theory (e.g. Figure 9.13). Towards the end of the training, the lines slightly level off which is most
visible for the output layer FC2. This is likely due to the degradation of the Jacobian condition number as
the model overfits to the data. Figure 3a plots the training and test errors together with normalized misfit to
illustrate this. While misfit is around 0.05 at iteration 1000, the in-sample (classification) error hits 0 very
quickly at iteration 200.

In Figure 2b and 3b we increase the sample size to n = 5000. Similar to the first case, during the initial
phase (misfit ≤ 0.4) the loss-distance curve is a straight line and levels off later on. Compared to n = 500,
leveling off occurs earlier and is more visible. For instance, at misfit = 0.2, output layer FC2 has distance of
0.5 for n = 5000 and 0.25 for n = 500. This is consistent with Theorem 2.1 which predicts (i) more samples
imply a Jacobian with worse condition number and (ii) the global minimizer lies further away from the
initialization and it is less-likely that the Jacobian will be well-behaved over this larger neighborhood.

6.2 Low-rank regression
We consider a synthetic low-rank regression setup to test the predictions of Theorem 4.2. We generate input
matrices with i.i.d. standard normal entries and labels with i.i.d. Rademacher entries. We set r = 4 and
d = 100 and initialize Θ0 according to Theorem 4.2. We vary the sample size to be n ∈ {25,50,100,200} ={dr/16, dr/8, dr/4, dr/2} and run gradient descent for 200 iterations with a constant learning rate per Theorem
4.2. We observe a linear tradeoff in terms of misfit-distance to initialization with a narrow confidence interval
consistent with our theoretical predictions in Figure 9.13. In the large sample size (n = dr/2), the problem
is less over-parameterized and the confidence intervals become notably wider especially when the misfit is
close to zero (i.e. by the time we reach a global minima). As predicted by our main theorem, the distance to
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Figure 3: Figures 3a and 3b represent the test, training errors and normalized misfit correspond-
ing to Figure 2. The x-axis is the number of iterations. Figure 3c highlights the loss-distance
trajectory for low-rank matrix regression with d = 100 and r = 4.

initialization Θ0 increases gracefully as the number of labels n increases.

7 Prior Art

Implicit regularization: There is a growing interest in understanding properties of overparameterized
problems. An interesting body of work investigate the implicit regularization capabilities of (stochastic)
gradient descent for separable classification problems including [8–14]. These results show that gradient
descent does not converge to an arbitrary solution, for instance, it has a tendency to converge to the solution
with the max margin or minimal norm. Some of this literature apply to regression problems as well (such
as low-rank regression). However, for regression problems based on a least-squares formulation the implicit
bias/minimal norm property is proven under the assumption that gradient descent converges to a globally
optimal solution which is not rigorously proven in these papers.
Overparametrized low-rank regression. As discussed in Section 4.2, there is a rich literature which
studies global optimality of nonconvex low-rank factorization formulations such as the Burer-Monteiro
factorization in the overparametrized regime [5, 15–17]. These results typically require the factorization
rank to be at least

√
n to guarantee convergence of gradient descent. In contrast, with random data but

arbitrary features, our results guarantee global convergence as long as r ≳ n/d. Specifically, for the problem
of nonconvex low-rank regression discussed in this paper if one assumes the labels are created according to a
low-rank matrix of rank r∗ (i.e. yi = ⟨Xi,Θ∗ΘT∗ ⟩ with Θ∗ ∈ Rd×r∗) and the number of labels is on the order
of dr∗ (i.e. n = cdr∗) then these classical results require the fitted rank to be r ≥ √

dr∗ where as our results
work as soon as r ≳ r∗.
Overparameterized neural networks: A few recent papers [18–27] study the benefits of overparameteri-
zation for training neural networks and related optimization problems. Very recent works [28–33] show that
overparameterized neural networks can fit the data with random initialization if the number of hidden nodes
are polynomially large in the size of the dataset. Similar to us, these works argue that there is a global minima
around the random initialization. However these works are specialized towards neural nets and similar to us
the bounds on the network size to achieve global optimality appear to be suboptimal.8 In contrast, we focus
on general nonlinearities and also focus on the gradient descent trajectory showing that among all the global
8We note that while both our results and these papers are suboptimal for one-hidden layer neural networks, they are not
directly comparable with each other. We assume n ≤ d where as these papers assume poly(n) ≲ k. Also the assumptions on the
activations are different from each other.
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optima, gradient descent converges to one with near minimal distance to the initialization. We would also like
to note that the importance of the Jacobian for overparameterized neural network analysis has also been noted
by other papers including [19,31] and also [34–36] which investigate the optimization landscape and properties
of SGD for training neural networks. An equally important question to understanding the convergence
behavior of optimization algorithms for overparameterized models is understanding their generalization
capabilities this is the subject of a few interesting recent papers [37–45]. While our results do not directly
address generalization, by characterizing the properties of the global optima that (stochastic) gradient descent
converges to it may help demystify the generalization capabilities of overparametrized models trained via first
order methods. Rigorous understanding of this relationship is an interesting and important subject for future
research.
Stochastic methods: SGD performance guarantees are typically in expectation rather than in probability.
Martingale-based methods have been utilized to give probabilistic guarantees [46, 47]. The main challenge in
nonconvex analysis of SGD, is to ensure SGD iterates stay within a region where nonconvex analysis can
apply even when using rather large learning rates. While a few papers [28, 30] show that SGD stays in a
specific region with high probability in specific instances, these results require using very small learning rates
(which translates into very small variance) to ensure standard concentration arguments apply. In contrast, our
approach allows for much larger learning rates by using martingale stopping time arguments. Our approach
is in part inspired by [48] which studies SGD for nonconvex phase retrieval but involves different assumptions
on the loss.
Nonconvex optimization: A key idea for solving nonconvex optimization problems is ensuring that
optimization landscape has desirable properties. These properties include Polyak-Lojasiewicz (PL) condition
[49,50] and the regularity condition (e.g. local strong convexity) [51–53]. PL condition is particularly suited
for analyzing overparameterized problems and has been utilized by several recent papers [54–58]. Unlike
these works, we show that overparameterized gradient descent trajectory stays in a small neighborhood
and we only need properties such as PL to hold over this region. There is also a large body of work that
study the applications discussed in this paper in the over determined regime p ≤ n. For instance, Low-rank
regression and generalized linear models have been considered by various works including [16,59–62] in such
an overdetermined setting. More recently, provable first order methods for learning neural networks have
been investigated by multiple papers including [63–67] in the overdetermined setting.

8 Discussion and future directions

This work provides new insights and theory for overparameterized learning with nonlinear models. We first
provided a general convergence result for gradient descent and matching upper and lower bounds showing
that if the Jacobian of the nonlinear mapping is well-behaved in a minimally small neighborhood, gradient
descent finds a global minimizer which has a nearly minimal distance to the initialization. Second, we extend
the results to SGD to show that SGD exhibits the same behavior and converges linearly without ever leaving
a minimally small neighborhood of initializtion. Finally, we specialize our general theory to provide new
results for overparameterized learning with generalized linear models, low-rank regression and shallow neural
network training. A key tool in our results is that we introduce a potential function that captures the tradeoff
between the model misfit and the distance to the initial point: the decrease in loss is proportional to the
distance from the initialization. Our numerical experiments on real and synthetic data further corroborate
this intuition on the loss-distance tradeoff.

In this work we address important challenges surrounding the optimization of nonlinear over-parametrized
learning and some of its key features. The fact that gradient descent finds a nearby solution is a desirable
property that hints as to why generalization to new data instances may be possible. However, we emphasize
that this is only suggestive of the generalization capabilities of such algorithms to new data. Indeed, developing
a clear understanding of the generalization capabilities of first order methods when solving over-parameterized
nonlinear problems is an important future direction. Making progress towards this generalization puzzle
requires merging insights gained from optimization with more intricate tools from statistical learning and is
an interesting topic for future research.
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9 Proofs

9.1 Notations and definitions
Before we begin the proof we briefly discuss some notation and definitions that will be used throughout.
The spectral norm and the minimum singular value of a matrix A is denoted by ∥A∥/σmax(A) and σmin(A)
respectively. ∥A∥2,∞ denotes the largest `2 norm among the rows of A. B(θ,R) denotes the `2 ball of radius
R around a vector θ.
We introduce the following matrix and vector which play a crucial role in the convergence analysis of our
algorithms

Definition 9.1 (Average Jacobian) We define the average Jacobian along the path connecting two points
x,y ∈ Rp as

J (y,x) ∶= ∫ 1

0
J (x + α(y −x))dα. (9.1)

Definition 9.2 (Residual error) We also define the residual error at iteration τ , denoted by rτ ∈ Rn, as
the vector of misfits of the model to the labels. That is,

rτ = f(θτ) − y.
9.2 Gradient descent convergence proofs (Theorem 2.1 and Corollary 2.2)
Theorem 2.1 and Corollary 2.2 are a special case of a more general result stated below. Theorem 2.1 and
Corollary 2.2 then follows by setting λ = 1/2 and ρ = 1.

Theorem 9.3 Consider a nonlinear least-squares optimization problem of the form

min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
,

with f ∶ Rp ↦ Rn and y ∈ Rn. Let λ a scalar obeying 0 < λ ≤ 1. Suppose the Jacobian mapping associated with f

obeys Assumption 1 over a ball of radius R ∶= ∥f(θ0)−y∥`2(λ−ηβ2/2)α around a point θ0 ∈ Rp, that is D = B (θ0,
∥f(θ0)−y∥`2(λ−ηβ2/2)α ).

Furthermore, suppose one of the following statements is valid.

• Assumption 2 (a) holds over D and set η ≤ λ
β2 .

• Assumption 2 (b) holds over D and set η ≤ 1
β2 ⋅min(λ, 2(1−λ)α2

L∥f(θ0)−y∥`2 ).
Then, running gradient descent updates of the form θτ+1 = θτ − η∇L(θτ) starting from θ0, all iterates obey.

∥f(θτ) − y∥2
`2
≤(1 − α2λη)τ ∥f(θ0) − y∥2

`2
, (9.2)

(λ − ηβ2/2)α ∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 ≤∥f(θ0) − y∥`2 . (9.3)

Furthermore, the total gradient path is bounded. That is,
∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ ∥f(θ0) − y∥`2(λ − ηβ2/2)α . (9.4)

Let θ∗ denote the global optima of the loss L(θ) with smallest Euclidean distance to the initial parameter θ0.
Then, the gradient descent iterates θτ also obey

∥θτ − θ0∥`2 ≤ β(λ − ηβ2/2)α ∥θ∗ − θ0∥`2 , (9.5)

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ β(λ − ηβ2/2)α ∥θ∗ − θ0∥`2 . (9.6)
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Proof Sketch. To prove the above theorem we begin by noting that the residual rτ satisfies the recursion

rτ+1 =rτ − f(θτ) + f(θτ+1)
(a)= rτ + J (θτ+1,θτ)(θτ+1 − θτ)
(b)= rτ − ηJ (θτ+1,θτ)J (θτ)Trτ= (I − ηC(θτ))rτ . (9.7)

where C(θτ) ∶= J (θτ+1,θτ)J (θτ)T . Here, (a) follows from fundamental rule of calculus and (b) from the
gradient identity ∇L(θτ) = J T (θτ)rτ . If I − ηC(θτ) has spectral norm less than 1, the the residual verctors
will converge linearly. We build on this observation and show that one only needs this requirement over a
minimally small neighborhood of θ0. To this aim, we first introduce a potential set which contains the space
of parameters that can be reached by gradient descent.

