arXiv:1812.10349v1 [math.OC] 26 Dec 2018

Fast minimization of structured convex quartics

Brian Bullins
Princeton University

December 27, 2018

Abstract

We propose faster methods for unconstrained optimization of structured convex quartics, which are
convex functions of the form

f@) ="+ a Gr+ Tle,z, 2] + 5 | Acl

for c € RY, G € R4 T € RX4%4 and A € R"™? such that AT A > 0. In particular, we show how
to achieve an e-optimal minimizer for such functions with only O(n'/®1og® ™ (Z/e)) calls to a gradient
oracle and linear system solver, where Z is a problem-dependent parameter. Our work extends recent
ideas on efficient tensor methods and higher-order acceleration techniques to develop a descent method
for optimizing the relevant quartic functions. As a natural consequence of our method, we achieve an
overall cost of O(n'/®1log®M(Z/e)) calls to a gradient oracle and (sparse) linear system solver for the
problem of £4-regression when AT A > 0, providing additional insight into what may be achieved for
general /,-regression. Our results show the benefit of combining efficient higher-order methods with recent
acceleration techniques for improving convergence rates in fundamental convex optimization problems.

1 Introduction

In this paper, we are interested in the unconstrained optimization problem

. ’ 1
min f(z) (1)
where f(z) is a convex function of the form
1
fz)=c'z 42" Gr+ Tz, z,x] + ﬂHA:ﬂHi (2)

for some ¢ € R?, G € R4 T ¢ R¥*4xd and A € R"*? such that ATA > 0 and {ai}ie{1 ..ny are the
rows of A. We will refer to functions of this form as structured convex quartics, as we are given an explicit
decomposition of the fourth-order term, i.e.,

n

Vif(z) = Za?{ z e RY.

=1

While fast minimization of convex quadratic functions f(z) = ¢ 4+ " G has been an area of significant
research efforts ﬂth@nﬂle, 12015, [Clarkson and Woodruff, 2017, lAgam@Jﬂ_aﬂ, lZD_l_ZbIB], the structured
convex quartic case has been less explored.

In this work, we present a method, called FastQuartic, whose total cost to find an e-optimal minimizer is
established in the following theorem.

http://arxiv.org/abs/1812.10349v1

Theorem 1.1. Let f(-) be a convex function of the form ([2). Then, under appropriate initialization,
FastQuartic finds a point xx such that

flan) = fz%) <e

with total computational cost O(n*/3GO1og® M (Z/e) + n'/5LSS1og® M (Z/¢)), where GO = O(nnz(c) +
nnz(G) + nnz(T) + nnz(A)) is the time to calculate the gradient of f(-), LSS is the time to solve a (sparse)
d x d linear system, and Z s a problem-dependent parameter.

In the case wheren < O (d5(3_w)), w ~ 2.373 being the matrix multiplication constant, and for n < O(d5)
when the linear system is sufficiently sparse, our method improves upon (up to logarithmic factors) the
previous best rate of O(dGO log(dR /<) + d®1og® V) (dR/e)) (where R is the radius of the box containing the
relevant convex set), which can be achieved by using a fast cutting plane method [Lee et al.

We believe that, in addition to improving the complexity for a certain class of convex optlmlzation
problems, our approach illustrates the possibility of using an efficient local search-type method for some more
difficult convex optimization tasks, such as £4-regression. This is in contrast to homotopy-based approaches

(such as interior-point or path- followmg methods) [Nesterov and Nemirovskii, 1994, [Bubeck et al!, 2018al,
cutting plane methods [Lee et all, [2015], and the ellipsoid method [Khachiyan, [1980)].

1.1 Related work

In the general case, it has been shown to be NP-hard to find the global minimizer of a quartic polynomial
[Murty and Kabadi, 1987, Parrilo and Sturmfels, M], or even to decide if the quartic polynomial is convex
ﬂAhmadiijlJ, 120_13] However, in this paper we are able to bypass these hardness results by guaranteeing
the convexity of f(-).

In terms of optimization for higher-order smooth convex functions, for functions whose Hessian is Lo-
Lipschitz, [Monteiro and Svaiter [2013] achieve an error of O(1/k7/2) after O(k) calls to a second-order
Taylor expansion minimization oracle. Lower bounds have been established for the oracle complexity of
higher-order smooth functions, ﬂAmmLanwjju 12018, |Agarwal and Hazan, lZD_lS which match the rate of
Monteiro and Svaiter ﬂZD_lﬂ] for p = 2, and recent progress has been made toward tightening these bounds.

Some recent work from msmm_aﬂ ﬂZD_lS |, only available in Russian, establishes near-optimal rates
for higher-order smooth optimization, though to the best of our understanding, it appears that the paper
does not provide an explicit guarantee for the line search procedure. More recently, two independent works
ﬂJ_iangM, 2018, Bubeck et all, [ZQlBH], published on the arxiv over the past few days, establish near-
optimal rates for optimization of functions with higher-order smoothness, under an oracle model, along with
an analysis of the binary search procedure. In this paper, while we consider only the case for p = 3, we go
beyond the oracle model to establish an end-to-end complexity based on efficient approximations of tensor
methods , m Furthermore, while our paper also relies on a careful handling of the binary
search procedure, our approach requires the more general setting of higher-order smoothness with respect to
matrix-induced norms, which does not appear to follow immediately from |Jiang et all ﬂZD_lH],

2 Setup

def Amax (M) for a matrix M,

Let B € R4 be a symmetric positive-definite matrix, i.e., B = 0. We let | M||
and we denote the minimizer as z* %' argming cpa f(z). For any vector v € R?, we deﬁne its matrix-induced

norm (w.r.t. B) as [jv|g = e /uTBo. Throughout the paper, we will let 7g(z, y) ||:z: —ylls- We say a
differentiable function f(-) is pp-uniformly convex (of degree p) with respect to ||-||g if, for all z,y € R%

Fy) > @)+ (Vf(@),y —a) + %ny — .

Note that for p = 2 and B = I, this definition captures the standard notion of strong convexity. As we shall
see, since our aim is to minimize structured quartic functions, we will be concerned with this definition for
p=4and B=ATA.

A related notion is that of (higher-order) smoothness. Namely, we say a p-times differentiable function
f() is L, smooth (of degree p) w.r.t. |-||g if the p-th differential is L, Lipschitz continuous, i.e., for all
z,y € RY,

IVPF () = VP £ @)l < Lylly — 2.

where we define
def

IVPf(y) = VPf(x)llg = max |VPf(y)[h]” — VP f(z)[h]") .
h:|lhlls <1
Again, since we our concerned with quartic functions, we will later show how f(-) is L3 smooth with respect
to the appropriate norm.

