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CHARACTER ON A HOMOGENEOUS SPACE

A.J. PARAMESWARAN, AMITH SHASTRI K.

Abstract. In this paper we look at the notion of cohomological triviality of fibrations
of homogeneous spaces of affine algebraic groups defined over C and use topological
methods, primarily the theory of covering spaces. This is made possible because of
the structure theory of affine algebraic groups. Further, we generalize our results for
arbitrary connected algebraic groups and their homogeneous spaces. As an application
of our methods, we give a structure result for quasi- reductive algebraic groups(i.e
groups whose unipotent radical is trivial), upto isogeny.

1. Introduction

We will be working over the field of complex numbers throughout this paper. A
linear algebraic group G acting linearly on a vector space V , so that there is an open
dense orbit U , is known as a prehomogeneous representation and has been extensively
studied by Sato and Kimura in [21]. Further, U ≈ G

H
is a homogeneous space, where H

is a closed subgroup of G. In [7], Damon considers a special kind of prehomogeneous
representations, in which the complement of U is actually a divisor, the defining poly-
nomial f of the divisor is a relative invariant and hence is homogeneous ( c.f. corollary
2.7 in [11]) . We note that, when G is reductive the following are equivalent

(1) U c is a hypersurface.

(2) H is reductive.

(3) G
H

is affine.

The equivalence of 2 and 3 is known as Matsushima’s theorem see [18]. For the proof of
the above equivalence see [11] Theorem 2.28 page 43. This function f is defined on all
of V , and in particular restricting to U we have f : U → C∗. From the point of view of
singularity theory, which Damon is concerned with, the complement of U defines a non-
isolated singularity and f : G

H
→ C∗ is a global Milnor fibration, with fibres also being

homogeneous spaces. For the study of the Milnor fibration Damon defines (rational)
cohomological triviality of fibrations and obtains a very simple numerical criterion for
fibrations over the base S1 to satisfy cohomological triviality.
In this paper, however, we are not concerned with the topology of the non- isolated

singularities. We are interested in the characterization of cohomologoical triviality of
fibrations over C∗ considering the general setting of homogeneous spaces of algebraic
groups, instead of the set up of prehomogeneous spaces with the complement a divisor
as in [7].
In section 2 we define the equivalent notion of cohomological triviality of fibrations

as in [7] (the equivalence of both is also proved in the same article). We will be working
with singular cohomology with rational coefficients throughout and will omit the coef-
ficients. We then prove some preliminary topological results and look at examples of
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fibrations which are cohomologically trivial and also examples of fibrations which are
not cohomologically trivial.
In section 3 we come to the main results of the paper, however instead of consid-

ering prehomogeneous representations of an affine algebraic group G we consider ho-
mogeneous spaces of connected affine algebraic groups with a nowhere vanishing non-
constant function to C. This function in turn gives rise to a character, X , of G. This
character in turn gives rise to an auxiliary fibration which we first analyse and we show
that the fibration, which is also an exact sequence of algebraic groups,

S0 G C∗X0

is cohomologically trivial, where S0 is the identity component of ker(X ) and the kernel
of X0.
Before starting the analysis of fibrations of affine groups we make a simplifying as-

sumption that the group G is reductive. This assumption is in no loss of generality,from
the point of topology, the unipotent radical Gu is contractible thus G and G

Gu
have the

same homotopy type and from the point of algebraic groups any character of G restricts
as the trivial character on Gu. From this auxiliary analysis we will show that when
the kernel of the associated character is connected then the fibration of homogeneous
spaces

S
H

G
H

C∗X

is cohomologically trivial.
From the above we will deduce that the fibration

S
H

G
H

C∗X

is cohomologically trivial if and only if the natural map G
S0∩H

→ G
H

induces an isomor-

phism H∗
(

G
H

)

≈ H∗
(

G
S0∩H

)

. Our proof, in particular, shows that the monodromy group
is finite and hence is semisimple.
In section 4 we construct a class of fibrations with connected fibres, which are not

cohomologically trivial as a converse of sorts for the results in section 3. In section
5 we move to the very general setting of homogeneous spaces of algebraic groups,
not necessarily affine. We prove some structure theorems for these groups viz. the
existence of an unipotent radical and maximal central torus. As before we quotient out
the unipotent radical and we will show that our results hold in this general setting for
algebraic groups with trivial unipotent radical which we call quasi- reductive group.