Definition 9.4 (Potential sub-level set) Given a scalar ζ > 0, define the radius Rζ = ∥f(θ0)−y∥`2
ζ

. The
potential sub-level set P(θ0,Rζ) is defined as

P(θ0,Rζ) = ⎧⎪⎪⎨⎪⎪⎩θ ∈ Rp ∣ ∥θ − θ0∥`2 + ∥f(θ) − y∥`2
ζ

≤ Rζ⎫⎪⎪⎬⎪⎪⎭. (9.8)

Note that P(θ0,Rζ) ⊆ B(θ0,Rζ). Our first lemma shows that, if an iterate θτ ∈ P ∶= P(θ0,Rζ), then the
next iterate θτ+1 stays in the set D ∶= B(θ0,Rζ).
Lemma 9.5 Suppose Assumption 1 holds over the domain D = B (θ0,

∥f(θ0)−y∥`2
ζ

) for some ζ obeying ζ ≤ α.
Also assume θ ∈ P(θ0,Rζ), then gradient iterate θ+ = θ − η∇L(θ) with η ≤ 1

β2 satisfies θ+ ∈ D.
Proof We begin by noting that

∥θ+ − θ∥`2 = η∥J T (θ) (f(θ) − y)∥`2 (a)≤ ηβ∥f(θ) − y∥`2 (b)≤ ∥f(θ) − y∥`2
β

(c)≤ ∥f(θ) − y∥`2
α

(d)≤ ∥f(θ) − y∥`2
ζ

.

(9.9)

In the above, (a) follows from the upper bound on the Jacobian over D per Assumption 1, (b) from the fact
that η ≤ 1

β2 , (c) from α ≤ β, and (d) from ζ ≤ α. The latter combined with the triangular inequality yields

∥θ+ − θ0∥`2 ≤ ∥θ+ − θ∥`2 + ∥θ0 − θ∥`2 ≤ ∥θ − θ0∥`2 + ∥f(θ)y∥`2
ζ

≤ Rζ ,
concluding the proof of θ+ ∈ D.
The next lemma establishes the convergence to a global minima that lies in a minimally small local
neighborhood under a Jacobian condition (9.10). The proof of this lemma is deferred to Section 9.2.1.

Lemma 9.6 Suppose the Jacobian mapping associated with f obeys Assumption 1 over a ball of radius

Rζ ∶= ∥f(θ0)−y∥`2
ζ

around a point θ0 ∈ Rp, that is D = B (θ0,
∥f(θ0)−y∥`2

ζ
). Let λ be a scalar obeying 0 < λ ≤ 1

and set ζ = (λ − ηβ2/2)α. Also assume

C(θ) ⪰ λJ (θ)J (θ)T (9.10)

holds for all θ ∈ P (θ0,
∥f(θ0)−y∥`2

ζ
). Then, staring from θ0 the GD iterates θτ+1 = θτ − η∇L(θτ) with η ≤ λ

β2

obey

∥f(θτ) − y∥2
`2
≤(1 − α2λη)τ ∥f(θ0) − y∥2

`2
, (9.11)

ζ ∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 ≤∥f(θ0) − y∥`2 . (9.12)
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Furthermore, the total gradient path is bounded. That is,

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ ∥f(θ0) − y∥`2
ζ

. (9.13)

The next lemma shows that (9.10) indeed holds. We defer the proof of this lemma to Section 9.2.2.

Lemma 9.7 Consider a point θ ∈ Rp and the result of a gradient update θ+ = θ − η∇L(θ) staring from θ.

Suppose Assumption 1 and one of the following two statements hold over D = B (θ0,
∥f(θ0)−y∥`2

ζ
) for a ζ

obeying 0 ≤ ζ ≤ α
• Assumption 2(a) holds over D and η ≤ 1

β2

• Assumption 2(b) holds over D and η ≤ 1
β2 min(1, 2(1−λ)α2

L∥f(θ0)−y∥`2 ).
Then for all θ ∈ P (θ0,

∥f(θ0)−y∥`2
ζ

),
C(θ) ∶= J (θ+,θ)J (θ)T ⪰ λJ (θ)J (θ)T .

With these lemmas in place we are now ready to prove Theorem 9.3.
Proof of Theorem 9.3: Set ζ = (λ − ηβ2/2)α and observe that

• Since assumptions of Theorem 9.3 subsume those of Lemma 9.7, for all θ ∈ P (θ0,
∥f(θ0)−y∥`2

ζ
), (9.10)

holds i.e. we have that C(θ) ⪰ λJ (θ)J (θ)T .
• Based on the above, the assumptions of Theorem 9.3 also subsume those of Lemma 9.6. Thus (9.11),
(9.12), and (9.13) hold for all τ .

This completes the bounds (9.2), (9.3), and (9.4) of Theorem 9.3. The proofs of (9.5) and (9.6) follow
immediately from (9.3) and (9.4) by noting that for any global optima (including the closest global optima to
θ0 denoted by θ∗) we have

∥y − f(θ0)∥`2 =∥f(θ∗) − f(θ0)∥`2
=∥∫ 1

0
J T (θ0 + t(θ∗ − θ0)) (θ∗ − θ0)dt∥

`2≤ sup
0≤1≤t ∥J (θ0 + t(θ∗ − θ0))∥ ∥θ∗ − θ0∥`2

≤sup
θ∈D ∥J (θ)∥ ∥θ∗ − θ0∥`2

≤β ∥θ∗ − θ0∥`2 .
This concludes the proof of Theorem 9.3. All that remains is to prove Lemmas 9.6 and 9.7 which are the
subject of the two sections below.

9.2.1 Proof of Lemma 9.6

We will prove this lemma by induction. Assume the claim holds until iteration τ . First, since (9.12) holds,
applying Lemma 9.5 and using the facts that η ≤ 1/β2 and ζ ≤ α, we can conclude that θτ+1 ∈ D.

Next, we will simultaneously monitor how the distance to the initial parameter θ0 (∥θτ − θ0∥`2) and the
Euclidean norm of the residual (∥rτ∥`2) change from iteration τ to τ + 1. For the distance to initialization,
using triangular inequality and the formula for the gradient we have

∥θτ+1 − θ0∥`2 ≤ ∥θτ − θ0∥`2 + ∥θτ+1 − θτ∥`2 = ∥θτ − θ0∥`2 + η∥J (θτ)rτ∥`2 . (9.14)
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For the norm of the residual using the fact that C(θ) ⪰ λJ (θ)J (θ)T (per assumption (9.10)) we have

∥rτ+1∥2
`2

(a)= ∥(I − ηC(θτ))rτ∥2
`2 ,=∥rτ∥2

`2 − 2ηrTτ C(θτ)rτ + η2rTτ C(θτ)TC(θτ)rτ ,
(b)≤ ∥rτ∥2

`2 − 2ληrTτ J (θτ)J (θτ)Trτ + η2β2rTτ J (θτ)J (θτ)Trτ ,
(c)≤ ∥rτ∥2

`2 − (2λ − ηβ2)η∥J (θτ)Trτ∥2
`2 . (9.15)

Here, (a) follows from (9.7), (b) from (9.10) and the upper bound on the spectral norm of the Jacobian, (c)
and from merging the terms on the right hand side. Combining (9.15) with σmin(J (θτ)) ≥ α, and using
η ≤ λ/β2, we conclude that

∥rτ+1∥2
`2
≤ (1 − α2(2λ − ηβ2)η) ∥rτ∥2

`2
≤ (1 − λα2η) ∥rτ∥2

`2
,

completing the proof of (9.11). For the remainder of discussion, denote γ = (λ − ηβ2/2)η. γ is nonnegative
due to upper bound on η and we have

∥rτ+1∥2
`2
≤ ∥rτ∥2

`2 − 2γ∥J (θτ)Trτ∥2
`2 .

We now turn our attention to proving (9.12). To this aim we start from (9.15) and complete the square
to conclude that

∥rτ+1∥2
`2
=⎛⎜⎝∥rτ∥`2 − γ

∥J (θτ)Trτ∥2

`2∥rτ∥`2
⎞⎟⎠

2

− ⎛⎜⎝γ
∥J (θτ)Trτ∥2

`2∥rτ∥`2
⎞⎟⎠

2

,

≤⎛⎜⎝∥rτ∥`2 − γ
∥J (θτ)Trτ∥2

`2∥rτ∥`2
⎞⎟⎠

2

. (9.16)

Also note that using the upper bound on spectrum of J and γ ≤ λη ≤ 1
β2 we have

∥rτ∥2
`2
≥ 1

β2
∥J (θτ)Trτ∥2

`2
≥ γ ∥J (θτ)Trτ∥2

`2
⇒ ∥rτ∥`2 − γ ∥J (θτ)Trτ∥2

`2∥rτ∥`2 ≥ 0.

Thus, taking square root from both sides of (9.16) we reach the following identity for changes in the norm of
residual

∥rτ+1∥`2 ≤ ∥rτ∥`2 − γ ∥J (θτ)Trτ∥2

`2∥rτ∥`2 . (9.17)

To combine the identities (9.14) and (9.17) in such a way to yield our theorem we proceed by defining the
potential/Lyapunov function below with ζ = αγ/η.

Vτ ∶=∥rτ∥`2 + ζ τ−1∑
t=0

∥θt+1 − θt∥`2 . (9.18)
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A unique feature of the Vτ potential is that it is non-increasing. To see this note that using (9.17) we have

1

η
(Vτ+1 − Vτ) =1

η
(∥rτ+1∥`2 − ∥rτ∥`2) + ζη ∥θτ+1 − θτ∥`2 ,

(a)= 1

η
(∥rτ+1∥`2 − ∥rτ∥`2) + ζ ∥J (θτ)Trτ∥`2 ,

(b)≤ − γ
η

∥J (θτ)Trτ∥2

`2∥rτ∥`2 + ζ ∥J (θτ)Trτ∥`2 ,
=∥J (θτ)Trτ∥`2 ⎛⎝ζ − γη

∥J (θτ)Trτ∥`2∥rτ∥`2
⎞⎠ ,

(c)≤ ∥J (θτ)Trτ∥`2 (ζ − αγη ) ,= 0. (9.19)

Here, (a) follows from the gradient formula, (b) from (9.17), (c) from σmin(J (θτ)) ≥ α, and (d) from ζ = αγ/η.
Using this non-increasing property and triangle inequality over (∥θτ+1 − θτ∥`2)τ≥0 we can conclude that

∥rτ∥`2 + ζ∥θτ − θ0∥`2 ≤ Vτ ≤ V0 = ∥r0∥`2 ,
proving (9.12).