For f(-) that are Ly smooth w.r.t. ||-|B, we also have that, for all z,y € R%,

IV5) ~ Vo n)ls-+ < 2y - 2l g
IV27() ~ V@) < 2y — 23 (1)

It will eventually become necessary to handle the set of all points that might be reached by our method,
starting from an initial point xy. To that end, we consider the following objects, beginning with the set

def *
K= {z: lz —wolf < 4llwo — 2" B} - (5)

. def .
Given this set, we now consider the maximum function value attained over K, i.e., F = max f(z). Finally,
ek

we let et
P :e - : ’ 6
zmﬁygllx ylls (6)

where £ &' {z: f(z) <F}. We may also define G Lef ma2<||Vf(x)||2B,1. We note that, since f(-) is L3
rE

smooth, P is a problem-dependent parameter, i.e., it depends on ¢, G, T, and A. As we will later show, the
dependence on P in the final convergence rate will only appear as part of logarithmic factors.

2.1 Properties of convex quartic functions

Throughout the paper, following the conventions of Nesterov [2018a], we will let
def "1)
o p(y) = f(2) + D 5V f(@)ly —al', p>1 (7)
i=1

denote the p-th order Taylor approximation of f(-), centered at z. Furthermore, for f(-) that is L, smooth,
we define a model function

def 2pL, 1
Q. = o, — |5, 8
#() % @uply) + sy~ ol (3)
As we are only concerned with functions that are L smooth, we will drop the p subscript to define @, (y) def
(I)m,3(y) and
def Ls 4
©n(y) 2 () = Baly) + 22 ly— 2l ©)

Note that Q, g(y) is 6Lz smooth (of degree 3) w.r.t ||-||g. The following theorem illustrates some useful
properties of the model Q, ().

Theorem 2.1 (Nesterov [2018a], Theorem 1, for M = 2L3). Suppose f(-) is convex, 3-times differentiable,
and Lz smooth (of degree 8). Then, for any x,y € RY, we have

L
0= V2f(y) 2 V*®u(y) + 3 lly — B

Moreover, for all y € RY,
f(y) < Qply) (10)
With this representation of the model function 2, g(-) in hand, we let

Tg(x) def argmin, cga Q2 8(Y) (11)

denote a minimizer of the fourth-order model, centered at x. The following lemma concerning 2, g(-), which
will later prove useful, establishes a relaxed version of eq. (2.13) from [Nesterov [20184l].

Lemma 2.2. Let e >0, and let Tg(-) be as in ([I)). Then, for all x,y € R?,

1 3L 22w,)W (2,y) |2 — To(y) 8
—T)> —— Lo+ =2 - 12
(VI@)y =) 2 g s IV @ e+ = 0 0) T e 7] . (12)
where def
Z(w,y) © |V 1(2) + Lo (@, 9)B(@ —)l
def _ _
Wia,y) < (BB,) IB7] + Lol — Tow)ll3)
and

H(r,y) & V20, 5(Ta(y) + 5 90, 5(Ta () lr -~ Ta ()

In order to get a handle on the regularity properties of f(-), we establish its smoothness and uniform
convexity parameters w.r.t. ||-||aTA-

Lemma 2.3 (L3 smoothness). Suppose f(-) is of the form @). Then, for all x,y € R,

IV2f(y) = VP f(@)ara < ly—2llara- (13)
Lemma 2.4 (y, uniform convexity). Suppose f(-) is of the form [@). Then, for all z,y € R?,
n
Fy) = f@) +(Vf(2)y = 2) + Iy = 2l a- (14)
We may also observe that Q, g(+) is uniformly convex w.r.t. |-||B.
Lemma 2.5. For all y,z € R?,
L
Q5(2) 2 Lpy) +(VB(Y). 2~) + 3l — vlb: (15)

3 Minimizing structured convex quartics

In order to show an overall convergence rate for minimizing structured convex quartics, we shall see that
the desired algorithm would be to find an exact minimizer of Q, g(-), for some z at each iteration of the
main algorithm. Thus, one of our main challenges will be to show that an approximate minimizer of 0, g(-)
is sufficiently accurate for the rest of the algorithm. To that end, we begin by considering the auxiliary
minimization problem, for which our method ApproxAuxMin converges at a linear rate to an €,4,,-optimal
minimizer. With this approximate minimizer in hand, we find that, when taking £,4,, small enough, it
provides a sufficiently accurate solution to be used as part of a binary search procedure, called RhoSearch.
This approach is needed for finding an appropriate value p; which meets a certain approximation criterion.

Finally, once we have found an valid choice of p, and its corresponding w41, we show how they can
be used as part of our main method, called FastQuartic, to lead to a final solution xy such that f(zn) —

f(z*) <ein 0(1@11/5 log(1/¢)) iterations of FastQuartic. Furthermore, each of these iterations requires some
polylogarithmic factors incurred by RhoSearch and ApproxAuxMin.

3.1 Approximate auxiliary minimization

To begin, we consider the auxiliary minimization problem min I'y, g(h), where
heR4

Pem(h) (V7 (@),) + ShT9 f(@)h+ SV F@) + 22l

Note that I'; (k) is equivalent to 2, B(y), up to a change of variables. Our aim is to establish a minimization
procedure which returns an e-optimal solution in O(log(A/€uqem)) iterations, where A is a problem-dependent
parameter. Furthermore, each iteration is dominated by O(log®™ (1/Z44m)) calls to a (sparse) linear system
solver. This subroutine, which we call ApproxAuxMin, is described in Section 5 of [Nesterow [2018a] and
is necessary for returning an approximate minimizer of Q. g(-). The approach involves showing that the
auxiliary function is relatively smooth and convex |Lu et all, [2018], and further that each iteration of the
method for minimizing such a function reduces to a minimization problem of the form

—minw(}), (16)
where
def A2 1 2 -1
w(A) = 5 + §<(\/§)\B + Vof(x) ey)
and

o E VT, (he) = V(@) + V2 (2)he + V[(2)[ha]? + Lg||he|[3 Bhs.

As noted by INesterovl [20184], this minimization problem is both one-dimensional and strongly convex, and
so we may achieve global linear convergence. Taken together with the relative smoothness and convexity of
Iz B(:), we have the following theorem.

Theorem 3.1 (Nesterov [2018a], eq.(5.9) (7 = v/2). See also: [Lu et all [2018], Theorem 3.1). For all hy,
K >t >0, generated by ApproxAuxMin(yk, Eaam) (Algorithm[d), we have that

Fyk-,B(h’t) - Fyk-,B(h’*) <

where h* < argmingcga Ty, 5 (h) and o € L (ho — h*)TV2 f(y) (ho — h*) + 2L [hg — h* 5.

