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AFFINE TORIC VARIETIES WITH AN OPEN ORBIT OF AN

SLn ACTION

N.YU. MEDVED

Abstract. We study affine toric varieties with an action of group SLn with

a dense orbit. A characterisation in terms of SLn ×Q-modules is given where

Q is a quasitorus. This characterisation is more explicitly expanded in case

n = 3. It is shown that in case n = 3 the divisor class group rank is not greater

than 3, however it is unbounded when n > 4.

1. Introduction

The ground field K is supposed to be algebraically closed of characteristic zero.
In this paper we study irreducible affine toric varieties with a regular action of

the group SLn with an open orbit. A normal irreducible variety X is said to be
toric if it admits an effective action of an algebraic torus T with an open orbit.

A classical problem in the study of algrebraic group actions is describing orbit
closures, i.e. varieties with a dense orbit of a group action. For G = SL2 all normal
varieties with a dense SL2-orbit were described by V.L. Popov in [10] using the
U -invariants. Unfortunately, it seems there is no such description available for SLn

with n > 2.
A well-researched class of algebraic varieties is provided by toric varieties. One

of the aspects of their importance is that they provide useful examples, as many
of their properties can be computed explicitly. In this paper we are interested in
affine toric varieties with an open orbit of a regular action of the group SLn. Their
properties may be studied to gain intuition to possible properties of arbitrary affine
varieties with a dense orbit of an SLn action.

In the paper [5] there was provided a description of affine toric varieties with a
dense orbit of an SL2 action. Extending methods from that paper, we describe all
irreducible affine toric varieties with an open orbit of an SLn action.

In Section 2 we recall basic facts about affine toric varieties and introduce the
Cox construction and the total coordinate space of the variety. Also in this section
we introduce the notion of a prehomogeneous vector space, that is, a vector space
with a regular action of an algebraic group with an open orbit. We show that
a unique prehomogeneous vector space may be associated with every affine toric
variety with a dense SLn-orbit. In Section 3 we obtain the conditions for a preho-
mogeneous vector space to be in image of this correspondence. This allows us to
reduce our problem to classification of the prehomogeneous vector spaces satisfying
those conditions. For that we use the classification from [11].

In Section 4 we provide a criterion for an affine space with a linear quasitorus
action to be the total coordinate space of an affine toric variety. Applying this
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ring.
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2 N. YU. MEDVED

result in Section 5 we establish which prehomogeneous vector spaces may appear
in the case n = 3. The result is contained in Theorem 1. One aspect of this
classification is that all of them have the class group rank equal to 0, 1, 2 or 3. That
corresponds nicely to the case n = 2 where it follows from a well-known result
due to V.L. Popov [10] that all varieties with a dense SL2 orbit, not necessarily
toric ones, have the class group rank either 0 or 1. In Section 6 we show that such
behaviour does not continue when n > 4, in fact, for any n > 4 and any d ∈ N
there is such a variety with class group rank equal d. Moreover, the constructed
example has trivial stabilizer of the generic point.

The author would like to thank his scientific advisor S. A. Gaifullin for lots of
helpful discussions. The author would also like to thank I. V. Arzhantsev for pro-
viding valuable feedback on the subject of the paper.

2. Preliminaries

Let X be a toric variety, that is a variety with an open orbit of an effective action
of an algebraic torus. It can be described in combinatorial terms by introducing a
lattice N and a set of stongly convex polyhedral cones in the space N⊗ZQ satisfying
several properties that is called its fan. For details we refer the reader to [4]. We
shall require only the case when X is affine in which case the fan has only one cone
of maximal dimension. Let its rays have ρ1, . . . , ρτ as their primitive vectors in the
lattice N of one-parameter subgroups. There is a bijection between those rays and
prime T -invariant Weyl divisors, let us denote the divisor corresponding to ρi as
Dρi

.
The notion of the Cox ring R(X) of a toric variety X was formulated by D. Cox

as follows: R(X) is the polynomial ring of τ variables x1, . . . , xτ graded by the
divisor class group of X : a monomial

∏
xai

i has degree [
∑

aiDρi
] where [D] denotes

class of the divisor D. A similar construction can be introduced in the non-toric
case, if some other conditions stay true (see, for example, [1]). In the non-toric case
the ring R(X) is not necessarily the polynomial ring. The Cox ring of a variety
is unique up to a graded rings isomorphism. By X we denote SpecR(X) — the
total coordinate space of the variety X . Since the homogeneous component of [0]
in R(X) is isomophic to K[X ] we may consider the morphism π : X → X which is
called the Cox realization of the variety X . It may be expressed as the categorical
factor by the action of the characteristic quasitorus Q = K[Cl(X)].