Finally using the definition of Vτ and its non-increasing property (9.19) we have

∞∑
τ=0

∥θτ+1 − θτ∥`2 ≤ V∞ζ ≤ V0

ζ
= ∥r0∥`2

ζ
,

concluding the proof of (9.13) and Lemma 9.6 when we substitute ζ = (λ − ηβ2/2)α.
9.2.2 Proof of Lemma 9.7

First note that since θ ∈ P (θ0,
∥f(θ0)−y∥`2

ζ
), we have

∥y − f(θ)∥`2 ≤ ∥y − f(θ0)∥`2 . (9.20)

Second, applying Lemma 9.5, we also have θ+ = θ − η∇L(θ) ∈ D ∶= B (θ0,
∥f(θ0)−y∥`2

ζ
). To prove

C(θ) ⪰ λJ (θ)J (θ)T , (9.21)

we consider the two cases related to Assumption 2 separately.
If Assumption 2(a) holds then for any θ1,θ2 ∈ D we have

∥J (θ2,θ1) − J (θ1)∥ =∥∫ 1

0
(J (θ1 + t (θ2 − θ1)) − J (θ1))dt∥ ,

≤∫ 1

0
∥J (θ1 + t (θ2 − θ1)) − J (θ1)∥dt,

≤∫ 1

0

(1 − λ)α2

β
dt,

≤(1 − λ)α2

β
.
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Thus for θ,θ+ ∈ D we have

∥(J (θ+,θ) − J (θ))J (θ)T ∥ ≤ ∥J (θ+,θ) − J (θ)∥ ∥J (θ)∥
≤ (1 − λ)α2

β
β

= (1 − λ)α2

≤ (1 − λ)σ2
min (J (θ)) .

Thus we have

C(θ) =J (θ+,θ)J (θ)T ,
=J (θ+,θ)J (θ)T − J (θ)J (θ)T + J (θ)J (θ)T ,
⪰J (θ)J (θ)T − In ∥(J (θ+,θ) − J (θ))J (θ)T ∥ ,
⪰λJ (θ)J (θ)T .

This implies the desired bound (9.21).
Next, suppose Assumption 2(b) holds. Then, for any θ1,θ2 ∈ D we have

∥J (θ2,θ1) − J (θ1)∥ =∥∫ 1

0
(J (θ1 + t (θ2 − θ1)) − J (θ1))dt∥ ,

≤∫ 1

0
∥J (θ1 + t (θ2 − θ1)) − J (θ1)∥dt,

≤∫ 1

0
tL ∥θ2 − θ1∥`2 dt,

≤L
2

∥θ2 − θ1∥`2 . (9.22)

Thus, for η ≤ 2(1−λ)α2

Lβ2∥r0∥`2 ,

∥J (θ+,θ) − J (θ)∥ ≤ L
2

∥θ+ − θ∥`2 = ηL2 ∥J T (θ) (f(θ) − y)∥
`2
≤ ηβL

2
∥f(θ) − y∥`2 (9.20)≤ ηβL

2
∥f(θ0) − y∥`2 ≤ (1 − λ)α2

β
,

Repeating the previous argument (with Assumption 2(a)), we again conclude with (9.21).

9.3 Lower bounds proofs (Theorem 2.3)
We begin by proving (2.12). To show this we first use the upper bound on the Jacobian matrix to prove that
the nonlinear mapping is Lipschitz. To this aim note that

f(θ) − f(θ0) = ∫ 1

0
J (θ0 + t(θ − θ0)) (θ − θ0)dt = J (θ,θ0)(θ − θ0).

Hence,

∥f(θ) − f(θ0)∥`2 ≤ ∥J (θ,θ0)(θ − θ0)∥`2 ≤ β∥θ − θ0∥`2 ,
completing the proof of the Lipschitz property. This Lipschitz property combined with the triangular
inequality allows us to conclude

∥y − f(θ0)∥`2 ≤ ∥f(θ) − f(θ0)∥`2 + ∥y − f(θ)∥`2 ≤ β ∥θ − θ0∥`2 + ∥y − f(θ)∥`2 ,
completing the proof of (2.12).
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Next we turn out attention to providing the counter examples. Consider a least squares problem where
the loss is equal to L(θ) = 1

2
∥y −Xθ∥2

`2
and the data matrix X has orthogonal rows. Suppose the first row

x1 has the smallest `2 norm which is α and the last row xn has the largest `2 norm equal to β. We also set
the labels to y =Xθ⋆ where θ⋆ = γx1/∥x1∥`2 with γ = β/α. For this linear regression problem, the Jacobian
is equal to X and since the matrix is orthogonal α,β are the minimum/maximum singular values of the
Jacobian.

For any α,β ≥ 0 obeying α ≤ β and any θ, we have

∥y − f(θ)∥`2 = ∥Xθ − y∥`2 ≥ ∥X(θ − θ⋆)∥`2 ≥ ∥xT1 (θ − θ⋆)∥`2 ≥ ∥xT1 θ⋆∥`2 − ∥xT1 θ∥`2 ≥ α(γ − ∥θ∥`2).
This yields ∥f(θ) − y∥`2 + α∥θ∥`2 ≥ ∥y∥`2 = γα which in turns implies (2.13) with θ0 = 0.

To show (2.14), we set the labels to y =Xθ⋆ where θ⋆ = γ xn∥xn∥`2 . In this case, gradient iteration starting
from θ0 = 0 is simply

θτ+1 = θτ + ηXT (y −Xθτ).
If θτ ⊂ span(xn), it is clear that θτ+1 ⊂ span(xn) as well as XTy ⊂ span(xn). Since θ0 = 0, this implies that
gradient descent recursion is one dimensional over xn i.e. θτ = xn∥xn∥`2 θτ with θτ a scalar obeying the recursion,

θτ+1 = θτ + ηβ2(θ⋆ − θτ).
If η ≤ 1/β2, all iterations satisfy 0 ≤ θτ ≤ θ⋆ = γ. On the other hand, the misfit in each iteration obeys

∥y − f(θτ)∥`2 = ∥X(θ⋆ − θτ)∥`2 = β∥θ⋆ − θτ∥`2 = β∣θ⋆ − θτ ∣ = β(θ⋆ − θτ).
The last two identities imply ∥y − f(θτ)∥`2 + β∥θτ∥`2 = βγ = ∥y∥`2 completing the proof of (2.14).

9.4 SGD proofs (Proof of Theorem 3.1)

9.4.1 Roadmap of SGD proof

We begin our SGD analysis by writing the SGD iterates in terms of the Jacobian matrix. To this aim define
the matrix J (θτ ;γτ) which keeps the γτ -th row of J (θτ) and sets the remaining rows to zero. We note that

G(θτ ;γτ) = J (θτ ;γτ)T (f(θτ) − y) and E[J (θτ ;γτ)] = 1

n
J (θτ). (9.23)

Also define the matrix C(θτ ;γτ) = J (θτ+1,θτ)J (θτ ;γτ)T ∈ Rn×n which can be thought of as a stochastic
version of C(θτ) obeying

E[C(θτ ;γτ)] = 1

n
C(θτ).

Similar to the GD proof we begin by noting that the residual rτ satisfies the recursion

rτ+1 =rτ − f(θτ) + f(θτ+1),
(a)= rτ + J (θτ+1,θτ) (θτ+1 − θτ) ,
(b)= rτ − ηJ (θτ+1,θτ)G(θτ ;γτ),
(c)= (In − ηC(θτ ;γτ))rτ . (9.24)

Here, (a) follows from the fundamental rule of calculus, (b) from the stochastic update rule, and (c) from
combining the form of the stochastic gradient in (9.23) with the definition of C(θτ ;γτ).

Given that E[C(θτ ;γτ)] = C(θτ)/n, similar to the GD proof we can show that under the two assumptions
E[C(θτ ;γτ)] is positive-definite and thus with a sufficiently small learning rate η this implies linear convergence
of the expected residual via (9.24) as long as θi ∈ D.
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It is completely unclear if SGD stays inside a neighborhood around the initial model to ensure the on
average convergence argument discussed above is useful. We will develop a novel martingale-based argument
to show that SGD does indeed stay in this local neighborhood. We briefly discuss the intuition behind this
approach here. Since SGD is inherently random, ideally, we would like to show that, a variant of (2.4) holds.
Specifically, define

Vτ = cα∥θτ − θ0∥`2 + ∥f(θτ) − y∥`2 , (9.25)

we wish to show that Vτ is bounded. One approach to do this is to show E[Vτ ] ≤ Vτ−1 where the expectation
is over the τ ’th SGD step given first τ − 1 steps. If this holds, Vτ is a supermartingale with respect to the
filtration generated by random SGD steps. This allows us to utilize martingale maximal inequality [68] which
bounds the supremum of Vτ via a Markov-like inequality

P(sup
τ≥0
Vτ ≥ C E[V0]) ≤ 1

C
.

This immediately establishes that Vτ is uniformly bounded by C E[V0] and thus ∥θτ − θ0∥`2 ≤ C E[V0]
cα

, hence
θτ doesn’t leave this neighborhood. However, unfortunately such a strategy does not work and a more
nuanced argument is required. In particular, we need to overcome two challenges:

• The first challenge is that (9.4.1) is not a super martingale for reasonably large values of c. However,
large values of c are desirable as they yield a small convergence radius (e.g. c = 1/4 in (2.4)). We
overcome this challenge by proposing a new potential function which tracks distances to multiple anchor
points around θ0 rather than only θ0. Denoting these anchor points by {p`}K`=1, we utilize the potential

Vτ ∶= V(θτ) ∶= 12∥f(θτ) − y∥`2 + α

K

K∑̀=1

∥θτ − p`∥`2 .
Figure 4 provides a pictorial illustration of this potential function.

• The second challenge is that the optimization landscape is assumed to have nice properties only over a
small neighborhood D around the initial point. Hence, the super martingale inequality E[Vτ ] ≤ Vτ−1

applies only if the current and next iterate is over D and optimization essentially fails if we step outside.
We overcome this by showing that the chance that SGD iterates exit this neighborhood is small using
martingale stopping time arguments. The latter argument is inspired by/adapted from the work of Tan
and Vershynin [48] in the context of phase retrieval.

The outline of this Section is as follows. We show in Section 9.4.2 that from one SGD iterate to the next
the misfit decreases in expectation. Then in Section 9.4.3 show that from one SGD iterate to the next the
average distance to the chosen points {p`}K`=1 do not increase by a significant amount. We then combine the
latter two results in Section 9.4.4 to formally show that the potential V(θτ) is indeed a supermartingale.
Next, in section we deploy a martingale stopping time argument to show that with high probability the SGD
iterates stay inside a neighborhood around the initial model. Finally, we put together all of these different
arguments to complete the proof of Theorem 3.1 in Section 9.4.6.

9.4.2 Decrease of the expected misfit

In this section we will show that under the assumption that SGD iterates always remain close to the
initialization, the expected value of the norm of the residual will decrease in each iteration. Concretely, in
this section we prove the following lemma.