Algorithm 1 ApproxAuxMin
Input: yg, Eaam > 0, K = O(log(A/Euam)), ho = 0.
for td:f 0 to K do
ce = Vf(yr) + V2 f(yr)(he) + V2 £ (yi) [he)? + Cllhe | 5B (he)
hiy1 = argming, cpa {(ct, h—hy) + %(h — ht)TVQf(yk)(h —hy) + %Hh — htH%}
end for
return xy41 = yr + hx

Corollary 3.2. Let xx11 = yi + hi be the output from ApproxAuxMin(yg, Eaam), for yx € L and K =
O(108(A/Zaam)). where A 14+ max 2 (T (2) — 2)TV2f(2)(T(2) — 2) + Y3 | T () — 2l Then
Qe B(@r41) — Ly B(TB(WR)) < Eaams,

where each iteration requires time proportional to evaluating f(-) in order to compute ¢z, as well as O(logo(l) (1/€0am))
calls to a (sparse) linear system solver.

Proof. We first note that Tg(yx) = yr + h*, and so Qy, B(xr11) — Q. B(TB(Yk)) = Ty, B(Re) — Ty, B(R¥).
As observed by [Nesterov [2018a] (see also: Appendix A in |Agarwal et all [2017a]), ¢; can be calculated in
time proportional to the cost of evaluating f(-), which takes time O(nnz(c) + nnz(G) + nnz(T) + nnz(A))
for f(-) of the form (). In addition, [Nesterov [2018a] notes that (I6) can be found by any reasonable
linearly convergent procedure, and so given access to the gradient of w(A), this problem can be optimized
(to sufficiently small error) in O(log®™® (1/€4am)) calls to a gradient oracle. Since

%w(x) =\ £cj(\fAB + V2 f(2)) ' B(V2AB + V* f(2)) ey,

calculating the gradient requires O(LSS) time.
Finally, since K = O(log(A/&aam)), by our choice of A, it follows from Theorem B.1] that

Qy,. B(T11) — Ly B(TB(YK)) < Eaam-
O

As we shall see, it will become necessary to handle the approximation error from ApproxAuxMin, and so
we provide the following lemmas to that end.

Lemma 3.3. Let ¢ > 0, let xxy1 be as output by ApproxAuxMin(yk, Eaam), and let T (yx) be as in (L.
Then,

128 4am \
e~ Tatle < (2522)
3
Proof. By Lemma [Z.5] we know that
L

Qe B(zrt1) — Qy B(TB(YR)) = (VQy, B(TB(Yk)), Trt1 — TB(YK)) + 1—;H$k+1 — Tyl
L
= 7o ks = Ts(ye)lB;

and so it follows from Corollary [3.2] that

125m>1/ ‘

N Y
3

Lemma 3.4. Let xi4+1 = ApproxAuxMin(yk, Eqam). Then,

3Z(xr1, Y)W (Tht1, yk)gtlu/z%n

3L3 .
IV f (@i 1) B+ 2o s (g1, Yi) —

<Vf(xk+1)ayk_17k+1> > -

S R N
2L37g (The1, Yr) Lg/47"123 (g1, k)

Proof. The result follows from Lemmas and 0
Lemma 3.5. Let xxy1 be the output from ApproxAuxMin(yk, Eaam) for yr € L. In addition, let r(yx) def
T8 (yx) — yx||B- Then,

Eaam | /* PERNTE
(@1, y0)? = r(ye)?] <6 (=22 pl/2 4 | Leam .
Ly I,

Proof. Let 8 def Zp+1 — I (yr). We have that

[P (@1, k) = r(ue)?] = [T (k) — vkl — loren — urll)
= ITs(yr) — wellz — 1T8(ye) + 5 — yrll5|
= 1T (yx) — yrllB + 2(8, B(Tw(yx) — ur)) + 18l15 — T8 (yr) — vklB|
< 2|8l T8 (yr) — yrlls + I8]I5-

i 1/4
Now, by Lemma B3] we know that ||8||s < (12‘2%) , and so it follows from the definition of P that

Eaam \/* PERNNTE
[P (@re1, ye)® — 7(ye)?] <6 =2 p1/2 o 12Caam '
Ls T

3.2 Search procedure for finding p;

In this section, we establish the correctness of RhoSearch, our subroutine for finding an appropriate choice of
Pk, given xy, vg as inputs. One of the key algorithmic components for achieving fast higher-order acceleration,
as observed by Monteiro and Svaiter [2013] and [Nesterov [20181], is to determine py such that py =~ Cx(pk),
where we define

G(p) 1 T (ur(p) — v ()13, (17)
yi(p) € (1= 7(p)) s + 7o p)vis (18)
and ot 5

) S T AT A (19)

We will also need to define an approximate version

&e(p) € Nl (0) — ()3, (20)

where we let zx41(p) def ApproxAuxMin(yi(p), Eaam). We may observe that (x(p) is continuous in p, and
furthermore that there exists some 0 < pi < oo such that (x(p;) = pi, since if p = 0, then yi = wvg,
and if pp — oo, then yx = xr. Thus, we may reduce it to a binary search problem, under an appropriate
initialization. For now, we assume that at each iteration & > 0, RhoSearch is given initial bounds p; ; and
piflit such that p,;, < pj < p;r]it, thus ensuring it is a valid binary search procedure. We will later show how
FastQuartic can provide RhoSearch with such guarantees.

An important part of managing this process is to limit how quickly (x(p) can grow, as we will need
to ensure a closeness in function value once our candidate bounds p~ and pT are sufficiently close. The
following theorem gives us precisely what we need, namely a differential inequality w.r.t. |(}(p)].

Theorem 3.6. Let (;(p) > 0 be as defined in [I), for some yx(p) € L. Then we have that, for all p > p .,

, R
G0 < e

where R is as defined in (B3).

Theorem 3.7. Given xg, v € L, 0 < &.5 < 1 as inputs, and Egqm > 0 chosen sufficiently small, the
RhoSearch algorithm outputs pr and xr11 such that

(1= &r5)Ck(pr) < pe < (14 &) Ci(pr) (21)

where (i, (-) is as defined in (0).

Algorithm 2 RhoSearch

InPUt Lky Uk, Ak’ p1n1t7 plnlt (St pmlt > pk > pmlt) 57“5 > 07 éaam > O, M = O(lOg(R/grs))
Define § &' 6 (5““’")1 PL/2 4 (125Laam)1/
3

Pt = P P P
fort=1to M do

p= p_tp
2
I _ 14+VI+4L3Akp ~2 _ Aptagg
k+1 = — 255 = Gky1 T T Igp
A1 = A + Qrg
_ QK41
Tk = Apy1

gk = (1 — Tk)Ik “+ TRUE
Zp+1 < ApproxAuxMin(Jk, Eaam)
if 5> ((p) + 0 then
prep 3
else if p < ((p) — ¢ then
p P
else
return p, Tpy1, 0541
end if
end for
return p=, Zgy1, Grt1

3.3 Analyzing the convergence of FastQuartic

Having shown the correctness of the binary search procedure in RhoSearch, we now describe our main
algorithm, called FastQuartic, and prove its correctness. Our analysis follows that of Nesterov [2018b], though
we consider the case where f(-) is Ls smooth (as opposed to Ly smooth).