2. Preliminaries

We will use the following equivalent definition of cohomological triviality of fibrations:

Definition 2.1. A fibration F →֒ E → B is said to be rationally cohomologically
trivial if it satisfies the Künneth formula, i.e. for each k

Hk(E;Q) ∼= ⊕
p+q=k

Hp(F ;Q)⊗Hq(B;Q),

the isomorphism is of graded vector spaces.
This implies,
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bk(E)=
∑

p+q=k

bp(F ) · bq(B).

for all k, where bk is the kth Betti number.

Following [7] we can also define (rational) cohomological triviality of a fibration when

the base is C∗as follows. Let F →֒ E
π
−→ C∗ be a fibration, let α(t) = e2πit be a loop at

1, now consider the monodromy map σ1, the lift of α to a family of homeomorphisms
σt : F → Ft = π−1α(t).

Lemma 2.2. A fibration F →֒ E
π
−→ C∗ is (rationally) cohomologically trivial if σ∗

1 :
H∗(F ;Q) → H∗(F ;Q) is the identity.

Proof. By Proposition 1.8 of [7] the definition we have given in the beginning and for
the special case when the base space is C∗ coincide. �

Observe that if E is connected and the fibre F is not connected, then the fibration
F →֒ E → B is not cohomologically trivial. This is clear by looking at b0, the zeroth
Betti number. This leads us to make a global assumption that the fibres of any fibration
we are considering to be connected.
We now give another formulation of cohomological triviality of a fibration F → E →

B as degeneration of the Leray- Serre spectral sequence. Proposition 5.5 in [12] (page
139) states that the E

r,s
2 term in the Leray- Serre spectral sequence is given by the

tensor product H∗(B;Q) ⊗ H∗(F ;Q) under the conditions that F and B are of finite
type and the system of local coefficients on B determined by the fibre F is simple, and
the spectral sequence converges to H∗(E;Q). Thus if the spectral sequence degenerates
at E2:

Hn(E;Q) = ⊕
r+s=n

Er,s
∞ = ⊕

r+s=n
Hr(B;Q)⊗Hs(F ;Q)

Conversely, suppose that F and B are of finite type and the system of local coefficients
on B determined by the fibre F is simple and the fibration is cohomologically trivial.
Then by proposition 5.5 in [12], we have that E

r,s
2 = Hr(B;Q) ⊗ Hs(F ;Q) and the

spectral sequence converges toH∗(E;Q) = ⊕
r+s=n

Hr(B;Q)⊗Hs(F ;Q). Thus the Leray-

Serre spectral sequence degenerates at E2.
If the base is C∗ we have,

Lemma 2.3. Let F → E
p
−→ C∗ be a fibration, such that the fibre F is not connected,

and the total space E and the base be path connected . Then there exists a connected

covering B → C∗ and a lift p̃ : E → B, such that the fibre bundle F0 → E
p̃
−→ B has

connected fibre F0.

Proof. Since E and C∗ are path connected the long exact homotopy sequence of the

fibration F → E
p
−→ B reduces to,

...π1(F, f) π1(E, e) π1(C
∗, 1) π0(F, f) 1p∗

This sequence shows, in particular, that p∗ is surjective if and only if the fibre F is
connected.
Let the number of path components of F be n, then Im(π1(E)) is a subgroup of

π1(C
∗) ≈ Z, of index n. Hence we have the following commutative diagram,
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C∗

F E C∗

z 7→zn

p

p̃

where the dotted arrow is the lift of map p, which exists as the map C∗ → C∗ is a

covering map. Now the fibre bundle E
p̃
−→ C∗ has connected fibre. �

Let us now look at some examples of fibrations and check cohomolgical triviality.

Example 2.4. The Hopf fibration

S1 −→ S3 −→ S2

is not cohomologically trivial, for the term H2(S3) is zero, whereas
H2(S2)⊗H0(S1) = Z.

We now give an example of a fibration which is cohomologically trivial

Example 2.5. For any n, the exact sequence of algebraic groups,

1 → SLn → GLn
det
−→ C∗ → 1

is cohomologically trivial, where det is the determinant character. For this the co-
homologies of GLn and SLn are exterior algebra on odd degree generators with the
cohomology of SLn beginning at degree 3 and GLn beginning at degree 1. For details
refer [16] and [7]. Furthermore, note that GLn is a product of SLn and C∗ as manifolds
but not as groups.

Example 2.6. Similarly by looking at the cohomology algebra, the fibration

SLn

SOn
→ GLn

On
→ C∗

is not cohomologically trivial for n = 2m and is cohomologically trivial for n = 2m+1.
We refer [7] and [16] for the details.

Example 2.7. But, the fibration SLn

SOn
→ GLn

SOn
→ C∗ is cohomologically trivial for all n.

We refer to [16] for the details.