Lemma 9.8 Consider a point θ ∈ Rp and the result of a stochastic gradient update θ+ ∶= θ − ηG(θ;γ) =
θ−η (f(xγ ;θ) − yγ)∇f(xγ ;θ) staring from θ with the index γ chosen uniformly at random from {1, 2, . . . , n}.
Also consider the set

B(ν) = B (θ0, ν
∥f(θ0) − y∥`2

α
)⋂⎧⎪⎪⎨⎪⎪⎩θ ∈ Rp∣ ∥f(θ) − y∥`2 ≤ 2ν

3
∥f(θ0) − y∥`2

⎫⎪⎪⎬⎪⎪⎭, (9.26)
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starting point

θ0

p3

p4

p2

p1

θτ

current iterate

θGD

global optima found
by gradient descent

∥θτ − p`∥ `2
∥f(θτ) − y∥`2

V(θ) = 12 ∥f(θ) − y∥`2 + α
K ∑K`=1 ∥θ − p`∥`2

1
Figure 4: SGD potential function is similar to the gradient descent potential (2.4). It provides
a balance between misfit error and distance to the initial point. However, to show that this
potential is non-increasing, unlike gradient descent, we keep track of distances to multiple points
around the initial point θ0. This smooths out the potential function and guarantees the desired
non-increasing property. Intuitively, the misfit (∥f(θτ) − y∥`2) can be viewed as a proxy for
distance to the global minima (∥θτ − θGD∥`2) as illustrated.

Assume θ ∈ D′ ∶= B(ν/2) with ν a scalar obeying ν ≥ 3. Also assume the Jacobian associated with f obeys
Assumption 1 over the set D ∶= B(ν) and the rows of the Jacobian have bounded Euclidean norm over this set,
that is

max
i

∥Ji(θ)∥`2 ≤ B for all θ ∈ D ∶= B(ν).
Also assume

• Assumption 2(a) holds over D and η ≤ α2

2β2B2 .

• Assumption 2(b) holds over D and η ≤ 1
2βB

⋅min ( α2

Bβ
, 3α2

νL∥f(θ0)−y∥`2 ).
Then,

E[∥f(θ+) − y∥`2] ≤∥f(θ) − y∥`2 − η

4n

∥J T (θ) (f(θ) − y)∥2
`2∥f(θ) − y∥`2 , (9.27)

E [∥f(θ+) − y∥2
`2
] ≤(1 − ηα2

2n
)τ ∥f(θ) − y∥2

`2
. (9.28)

For simplicity of exposition of the proof of this lemma we define r(θ) = f(θ) − y and r(θ+) = f(θ+) − y. We
prove the lemma in three steps.

• Step I: We show that as long as η ≤ 1
βB

, then θ+ ∈ D.
• Step II: We prove that the matrix C(θ) ∶= J (θ+,θ)J T (θ) obeys

C(θ) ⪰ 1

2
J (θ)J (θ)T . (9.29)
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• Step III: We use Step I and II to show the inequalities (9.27) and (9.28) which are equivalent to

E[∥r(θ+)∥`2] ≤∥r(θ)∥`2 − η

4n

∥J T (θ) (f(θ) − y)∥2
`2∥f(θ) − y∥`2 , (9.30)

E[∥r(θ+)∥`2] ≤(1 − ηα2

2n
)∥r(θ)∥2

`2 . (9.31)

Step I:

We begin this step by noting that

∥G(θ;γ)∥`2 ≤ max
1≤i≤n ∥∇f(xi;θ)∥`2 ∣f(xi;θ) − yi∣ ≤ B∥r(θ)∥`2 . (9.32)

Using this inequality we can conclude that

∥θ+ − θ∥`2 ≤ η ∥G(θ;γ)∥`2 (a)≤ ηB ∥r(θ)∥`2 (b)≤ ηνB

3
∥f(θ0) − y∥`2 (c)≤ 1

3

ν

β
∥f(θ0) − y∥`2 . (9.33)

Here, (a) follows from (9.32), (b) from the fact that θ ∈ D′ ∶= B(ν/2), and (c) from η ≤ 1
βB

. Furthermore, the
simple fact that α ≤ β implies that

∥θ+ − θ∥`2 ≤ 1

3

ν

α
∥f(θ0) − y∥`2 . (9.34)

Next note that

∥r(θ+)∥`2 ≤∥r(θ)∥`2 + ∥r(θ+) − r(θ)∥`2 ,=∥r(θ)∥`2 + ∥J (θ+,θ) (θ+ − θ)∥`2 ,≤∥r(θ)∥`2 + ∥J (θ+,θ)∥ ∥θ+ − θ∥`2 ,(a)≤ ∥r(θ)∥`2 + ν3 ∥f(θ0) − y∥`2 ,
(b)≤ 2

3
ν ∥f(θ0) − y∥`2 . (9.35)

Here, (a) follows from (9.33) and the fact that ∥J (θ+,θ)∥ ≤ β and (b) follows from the fact that θ ∈ D′ ∶=B(ν/2). Combining (9.34) and (9.35) we conclude that θ+ ∈ D ∶= B(ν).
Step II:

The proof of (9.29) is very similar to the proof of Lemma 9.7 with λ = 1/2. In particular, under Assumption
2(a) the exact same argument yields (9.29). To show the result under Assumption 2(b) we combine (9.22)
from the proof of Lemma 9.7, (9.32), and θ ∈ D′ = B(ν/2) to conclude that

∥J (θ+,θ) − J (θ)∥ ≤ L
2

∥θ+ − θ∥`2 ≤ ηBL2
∥r(θ)∥`2 ≤ ηνBL3

∥f(θ0) − y∥`2 ≤ α2

2β
,

where in the last inequality we use the fact that η ≤ 3
2

α2

νβBL∥r0∥`2 . The remainder of the proof of (9.29) is
exactly the same as the proof of Lemma 9.7.

Step III:

From the arguments of Steps I and II we know that
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(i) θ+ ∈ D,
(ii) ∥C(θ)∥ ≤ β2 and ∥J (θ+,θ)∥ ≤ β,
(iii) C(θ) ⪰ 1

2
J (θ)J (θ)T .

Using (ii) J (θ+,θ)J (θ+,θ)T ⪯ β2In, so that

C(θ;γ)TC(θ;γ) ⪯ β2J (θ;γ)J (θ;γ)T .
Furthermore, J (θ;γ)J (θ;γ)T is a diagonal matrix with a single nonzero entry which is bounded by B2.
Thus,

E [C(θ;γ)TC(θ;γ)] ⪯ β2B2

n
. (9.36)

Also the fact that E[C(θ;γ)] = 1
n
C(θ) (also noted in Section 9.4.1) together with (iii) allows us to conclude

that

E[C(θ;γ)] = 1

n
C(θ) ⪰ 1

2n
J (θ)J (θ)T . (9.37)

Using the latter two inequalities allows us to conclude

ηr(θ)T E[C(θ;γ)TC(θ;γ)]r(θ) (a)≤ ηβ2B2

n
∥r(θ)∥2

`2 ,

(b)≤ α2

2n
∥r(θ)∥2

`2 ,

(c)≤ 1

2n
r(θ)TJ (θ)J (θ)Tr(θ),

(d)≤ r(θ)T E[C(θ;γ)]r(θ). (9.38)

Here, (a) follows from (9.36), (b) from the fact that the step size obeys η ≤ α2

2B2β2 , (c) from σmin(J (θ)) ≥ α,
and (d) from (9.37). These inequalities allow us to conclude

E[∥r(θ+)∥2
`2] (a)≤ r(θ)T (In − 2η E[C(θ;γ)] + η2 E[C(θ;γ)TC(θ;γ)])r(θ),

(b)≤ r(θ)T (In − η E[C(θ;γ)])r(θ),
(c)≤ r(θ)T (In − η

2n
J (θ)J (θ)T)r(θ),

= ∥r(θ)∥2
`2 − η

2n
∥J (θ)Tr(θ)∥2

`2 ,

(d)≤ ⎛⎜⎝∥r(θ)∥`2 −
η

4n

∥J (θ)Tr(θ)∥2

`2∥r(θ)∥`2
⎞⎟⎠

2

. (9.39)

Here, (a) follows from the calculation in (9.24) applied to r(θ) and r(θ+), (b) from (9.38), (c) from (9.37),
and (d) from completing the square. Finally, note that using the upper bound on the spectrum of the
Jacobian and the fact that η ≤ α2

2β2B2 ≤ 1
2β2

9 we have

η

4n
∥J (θ)Tr(θ)∥2

`2
≤ η β2

4n
∥r(θ)∥2

`2
≤ ∥r(θ)∥2

`2
,

9Note that α ≤ B.
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so that the term inside the parentheses of right-hand sided of (9.39) is positive. Consequently, combining
Jensen’s inequality with the square root of both sides of (9.39) yields

E[∥r(θ+)∥`2] ≤ √
E[∥r(θ+)∥2

`2
] ≤ ∥r(θ)∥`2 − η

4n

∥J (θ)Tr(θ)∥2

`2∥r(θ)∥`2 ,

concluding the proof (9.30). To prove (9.31) we use the penultimate inequality from (9.39) together with the
fact that σmin (J (θ)) ≥ α to conclude that

E[∥r(θ+)∥2
`2] ≤ ∥r(θ)∥2

`2 − η

2n
∥J (θ)Tr(θ)∥2

`2 ≤ (1 − ηα2

2n
)∥r(θ)∥2

`2 ,

completing the proof of (9.31).

9.4.3 Bounding the increase of expected average distance to anchor points

In this section we will show that under the assumption that SGD iterates always remain close to the
initialization, the expected value of the average distance to the anchor points will not significantly increase in
each iteration. Specifically, the anchor points we pick are an ε cover of the neighborhood of the initialization
denoted by P = {p1,p2, . . . ,pK}. and we monitor the following average distance

dP(θ) ∶= 1

K

K∑̀=1

∥θ − p`∥`2 . (9.40)

Concretely, in this section we prove the following lemma.

Lemma 9.9 Consider the setting and assumptions of Lemma 9.8. Also assume η ≤ 3
νB2 . Furthermore, fix K ≥√

nβ
α
and let P = {p1,p2, . . . ,pK} be an ε ∶= ∥f(θ0)−y∥`2

α
packing of a ball of radius Rp ∶= 1.25 (β

α
)1/p ∥f(θ0)−y∥`2

α

around θ0 so that pairwise distances in this set are at least ε apart.10 Then, for dP given by (9.40) we have

E[dP(θ+)] ≤ dP(θ) + 3η

n
∥J T (θ) (f(θ) − y)∥`2 . (9.41)

For simplicity of exposition of the proof of this lemma we define r(θ) = f(θ) − y and r(θ+) = f(θ+) − y. We
start the proof by monitoring the evolution of the parameter vector with respect to a particular reference point
p ∈ P . In particular define w = θ − p and note that w+ = θ−p =w−ηJ T (θ;γ)r(θ) and E[J (θ;γ)] = J (θ)/n.
Thus,

E[∥w+∥2
`2] = E[∥w∥2

`2 − 2ηwTJ T (θ;γ)r(θ) + η2∥J T (θ;γ)r(θ)∥2
`2],= ∥w∥2

`2 − 2
η

n
wTJ T (θ)r(θ) + η2 E[∥J T (θ;γ)r(θ)∥2

`2],
≤ ∥w∥2

`2 + 2

n
η∥w∥`2∥J T (θ)r(θ)∥`2 + η2

n
B2∥r(θ)∥2

`2 , (9.42)

≤ (∥w∥`2 + 2η

n
∥J T (θ)r(θ)∥`2)2 + η

n
(ηB2∥r(θ)∥2

`2 − 2∥J T (θ)r(θ)∥`2∥w∥`2) . (9.43)

10Classical results guarantee that, we can find a (Rp/ε)p ε-packing of an Rp-ball. In our case using the fact that p ≥ n this

reduces to (1.25 ( β
α
)

1/p
)

p

≥ (
5
4
)
p β
α
≥

√

n β
α
≥K so that such a packing is possible.
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Using (9.42) and ∥J T (θ)∥ ≤ β, we also have

E[∥w+∥`2] ≤√E[∥w+∥2
`2
],

≤(∥w∥2
`2 + 2

n
η∥w∥`2∥J T (θ)r(θ)∥`2 + η2

n
B2∥r(θ)∥2

`2)
1/2

≤(∥w∥2
`2 + 2β

n
η∥w∥`2∥r(θ)∥`2 + η2

n
β2∥r(θ)∥2

`2)
1/2

≤∥w∥`2 + η√
n
β ∥r(θ)∥`2 . (9.44)

We also prove the following simple lemma.