Consider an abelian group K and a K-graded integral K-algebra R. We say
that a nonzero nonunit element f is K-prime if it is homogeneous and for any
homogeneous g, h such that f |gh we have either f |g or f |h. We say that R is
factorially K-graded if every homogeneous nonzero nonunit element is a product of
K-primes.

Let us denote the categorical factor of Z by the action of Q by Z//Q. Let
us introduce a criterion for a variety Z with a quasitorus action Q to be a total
coordinate space of an affine variety X :

Proposition 1. (Corollary of statement 2.3 in [3])Consider a quasitorus Q action
on a normal irreducible affine variety Z with an open Q-invariant subset U such
that the following conditions hold:

(1) K[Z] is factorially Cl(X)-graded;
(2) codimZ(Z \ U) > 2;
(3) Q acts freely on U ;
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(4) every fiber of quotient morphism π : Z → Z//Q intersecting U consists of
one Q-orbit.

Let us denote X ∼= Z//Q. Then Q is isomorphic to the characteristic quasitorus of
X and Z is isomorphic to the total coordinate space X.

Proposition 2. Let G be a simply connected semisimple algebraic group acting on
an affine variety X with an open orbit, let Q be the characteristic quasitorus of
the variety X. Then X is toric if and only if there exists such a (G × Q)-module
V with an open (G × Q)-orbit that X is G-equivariantly isomorphic to V//Q and
V → V//Q is the Cox realisation.

Proof. (⇒) Existance of the module immediately follows from applying [1, Th.
4.2.3.2] to the total coordinate space of X . The orbit is open by [2, Lemma 1].
(⇐) The factor is obviously toric as the action of Q is linear. The orbit is open
again by [2, Lemma 1]. �

Let us now introduce the notion of a prehomogeneous vector space.

Definition 1. A vector space V with a linear action of a connected algebraic group
G is called a prehomogeneous vector space if this action has a dense orbit.

In [6] (see also [7]) there is a list of all prehomogeneous vector spaces for groups
of type Gs×Q where Gs is simple and Q is a quasitorus. From this list we obtain all
prehomogeneous vector spaces of the group SLn×Q. Let Λi denote the irreducible
representation (Weyl module) of SLn in Λi(Kn). We are going to identify the trivial
representation K1 with Λ0. It was shown in [11] that any prehomogeneous vector
space of SLn × Q must decompose into a direct sum of Λ0,Λ1,Λ2,Λ3, S

2(Kn).
Moreover, Λ3 may appear only if n = 6, 7, 8.

The full list of possible prehomogeneous vector spaces is rather long, thus we
present only the case n = 3 and also a special case for n > 3, which we will require
later.

Proposition 3. Every prehomogeneous vector space V of the group SL3 × Q is
either one of the following, or the one of the conjugate to them:

(1) Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

l

⊕Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where l = 0, 1, 2 and Q acts with an open

orbit on Θ(V ) = Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

;

(2) Λ1 ⊕ Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where Q acts with an open orbit

on Θ(V ) = 〈det〉 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

;

(3) Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

l−1

⊕(Λ1)
∗ ⊕ Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

, where l is either 2 or 3 and Q acts

with an open orbit on Θ(V ) = Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

⊕〈g1〉 ⊕ . . . ⊕ 〈gl−1〉 , where

gi is the polynomial that represents the pairing between i-th copy of Λ1

and (Λ1)
∗.
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Proposition 4. For any n > 2 the representation Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

n

⊕Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

is a prehomogeneous vector space of the group SLn × Q whenever Q acts with an
open orbit on 〈det〉 ⊕ Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

.

3. Gale duality and positively 2-spanning polyhedra

We provide a brief introduction to the Gale duality, for more details see, for
example, [8].

When we refer to a collection of some objects, we mean that any element may
belong to the collection in several copies, which we consider to be separate. Note
that when we delete a member of a collection, this refers to only one copy of the
member, so if it existed in several copies, the others may remain.