We shall now prove some preliminary results,

Lemma 2.8. Consider the following, H →֒ G → G
H
, where G is an affine algebraic

group and H is a closed subgroup of G. Then H → G → G
H

is a fibre bundle.

Proof. See page 105, Example 2.1.1.4 (ii) for a proof in [22]. �

We note that in the above lemma the group G being affine is not necessary.

Lemma 2.9. Let G be an algebraic group and X : G −→ C∗ be a non constant
morphism of algebraic varieties, taking identity to identity. Then X is a character.

Proof. This is a particular case of theorem 3 in [19]. For a modern proof we refer to
corollary 1.2 in the unpublished notes of Brian Conrad [6], where this result is referred
to as Rosenlicht unit theorem. �
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3. Cohomological triviality of characters

Let X be any non trivial map from G onto C∗ then by the lemma 2.9, X is a non
trivial character on G . We note that there can be no non- constant algebraic maps
from an unipotent group U to C∗, in particular the unipotent radical Gu of G is in
the kernel of X and X factors through G

Gu
. Furthermore topologically Gu is an affine

space and hence is contractible thus G and G
Gu

are of the same homotopy type. Thus
it suffices to look at reductive groups for the question of cohomological triviality. We
record this as a lemma.

Lemma 3.1. Let G be an arbitrary linear algebraic group and X : G → C∗ be a
non-trivial character with connected kernel S. Then the fibration

S → G → C∗

is homotopic to the fibration

S
Gu

G
Gu

C∗X

�

Throughout the section we will assume that G is a connected reductive group by the
reasoning of lemma 3.1.

Proposition 3.2. Let G be a reductive group, and X : G −→ C∗ be a non trivial
character with the kernel S, which we assume to be connected. Then the fibration

1 → S → G → C∗ → 1

is cohomologically trivial.

Proof. By lemma 2.8 the sequence 1 → S → G → C∗ → 1 is a fibre bundle. Since G is
reductive there is a central C∗ which surjects onto C∗ under X . This follows from the
fact that a character of a reductive group is identically zero on the derived group and
hence factors through G

D(G)
, where D(G) is the derived group of G and G

D(G)
is isogenous

with the identity component of the center Z(G). Thus if the character is non trivial
we can find a central C∗ in G that surjects onto C∗. This C∗ can be seen to be as

follows- consider the restriction map X : Z(G)0 → Z(G)0

ker(X )0
−→ Z(G)0

ker(X )
the last two terms

are isomorphic to C∗ and hence the map is given by z 7→ zd now choose any splitting

of X : Z(G)0 → Z(G)0

ker(X )
. i.e.

S G C∗

C∗

X

X|C∗

The kernel of the character X |C∗ : C∗ −→ C∗ is a finite cyclic group, say Γ, which

induces a fibre product G̃ in G× C∗

S G̃ C∗

S G C∗

π1 � X|C∗

X
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The cover G̃, contained in G × C∗, is connected (follows by looking at the long exact
sequence of homotopy groups associated to the fibration and since the fibre S and the
base space are connected) and abstractly isomorphic to S×C∗ by the map f : S×C∗ −→
G̃ given by (s, t) 7−→ (st, t). This map is also a group homomorphism, which can be
seen as follows (s1, t1)(s2, t2) 7→ (s1t1s2t2, t1t2) and since the chosen C∗ is central in G we
have, (s1t1s2t2, t1t2) = (s1s2t1t2, t1t2) and the other way, (s1, t1)(s2, t2) = (s1s2, t1t2) 7→
(s1s2t1t2, t1t2).

Thus the first projection π1:G̃ −→ G can be thought of as twisted by the isomorphism
f , and hence by the identification by f we can see that the upper fibration, S → Ḡ → C∗

is not just cohomologically trivial but is actually a trivial fibration. Now consider
any loop in C∗, then its lift to C∗ is a path from 0 to ζ where ζ is a root of unity
(corresponding an element of the finite cyclic group Γ). Since ζ ∈ S we have a self
map of S given by translation by ζ and since S is path connected we have that the
translations are null-homotopic, therefore the monodromy of the fibration G̃ → C∗ is
trivial. Thus by commutativity of the second diagram the fibration G → C∗ is also
cohomologically trivial by lemma 2.2 �

This gives another proof for the cohomological triviality of the fibration given in
example 2.5 of section 2.
We can see the cohomological triviality of the fibration S → G → C∗ by a Wang

sequence argument as given in [7], considering a fibration of maximal compact subgroups
and exploiting the Hopf algebra structure of the cohomology.