Lemma 9.10 If ∥w∥`2 ≥ ε/2, then ηB2∥r(θ)∥2
`2
− 2∥J (θ)r(θ)∥`2∥w∥`2 ≤ 0.

Proof Using the assumption θ ∈ B(ν/2), we have

∥r(θ)∥`2 ≤ ν3 ∥f(θ0) − y∥`2 . (9.45)

Consequently, using η ≤ 3
B2ν

and σmin (J T (θ)r(θ)) ≥ α∥r(θ)∥`2 , we have

ηB2∥r(θ)∥`2 ≤ ηB2ν

3
∥f(θ0) − y∥`2 ≤ ∥f(θ0) − y∥`2 = 2α

ε

2
≤ 2α∥w∥`2 .

Hence, the lemma above combined with (9.43) implies that if ∥w∥`2 ≥ ε/2
E[∥w+∥`2] ≤ √

E[∥w+∥2
`2
] ≤ ∥w∥`2 + 2η

n
∥J T (θ)r(θ)∥`2 . (9.46)

Combining (9.44) and (9.46), we conclude that

E[∥w+∥`2] ≤ ⎧⎪⎪⎨⎪⎪⎩
∥w∥`2 + 2η

n
∥J T (θ)r(θ)∥`2 if ∥w∥`2 ≥ ε

2∥w∥`2 + η√
n
β∥r(θ)∥`2 otherwise

. (9.47)

Now define w` ∶= θ − p` as the difference between the parameter and the `th anchor point. Now observe that
out of all vectors {w1,w2, . . . ,wK}, at most one of them can satisfy ∥w`∥`2 ≤ ε

2
due to the packing property.

Specifically, if ∥w`∥`2 ≤ ε
2
, then for any ̃̀≠ ` we have

∥w̃̀∥`2 = ∥p` − p̃̀∥`2 − ∥w`∥`2 ≥ ε

2
.

Hence, at least K − 1 of w` satisfies first line and at most 1 satisfies the second line of (9.47). Next, note that

√
nβ∥r(θ)∥`2 ≤ √

n
β

α
∥J T (θ)r(θ)∥`2 ≤K∥J T (θ)r(θ)∥`2 .

Using the latter two identities we conclude that

E [ K∑̀=1

∥w+̀∥`2] ≤ K∑̀=1

∥w`∥`2 + (K − 1)2η

n
∥J T (θ)r(θ)∥`2 + η√

n
β∥r(θ)∥`2

≤ K∑̀=1

∥w`∥`2 + 3Kη

n
∥J T (θ)r(θ)∥`2 .

Dividing both sides by K completes the proof of (9.41).
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9.4.4 Shortest path potential is a supermartingale

In this section we show that the shortest path potential

Vτ ∶= V(θτ) ∶= 12∥f(θτ) − y∥`2 + α

K

K∑̀=1

∥θτ − p`∥`2 . (9.48)

is a supermartingale. Specifically we prove the following lemma.

Lemma 9.11 Consider a nonlinear least-squares optimization problem of the form min
θ∈Rp L(θ) ∶= 1

2
∥f(θ) − y∥2

`2
,

with f ∶ Rp ↦ Rn and y ∈ Rn. Suppose the Jacobian mapping associated with f obeys Assumption 1 over a ballD of radius R ∶= ν ∥f(θ0)−y∥`2
α

around a point θ0 ∈ Rp with ν a scalar obeying ν ≥ 3. Also consider the set

B(ν) = B (θ0, ν
∥f(θ0) − y∥`2

α
)⋂⎧⎪⎪⎨⎪⎪⎩θ ∈ Rp∣ ∥f(θ) − y∥`2 ≤ 2ν

3
∥f(θ0) − y∥`2

⎫⎪⎪⎬⎪⎪⎭. (9.49)

Also assume the rows of the Jacobian have bounded Euclidean norm over this ball, that is

max
i

∥Ji(θ)∥`2 ≤ B for all θ ∈ D.
Furthermore, suppose one of the following statements is valid.

• Assumption 2 (a) holds over D and set η ≤ α2

νβ2B2 .

• Assumption 2 (b) holds over D and set η ≤ α2

νβ2B2+νβBL∥f(θ0)−y∥`2 .
Fix K ≥ √

nβ
α
and let {p`}K`=1 be an ε ∶= ∥f(θ0)−y∥`2

α
packing of a ball of radius Rp ∶= 1.25 (β

α
)1/p ∥f(θ0)−y∥`2

α
around θ0 so that pairwise distances in this set are at least ε and define the potential V(θ) associated
with this packing per (9.48). Starting from θ0 we run stochastic gradient updates of the form (3.1). Then,

V(θ0) ≤ 14 (β
α
)1/p ∥f(θ0) − y∥`2 . Furthermore, if θτ ∈ B(ν/2), then E[V(θτ+1)] ≤ V(θτ).

To bound V(θ0) not that each anchor point in the packing obeys ∥p` − θ0∥`2 ≤ 1.25 (β
α
)1/p ∥f(θ0)−y∥`2

α
, we

have

V(θ0) ≤12 ∥f(θ0) − y∥`2 + α

K

K∑
i=1

∥θ0 − p`∥`2 ≤ 12 ∥f(θ0) − y∥`2 + 1.25(β
α
)1/p ∥f(θ0) − y∥`2

≤14(β
α
)1/p ∥f(θ0) − y∥`2 .

Turning our attention to the supermartingale property, define rτ = f(θτ)−y and note that when θτ ∈ B(ν/2),
by Lemmas 9.9 and 9.10 we have

E[∥rτ+1∥`2] ≤∥rτ∥`2 − η

4n

∥J (θτ)rτ∥2
`2∥rτ∥`2 ,

E[dP(θτ+1)] ≤d(θτ) + 3η

n
∥J (θτ)rτ∥`2 .

Summing these two identities with a scaling of the first inequality by 12 and the second one by α, we obtain

E[V(θτ+1)] − V(θτ) ≤ 12 (E[∥rτ+1∥`2] − ∥rτ∥`2) + α (E[dP(θτ+1)] − dP(θτ))
≤ −12η

4n

∥J (θi)rτ∥2
`2∥rτ∥`2 + 3ηα

n
∥J (θτ)rτ∥`2

≤ 3η

n
∥J (θτ)rτ∥`2 (α − ∥J (θτ)rτ∥`2∥rτ∥`2 )

≤ 0.
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9.4.5 SGD remains in the local neighborhood

In this section we show that SGD iterates remain close to the initialization. Specifically we prove the following
lemma.

Lemma 9.12 Consider the setup of Lemma 9.11 and the potential function V from (9.48). Also define the
stopping time T = min{τ ∶ θτ /∈ B(ν/2)}. Under the stated assumptions,

P{T = ∞} ≥ 1 − 4

ν
(β
α
) 1
p

.

Proof Assume θτ /∈ B(ν/2). This implies ∥rτ∥`2 ≥ ν
3
∥r0∥`2 , hence the potential V(θτ) can be lower bounded

as

Vτ = V(θτ) ≥ α

K

K∑̀=1

∥θτ − p`∥`2 + 12∥rτ∥`2 ≥ 12∥rτ∥`2 ≥ 4ν∥r0∥`2 .
Define the stopping time T̃ which is the first instance Vτ ≥ 4ν∥r0∥`2 . Clearly T̃ ≤ T and P{T = ∞} ≥ P{T̃ = ∞}.
To show that T̃ = ∞ holds with high probability we utilize an argument similar to [48]. Define a∧b = min(a, b)
and the stopped process Uτ = Vτ∧T̃ . We will show that Uτ is a supermartingale. Let Fτ denote the σ-algebra
generated by the first τ SGD random variables γ1, γ2, . . . , γτ . By construction, θτ ,rτ ,Vτ are measurable with
respect to Fτ . We can decompose the expectation based on the event T̃ > τ as follows

E[Uτ+1 ∣ Fτ ] = E[V(τ+1)∧T̃1T̃≤τ ∣ Fτ ] + E[V(τ+1)∧T̃1T̃>τ ∣ Fτ ],
= E[Vτ∧T̃1T̃≤τ ∣ Fτ ] + E[Vτ+11T̃>τ ∣ Fτ ].

The Vτ∧T̃ term is measurable with respect to filteration Fτ , hence
E[Vτ∧T̃1T̃≤τ ∣ Fτ ] = Vτ∧T̃1T̃≤τ = Uτ1T̃≤τ .

Therefore we can focus on the Vτ+11T̃>τ term. As previously discussed, T̃ > τ implies θτ ∈ B(ν/2) and Lemma
9.11 is applicable. This yields

E[Vτ+11T̃>τ ∣ Fτ ] = E[Vτ+1 ∣ Fτ ]1T̃>τ ≤ Vτ1T̃>τ .
Also note that Vτ1T̃>τ = Vτ∧T̃1T̃>τ = Uτ1T̃>τ . Combining the latter two identities we have

E[Uτ+1 ∣ Fτ ] ≤ Uτ1T̃>τ + Uτ1T̃≤τ = Uτ .
Now that we established Uτ is a supermartingale, Martingale maximal inequality [68] implies that

P{ sup
τ≥0
Uτ ≥ 4ν∥r0∥`2} ≤ U0

4ν∥r0∥`2 = V0

4ν∥r0∥`2 ≤ 14 (β
α
)1/p

4ν
≤ 4

(β
α
)1/p
ν

.

Hence, P{T = ∞} ≥ P{T̃ = ∞} ≥ 1 − 4
ν
(β
α
) 1
p .

9.4.6 Putting everything together (completing the proof of Theorem 3.1)

In this Section we combine the results of the previous sections to complete the proof. First, note that Lemma
9.12 already establishes the result for P{T = ∞}. We set the event E to be equal to {T = ∞}. To show
the result on the convergence rate, we note that if T = ∞ then θτ ∈ B (ν

2
) and hence (9.28) holds. This in

turn implies that E[∥rτ+1∥2
`2
] ≤ (1 − η

2n
α2) ∥rτ∥2

`2
. Now recall the filteration Fτ generated from random SGD

updates in the proof of Lemma 9.12. We have

E[∥rτ+1∥2
`21T=∞ ∣ Fτ ] ≤ E[∥rτ+1∥2

`21T>τ ∣ Fτ ].
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To continue further note that 1T>τ is measurable with respect to Fτ . Hence, applying (9.28) over the event
T > τ , we conclude that

E[∥rτ+1∥2
`21T>τ ∣ Fτ ] = E[∥rτ+1∥2

`2
∣ Fτ ]1T>τ ,

≤ (1 − ηα2

2n
)∥rτ∥2

`21T>τ ,

≤ (1 − ηα2

2n
)∥rτ∥2

`21T>(τ−1).