We begin by proving a useful inequality concerning the estimate sequence, as is standard for analyzing
accelerated methods. An important part of FastQuartic is to provide RhoSearch with appropriate piflit and
Pinit that are valid upper and lower bounds, respectively, on pj. As we will see, setting pitlit = P will provide
a sufficiently large upper bound on pj. For the lower bound, we will see that, for a small enough choice of
Pimit- if it is still the case that p;, < p;;,, then we can show that our current iterate achieves sufficiently small
error, and so we are done. The following lemmas make these observations formal.

Lemma 3.8. Let ¢ > 0, xx41 = ApproxAuxMin(yk, Eqam), where yi, € L, and suppose p,, ., < C'f‘%(mk_’_l,yk).
Then,

304 Wl
|\Vf($k+1)||13 vt P (Tha1, Yr) — :
CPinit

— >

where W > 0 is some problem-dependent parameter.

Proof. The lemma follows directly from Lemma [3.4] since

3Ls 32 (wrs1, Y)W (1, Y) Eatim
(VI(@hi1)y e — Ths1) > s [V (@) |31 + iy (T, Y1) — !
2L37 % (Th1, Yr) BT g B L35 (21, un)

1 3L WeLLs,
s, \Y% Tk 2 1+ —724 Thk+1,Yk) — — >
2L3T]23(«rk+1,yk)” f(+1)||B 1 8 B(+1 y) Cpinit

where we let
W € max Z(x,y)W(x,y). (22)

z,yeL

Algorithm 3 FastQuartic

Input: £ >0, 20 =0, Ag =0, B =0, 3 > p;. >0, piriy =P, Eaam >0, N.
def | def 3L3Ppry 1\ = def . [3Lzp P> - 1 .
Define ¥g(z) = 3|z — zollg, &fs = mm{ﬁ, 3> Ers = min ¢ =pmu po 20T as in (B7).
for k=0to N do
U = argming cpa Y ()

~ 11445 A, N2 Artag,,
g1 = 2Lap = (apy1) = Lo,
Ay = Ak a4,

_ a,;rl
T, = 2=

k Ak+1

v = (1 =7)z + 7, vk
r, < ApproxAuxMin(y,, Eaam)
if piye > (1+ 5.f5)||$l:+1 - yk_HQB then
return x];rl
else if p;;, < (1+ ng)Hxl;rl - yleQB and py i > ||x1;+1 - yl;HQB - Qgtllé;ln (Q as defined in (34)) then
return xl;rl
else
PksTht1,Akt+1 RhoSearch(:ck, Vi, Ak, pi-’I_]it’ pi_nit7 57«5, éaam)
Vi1 = Y+ agy1 [f(@r1) + (Vi (@r41), © — Tpet1)]
end if
end for
return Ty

O

Lemma 3.9. For any k > 0, let Ak, xk, v, Yifo<i<k—1} be as generated by k iterations of FastQuartic with
Eaam > 0 chosen sufficiently small, and suppose that for all k iterations, py., < (1+&fs)ll@p,, — vy I and

Panit < o — ¥ 1B — Qi (for Q as in B4)). Then, we have that

« de .
Apf(ay) + B <op & min Vi (), (23)
where By, def 3L3 Z Aiv17g(Tis1, yi). In addition,
fa) <F, o —a*|g < llwo — 2"z, and op,z € L. (24)

Corollary 3.10. For any k > 0, let A, Bi, xx be as in the previous lemma statement. Then, we have

Flon) = 1) < glloo - 2”3

and 1
By < 3llwo — o s

Lemma 3.11. For any k > 0, we have that

and thus Ay, > - Joralli €{0,... .k —1}.

Lemma 3.12. For any k > 1, we have

3 k+1)°
Ag > . 25
" = 256Ls]|z0 — 7[R (2 > (2)
Theorem 3.13. For any k > 1, we have
o < 128Lflzo—a*lg (2 Y
flan) — Fa*) < - . (26)

Proof. By combining Corollary BI0 with Lemma B.12] we observe that

1 128L3||wg — o*||¢ 2\’
_ < k2 < B)

O

So far, we have shown the correctness in the case where, for all k > 0, pio < (1+&ys) |2, — vy |5 and
Pinit < 75 1Yk H2B - Qétlu/ﬁn. However, we need to ensure correctness of the case where, for some iteration
of FastQuartic, it happens that p;. > (14 &)l — ¥e 1B or pine < 2y — g 1B — QF 4. We handle
these cases in the following theorem.

Theorem 3.14. Suppose there is some 1 < i < N such that for all iterations 1 < j < i, p.. < (1 +

Ers)llzyyy — vy s and pry < llzjy —v; I — Qztim. . and for iteration i, either

(@) piy> A+ Eo)llwiy —yi 1B or

(b) Pinit < (1+ 5]‘5)”551';1 - y;||]23 and pq > ||$;+1 - y;||]23 - nglu/zim'

Then, FastQuartic returns x;y1 such that

F@ir) = f(z") < 2Lspllzo — 2™ || (27)

4 Main results

Now that we have established the necessary results for proving the correctness of the output from ApproxAuxMin
and RhoSearch, we may combine these observations with those of Section [B.3]to prove one of the key theorems
of the paper, which establishes the total cost of optimizing smooth f(-).

Theorem 4.1. Suppose f(x) is Ls smooth. Then, under appropriate initialization, FastQuartic finds a point
xN such that

flan) = fz%) <e

agan1/5
in O ((%) iterations, where each iteration requires O(log® Y (Z/¢)) calls to a gradient oracle

and linear system solver, and where Z s a problem-dependent parameter.

Combining Theorem H.1] with the appropriate notion of uniform convexity, we may establish a rate of
def Lz

linear convergence, based on the condition number k4 = e In addition, the proof of the main theorem
follows almost immediately.
Theorem 4.2. Suppose f(x) is Lz-smooth and py-uniformly convex w.r.t. ||-|lg. Then, under appropriate

initialization, FastQuartic finds a point x such that
flan) = fz%) <e
in O (1@11/5 10g(1/£)) iterations, where each iteration requires O(log® M (Z /2)) calls to a gradient oracle and

linear system solver, and where Z is a problem-dependent parameter.