Definition 2. A point configuration A in an affine space A over Q is an arbitrary
collection of points a1, . . . , an, not lying in an affine subspace of lesser dimension.

Remark 1. It immediately follows from the definition that n > d + 1. Further
we shall consider only the case n > d + 2, some of the statements may be still
applicable in the case n = d+ 1 but not all of them.

Definition 3. A vector configuration G in vector space W over Q is an arbitrary
collection of vectors g1, . . . , gn. We shall call G a vector configuration with zero sum
whenever

∑
gi = 0.

Let us consider an affine space identified with Qd and a point configuration A
consisting of n points a1, . . . , an. The Gale transform of A is a vector configuration
with zero sum G, consisting of n vectors in Qn−d−1 defined as follows. Consider
the d × n matrix A having coordinates of the points ai as its columns. Let us
denote a row vector (1, 1, . . . , 1

︸ ︷︷ ︸

n

) as e. We shall append e to the matrix A obtaining

a (d + 1) × n matrix Ã. As the points ai do not lie in an affine subspace of lesser
dimension, this matrix is of rank d + 1. Now we consider the (d + 1)–dimensional
subspace W in Qn, generated by its rows. Let b1, . . . , bn−d−1 be a basis of the
orthogonal subspace W⊥. We write them into the rows of the matrix B. Finally,
we let gi be the columns of the matrix B. The collection G of such gi is called the
Gale transform of A.

Remark 2. We shall note that the resulting n vectors do not correspond to the n
points individually. The Gale transform only establishes a correspondence between
collections. Moreover, this correspondence is not one-to-one (see the next lemmas).

Remark 3. The Gale transform image G has zero sum, as the rows of B are
orthogonal to e.

Remark 4. Addition of e can be thought of as projectivization of the configuration
in the affine space. A linear version of Gale duality can be defined similarly by
skipping this step. Note that the Gale transform of an arbitrary vector configuration
might not have the sum equal zero, as e no longer necessarily lies in the linear span
of the rows of Ã. Moreover, for the linear duality another description exists in
terms of tensor products, for details refer to [1, Chapter 2.2.1].
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Remark 5. (1) For different choice of basis in W⊥ the Gale transform im-
ages G = {g1, . . . , gn} and G′ = {g′1, . . . , g′n} are the same up to a linear
transformation.

(2) If two point collections a and a′ are the same up to an affine transformation
then the matrix B is the same, thus the Gale transform images are the same.

Let us denote by AffDep(A) the set of all linear dependancies of the matrix Ã
columns {α ∈ Qn : α1a1 + . . . + αnan = 0, α1 + . . . + αn = 0}. As AffVal(A) we
denote the set {(f(a1), . . . , f(an)) | f : Qd → Q — an affine function}. Similarly,
LinDep(G) stands for {α ∈ Qn−d−1 : α1g1 + . . . + αngn = 0} and LinVal(G) for
{(f(g1), . . . , f(gn)) | f : Qd → Q — linear function}.
Lemma 3.1. Let A be a point configuration in space Qd and G — the Gale trans-
form of A. Then AffVal(A) = LinDep(G),AffDep(A) = LinVal(G).
Proof. For any (b1, . . . , bn) ∈ AffVal(A) there exists an affine function f : Qd → Q

such that f(ai) = bi for all i. Let us consider the coordinates of f by denoting its

linear part as a row vector f1 and its constant as f0. As the rows of Ã and B are
othogonal, we get matrix equations ABT = 0, eBT = 0. By applying the equation
b = f1A+ f0e we get the following:

∑

bigi = bBT = (f1A+ f0e)B
T = f1AB

T + f0eB
T = 0.

To prove the reverse note that if
∑

bigi = 0, then b is orthogonal to all the rows of

the matrix B, thus equal to a linear combination of the rows of Ã.
The proof of the second equality is essentially the same. �

Lemma 3.2. All the points of A lie in general position if and only if every n−d−1
vector of G form a basis in Qn−d−1.