Definition 3.3. A character X is said to be split if G = S ×C∗, where S is the kernel
of X . A character X is said to be quasi- split if X is split after a finite covering.

As a corollary to the method of proof in the proposition 3.2 we have

Corollary 3.4. A character X : G → C∗ is split if and only if X |Z(G)0 is primitive.

Proof. Note that Z(G)0 = Z(S)0 × C∗.
Now suppose that the character X is split, then we have an isomorphic image of C∗,

say Gm, in Z(G)0, i.e there is a section of X restricted to Z(G)0. Thus Z(G)0

ker(X|
Z(G)0 )

≈ C∗,

i.e. X |Z(G)0 is primitive.
Suppose that the restriction of X to Z(G)0 is primitive, i.e. the kernel SZ is connected

and hence, by corollary in [1] page 118, SZ is a torus and a direct factor in Z(G)0. Thus
Z(G)0 = SZ × Gm and since ker(X ) is connected ,this Gm maps isomorphically onto

C∗, and by the proof of proposition 3.2 we have that the fibre product G̃ ≈ S × C∗

is isomorphic to G. By the proposition we need to just prove the injectivity of the
composite of f with the projection map π1. Let (s1, t1) and (s2, t2) be two arbitrary
elements of S × Gm which map to the same element in G, i.e. s1t1 = s2t2. Now,
X (s1t1) = X (s2t2) and since X is a homomorphism and s1, s2 are in the kernel of X
we have that X (t1) = X (t2), and since X restricted to Gm is an isomorphism we have
that t1 = t2, from this it follows that s1 = s2 and thus the composite is injective and
hence the character is split. �

This corollary, in particular, shows that GLn with the determinant character is not
split.

Corollary 3.5. Consider a fibration of homogeneous spaces of a reductive group G
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S
H

→ G
H

→ C∗.

Suppose that the homogeneous space S
H
is connected and that the subgroup H is normal

in G, then the fibration is cohomologically trivial.

Proof. Since H is normal G
H
and S

H
are groups and by the propsition 3.2 we are done. �

We note that we are not considering all homogeneous spaces of a reductive group G,
for example we will not consider H to be a Borel or a parabolic subgroup of G, for the
quotient G

H
would then be projective and thus has no non- trivial morphisms to any

affine variety.
Let X : G

H
→ C∗ be a nowhere vanishing function on a homogeneous space of an

algebraic group G, with H mapping to 1. Then we have a natural map X ′ : G → C∗ by
composing with the quotient map. We will refer the map X on G

H
as a character. We will

call the the fibration S → G
X
−→ C∗ to be the associated fibration of algebraic groups,

where S is the kernel of X . We will first show that if the kernel of the associated fibration
is connected then the associated fibration as well as the fibration of homogeneous spaces
of affine algebraic groups is cohomologically trivial.
We shall now prove cohomological triviality of fibrations of homogeneous spaces when

the kernel S is connected.

Theorem 3.6. Consider a fibration of homogeneous spaces of a connected reductive
group G:

S
H

−→ G
H

−→ C∗

Suppose that the kernel S of the associated character is connected, then the fibration
is cohomologically trivial.

Proof. Consider the fibration 1 −→ S
H

−→ G
H

−→ C∗ −→ 1, by composing with the
natural projection map from G we get a map from G to C∗

G
H

C∗

G

X

π
X ′

which we will call X ′. This is a nowhere vanishing map from G onto C∗ and thus is
a non trivial character of G by lemma 2.9 (note that the identity element e of G is
mapped to 1, as the subgroup H is mapped identically to 1). We will show that the
lift of a loop in C∗ is homotopic to identity and hence, the fibration is cohomologically
trivial. Now consider the fibration of homogeneous space of a closed subgroup H ,
which is not necessarily connected, contained in S.
This gives rise to a commutative diagram as follows:

S
H

G̃
H

C∗

S
H

G
H

C∗

π1 � X

X
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As in proposition 3.2, G̃
H
is isomorphic to S

H
×C∗ induced by the map from S×C∗ −→ G̃

i.e. (x̄, t) 7→ (x̄t, t) to see that the map defined as above is well defined note that x̄ = xh

for some h in H , thus (x̄, t) = (xh, t) 7→ (xht, t) = (xth, t) (as C∗ is central)which is

same as (x̄t, t). Thus the upper fibration S
H

→ G̃
H

→ C∗ is trivial. To show that the
lift of a loop is homotopic to identity, for the homogeneous spaces we follow a similar
argument as above for the case of the group and noting that a loop in the lower C∗

ends at ζ which is in S and hence in S
H

which gives rise to a self map of S
H

given by
translation by ζ . But translations in an homogeneous space of a connected algebraic
group are isotopic to identity (since ζ ∈ S, there is a path from ζ to 1 in S and this gives
rise to automorphisms of S