10

512L;

Proof. Begin by running the FastQuartic algorithm for k = [(T

1/5
) —‘ iterations. By combining Theorem
41l with the fact that f(-) is uniformly convex, we have that

o 128Lgllzo —2*|ls /2 \° _ 512Ls(f(wo) — f(z*
o) - plor) < 2Rl = 2ls (L2 SRl 2 TG,

It follows from our choice of k that

flwo) = f(a)

o) - fla) < S0

Because we reduce the optimality gap by a constant factor every k iterations, it suffices to run FastQuartic
for N = O(k4log(1/e)) iterations to achieve a point xn such that

flan) = f(@") <e. O
Having developed all of the necessary results, we may now prove our main theorem.
Proof of Theorem[11l The proof follows by combining Theorem with Lemmas 23] and 2.4 O

As a consequence of our result, we have the following guarantee for the problem of £4-regression, which
improves upon (up to logarithmic factors) the O*(nl/ 4) calls to a sparse linear system solver as shown by
Bubeck et all [20184], when AT A = 0 and A is sparse.

Corollary 4.3. For the problem of £4-regression, i.e., problems of the form

min f(z) =c¢'z + |Az — b|[},
z€R4

for c € RY, b € R*, A € R™? such that ATA = 0, the FastQuartic algorithm finds, under appropriate
inatialization, a point xn such that

flan) = fz¥) <e

with O(n'/310g° M (Z /¢)) calls to a gradient oracle and (sparse) linear system solver.

Proof. Note that for all x € RY, V4f(z) = 243 aP*, where A = [a;az.. .an]'. Since f(z) is a quartic
i=1
function, we may equivalently express it as its fourth-order Taylor expansion
1 1 1
F@) = J0)+ VFO) T+ 52T V2IO0)2 + SV FO)w, 2,0] + 5V (0)]2]
1 1
= FO)+V(0) w+ 52T V2 (0)a + VA (0)[w, 2, 2] + | Acli,

and so since f(-) is of the form (@), for AT A > 0, the result follows from Theorem [T} and the observation
that each iteration of ApproxAuxMin requires solving a sparse linear system, if A is sparse. O

5 Conclusion

We have presented the method FastQuartic for efficiently minimizing structured convex quartics. Moving
forward, we believe one future direction would be to explore how FastQuartic might be a useful tool for
achieving faster convergence in various other convex optimization problems. An interesting open problem
would be to reduce the dependence on n to d. We would further like to note the connection between the
|Az||] term in (@) and polynomial norms as studied by [Ahmadi et all [2017], as this perspective may prove
useful as part of future work.

11

Acknowledgements

The authors would like to thank Naman Agarwal, Cyril Zhang, and Yi Zhang for helpful discussions. We
would especially like to thank Karan Singh for numerous enlightening discussions, as well as for help with
proofreading the manuscript.

References

Naman Agarwal and Elad Hazan. Lower bounds for higher-order convex optimization. In Proceedings of
the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages
774-792. PMLR, 06-09 Jul 2018.

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local
minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1195-1199. ACM, 2017a.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine learning
in linear time. The Journal of Machine Learning Research, 18(1):4148-4187, 2017b.

Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron Sidford.
Leverage score sampling for faster accelerated regression and erm. arXiv preprint arXiv:1711.08426,
2017c.

Amir Ali Ahmadi, Alex Olshevsky, Pablo A Parrilo, and John N Tsitsiklis. Np-hardness of deciding convexity
of quartic polynomials and related problems. Mathematical Programming, 137(1-2):453-476, 2013.

Amir Ali Ahmadi, Etienne de Klerk, and Georgina Hall. Polynomial norms. arXiv preprint arXiv:1704.07462,
2017.

Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for smooth convex
optimization. Mathematical Programming, pages 1-34, 2018.

Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for | p regression
provably beyond self-concordance and in input-sparsity time. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1130-1137. ACM, 2018a.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method for highly
smooth convex optimization. arXiv preprint arXiv:1812.08026, 2018b.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time.
Journal of the ACM (JACM), 63(6):54, 2017.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford.
Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, pages 181-190. ACM, 2015.

Alexander Gasnikov, Dmitry Kovalev, Ahmed Mohhamed, and Elena Chernousova. The global rate of
convergence for optimal tensor methods in smooth convex optimization. arXiv preprint arXiv:1809.00382,
2018.

Bo Jiang, Haoyue Wang, and Shuzhong Zhang. An optimal high-order tensor method for convex optimization.
arXw preprint arXiw:1812.06557, 2018.

Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics
and Mathematical Physics, 20(1):51-68, 1980.

12

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for
combinatorial and convex optimization. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 1049-1065. IEEE, 2015.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. STAM Journal on Optimization, 28(1):333-354, 2018.

Renato DC Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal extragradient method for
convex optimization and its implications to second-order methods. STAM Journal on Optimization, 23(2):
1092-1125, 2013.

Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear programming.
Mathematical Programming, 39(2):117-129, 1987.

Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. Technical report,
Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2018a.

Yurii Nesterov. Lectures on Convex Optimization. Springer International Publishing, 2018b.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, vol-
ume 13. Siam, 1994.

Pablo A Parrilo and Bernd Sturmfels. Minimizing polynomial functions. In Algorithmic and Quantitative
Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
volume 60, pages 83-99, 2003.

A Proofs

A.1 Proof of Lemma

Proof. Let z,y € R%, let i(x,y) o |z — y|lB, and let 6(z,y)
f(z), we have by (B and the triangle inequality that

IV f(x) + Larg (z,y)B(z — y)|| = [0(z,y)l| < IVf(z) + Larg(x,y)B(z —y) — 6(z,y) |-
= |IVf(z) = V&, (z)|B-1

Ls .
< FT%(xvy)a

o VQ, B(x). Using the L smoothness of

where the last inequality follows from (B]). Squaring both sides gives us

. L.
IV f(z) + Latg(z,y)B(z — y)lIg-1 — Az, y) < 3—87“613(17, Y),
where ot
Az, y) = 2Z(z,y)16(z,y) -1 — [16(2,9) |-

and
def

Z(z,y) = |V f(z) + Lsg (2, y)B(z — y)lls-1.

After expanding and rearranging the terms in the inequality, we arrive at

IVF@)E o+ 2o L3 (,y) — Al y) < 2L, 9)(VF @),y — 7).