Proof. Suppose some n− d − 1 vectors of G do not form a basis of Qn−d−1. Then
there is a linear dependency

∑
bigi = 0 with no more than n − d − 1 nonzero

elements. By previous Lemma b may be interpreted as an element of AffVal(A),
which means that there exists such an affine function f that it is zero at at least
d+1 point from a. This means there is a hyperplane containing at least d+1 point.
Those arguments may be easily followed backwards to prove the reverse. �

Lemma 3.3. Let I be a subset of {1, . . . , n}, then the points {ai | i ∈ I} lie in one
face of the convex hull conv(A) if and only if 0 ∈ conv{gj | j 6∈ I}.
Proof. If points {ai | i ∈ I} lie in a common face of conv(A) then there is an affine
function f which is zero at ai and nonnegative at all other points of configuration.
Moreover, at some point of configuration it is positive, as all the points of A may
not lie in a hyperplane. Let us consider the vector b = (f(a1), f(a2), . . . , f(an)), it
belongs to LinDep(G), which implies

∑
bjgj = 0. As bi = 0 for i ∈ I, we can delete

those terms from the sum, considering
∑

j 6∈I

bjgj = 0 where all bj are nonnegative.

This equation exactly means that 0 ∈ conv{gj | j 6∈ I}.
It is easy to see that all the logical transitions are reversible. �

4. Criterion of a Cox ring of an affine toric variety

For the next definition and its discussion in (unrelated) context of combinatorial
geometry refer to [9].
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Definition 4. We shall call a vector configuration in W positively 2-spanning if
for any linear hyperplane H both open halfspaces H+ and H− contain at least 2
vectors from the configuration, not necessarily different. An equivalent definition
is that when we delete any vector from the configuration, the remaining do not all
lie in one closed halfspace.

Lemma 4.1. A vector configuration g1 . . . gn spanning Qd is positively 2-spanning
if and only if the Gale dual point configuration a1 . . . an in Qn−d−1 is the set of
vertices of a convex polyhedron without repetitions.

Proof. Let configuration G be not positively 2-spanning. It means that there exists
a vector gj such that all other lie in a closed halfspace, which means there exists
a linear function h such that h(gi) > 0 for all i 6= j. Let bi be h(gi). As the
configuration spans the entire space, h cannot be zero on all the vectors from the
configuration, thus

∑

i6=j

bi > 0, which implies bj < 0. By Lemma 3.1 we obtain b ∈

AffDepA, which implies
∑

biai = 0. Dividing by |bj| and isolating aj on one side of

the equation we obtain
∑

i6=j

bi
|bj |

ai = aj. From
∑

gi = 0 it immediately follows that

∑
bi = 0, which implies

∑

i6=j

bi
|bj |

= 1. Thus existance of such a vector b ∈ AffDepA

with one negative coordinate bj and all other nonnegative is equivalent to existance
of a vertex aj that lies in convex hull of the others. This condition means exactly
that the configuration ai is not a set of vertices of a convex polyhedron. �

Lemma 4.2. Suppose a configuration g1 . . . gn is positively 2-spanning. Then for
any positive rational λi the configuration {λigi} is positively 2-spanning too.

Proof. Obviously if a vector wi is in some open halfspace, then the vector λiwi lies
in the same halfspace. Thus the lemma is trivial. �

Lemma 4.3. Suppose a vector configuration g1, . . . , gs such that its convex hull
contains some neighbourhood of 0. Fix some index k. Then there exists a nonneg-
ative linear dependance

∑
αigi with αk > 0.

Proof. If we triangulate the surface of the convex hull we obtain a partition of
the space into strongly convex simplicial cones. Consider the cone containing −gk.
Then by a well-known lemma there is a coefficient N such that −Ngk may be
expressed as a nonnegative linear combination of the elements that are generating
the rays of this cone. �

Let M be a finitely generated abelian group. We set M to be the factorgroup
M/Tor(M). For an element w of M let w denote its image in M . Let MQ = M⊗ZQ.

Definition 5. In the above notation we say that a collection {wi} in M satisfies
the condition ∗ if two following conditions hold:

(1) the configuration {wi} in MQ is positively 2-spanning;

(2) if we delete any wi, the rest generate M .

If Q is a quasitorus let X(Q) denote the character group of Q, that is, the group
of all homomorphisms Q → K×.

Let us prove the following criterion, which allows to determine whether an affine
space with a quasitorus action is a total coordinate space of an affine toric variety:
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Proposition 5. Suppose a quasitorus Q acts linearly on V = Kl. Let wi ∈ M =
X(Q) be the weights of the coordinate functions xi. Then V equipped with this
action of Q is the Cox realisation of an affine toric variety V//Q if and only if {wi}
satisfy condition ∗.