H
which are homotopic to identity). And thus in the upper

level the loop is homotopic to identity. Thus by the commutativity of the diagram
the loop is homotopic to identity in the lower level. Thus by lemma 2.2 the fibration
S
H

→ G
H

→ C∗ is cohomologically trivial. �

Remark. Note that, we have shown in proposition 3.2 (and for homogeneous spaces
in theorem 3.6) that for a reductive group G and a non trivial, non constant map X to
C∗ with a connected kernel S is a product S ×C∗ (a product S

H
×C∗ for homogeneous

spaces) after a finite cover! This in particular shows that the monodromy is semisimple.

We will now give a criterion for cohomological triviality when the kernel S of the
associated character is not necessarily connected.

Corollary 3.7. Consider a fibration of homogeneous spaces of a connected reductive
group G:

S
H

−→ G
H

−→ C∗

the fibration is cohomologically trivial if and only if H∗
(

G
H

)

≈ H∗
(

G
S0∩H

)

.

Proof. We have the following commutative diagram

S
H

G
H

C∗

S0

S0∩H
G

S0∩H
C∗

X

≈

X̃

As S0

S0∩H
is connected the lower fibration is cohomologically trivial by theorem 3.6. Thus

S
H

→ G
H

→ C∗ is cohomologically trivial if and only if H∗
(

G
H

)

≈ H∗
(

G
S0∩H

)

. �

Going back to the example 2.6, by computation of the cohomologies of the homoge-
neous spaces GLn

SOn
and GLn

On
shows that the above criterion in corollary 3.7 is satisfied by

the fibration SLn

SOn
→ GLn

On
→ C∗ when n = 2m+1 and the fibration does not satisfy the

criterion when n = 2m.
We can deduce the general case for an arbitrary, but connected linear algebraic group,

from this as follows:

Corollary 3.8. Let G
H

be a homogeneous space of an arbitrary connected affine alge-
braic group with a nowhere vanishing function X to C. If the kernel of the associated
character is connected then the fibration is cohomologically trivial.
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Proof. Since we are looking at the singular cohomology of the homogeneous spaces, G
and G

Gu
, where Gu is the unipotent radical, are of the same homotopy type. This is

because Gu is isomorphic to an affine n-space An (see [10], this is in fact true for any
unipotent group defined over a perfect field) which is contractible. Thus it suffices to
look at the reductive quotient G

Gu
. Since a subgroup of a unipotent group is unipotent

the fibration

S
H

G
H

C∗

reduces to

S/S∩Gu

H/H∩Gu

G/Gu

H/H∩Gu
C∗

�

Note that in our analysis quotienting out the unipotent radical is essential. For
example, not all characters of G are central when G is solvable, i.e. given a character
X : G → C∗ the central torus of Z(G)0 may not surject onto C∗. If G is a connected
solvable group then the unipotent radical Uconsists of all unipotent elements of G and
the quotient G

U
is a torus and G is homotopic to G

U
, which is homotopic to a maximal

torus T . Thus consider an exact sequence of a solvable group S → G
X
−→ C∗. Note that

S ⊂ G is also solvable and G is homotopic to T and similarly S is homotopic to T1,
where T and T1 are maximal tori in G and S respectively. Then the above fibration

reduces to T1 → T
X ′

−→ C∗, a fibration of tori where cohomological triviality is equivalent
to checking the primitivity of X ′.
We now consider the case of fibration of homogeneous space of solvable groups S

H
→

G
H

X
−→ C∗. We first analyse the exact sequence H → G → G

H
. As before, H ≈ T2

and G ≈ T where T 0
2 and T are maximal tori of H and G respectively. Thus the exact

sequence is equivalent to T2 → T → T
T2
. For the same reason the sequence H → S → S

H

is equivalent to T2 → T1 → T1

T2
where T 0

1 is a maximal torus in S. Thus the fibration
S
H

→ G
H

X
−→ C∗ is equivalent to the fibration

(1)
T1

T2
→

T

T2
→ C∗

Since we have that S
H
is connected the fibre T1

T2
is also connected and is homeomorphic

to
T 0
1

T 0
2
which is a torus. Thus the fibration (1) is equivalent to a fibration of tori

T 0
1

T 0
1 ∩ T2

→
T 0

T 0
2

→ C∗

which is cohomologically trivial.