13

Diving both sides by 2L375%(z,y) gives us

IVf(@)l5- Az, y)
2L3TB(xBy) + 72L 3B (,0)" = 2L37% (z,y)

All that remains is to bound A(z,y). Note that, by (@) and using the fact that VQ, 5(Tg(y)) =0,

< (Vf(z),y —). (28)

IV B(2) = VQy B(TB(Y) — V?Qs(TeW))l - Te(y)] - %Vng,B(TB(y))[x ~Te(y)’ls-

1
= [VQy8(2) = V’Q8(Te(y)lr — Ta(y)] - 5V’ s(Te(Y))l - Ta(y)|s-
< Lsllz — Te(y)5-
By triangle inequality and rearranging, we have

IVQy B(2)ls-1 < [H(z,y)(z - Te(y))lls-1 + Lslle - Ta(y)]3 (29)

where H(z,y) & V2Q, 8(Te(y))+3V3Qy, B(Te(y)) [z —Tr(y)]. Note that, by our choice of B, we may write
its eigendecomposition as B = UAUT, and we may define B'/2 ©f YA/2UT and B-1/2 © yp-1/2uT.
Thus, we can then rewrite
[H(z,y)(z — Ta(y))|ls-+ = |B™/*H(z,y)(x — Ta(y))|

< IB™Y2|[H(z,y)| [l — Ta(y)|

= |B7V2[|[H(z, ») B~ IB~/*B"*(z - Ta(y))l|

< B2 [H(z, »)[[B-HIIB~2[IBY?(x — Ta(y))|

= B2 H(z, y)IlIB~|ll|lz — T (y)8,

and so it follows that
[V&QyB(2)|B-1 < (HB_WHQIIH(Ly)HHB_lll + Ls||lz — TB(y)H%) |z —Te(y)lls = W(z,y)|z — Te(y)|B-

Taken together with (28], we have that

IVf(@)l5- e 2Z(xy)W(zy)lr —Te(y)ls
Vi) —a) > B | By A |
(Vi) —a) 2 S o B 4 2 L) St)
O
A.2 Proof of Lemma 2.3l
Proof. Note that for all ¢ € RY,
VAF(©)|s = max ‘v‘l h4‘: max [|AD]}< | max AR 30
IVl =, max [VF©OA] = max [AR[T< | max [|AR]S (30)
Setting B = AT A gives us
max ||Ah[3 < 1.
hiflhll o T A <1
By the mean value theorem, we have, for some £ along the line between = and v,
IV (y) = V2 (@)lara 4
= [V f(OllaTa <1,
Hy_w”ATA H ()HATA
and so it follows that
IV2f(y) = VP f(@)ara < Iy —zllaTa-
O

14

A.3 Proof of Lemma 2.4l

Proof. Following the same idea as in the proof of Lemma 223 we note that, for all z,y € R?,

f(y) = Paa(y).
Since f(y) is convex by definition, it follows that
1
0=V f(y) = V2f(2) + VI (@)ly — a] + SV (@)ly — 2,y — a].
Let h =y — 2. Then, following the approach of [Nesterov [2018a], we have
1
=~V f(@)[h] < V2 f(z) + §V4f($)[h, h].

Since this holds for any z,y (and therefore, for any direction h), we can replace h with 7h for any 7 > 0 and
arrive at

VRS (@)l] 2 V2 f (@) + 7SV)l B,
Furthermore, we can replace h by —h to get
PV (@) [h] < V() + 5V () b,],

and so after dividing through by 7, we obtain

V(@) ~ TV F @), h] <V F @) S TV () + SV () A
We may now observe that

Fly) = §(@) + (VI @)y~ 2) + 5V @)y — 2y — 2] + SV @)y — 2 + ooV @)y - ol

T

>)+ (VS @y -+ (5 - g) V@l - o —al + (57 - 55) V@l - ol
Setting 7 = % gives us

Fl) > @)+ (Y (@)y —) + z5V*F@)ly —
= (@) + (V@) g~ 2) + 2| Ay~ D)}
> f(2) + (Vf(a)y —2) + = Aly - 2)]l3
= f@) + (V@) —2) + =y - allhras

which gives us (I4)). O

A.4 Proof of Lemma [2.5

Proof. We note that, for all y, z € RY, since 2, g(2) is convex, it follows from the proof of Lemma 2.4 that

p(2) = Qnly) + (V)2) + 50—) V()=) + V0~ + 57V %)l —y

24
1
72

L
= p) + (VA B). 2 —v) + 35 2 vlb

> QW)+ (VQB®), 2 —y) + ==V Q sz —y*

15

4

A.5 Proof of Theorem [3.6

Proof. Note that (x(p) = (m o yx)(p), where m(yx) = ||T(yr) — yxllE and yx(p) is as defined in (IJ).
Therefore, by the chain rule, we have

G (P)| = 1Ty (P) Vi m(yi(p))]
< Ty () 1BV yem(yr(p) B

< AmaX(B71)1/2”prk(/’)”BHvykm(yk(P))”v
where we let J denote the Jacobian. For ||J,yx(p)|/B, we know by ({I8) and (I9) that

yk(p) = (1 = 7(p))wk + 7 (p)vk

and
2

Te(P) = 17 VIt ALsAnp

Thus, it follows that

d d
Joyr(p) = —d—ka(P) “ Tk + d—ka(P) “ V-

Note that

4L3Ak 4L3Ak 1
mi(p)| = 5 < 55 S =
(1+ VI F4L3Akp) VT + ALsAkp ~ (14 4LsAwp)™2 ~ P

d
dp
Taken together, this gives us that

d leels + ol
19,0 (0l < }d—pm@)} (ol + o) < L2e12 2 0ele,

To provide a bound for ||V, m(yx(p))||, we begin by letting g(z, z) def Q. B(2). We may see that Tg (yx) =

argmin, cpa g(Yi, z). As long as [02g(yk, Te (yk))] ~'+ 0, which we will see holds when T8 (yx) — ykllB > 0,
we have that, by the implicit function theorem,

3, Ts(z) = — [029(x, T ()]~ 020-9(x, T ().
Note that, since g(z,z) = ®,(2) + £||z — ||, we have
1
0.9(x,2) = Vf(z)+ V2f(x)[z — x] + §V3f(x)[z —2]* + Ls||z — z|3B(2 — 2),
and so it follows that

02g(x,2) = V2f(2) + V3f(2)[z — 2] + 2L3B(z — z)(2 — x)TB + L3z — z||3B
= V2 f(x) + V3 f(x)z — 2] + Ls| 2 — z[|3B,

and
020:9(,2) = V2 f(2) + V> f(2)[z — 2] = V*f(2) + %V4f($)[2 —a]?
~ V3f(z)[z — 2] + 2L3B(z — z)(z —2) "B — Ls||z — z|3B
=Vif(x)[z — 2] + 2L3B(z — 2)(z —2) "B — L3z — z|| 3 B.
Thus,

10:0:9(x, 2)|| < H(z,2), (31)

16

where

H(z,z) ||V f(2)[z — 2] + 2L3|B(z — 2)(z —) "B|| + La]|= — «|[3|B|.