Proof. (⇒) Let π : V
//Q
։ X be the Cox representation of a toric variety X ∼= V//Q.

Let us prove that the condition ∗ holds. By Proposition 1 there is an open subset
U ⊂ V , such that:

• codimV V \ U > 2,
• Q acts freely on U ,
• every fiber of π intersecting U consists of exactly one Q-orbit.

Suppose there is an index j such that {w1, . . . wj−1, wj+1, . . . wl} do not generate

M . We can rephrase it as follows: let

B = 〈w1, . . . wj−1, wj+1, . . . wl〉 ⊂ M,

then B is a proper subgroup.

Lemma 4.4. Assume M = X(Q). Then a subgroup B ⊂ M is proper if and only if
there is an element s ∈ Q such that s is not the identity and b(s) = 1 for all b ∈ B.

Proof. Let F be a finitely generated free abelian group, τ : F → M a surjection. Let
C = τ−1(B). From B  M immediately follows C  F . Let us choose coordinated
bases {fi} and {difi} in free abelian groups F and C. If dk = 0 for some index k
then consider φ : F → K× given by formula φ(fk) = ζ and φ(fi) = 1 for all i 6= k
where ζ is an arbitrary nonunit element of K×. If all di 6= 0 then pick an arbirary
k and set φ(fk) =

dk
√
1, ϕ(fi) = 1 for all i 6= k. See that in both cases φ 6= 1, but

φ(ker τ) = φ(C) = 1. Thus φ factors through τ and we obtain some s : M → K×

by formula s = φ(τ−1). This is the required s. The second part of the statement is
obvious. �

Let us consider the element s ∈ Q from Lemma 4.4. Let us show that Q does not
act freely on U . Indeed, wi(s) = 1 for all i 6= j, which means that all coordinates
xi are invariant with respect to s for i 6= j. Thus s acts trivially on U ∩ {xj = 0}.
But this set is nonempty since codimV V \ U > 2.

Now let us assume that the configuration {wi} is not positively 2-spanning. It
means there is an index j and a closed halfspace α+ such that for all i 6= j we
have wi ∈ α+. By α let us denote the hyperplane that is the border of α+. Let
K ⊂ {1, . . . , l} \ {j} be the set of indices such that for all k ∈ K we have wk 6∈ α.

If K is nonempty then let us pick an arbitrary k ∈ K and consider the set
Uk = ({xj = 0}∩U)∩{xk 6= 0}. It is not empty as it is an intersection of nonempty
open sets in {xj = 0}. Thus we may consider an arbitrary vector v ∈ Uk. Let us
consider another vector v′ obtained from v by replacing the k-th coordinate by 0.
Every regular Q-invariant containing xk should contain xj , thus equals 0 at both
v and v′. The regular Q-invariants that do not contain xk are equal on v and v′.
Thus all regular Q-invariants are the same on v and v′ but they lie in different
orbits of the quasitorus, which contradicts the assumptions.

If K is empty then there is no regular Q-invariant containing xj . Analogously
to the previous paragraph we may consider v ∈ U \ {xj = 0} and v′ obtained by
replacing the k-th coordinate by 0. The same arguments apply.
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(⇐) Let us assume that the condition ∗ hold. We again apply Proposition 1.
The factoriality holds automatically as the polynomial ring is factorial, thus it is
homogeneously factorial with respect to any grading. As U let us choose the set

U = V \
⋃

i6=k

{xi = 0, xk = 0},

that is the set of points that have no more than one zero coordinate. We see that
codimV V \ U = 2 holds.