4. Converse

Let us consider an example.
Let G be a reductive group and T ⊂ N(T ), be a maximal torus of G in the normalizer

of T . It is a well known result that H∗
(

G
T

)

= Q[W ], where W = N(T )
T

is the Weyl group

of G (the Weyl group is a finite group and the cohomology ring of G
T

is a regular
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representation of the Weyl group). Further H∗
(

G
N(T )

)

= Q. Moreover for any subgroup

H such that, T ⊂ H ⊂ N(T ), the cohomology of G
H

can be computed by the covering
H
T

→ G
T

→ G
H
. H∗

(

G
H

)

= H∗
(

G
T

)
H
T , as graded algebras since H

T
is finite. H∗

(

G
T

)
H
T =

Q[ W
WH

] where WH is the image of H in W . Motivated by this example we will now
construct a class of fibrations that are not cohomologically trivial.

Theorem 4.1. Let S be a reductive group and suppose that H ′ ⊂ H be subgroups of

S such that H
H′

is a finite cyclic group of order d and H∗
(

S
H

) 6≈
−֒→ H∗

(

S
H′

)

i.e. bj
(

S
H

)

6=

bj
(

S
H′

)

for some j. Then there is an embedding of H in group S × C∗ = G, such that

the fibration S
H′

→ G
H

→ C∗ is not cohomologically trivial.

Proof. Embed H into G = S×C∗ as follows H
(id,η)
−−−→ G defined as h 7→ (h, hH ′), where

η : H
H′

→ C∗ is an embedding. The image of H has the same number of connected
components as H , so we will denote the image of H in G as H . We observe that
Z

<d>
× Z

<d>
acts on S

H′
× C∗ with the quotient S

H
× C∗. The diagonal Z

<d>
=: Γ in

Z

<d>
× Z

<d>
acts on S

H′
×C∗ = S×C∗

H′
, the action is defined as ∀g ∈ H

H′
, g(sh, t) = (shg, tη(g))

= (sgh′, tη(g)) for some h, h′ ∈ H ′, s ∈ S, this is the same as the quotienting by the
subgroupH embedded inG and hence the quotient is G

H̄
. Now consider the commutative

diagram:

G C∗

S
H′

G
H

f◦π

where π is the second projection and f : C∗ → C∗ is multiplication by d. We note that
the fibre can be identified with S

H′
, for H ∩ S × 1 = H ′.

We claim that the fibration S
H′

G
H

C∗ is not cohomologically trivial.

Note that the cohomology of G
H

is the cohomology of S
H′

×C∗ invariant under the action

of Γ i.e. Hn(G
H
) =

(

Hn( S
H′

×C∗)
)Γ
. By the Künneth formula we have

(

Hn( S
H′

×C∗)
)Γ

=
((

Hn( S
H′
) ⊗ H0(C∗)

)

⊕
(

Hn−1( S
H′

⊗ H1(C∗)
)Γ

=
(

Hn( S
H′
) ⊗ H0(C∗)

)Γ
⊕

(

Hn−1( S
H′

⊗

H1(C∗)
)Γ
. Now the action of Γ on each graded piece is as follows, σ(a⊗b) = σ(a)⊗σ(b),

where σ ∈ Γ, a ∈ H i( S
H′
), b ∈ Hj(C∗), further σ(b) = b as we are considering cohomology

with coefficients in Q and thus multiplication by d is an isomorphism for H1(C∗). Thus
if a ⊗ b is an invariant cocycle then σ(a) ⊗ σ(b) = a ⊗ b i.e if and only if σ(a) = a.

However H i( S
H′
)Γ ≈ H i

(
S

H′

Γ

)

≈ H i( S
H
). Thus by assumption the invariant cohomology

is not the entire cohomology and hence the fibration S
H′

G
H

C∗ is not

cohomologically trivial. �

Going back to the discussion in the beginning of the section, we had shown that for
any subgroup H of S such that T ⊂ H ⊂ N(T ) and H

T
is a cyclic group, then there is

a change in the cohomology of S
H

and S
T
and thus by the theorem we construct G so

that G
H

→ C∗ is not a cohomologically trivial fibration.
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5. On arbitrary algebraic groups

We prove cohomological triviality for character maps of homogeneous spaces of ar-
bitrary connected algebraic groups, not necessarily of affine. We will use the notations
and conventions of [3], however we continue to work over the field of complex numbers.
To apply our methods we have to find a cental C∗ which surjects onto C∗. This will

be possible after we quotient out the unipotent radical, for in a solvable group there
are characters which are not central. We will first prove the existence of the unipotent
radical in an algebraic group G which is not necessarily affine (For the existence of
the unipotent radical we also refer to paragraph 8.41 of [14], for commutative algebraic
groups see [4], theorem 2.9). After quotienting out the unipotent radical we will show
there is a central torus which maps surjectively onto C∗ under a non- trivial character.