With this recursion established, we take conditional expectations to obtain

E [∥rτ+1∥2
`21T>τ ] ≤ (1 − ηα2

2n
)τ E [∥r1∥2

`21T>0] ≤ (1 − ηα2

2n
)τ+1 ∥r0∥2

`2 ,

which completes the proof.

9.5 GLM proofs (Proof of Theorem 4.1)
First we prove that the is a globally optimal solution achieving zero training error. To see this note that any
strictly increasing and differentiable activation φ is invertible on R by the implicit function theorem. Let ΠR
and ΠN denote the projections onto the row space and null space of X respectively. By the assumptions
of the theorem X has full row rank and pseudo-inverse solution θ† is given by θ† =XT (XXT )−1φ−1(y)}.
Hence the set of global optimal solutions is non-empty and all globally optimal solutions are characterized by
the null space as follows G = {θ ∈ Rp ∶ θ = θ† + v where v ∈ null(X)}
Let θ∗ = ΠN (θ0) + θ† ∈ G. By construction θ∗ is the closest global minima to θ0 as the null space projections
match. We will argue that the gradient descent iterations linearly converge to θ∗.

Towards this goal, note that y = φ (Xθ∗) and note that the gradient descent iterations are given by

θτ+1 =θτ + ηXTdiag (φ′(Xθτ)) (φ(Xθ⋆) − φ(Xθτ)) (9.50)

θτ + ηXTdiag (φ′(Xθτ)) (y − φ(Xθτ)). (9.51)

Now, for two vectors a and b obeying a ≠ b define φ′(a,b) = φ(a)−φ(b)
a−b (with the devision interpreted

as entry by entry) and note that by the mean value theorem φ′(a,b) ≥ γ. Also note that, we can
write φ(Xθτ) − φ(Xθ⋆) = diag(φ′(Xθτ ,Xθ⋆))X(θτ − θ⋆). Consequently, setting hτ = θτ − θ⋆ and
Dτ = diag(φ′(Xθτ))diag(φ′(Xθτ ,Xθ⋆)), we have

hτ+1 = hτ − ηXTDτXhτ = (I − ηXTDτX)hτ . (9.52)

Since gradient is an element of the row space R, ΠN (θτ) = ΠN (θ0) = ΠN (θ∗) and hτ ∈ R. To proceed,
let V ∈ Rn×p be an orthonormal basis (i.e. V V T = In) for the row space of X and define h̃τ = V hτ and
X̃ =XV T . (9.52) yields the following update rule for h̃τ

h̃τ+1 = V (I − ηXTDτX)V T h̃τ ,= (I − ηX̃TDτX̃) h̃τ .
To continue further, we use the fact that Dτ is diagonal with entries between γ2 and Γ2. This combined with
the fact that the matrices X̃ and X have the same eigenvalues allow us to conclude that γ2σ2

min (X)I ⪯
X̃TDτX̃ ⪯ Γ2 ∥X∥2

I. Thus, for η ≤ 1
Γ2∥X∥2

0 ⪯ I − ηX̃TDτX̃ ⪯ (1 − ηγ2σ2
min(X))I.
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Thus, using the fact that ∥h̃τ∥`2 = ∥V hτ∥`2 = ∥hτ∥`2 (as hτ ∈ R) we conclude that

∥hτ+1∥`2 ≤ (1 − ηγ2σ2
min(X)) ∥hτ∥`2 ,

completing the proof of (4.2). Furthermore, note that

∥θτ+1 − θτ∥`2 = ∥hτ+1 −hτ∥`2 ≤ ∥ηXTDτXhτ∥`2 ≤ ηΓ2∥X∥2∥hτ∥`2 .
Summing these up from τ = 0 to ∞ and using ∥hτ∥`2 ≤ (1 − ηγ2σ2

min(X))τ ∥h0∥`2 we conclude that for
η = 1

Γ2∥X∥2
∞∑
τ=0

∥θτ+1 − θτ∥`2 = ∞∑
τ=0

∥hτ∥`2 ≤ 1

1 − (1 − ηγ2σ2
min(X)) ∥h0∥`2 = Γ2

γ2

λmax (XXT )
λmin (XXT ) ∥h0∥`2 ,

establishing (4.3).

9.6 Low-rank recovery proofs (Proof of Theorem 4.2)
To specialize Theorem 2.1 we begin by calculating the Jacobian J (Θ) ∶= J (vect(Θ)) which is given by an
n × dr matrix of the form

J (Θ) = [vect(X1Θ) vect(X2Θ) . . . vect(XnΘ)]T .
Here, for a matrix M ∈ Rn1×n2 we use vect(M) ∈ Rn1n2 to denote an n1n2 dimensional column vectors
obtained by concatenating the columns of M . Similarly, for a vector v ∈ Rn1n2 we use mat (v) ∈ Rn1×n2 to
denote a matrix obtained by reshaping the vector into an n1 × n2 matrix.

9.6.1 Key Lemmas for low-rank recovery

In order to verify the assumptions of Theorem 2.1, in this section we gather some key lemmas related to the
Jacobian matrix that building on top of each other play a crucial role in our proofs. We defer the proofs
to Appendix A. The first key lemma which will play a crucial role in our proofs is that the nuclear norm∥mat (J (Θ)Tv)∥⋆ is uniformly bounded for all v and Θ with unit Frobenius/Euclidean norms.

Lemma 9.13 For i = 1,2, . . . , n, Xi ∈ Rd×d be i.i.d. matrices with i.i.d. entries distributed as N(0,1).
Furthermore, assume n ≤ dr and r ≤ d. Then

sup
v∈Rk,Θ∈Rd×r ∶∥v∥`2=∥Θ∥F =1

∥mat (J (Θ)Tv)∥⋆ ≤ 12
√
dr,

holds with probability at least 1 − e−2dr.

The next lemma concerns the average of the nuclear norm of a Gaussian matrix multiplied by a diagonal
matrix.

Lemma 9.14 Let G ∈ Rd×r with d ≤ r be i.i.d. N(0, 1) matrix and Σ ∈ Rr×r be a diagonal matrix with entries
obeying

ϑ ≤ σmin (Σ) ≤ σmax (Σ) ≤ 2ϑ

Then,

E[∥GΣ∥∗] ≥ 1

32
ϑ
√
dr.
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The next key lemma used in our proofs also concerns the nuclear norm ∥mat (J (Θ)Tv)∥⋆, however this time
we bound this quantity from both below and above for a fixed matrix Θ that is well conditioned and for all
vectors v ∈ Rk with unit Euclidean norm.

Lemma 9.15 Let Θ ∈ Rd×r be a matrix with eigenvalues obeying

ϑ ≤ σmin (Σ) ≤ σmax (Σ) ≤ 2ϑ.

Furthermore, assume r ≤ d and n ≤ cdr with c a fixed numerical constant. Then,

1

40
ϑ
√
dr ≤ ∥mat (J (Θ)Tv)∥∗ ≤ 24ϑ

√
dr,

holds for all v ∈ Sn−1 with probability at least 1 − 2e−γdr with γ a fixed numerical constant.

Next we bound the spectrum of the Jacobian matrix in a ball around the initialization Θ0.

Lemma 9.16 (Jacobian spectrum bounds) Let Θ0 ∈ Rd×r with r ≤ d be a matrix with singular values
lying in the range [ϑ,2ϑ]. Consider the Frobenius ball around Θ0 given by D = B (Θ0,

1
2400

ϑ
√
r). Then as

long as n ≤ Cdr with C a fixed numerical constant, then, with probability at least 1 − 3e−γdr
1

50
ϑ
√
dr ≤ σmin (J (Θ)) ≤ σmax (J (Θ)) ≤ 25ϑ

√
dr. (9.53)

Furthermore, the Jacobian matrix is 12
√
dr-Lipschitz. That is, for all Θ1,Θ2 ∈ Rd×r we have

∥J (Θ2) − J (Θ1)∥ ≤ 12
√
dr ∥Θ2 −Θ1∥F . (9.54)

9.6.2 Completing the proof of Theorem 4.2

We will prove this theorem by a direct application of Theorem 2.1. To this aim we need to calculate the
various parameters in this theorem.

We begin by calculating the size of the initial misfit. To this aim note that ⟨Xi,Θ0Θ
T
0 ⟩ ∼ N(0, ∥Θ0Θ

T
0 ∥2

F )
and ∥Θ0Θ

T
0 ∥F ≤ √

r ∥Θ0Θ
T
0 ∥ ≤ 4

∥y∥`2√
n
. Hence, f(Θ0) is an i.i.d. Gaussian random vector with standard

deviation at most 4
∥y∥`2√
n
. Using Lipschitz concentration of Gaussians, this implies that

P
⎧⎪⎪⎨⎪⎪⎩
∥f(Θ0)∥`2

4
∥y∥`2√
n

≥ 2
√
n

⎫⎪⎪⎬⎪⎪⎭ ≤ e−n2 .
Hence, with probability at least 1 − e−n2 , the following holds

∥f(Θ0) − y∥`2 ≤ ∥f(Θ0)∥`2 + ∥y∥`2 ≤ 9 ∥y∥`2 , (9.55)

Furthermore, applying Lemma 9.16 with ϑ = √ ∥y∥`2√
rn

, Jacobian matrix satisfies

α = 1

50

√
d ∥y∥`2

√
r

n
, β = 25

√
dr ∥y∥`2

√
r

n
, and L = 12

√
dr.

over the domain D′ = B(θ0,
1

2400
ϑ
√
r) with probability 1− 3e−γdr ≥ 1− 3e−n/2 (by picking c ≤ γ). On the other

hand, for Theorem 2.1 to be applicable, we need the domain D radius to be R ∶= 4∥f(Θ0)−y∥`2
α

. The key idea
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is choosing n ≤ cdr for a sufficiently small c to ensure that D ⊂ D′ and Theorem 2.1 applies. In particular,
this follows from

R ∶= 4 ∥f(Θ0) − y∥`2
α

≤ 1800

¿ÁÁÀ∥y∥`2
d
√

r
n

= 1800

√
n

dr

√
∥y∥`2

√
r

n
≤ 1

2400

√
∥y∥`2

√
r

n
= 1

2400
ϑ
√
r,

Now that Theorem 2.1 applies, all that remains is to upper bound these quantities in the upper bound on the
learning rate. Per Theorem 2.1 we need to ensure

η ≤ 1

2β2
⋅min(1,

α2

L ∥f(Θ0) − y∥`2 ) .
To do this note that

α2

L ∥f(Θ0) − y∥`2 ≥ α2

9L ∥y∥`2 = α2

108
√
dr ∥y∥`2 = 1

2500
d∥y∥`2√r/n

108
√
dr ∥y∥`2 = 1

270000

√
d

n
,

and use min(1,√ d
n
) ≥ 1√

r
. Proceeding, we use this naive bound to simplify the final expressions. This yields

the step size requirement of

η ≤ c′
β2

√
r
= c1

dr∥y∥`2√r/n√r = c1
√
n

r2d∥y∥`2
Observing α2/β2 = 1/r and substituting η and convergence rate 1 − ηα2/2 concludes the proof.