Let us show that Q acts freely on U . Indeed, suppose there is an element
s ∈ Q stabilizing a point u ∈ U . That means that s acts trivially on all coordinate
functions not vanishing at u. So there is j such that s acts trivially on all coordinate
functions except xj . As {wi|i 6= j} generate M we see that for every w ∈ M there
is a representation w =

∑

i6=j

αiwi. All wi(s) = 1 for i 6= j thus w(s) = 1 for all

w ∈ M . Thus s equals 1.
Finally, let us show that for every u ∈ U the preimage π−1(π(u)) is exactly one

Q-orbit. Let us fix some point u ∈ U and suppose that every its coordinate except
xj is not 0. Let u′ be another point in π−1(π(u)), we are going to show that every
its coordinate except xj is also not 0. This would imply that u′ ∈ U . Let us pick
a coordinate xk where k 6= j. As the configuration {wi} is positively 2-spanning
there is a nonnegative linear dependance

∑

i6=j

αiwi = 0. By Lemma 4.3 one can

get the coefficient αk to be positive. Consider a corresponding M -homogeneous
monomial m =

∏

i6=j

xαi

i . We raize it to some power d so that md is M -homogeneous,

that is, Q-invariant. Note that md is nonzero at u, thus it is nonzero at every
point in π−1(π(u)). This implies that for any u′ in π−1(π(u)) its k-th coordinate
is nonzero. As this stands for every k except j, we obtain that u′ ∈ U , in other
words π−1(π(u)) ⊂ U . All the Q-orbits in U are of the same dimension, thus one
of them cannot lie in the closure of another, so we obtain that π−1(π(u)) consists
of only one Q-orbit. �

From Prop. 2 and Prop. 5 obviously follows the following proposition:

Proposition 6. Affine toric varieties with an action of a simply connected semisim-
ple group G with an open orbit are categorical factors by the action of Q of (G×Q)-
modules with an open G×Q-orbit for which the condition ∗ holds .

We also provide two lemmas about positively 2-spanning configurations that are
going to be used later.

Lemma 4.5. Suppose a collection {w1, . . . wn} in an s-dimensional space is posi-
tively 2-spanned. Then either s = 0 or n > s+ 3.

Proof. Suppose s 6= 0 and consider a hyperplane spanned by s − 1 vectors in the
collection. Then by definition there are at least 2 vectors on both sides of this
hyperplane thus there are at least s+ 3 elements in the collection. �

Lemma 4.6. Suppose w1, . . . ws ∈ M,M = A ⊕ B. If the collection {wi} is
positively 2-spanning then the collection of their projections {projB(wi)} onto the
second summand is also positively 2-spanning.

The proof immediately follows from the definition.
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5. Affine toric varieties with an action of the group SL3 with an

open orbit

Proposition 7. a) Every (SL3 × Q)-module V with an open SL3 × Q-orbit for
which the condition ∗ holds is either one of the following, or one of the conjugate
to them:

(1) (a) {0}, where dimQ = 0;
(b) Λ1, where dimQ = 0;
(c) Λ1 ⊕ Λ1, where dimQ = 0;
(d) Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

, where r = 0, 1 and dimQ = 1;

(e) Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where r = 2 and dimQ = 2;

(2) (a) Λ1 ⊕ Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where r = 0 and dimQ = 1;

(b) Λ1 ⊕ Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where r = 0, 1 and dimQ = 2;

(c) Λ1 ⊕ Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

, where r = 2 and dimQ = 3;

(3) Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

l−1

⊕(Λ1)
∗, where l = 2, 3 and dimQ = l− 1,

where we assume that Q acts with an open orbit on Θ(V ) as in Prop. 3.
b) Every of the listed cases exists, that is, there is such a group M and a set of
weights that Q acts with an open orbit on Θ(V ) and the condition ∗ holds.

Proof. Let d denote dimQ.
Let us start with the first case from Prop. 3: let

V = Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

l

⊕Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

,

where l = 0, 1, 2 and Q acts with an open orbit on Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

. Let us skip the

case l = 0 which immediately comes down to case (1).
Let us denote the Q-weights on the summands as v1, . . . , vl, w1, . . . , wr where

the first l correspond to Λ1 and the next r correspond to Λ0. Thus we want to find
inequalities for r by checking the condition ∗ for the collection

v1, v1, v1, v2, v2, v2, . . . , vl, vl, vl, w1, w2, . . . , wr.

Now let us consider the subspace A generated by vi and its dimension a. Then
after applying Lemma 4.6 we obtain a (d−a)-dimensional space with no more than
r nonzero projections that come from w1, . . . , wr . By applying Lemma 4.5 we see
that either d − a = 0 or r > d− a + 3. Suppose the second case holds. As Q acts
with an open orbit on Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

, it immediately follows that r 6 d. Combining

the inequalities we see that d − a + 3 6 d, which means that a > 3. On the other
hand, a 6 l 6 2. Thus r > d − a + 3 is impossible, so only the case d − a = 0
remains.