Lemma 5.1. Let G be an arbitrary algebraic group. Then there is maximal unipotent
normal affine subgroup U of G called as the unipotent radical of G.

Proof. Consider the Albanese morphism, α : G → Alb(G), where Alb(G) is an abelian
variety called as the Albanese variety. Then the kernel of α is a maximal normal affine
algebraic group Gaff . Gaff being affine has a unipotent radical say Gu. We claim that
Gu is normal in G and is maximal normal unipotent and thus the unipotent radical of
G.
Since Gaff is normal in G we have that conjugate of Gu by any element of G is still

in Gaff i.e. gGug
−1 ⊂ Gaff ∀g ∈ G. Further more Gu is the unipotent radical of Gaff

thus gGug
−1 is connected and unipotent subgroup of Gaff . Since Gaff is normal in G

g1g = gg2 where g1, g2 ∈ Gaff , therefore g1gGug
−1g−1

1 = gg2Gug
−1
2 g−1 = gGug

−1. Thus
gGug

−1 is normal in Gaff and hence gGug
−1 ⊂ Gu. And since the dimensions of Gu

and gGug
−1 are the same we have that gGug

−1 = Gu. Thus Gu is normal in G.
To see that Alb(G) has no unipotent subgroup we refer to lemma 2.3 in B. Conrad,

Units on Product Varieties, which says that there are no non constant maps of k-
varieties from a linear algebraic group to an abelian variety. �

We thus have the following definition

Definition 5.2.

(a) An algebraic group G is quasi − reductive if Gaff if reductive.

(b) An algebraic group G is called anti -affine if O (G) = k.

This definition in particular says that an anti- affine group has no non- trivial char-
acters, or more generally no non constant map to an affine variety. We further note
that any finite connected cover of an anti- affine group is anti- affine.

Definition 5.3. A semi-abelian group is any group that can be obtained as an extension
of an abelian variety A by a torus T , i.e.

1 T G A 1.
q

Theorem 5.4. For a quasi- reductive group G the central torus Z(Gaff )
0 of Gaff is

the central torus in G.
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Proof. By theorem 5.1.1 in [3] an algebraic group G is generated by Gaff and Gant.
Further more, Gant ⊂ Z(G) the centre of G(proposition 3.3.5 in [3]). cThus Z(Gaff)
commutes with Gant and with Gaff and thus with G. Thus Z(Gaff) is contained in
Z(G).
Let T be the central torus in G. Gaff contains all the connected affine algebraic

subgroups and hence T ⊂ Z(Gaff )
0. Thus the central torus Z(Gaff)

0 of Gaff is the
central torus in G. �

We will now show that the restriction of any character, defined on a quasi- reductive
algebraic group, to the central torus of Gaff surjects onto C∗. After this cohomological
triviality of fibration of homogeneous spaces follows by the same methods as in section
3, for we have never used that G is affine in the section.

Theorem 5.5. Let G be a quasi- reductive group and X : G → C∗ be a character.
Then X |Z(Gaff )0 → C∗ is surjective.

Proof. Any non- trivial character X on G factors through G
Gant

as X |Gant
is trivial and

Gaff surjects onto G
Gant

.

C∗

1 Gant G G
Gant

Z(Gaff )
0 Gaff

The restriction of X to Gaff gives a character on Gaff and since Gaff is reductive
Z(Gaff )

0 surjects onto C∗. �

Now the results of section 3 go through without any difference and we have

Theorem 5.6. Let G be an arbitrary connected algebraic group, and X : G −→ C∗ be
a non trivial character with the kernel S, which we assume to be connected. Then the
fibration

1 → S → G → C∗ → 1

is cohomologically trivial.

Proof. G
Gu

has the same homotopy type as G we can assume that the group G is quasi-

reductive. Since Z(Gaff)
0 surjects onto C∗ we can apply the covering space techniques

of proposition 3.2. �

We also have the analogue of the corollary 3.4

Corollary 5.7. A character X : G → C∗, of quasi- reductive groups is split if and only
if X |Z(G)0 is primitive. �

Further, theorem 3.6 is also generalized as

Theorem 5.8. Consider a fibration of homogeneous spaces of a connected algebraic
group G:
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S
H

−→ G
H

−→ C∗

Suppose that the kernel S of the associated character is connected, then the fibration
is cohomologically trivial. �

We note that this method of study generalizes to a surjective map of quasi- reductive
group to a torus and the same results are valid in this context. In general the question
of cohomological triviality is hard. When the base is a commutative group our method
of analysis requires an isogenous central subgroup that maps onto the base, which
naturally leads to the covering space theory to produce a trivial fibre bundle over the
group G. This requirement is quite strong: in fact, if the base is an abelian variety
then there is no guarantee of an abelian variety in G that maps onto the base. However
when the base is the universal semiabelian variety G

D(Gaff )
of a reductive group(c.f. [3],

page 51) we have the following:

Theorem 5.9. Let G be a quasi- reductive group and Gsab be the quotient semiabelian
variety G

D(Gaff )
, where D(Gaff) is the derived group of the affine part of G and also the

derived group of G (see corollary 5.1.5 in [3]. Then the fibration

1 → D(Gaff) → G
π
−→ Gsab → 1

is cohomologically trivial.

Proof. We have the following commutative diagram

1 D(Gaff ) G Gsab 1

Gant · Z(Gaff )
0 = G′

π

We note that G′ is central in G, as Gant and Z(Gaff )
0 are central. Since G is quasi- re-

ductive, G is generated by D(Gaff), andG′, thus π|G′ is surjective. Further, ker(π|G′) =
G′ ∩D(Gaff ) is a central torus contained in D(Gaff) thus ker(π|G′) is finite and hence
π|G′ is an isogeny and hence a covering of Gsab. Now following the method of proof of
proposition 3.2 we have the result. �

Remark. We now give a result for the structure for arbitrary connected quasi- reductive
algebraic group G upto isogeny, as an application of our methods. The existence of the
maximal abelian sub variety can already be seen in the work of Rosenlicht corollary
page 434 in [20]. For a modern treatment we refer to theorem 4.2.5 in [3].
First, we make a general comment which we will use: Q be a quotient group of a

group G, let H be a central sub- group of G that is isogenous to Q, consider the fibre
product

G̃ H

G Q
q
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By the technique of the proof of proposition 3.2, we have G̃ ≈ H × ker(q). Thus it is
enough to find a central subgroup that is isogenous to a quotient group to get such a
decomposition of G upto isogeny.
Consider the morphism q : G → G

Gant
→ T ′, where T ′ is the maximal toral quotient

of the group G
Gant

(and hence a maximal toral quotient of G). Now the center Z(Gaff )
0

surjects onto T ′ and thus there is a torus T ⊂ Z(Gaff )
0 that is isogenous to T ′. Hence

by the earlier the comment in the previous paragraph we have an isogeny of G ≈ T×G1,
where G1 is the kernel of the composition.
We note that the derived groups of G and G1 are the same, since the derived groups

are affine, as Gant is commutative Gant is trivial in D(G) (also corollary 5.1.5 [3] and
sinceGaff is reductiveD(G) is semisimple ) andGant ⊂ G1. Now consider the morphism
f : G1 → G1

D(G)
= Q, Gant maps surjectively onto Q and the kernel Gant ∩ D(G1) is

finite (the affine part of Gant is a torus!). Thus Gant is isogenous to Q and hence
G1 ≈ D(G)×Gant.
Let A be a maximal abelian subvariety of Gant and consider the image of A, say

A′ under the albanese morphism α. By Poincaré’s complete reducibility theorem (c.f.
theorem 1 page 160 [17]) A′ has a complementary abelian subvariety in α(Gant) say

B upto isogeny. Taking the composition of α with the quotient map to α(Gant)
B

≈ A′

we have a map q : Gant → A′ and the restriction of q to A is an isogeny (the kernel
is ((Gant)aff ∩ A which is finite). Thus Gant ≈ A × GS, where GS is a semi- abelian,
anti- affine variety that has no proper abelian subvarieties. However, we note that the
albanese map of GS is non trivial. Further, A is the unique maximal abelian variety in
Gant, this follows as A is the unique abelian variety in G̃ant.
Hence upto isogeny, any quasi- reductive algebraic group has the following structure

Gss × T ×A×GS, where Gss is affine semisimple, T is a torus, A is the unique abelian
variety that is split (in Gant) and GS is a semi- abelian, anti- affine variety with no
proper abelian subvariety.
Further, consider a homogeneous space G

H
with surjective morphism onto a commu-

tative algebraic group B, so that the composition with the quotient map q : G → G
H

is a homomorphism of algebraic groups, with kernel S connected. Now suppose that,
there is a central subgroup G1 ⊂ G which is isogenous to B, then the cover of G

H
is

G̃
H

≈ S
H
×G1, where

S
H

is the fibre over e and the fibration S
H

→ G
H

→ B is cohomolog-
ically trivial.
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