By Theorem 21 we have that V2 f(z) + V3 f(2)[z — 2] + L[z — 2|3B = 0, and so

92g(w,2) = V2 f(2) + V*f(2)[z — 2] + Ly — 2| B
- 2
Thus,
1 2

2@) ~ LBz — 215

O2g(z,2)] | <
2220 < 5
We may now observe that, for m(y),
Vyem(yr) = 2(Jy, T (yr) — DB(T'(yk) — k),

and so, by standard matrix norm inequalities,
IV (i) | = 21| (3, To (yr) = DBYZBY(T (i) —)|

< 2[3y, T (ye) | - IBY2(| - 1T (yr) — yxlls + [IBY2] - 1T (yx) — yelln

-1
< 2nax (B'72) (11 [02 (i T ()] ™ 02090 T ()l - 1T () — willm + 1T () — il)
)

< Dnax (BY2) (11 [029 (i, Ty)] 11 - 10:0: 9wk T (i) - 1T () = willm + 17 () — i)

2H (yr, T (yr)) + LaAmin (B) T (yr) — yk|%>
L3Amin(B)[| T8 (yr) — vkllB
where the last inequality follows from ([B1I]) and ([B2), and since ||Ts(yx) — yx|lB > 0 (as if Tg(yx) = Y, then
Yk is a minimizer of f()).
All together, this gives us that

1< (D] < Amax (B~ 21T,k ()1 V e (yi (0)) |

vy (lals + el o { 2H((p). T (u(p) + Lsdmin BT (we(0) — (o) 2
< Amax(B7) <))(”““"(B)< Lahenin (BT (5 (0)) — 920 |3 B))

< 2\ max (BY/?) <

Let H < max H(z,z), p,; be our initial lower bound on pj, and P be as in (@). Since yi(p) € £ and
C(p) = 1T (yx(p)) — yx(p)||E by definition, it follows that

R
(Pl < =77
ol o
where
R def AP N ax (BY/2) (2H + L3Amin(B)P) (33)
L3)\min(B)pi:1it
O

A.6 Proof of Theorem [3.7.

~2 4 -2 4
Proof. By sufficiently small, we mean that £,4., is chosen such that .4, < min { (12#59) , (136;\}) }, for

W as defined in ([22)), and for
det [6P/)
Q= (T +tm] (34)
Lyt LY

17

We proceed by proving the correctness of the binary search procedure. Consider p from the algorithm, and
let Zx4+1 be the output from the call to ApproxAuxMin (g, Eaam) in the RhoSearch algorithm. Then, at each
iteration, one of the following three conditions must hold:

where U 1o
< def Eaam 1/2 125aam
0 =26
(Ls) F +< Ls
Note that, based on our choice of E4qm, we ensure that 6 < zs. Suppose condition (a) holds. Then, by

Lemma 38 (with yx = yi(p)), we have that ¢ (p) — 6 < C(p), and so it follows that p > ((p). Thus, p is an
upper bound on pj, and so this proves the correctness p* remaining an upper bound on p; after updating
pT « p. By similar reasoning, we may conclude that if condition (b) holds, p is a lower bound on p}, and
so p~ remains a lower bound on pj, after updating p~ < ﬁ

If condition (c) holds, then it must be the case that (i(p) > = since if we suppose that C(p) < e
this implies that p < Ck(H) +6 < 35” . However, this is a contradicition since we ensure that p > p; .. > &,..

Therefore, since 5 < Ze < ETSQk() it follows that

(1—&:5)C(p) < p < (14 E06)C(p),

which means that condition (2I]) is met.
Based on our choice of update, anytime condition (a) or (b) holds and the update takes place, we
guarantee a decrease in |[p* — p~|, and so after O(log(R/&,s)) iterations, we are assured that [p™ — p~| <
=3
136%. At this point, we make use of Theorem to argue that p~ must fall in the desired range, i.e.,
~ ~ =3
(1 —&rs)C(p™) < p~ < (1+&rs)C(p™). To show this, we first note that [p; — p~| < 155% . Thus, using the
fact that (;(p) > 0, Theorem [3.0] implies that

(OGP SR = R < G)(G(p)* < R.

Note that p~ < pj.. By integrating with respect to p, we have

P
/ de</ ¢ (p)(C(p 1/2dp</ —Rdp.

2G4 Lo = pi) < G)Y? <

It follows that
Ce(pi)*? = R(p™ = pf),

Wl N

and so we have

18

We may now observe that

and so R
ET‘S
Gr(p7) = Glrk) < 75 (35)
We again use Lemma to see that
- 1/4 - 1/2
= Eaam 125aam ~
o) = Gp)| 6 (e) Py () < Qe (36)
L3 L3
where Q is as defined in (34,
and the last inequality follows from the fact that .4y, < % Thus, since by our choice of €,4.,, We know

~2 4
that Zaam < (1555) it follows that

=2
Ers

100°

Ge(p™) = GulpT)| <

For the sake of clarity, we assume R > 1 — otherwise, we can choose M = O(log(1/&,5)), and a similar
analysis holds. Taken together with (B5]) and the fact that [p~ — pj| < liﬁ and £,5 < 1, we have that

&3 &3 &2 1182, . 1282
— > * _ s — * _ s > * _ s > — _ s > — _ s .
PT 2P 100 Cr(pk) T00R. 2 Cr(pr) 100 > Ce(p™) 00 = Ce(py) 100

Note that, by a similar reasoning as above, it must be the case that ék(p_) > % Since we have ensured
throughout the procedure that p~ < (x(p™), it follows that

(1=&rs)C(p7) < p~ < (1+E4)G(p7),

as desired, and so we set pp = p~. O

A.7 Proof of Lemma [3.9]

~2 4 2 4
Proof. By sufficiently small, we mean that €,,,,, > 0 is chosen such that £,4,, < min { (1265) , (SW) , %},

where €, is as defined in the algorithm.
Following the standard line of reasoning, as presented by [Nesterov [2018h], we proceed via proof by
induction. For k£ =0,

Aof(wo) + Bo = min o =0, f(zo) F. o —a"|[g = llzo =", and vo = € L.

Now suppose, for some k > 0, that (23) and (24) hold. To show that pi‘;it = P is a valid upper bound on
p%, we note that for any 7 € [0, 1], letting yr, = (1—7)zp+70k, f(yr) < max {f(zx), f(vg)} < max{F, f(vk)},

19

by our inductive assumption. We also know by our inductive assumption that [jvy — z*[|§ < ||zo — z*||%.
Thus, since

loe = 2ollB < 2llok — 2" (| + 2[|z0 — 2" [|B < 4l|lwo — 2*|[5,
it follows that vy € K, which means that f(v;) < F, and so f(yx) < F. It follows that, for all 7 € [0, 1],
|1 Ts(yx) — ylll < P, where P is defined as in (@), since f(Ts(yxr)) < f(yx) for all z € R%. Thus, P is a
valid upper bound on pj.

For the lower bound on pj, we note that, based on the condition for when the RhoSearch procedure is
reached in FastQuartic, it must be the case that p;; < (1+&fs)|l@p,; — vy 1B and pry < o —vg 1B —
QL4 Thus, from (3], it can be seen that p; ., < ((p;,;;), and so it follows that p; ., < py. Therefore, the
correctness of RhoSearch can be ensured.