Lemma 5.1. If l > d the following inequality holds: l + r
2 > d+ 1.
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Proof. As l > d we may pick d − 1 element v1, . . . , vd−1 and consider a linear
hyperplane α through them. On each side there are at least 2 elements, thus there
is either 1 element of the remaining vd, . . . , vl−(d−1) or 2 elements of w1, . . . , wr.
Taking into account both sides we obtain 2(l− (d− 1)) + r > 4. This inequality is
equivalent to the one claimed. �

If d = a = 0 then r is also 0 and we are in the case (2) or (3). If d = a = 1 then
r 6 d thus r = 0, 1. By Lemma 5.1 we get l > d+ 1 = 2, thus l = 2. We obtained
the case (4). Finally, if d = a = 2 then as l > a we have l = 2. By Lemma 5.1 we
get 2 + r

2 > 2 + 1 thus r > 2. As r 6 d = 2 we have r = 2. This is the case (5).
Now let us consider the second case from the Prop. 3: let

V = Λ1 ⊕ Λ1 ⊕ Λ1 ⊕ Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

,

where Q acts with an open orbit
on 〈det〉⊕Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

. We keep the notation from the previous case. By applying

Lemma 4.6 we obtain a (d − a)-dimensional space with no more than r nonzero
projections that come from w1, . . . , wr. By applying Lemma 4.5 we see that either
d− a = 0 or r > d− a+3. Suppose the second case holds. As Q acts with an open
orbit on 〈det〉 ⊕Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

, we obtain d > r+ 1. Combining the inequalities we

see that d− a+ 3 6 d− 1, which means that a > 4. On the other hand, a 6 l = 3,
thus r > d− a+ 3 is impossible, so only the case d− a = 0 remains.

By Lemma 5.1 with l = 3 we get d 6 3. As d > r + 1 we know that d > 1. If
d = a = 1 then as r + 1 6 d we obtain r = 0. If d = a = 2 by Lemma 5.1 we get
3+ r

2 > 2+1 thus it does not add any restrictions. As r+1 6 d = 2 we have r 6 1.
Finally, if d = a = 3 by Lemma 5.1 we get 3 + r

2 > 3 + 1 thus r > 2. On the other
hand we know that r + 1 6 d = 3. Thus r = 2.

Now let us consider the last case from Prop. 3: let

V = Λ1 ⊕ . . .⊕ Λ1
︸ ︷︷ ︸

l−1

⊕(Λ1)
∗ ⊕ Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

,

where l is either 2 or 3 and Q acts with an open orbit on Λ0 ⊕ . . .⊕ Λ0
︸ ︷︷ ︸

r

⊕〈g1〉 ⊕

. . .⊕ 〈gl−1〉 , where gi is the polynomial that represents the coupling between i-th
copy of Λ1 and (Λ1)

∗. Let us again keep the notation from the previous cases. By
applying Lemma 4.6 we obtain a (d − a)-dimensional space with no more than r
nonzero projections that come from w1, . . . , wr. By applying Lemma 4.5 we see
that either d − a = 0 or r > d− a + 3. Suppose the second case holds. As Q acts
with an open orbit on Λ0 ⊕ . . .⊕ Λ0

︸ ︷︷ ︸

r

⊕〈g1〉⊕ . . .⊕〈gl−1〉 , we obtain d > r+(l− 1).

Combining the inequalities we see that d − a + 3 6 d − l + 1, which means that
a > l + 2. On the other hand, a 6 l, thus r > d − a+ 3 is impossible, so only the
case d− a = 0 remains.

As d > r + (l − 1) > r + 1 we know that d > 1. If a = d = 1 then as d > r + 1
we obtain r = 0. Also as d > l − 1 we see that l = 3 is impossible in this casem
thus l = 2. If a = d = 2 then from d > r + 1 we obtain r 6 1, by Lemma 5.1 we
get l + r

2 > 2 + 1 = 3, thus l = 3. As d > r + (l − 1) = r + 2 we now get r = 0.
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This ends the proof of part a) as we went through all cases of Prop. 3. Now to
prove b) we present a set of weights in M = Zd satisfying the constraints.