9.7 Neural net proofs (Proof of Theorem 4.3)
We begin by noting that the Jacobian matrix in this case is equal to

J (W ) = [v1J (w1) . . . vkJ (wk)] ∈ Rn×kd with J (w`) ∶= diag(φ′(Xw`))X.

To prove this theorem we use Theorem 2.1 with R = ∞. We just need to calculate the various parameters
and verify that the assumptions hold.
Bounding the spectrum of J . We begin by calculating α and β. To this aim note

J (w`)J T (w`) = diag ((φ′(Xw`))XXTdiag ((φ′(Xw`)) .
Thus, using the bounds on φ′

γ2σ2
min(X)I ⪯ J (w`)J T (w`) ⪯ Γ2 ∥X∥2

I.

This in turn implies that for J (W )J T (W ) = ∑k`=1 v
2
kJ (w`)J T (w`) we have

γ2 ∥v∥2
`2
σ2

min(X)I ⪯ J (W )J T (W ) ⪯ Γ2 ∥v∥2
`2

∥X∥2
I,

so that we can use

α = γσmin(X) and β = Γ ∥X∥ .
Bounding the Lipschitz parameter of J . To calculate L note that

J (W̃ ) − J (W ) = [v1 (J (w̃1) − J (w1)) . . . vk (J (w̃k) − J (wk))] .
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Thus

∥J (W̃ ) − J (W )∥2 (a)≤ k∑̀=1

∥v` (J (w̃`) − J (w`))∥2

= k∑̀=1

v2
` ∥diag (φ′(Xw̃`) − φ′(Xw`))X∥2

= k∑̀=1

v2
` ∥diag(∫ 1

0
φ′′ (X (tw̃` + (1 − t)w`))dt)diag (X (w̃ −w))X∥2

,

≤ k∑̀=1

v2
`M

2∥X∥2
2,∞ ∥X∥2 ∥w̃` −w`∥2

`2

=∥v∥2
`2
M2∥X∥2

2,∞ ∥X∥2 ∥W̃ −W ∥2

F
.

In the above (a) follows from the fact the square of the spectral norm of concatenation of matrices is bounded
by sum of squares of the spectral norms of the individual matrices. Thus we can use

L =M∥X∥2,∞ ∥X∥ .
The proof is complete by applying Theorem 2.1.

9.8 PL proofs

9.8.1 PL convergence proof (Proof of Theorem 5.2)

Suppose (5.1) and (5.2) hold until step τ . This implies θτ ∈ D and local PL is applicable. If L(θτ) = 0, then
θτ is global minimizer and since L is differentiable ∇L(θτ) = 0 which in turn implies that θτ+1 = θτ and thus
(5.2) holds for θτ+1. Otherwise, L(θτ) > 0 and using the triangular inequality we can conclude that

∥θτ+1 − θ0∥`2 ≤ ∥θτ − θ0∥`2 + ∥θτ+1 − θτ∥`2 ≤ ∥θτ − θ0∥`2 + η∥∇L(θτ)∥`2 . (9.56)

Since ∇L(⋅) is Lipschitz, we have L(θτ+1) ≤ L(θτ) + (θτ+1 −θτ)T∇L(θτ) + L
2
∥θτ+1 − θτ∥2

`2
for η ≤ ηmax where

ηmax is the largest step size ensuring θτ+1 ∈ D. Hence, for any η ≤ η̃max = min(1/L, ηmax) we have

L(θτ+1) ≤ L(θτ) − η
2
∥∇L(θτ)∥2

`2 . (9.57)

Now define

ετ(η) ∶=⎛⎝
√L(θτ) − η

4
√L(θτ)∥∇L(θτ)∥2

`2

⎞⎠ −
√L(θτ) − η

2
∥∇L(θτ)∥2

`2
,

≥⎛⎝
√L(θτ) − η

4
√L(θτ)∥∇L(θτ)∥2

`2

⎞⎠ −
¿ÁÁÁÀ⎛⎝

√L(θτ) − η

4
√L(θτ)∥∇L(θτ)∥2

`2

⎞⎠
2

,

=0,

so that ετ(η) > 0 for η > 0. Using this definition in (9.57) together with the PL condition for θτ ∈ D, we arrive
at

√L(θτ+1) ≤ √L(θτ) − η

4
√L(θτ)∥∇L(θτ)∥2

`2 − ετ(η) ≤ √L(θτ) − η
√

2µ

4
∥∇L(θτ)∥`2 − ετ(η). (9.58)
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To continue we define the potential/Lyapunov function Vτ = √L(θτ) +√
µ/8∥θτ − θ0∥`2 to monitor the sum

of the square root of the loss and the distance to initialization. Adding inequalities (9.56) and (9.58), we find
that for all η ≤ η̃max

1

η
(Vτ+1 + ετ(η) − Vτ) ≤ √

µ

8
∥∇L(θτ)∥`2 −

√
2µ

4
∥∇L(θτ)∥`2 ≤ 0 Ô⇒ Vτ+1 ≤ Vτ − ετ(η). (9.59)

Next, we argue that ηmax ≥ 1/L and thus η̃max = 1/L. Note that ηmax > 0 since L(θτ) > 0 which implies θτ is
strictly inside D via (5.2). To show that ηmax ≥ 1/L, we proceed by contradiction and assume that ηmax < 1/L.
Now define θmax ∶= θτ − ηmax∇L(θτ) and note that by the definition of ηmax, we have ∥θmax − θ0∥`2 = R. On
the other hand, since ηmax > 0 we have ε(ηmax) > 0 so that applying the update inequality (9.59) (which
holds if ηmax < 1/L) we can conclude that√

µ/8∥θmax − θ0∥`2 ≤ √L(θmax) +√
µ/8∥θmax − θ0∥`2 ≤ Vτ − ε(ηmax) < V0 Ô⇒ ∥θmax − θ0∥`2 < R.

This is in contradiction with ∥θmax − θ0∥`2 = R and therefore ηmax ≥ 1/L and η̃max = 1/L.
The argument above shows that the recursion (9.59) is valid for η ≤ 1/L which proves (5.2) and also in

turn guarantees that all θτ ’s stay within the neighborhood D with the learning rate choice of η ≤ 1/L. To
show convergence of the loss, we combine (9.57) with the PL condition ∥∇L(θτ)∥2

`2
≥ 2µL(θτ) to conclude

that L(θτ+1) ≤ (1 − ηµ)L(θτ) ≤ (1 − ηµ)τ+1L(θ0),
completing the proof of (5.1). To conclude with the result on the shortest path, we add (9.58) from τ = 0 to∞ to conclude that

∞∑
τ=0

η
√

2µ

4
∥∇L(θi)∥`2 ≤ √L(θ0) Ô⇒ ∞∑

τ=0

∥θτ+1 − θτ∥`2 ≤
√

8L(θ0)
µ

,

completing the proof of (5.3).

9.8.2 PL lower bound proof (Proof of Theorem 5.4)

Proof Suppose there exists θ ∈ D satisfying L(θ) = 0. Since L is differentiable and minimized at θ the
gradient must vanish, i.e. ∇L(θ) = 0. From smoothness of the loss we conclude that

L(θ0) ≤ L(θ) + (θ0 − θ)T∇L(θ) + L
2
∥θ − θ0∥2

`2 = L2 ∥θ − θ0∥2
`2 .

This implies ∥θ − θ0∥`2 ≥ √
2L(θ0)/L and contradicts with the choice of R.

The remaining proof is similar to that of Theorem 2.3. Consider the least squares problem where X is
a matrix with orthogonal rows. The first row x1 of X has length √

µ and the other rows have arbitrary
lengths. Fix an arbitrary scaling γ ≥ 0 and set θ⋆ = γx1/∥x1∥`2 and θ0 = 0. Set labels y = Xθ⋆ and lossL(θ) = 1

2
∥y −Xθ∥2

`2
. Gradient is ∥XTX∥ Lipschitz, which is same as `22 of the largest row, hence L can be

set arbitrarily. For any θ, we have

∥XT (Xθ − y)∥2
`2 = ∥XTX(θ − θ⋆)∥2

`2 ≥ µ∥X(θ − θ⋆)∥2
`2 = 2µL(θ)

Next, observe that (i) L(0) = γ2µ/2 and (ii) any global minimizer θ satisfies y =Xθ⋆ =Xθ hence we have
that

∥θ∥`2 ≥ xT1 θ∥x1∥`2 = xT1 θ
⋆

∥x1∥`2 = γ.
This implies ∥θ − θ0∥`2 = ∥θ∥`2 ≥ γ. Thus, there is no global minima within R < γ = √

2L(0)/µ neighborhood
of θ0.
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A Proof of key lemmas for low-rank recovery

A.1 Uniform upper bounds on the nuclear norm (Proof of Lemma 9.13)

Given the random nature of the matrices Xi, mat (J (Θ)Tv) defines a random process Γv,Θ indexed by Θ and v
that can be rewritten in the form

Γv,Θ ∶=mat (J (Θ)Tv) =
n

∑
i=1

viXiΘ.

Define Sdr−1 = {Θ ∈ Rd×r ∶ ∥Θ∥F = 1} as the space of matrices with unit Frobenius norm and Sn−1 as the unit sphere
in Rn. The statement of the lemma can then be rephrased as bounding the supremum of this stochastic process over
Sdr−1 × Sn−1, that is supv∈Sn−1,Θ∈Sdr−1 ∥Γv,Θ∥⋆. To establish such a bound, we first determine the behavior of Γv,Θ

for fixed Θ ∈ Sdr−1 and v ∈ Sn−1. Assume Θ has a singular value decomposition UΣV T with U ,V ∈ Rd×r. Define
Y = ∑ni=1 viXiU and note that Y ∈ Rd×r is a matrix with i.i.d. N(0, 1) entries. Hence, using ∥Σ∥F = 1 and ∥Σ∥⋆ ≤

√
r,

we have
∥Γv,Θ∥

∗
= ∥Y ΣV T ∥

∗
= ∥Y Σ∥

∗
≤ ∥Y ∥ ∥Σ∥

∗
≤
√
r ∥Y ∥ .

Note that, expectation of the spectral norm is known to be bounded by E[∥Y ∥] ≤
√
d+√r ≤ 2

√
d via Gordon’s lemma.

This yields

E[∥Γv,Θ∥
∗
] ≤ E[

√
r ∥Y ∥] ≤ 2

√
dr. (A.1)

Next, we also show that ∥Γv,Θ∥
∗
concentrates well around this expectation. To show this we use the fact stated

above that ∥Γv,Θ∥
∗
= ∥Y Σ∥

∗
is a function of a Gaussian matrix Y . Furthermore, ∥Y Σ∥

∗
is Lipschitz as for any two

matrices Y1,Y2 we have

∣∥Y2Σ∥
∗
− ∥Y1Σ∥

∗
∣ ≤ ∥(Y2 −Y1)Σ∥

∗

=⟨V , (Y2 −Y1)Σ⟩
=⟨Y2 −Y1,V ΣT ⟩
≤ ∥Y2 −Y1∥F ∥V ΣT ∥

F

≤∥Y2 −Y1∥F ∥V ∥ ∥Σ∥F
≤∥Y2 −Y1∥F . (A.2)

Here V follows from dual representation of the nuclear norm and is a matrix with spectral norm bounded by 1
maximizing ⟨V , (Y2 −Y1)Σ⟩. Thus for fixed v and Θ, ∥Γv,Θ∥

∗
is a 1-Lipschitz function of a Gaussian matrix Y .