Case v1 v2 v3 w1 w2

1a - - - - -
1b 0 - - - -
1c 0 0 - - -
1d 1 −1 - 1 if r = 1 -
1e (1, 0) (0, 1) - (−1,−1) (−1,−2)
2a 1 1 −1 - -
2b (1, 0) (0, 1) (−1,−2) (1, 0) if r = 1 -
2c (1, 0, 0) (0, 1, 0) (0, 0, 1) (−1,−1,−2) (−1,−2,−1)

3,l = 2 1 −1 - - -
3,l = 3 (1, 0) (0, 1) (−1,−1) - -

�

The following theorem immediately follows from Proposition 7 and from Propo-
sition 6.

Theorem 1. Every affine toric variety X with an action of the group SL3 with an
open orbit is the categorical factor of a module V (X) from Prop. 7. Moreover, if
X ∼=

SL3

Y then V (X) ∼=
SL3×Q

V (Y ).

6. A series of examples with arbitrary large class group rank

As we have discussed in the introduction, in the case n = 2 there is a result due
to V. L. Popov that the variety is either a homogeneous space or there is exactly
one divisor outside of the open orbit. This means that the divisor class group in
this case has rank 1, in fact, it is shown that is equal to Z ⊕ Zm. Our result in
the previous section shows that in the case n = 3 at least for the toric varieties the
dimension of the characteristic quasitorus is 3 or less, which means that the rank
of the class group is 3 or less. Now we show in the following theorem that such
behaviour does not continue for n > 3.

Theorem 2. For every n > 4, d > 1 there exists a SLn-embedding with the class
group rank d.

Proof. Let us consider the module Kn ⊕ · · · ⊕Kn

︸ ︷︷ ︸

n

⊕K⊕ · · · ⊕K
︸ ︷︷ ︸

d−1

. Let xij denote

the coordinates in i-th copy of the module Kn and yi denote the coordinate in i-th
copy of K. We equip the module with a d-dimensional torus T acting with weights
v1, . . . , vn, w1, . . . , wd−1. We want to construct such weights that the condition ∗
holds and there is an open orbit of SLn ×Q.

Let us set all the weights vi for i > 5 to be equal 0. Now consider a convex
polygon with d+ 3 vertices in Q2 and let the weights v1, v2, v3, v4, w1, . . . , wd−1 be
equal to the Gale transform image of the collection of its vertices. They generate
some lattice, isomorphic to Zd, let us denote it as W . Lemma 4.1 ensures that the
configuration {v1, v2, v3, v4, w1, . . . , wd−1} is positively 2-spanning.

For the orbit SLn ×Q to be open we need the weights of the independent gen-
erators of the algebra of SLn-invariant, that is y1, . . . , yd−1, det(xij), to be linearly
independent, as Proposition 4 tells us. Those weights are w1, . . . , wd−1, nv1+nv2+
. . .+nvn. However by construction we have v1 + v2 + v3+ v4 = −(w1+ . . .+wd−1)
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and all other vi are equal 0. Thus we have to tinker with our set of weights as
follows. We multiply all the weights except of v1 by a factor of 2, denoting the
new weights as v′i and w′

j . By Lemma 4.2 the result is still positively 2-spanning.
By Lemma 3.2 the vectors v1, w1, w2, . . . , wd−1 are linearly independent, thus the
vector

χdet = n(v′1 + v′2 + . . .+ v′n) = n(v1 + 2v2 + . . .+ 2vn) =

= −2n(w1 + . . .+ wd−1)− nv1 = −n(w′
1 + . . .+ w′

d−1)− nv′1
is linearly independent with the system w′

1, w
′
2, . . . , w

′
d−1.

Let us denote the lattice generated by new weights as W ′. Now we need to check
the condition ∗ for the new set of weights. By Lemma 4.2 the new configuration
is positively 2-spanning. It remains to establish that if we delete any element,
the remaining do generate W ′. As the configuration contains multiple copies of v′i,
their deletion cannot change the generated lattice. Thus we consider only the case of
deleting some w′

j . But w′
j = −(v′1+v′2+. . .+v′n)−(w′

1+. . .+wj−1+wj+1+. . .+w′
d−1),

which means it can be obtained from the other weights, which implies the lattice
remains the same. This concludes our proof, as the obtained configuration satisfies
condition ∗ and provides an open SLn ×Q-orbit.

�
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