Thus utilizing concentration of Gaussian measure combined with (A.1) implies

P{ ∥Γv,Θ∥
∗
≥ 2

√
dr + t} ≤ P{ ∥Γv,Θ∥

∗
≥ E [ ∥Γv,Θ∥

∗
] + t} ≤ e−

t2

2 . (A.3)

We will combine (A.3) above with an application of standard union bound. To this aim letM⊂ Sdr−1 be an ε = 1/4
cover of Sdr−1 and S ⊂ Sn−1 be a ε = 1/4 cover of Sn−1 and note that based on standard covering bounds,

log ∣S∣ ≤ 3n and log ∣M∣ ≤ 3rd.

Using (A.3) with t = 4
√
dr combined with the above covering bound we conclude that for n ≤ dr

P
⎧⎪⎪⎨⎪⎪⎩

sup
(v,Θ)∈S×M

∥Γv,Θ∥
∗
≥ 6

√
dr

⎫⎪⎪⎬⎪⎪⎭
≤ ∣S∣ ⋅ ∣M∣ ⋅ P{ ∥Γv,Θ∥

∗
≥ E [ ∥Γv,Θ∥

∗
] + 4

√
dr} ≤ e3n ⋅ e3rd ⋅ e−8rd ≤ e−2rd.

Thus for all (v,Θ) ∈ S ×M we have ∥Γv,Θ∥⋆ ≤ 6
√
dr with high probability. To extend this over the entire set

Sn−1 × Sdr−1 define
(v⋆,Θ⋆) ∶= arg sup

(v,Θ)∈Sn−1×Sdr−1
∥Γv,Θ∥

∗
and OPT = ∥ΓΘ⋆,v⋆∥∗ .
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Now let ṽ and Θ̃ be the closest points of the covers S and M to v∗ and Θ∗ and note that ∥ṽ − v∗∥`2 ≤ 1/4 and
∥Θ̃ −Θ∗∥

F
≤ 1/4. Thus, will probability at least 1 − e−2rd we have

OPT =∥Γv∗,Θ∗−Θ̃ +Γv∗−ṽ,Θ̃ +Γṽ,Θ̃∥
∗
,

(a)
≤ ∥Γv∗,Θ∗−Θ̃∥

∗
+ ∥Γv∗−ṽ,Θ̃∥

∗
+ ∥Γṽ,Θ̃∥

∗
,

(b)
≤ OPT ∥Θ∗ − Θ̃∥

F
+OPT ∥v∗ − ṽ∥

`2
+ ∥Γṽ,Θ̃∥

∗
,

(c)
≤ 1

2
OPT + 6

√
dr,

which implies that OPT = ∥ΓΘ⋆,v⋆∥∗ ≤ 12
√
dr, completing the proof. In the above (a) follows from the triangular

inequality, (b) from the linearity of Γv,Θ with respect to v and Θ and the definition of OPT, and (c) from the bound
on the cover.

A.2 Proof of Lemma 9.14
Note that for a Gaussian random vector g ∼ N(0,Id) we have

E [ ∥g∥4`2 ] = E
⎡⎢⎢⎢⎢⎣

⎛
⎝
d

∑
g=1

g2k
⎞
⎠

2 ⎤⎥⎥⎥⎥⎦
=

d

∑
k=1

(E[g4k] − (E[g2k])2) + (E[∥g∥2`2])
2 = d2 + 2d

Using the above we can conclude that

E [ ∥GΣ∥4F ] =E
⎡⎢⎢⎢⎢⎣
(
r

∑
k=1

Σ2
kk ∥Gk∥2`2)

2 ⎤⎥⎥⎥⎥⎦

=
r

∑
k=1

Σ4
kk (E [ ∥Gk∥4`2 ] − E [ ∥Gk∥2`2 ]2) + (E [

r

∑
k=1

Σ2
kk ∥Gk∥2`2 ])

2

=2d
r

∑
k=1

Σ4
kk + d2 ∥Σ∥4F

≤(2d + d2) ∥Σ∥4F
≤3d2 ∥Σ∥4F
=3 (E[∥GΣ∥2F ])

2
(A.4)

Note that, using E[∥G∥] ≤
√
d +√

r,

P{ ∥GΣ∥ ≥ (
√
d +

√
r + t)∥Σ∥} ≤ P{ ∥G∥ ≥

√
d +

√
r + t} ≤ e−

t2

2 .

Define the event E = {G ∈ Rd×r ∶ ∥GΣ∥ ≤ 2ϑ (
√
d +√

r) }. Using the above with t = 2
√
r we have

P{Ec} = P{ ∥GΣ∥ ≥ 2ϑ (
√
d + 3

√
r)} = P{ ∥GΣ∥ ≥ 2ϑ (

√
d +

√
r + t)} ≤ e−

t2

2 = e−2r. (A.5)
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Using these definitions we conclude that

E [ ∥GΣ∥2F ]
(a)
≤ E [ ∥GΣ∥ ∥GΣ∥

∗
]

=E [ ∥GΣ∥ (1E + 1Ec) ∥GΣ∥
∗
]

=E [ ∥GΣ∥1E ∥GΣ∥
∗
] + E [ ∥GΣ∥1Ec ∥GΣ∥

∗
]

(b)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] + E [ ∥GΣ∥1Ec ∥GΣ∥

∗
]

(c)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] + E [

√
r1Ec ∥GΣ∥2F ]

(d)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] +

√
r
√

E [1Ec]
√

E [ ∥GΣ∥4F ]
(e)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] +

√
3r

√
E [1Ec]E [ ∥GΣ∥2F ]

(f)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] +

√
3re−2r E [ ∥GΣ∥2F ]

(g)
≤ 2ϑ (

√
d + 3

√
r)E[∥GΣ∥

∗
] + 3

4
E [ ∥GΣ∥2F ].

Here, (a) follows from Holder’s inequality, (b) from (A.5), (c) from the fact that ∥GΣ∥ ≤ ∥GΣ∥F and ∥GΣ∥
∗
≤√

r ∥GΣ∥F , (d) from Cauchy Schwarz, and (e) from (A.4), (f) from (A.5), and (g) from the fact that
√

3re−2r ≤ 3
4
.

The above chain of inequalities thus allow us to conclude that

E [ ∥GΣ∥2F ] ≤ 8ϑ (
√
d + 3

√
r) .E[∥GΣ∥

∗
] ≤ 32ϑ

√
dE[∥GΣ∥

∗
].

Combining the latter with the fact that E [ ∥GΣ∥2F ] = d ∥Σ∥2F ≥ drϑ2, concludes the proof.

A.3 Proof of Lemma 9.15

For the upper bound we use Lemma 9.13 together with the fact that ∥Θ∥F ≤ 2ϑ
√
r to conclude that for all v ∈ Sn−1

∥mat (J (Θ)Tv)∥
∗
≤ 24ϑ

√
dr, (A.6)

holds with probability at least 1 − e−2dr.
We next turn our attention to the lower bound. Given the random nature of the matrices Xi, mat (J (Θ)Tv)

defines a random process Γv indexed by v which can be rewritten in the form

Γv ∶=mat (J (Θ)Tv) =
n

∑
i=1

viXiΘ.

Thus, in this lemma we are interested in lower bounding infv∈Sn−1 ∥Γv∥∗ for a fixed Θ. To establish such bounds, we
first determine the behavior of Γv for a fixed v. Let Θ have singular value decomposition UΣV T with U ∈ Rd×r and
set Y = ∑ni=1 viXiU so that Γv = Y ΣV T . By construction, for a fixed v ∈ Sn−1, the matrix Y ∈ Rd×r has i.i.d. N(0, 1)
entries. Also note that by (A.2), ∥Γv∥∗ = ∥Y ΣV T ∥

∗
is a ∥Σ∥F ≤ 2ϑ

√
r Lipschitz function of Y . Also by Lemma 9.14,

E[∥Γv∥∗] ≥ 1
32
ϑ
√
dr. Thus, by concentration of Lipschitz functions of Gaussian we have

P{ ∥Γv∥∗ ≤
1

32
ϑ
√
dr − t} ≤ P{ ∥Γv∥∗ − E[∥Γv∥∗] ≤ −t} ≤ e

−
t2

8rϑ2 .

Thus using t = 1
288

ϑ
√
dr we conclude that ∥Γv∥∗ ≥ 1

36
ϑ
√
dr holds with probability at least 1 − e−2γdr with γ a fixed

numerical constant. Now pick a 1
19000

cover S of Sn−1. This cover size is at most log ∣S∣ ≤ log ( 3
1

19000

)n ≤ 11n. Thus

using the union bound we conclude that for n ≤ cdr ∶= γ
11
dr we have

P{inf
v∈S

∥Γv∥∗ ≤
1

36
ϑ
√
dr} ≤ e11ne−2γdr ≤ e−γdr.
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To proceed, given any v ∈ Sn−1 denote the closest point from the cover S to this point by ṽ. Using the fact that
∥v − ṽ∥`2 ≤ 1

19000
combined with (A.6) we conclude that

∥Γv∥∗ ≥ ∥Γṽ∥∗ − ∥Γv−ṽ∥∗
≥ 1

36
ϑ
√
dr − 24

19000
ϑ
√
dr

≥ 1

40
ϑ
√
dr,

holds with probability at least 1 − e−γdr − e−2dr ≥ 1 − 2e−γdr.

A.4 Proof of Lemma 9.16

For any arbitrary Θ ∈ D and v ∈ Sn−1 using Lemma 9.13,

∥mat (J (Θ)Tv) −mat (J (Θ0)v)∥⋆ = ∥mat (J (Θ −Θ0)v)∥⋆ ≤ 12
√
dr ∥Θ −Θ0∥F ,

holds with probability at least 1 − e−2dr. Using Lemma 9.15,

1

40
ϑ
√
dr ≤ ∥mat (J (Θ0)Tv)∥

∗
≤ 24ϑ

√
dr,

holds with probability at least 1 − 2e−γdr. Combining the latter two bounds, using Θ ∈ D and definition of D, and
applying the triangle inequality we conclude that

1

50
ϑ
√
dr ≤ ∥mat (J (Θ)Tv)∥

∗
≤ 25ϑ

√
dr,

holds with probability at least 1 − 3e−γdr. Using the fact that ∥A∥∗√
r

≤ ∥A∥F ≤ ∥A∥
∗
we thus have

1

50
ϑ
√
dr ≤ ∥mat (J (Θ)Tv)∥

F
≤ 25ϑ

√
dr.

Using the fact that ∥mat (J (Θ)Tv)∥
F
= ∥J (Θ)Tv∥`2 and the result holds for all v, completes the proof of (9.53).

To prove (9.54), note that on the same event applying Lemma 9.13, for any Θ1,Θ2 ∈ Rd×r we have

∥J (Θ2) − J (Θ1)∥ = sup
v∈Sn−1

∥mat ((J (Θ2) − J (Θ1))Tv)∥F ≤ 12
√
dr ∥Θ2 −Θ1∥F ,

concluding the proof of (9.54).
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