With this observation in hand, we may see that, for any = € R?,

Vi1 (®) 2 Ui + %Hx — vkl + a1 [f(@rsr) + (VF(@rr1), @ = zpn)]
> Apf(zr) + Bi + %HI — WkllE + arrr [f (@rrr) +(Vf(@r41) & = 2ps1)]
2 Ap(f(@rt1) + (VF(@r41), ox — 241)) + Bi + %HI — vkl + arer [f(@ri1) + (VS (@rr1), 2 =)]
= A1 fons) + B+ Sl = ol + (95 o), Aeon = ais) + onra (@ — 25

1
= Apy1f(wpg1) + Br + §Hw — vl + (Vf (@rr1), ars1(z — vi) + Appr (Ur — Tre1)),

where the last equalities is due to the fact that Agy1yr = Axzr + ar+1v,. Note that

1
min, =z = ogllf + (VF(@rsn), akpn (@ = o)) = =V (@nen) [

Combining this observation with Lemma [3.8] the fact that p;;, < ||z
have

=Yy %, and our choice of E4q7m, We

2
a
Hel]iRT}i Y1 () > Appr f(Tr41) + B — ﬁHVf(kaH)HQBA + (Vf(@rt1), Akt (Yk — Trg1))

A
> Apy1 f(@rg1) + By — 5T kL ||Vf(f€k+1)|\13 1
1 3L, W
A [IV) B + S22 (T,) —
k+1 <2L TB(IkH,y)H f(k+1)||B 1 3 B(k+1 yk) pi;it
A
> Ap1 f(@rq1) + By — 5T Lhe ||Vf(f€k+1)|\13 1
1 3L3 &2
—|—A V 27 +_A4 , T8)
e (—2L Ty |V kel + b) — e

We also know, by the guarantees of RhoSearch in Theorem B.7, along with the choice of £4am, that py >
(1=&s)C(pr) = (1 = 5rs)72123($k+1,yk)7 and so

. AkJrl 2
> A By — Vv _
;Ielle Yry1(7) > Ap1 f(@r41) + Br 2L3(1 — gTS)f]QB(ka’yk) IV f(@kt1)lB-
1 3L3 &2
A V 2 3 ~4 TS
+ A1 (—2L TB(karl,yk)H f@re)lB-1 + e 7B (Tht1,Yk) — 100 ;nt>

3Ls .
> Apt1f(Tps1) + Br + Akya <—3Ti“3

] (IkJrlvyk) - écurr) 5

20

where
~2

~ def grs
ECUTT = T /4 ~ N — v X + 77
2L3(1 _Ers)pmlt || f(k+1)||B ' 100 mlt
- 2
Therefore, by our choice of &, < %, where
def G 1
T = L_3 + m,

23) holds for k + 1, proving the induction step. In addition, we may note that

k+1 k+1

Yrr1(z) = —||33 |3 + Z a; [f(@r41) + (Vf(2r41), 2 — 2p41)] < —||33 — ol + Z ai f

= Agy1f(2) + §||9U — 0|1 B-
Since vg1 = argming cpa Y41(x) and Y41 (z) is a quadratic function, it follows that, for all z € R?,
1
Yr1(2) = Pt (V1) + (Vi1 (V1) 2 = V1) + 5 [l — vk I
L 2
= Vet (V1) + S ll2 = vea [l
1
< Apr f(2) + §||9U — 0| B-
Taken together, this gives us that
1 9 . 1 9
Apt1f(@e1) + By + glle — vpallp < min v (2) + 5 llz —venlls

1
= Y41 (Vky1) + §||9C — vrs1llB
1
< Appif(z) + §||51? — zo||B-

Rearranging and letting © = x*, we have that

. L 1
Apr1(f(@rer) = f(27)) + B + 52" — vkl < gllz” ~ o/l
and so it follows that
[ogs1 — 2|5 < llwo — 2*[|%

and Vg1, Trp+1 € L.

A.8 Proof of Corollary [3.10.

Proof. Note that, for all k > 0, z € R?,

1
Un():—Ill’ ‘TOHB_"Zal + (Vf(ze),z —ap)] < _H‘T—IO”B_"ZG'Zf = Arf(z) + 5llz =

and so it follows from Lemma that

. . 1 N T
Apf(zr) + Br < min ¢ (z) < min Agf(x) + <]z — 3:0||2B = Apf(a*) + =||z* — a:0||2B.
zERY r€R4 2 2

21

2o B,

Rearranging, we have

—_

3L i 1.,
BZAH-lTB(xH-luyz) By < Ag(f (@) = flan)) + 52" = 2ol < 52" — 203

[\

and so

fon) = £(a") < 5" = wolh

A.9 Proof of Lemma [3.11]
Proof. Note that, by our choice of Ay and ag,

12 41/2 ak41 _ 1 [A1 [1
AL — Ay N +A/1€/2 _A1/2 +Al/g Tapr > o (38)

k+1

Again, we procede with a proof by induction. Ag = 0, thus the case for £ = 0 holds. Now, suppose for some

k>0,
k—1 2
1 1
A > — .
(S 0)
By (B8], we know that

AL/2 >A1/2 / / /
ko 4L3Pk Z 1/2 4L3Pk Z% 1/2

which concludes the induction step.

A.10 Proof of Lemma [3.12]
Using Theorem B.7] and the fact that £,5 < 1, we have that p; < 274 (241, ;). By Lemma BIT] it follows

that, for all £ > 0,
k—1 2 k_1 2
A 2 7 z: 5| 2 E — | - 39
k= 415 <i—0 p3/2> — 8L3 <i_0 TB(xi-i-luyi)) ()

Note that, for all £ > 0, z € RY,

Un(a) = gl - onB+Zaz (9)~ 2] < Sl olly + 3 @) = Anf@) + Sl ol

=0

and so it follows that
. . 1 PR ST
Apf(zk) + Bp < min ¢y (2) < min Agf(2) + = llz — zo[|5 = Auf(2*) + = [lz* — 20|
zERY z€R4 2 2

Rearranging, we have

—_

3ZA1+1TB<@H,%> B < A(f(7) = (o) + 5llo" — molld < 5llo” —wolly. (40)

22

1

T from [B9), subject to the constraint given

The objective now is to lower bound the quantity kz_:l
i=0
by @Q). After defining ¢; N (%it1,¥;) and D Lof %on — z*||%, our aim is to minimize
(kg k—1 \
it Saneen)

We may introduce a Lagrange multiplier A, giving us the following optimality conditions:

1 .
5—2:)\Ai+1§?, ZE{O,...,k—l}.
1/5
Therefore, & = (ﬁ) . This gives us
k-1 1 4/5 =)
_ _ — 1/5
D= ;Awl <)\Ai+1) ~ \4/5 ;Az-‘rl.

Thus, we have

and so

It follows that

1/2
Let 6 = m and Cy, = (Z A?/5> . Then, we have that

-1 "
CEy — CF > 0Y5Chrr.
Thus, we have that C43253 > 0'/5, Cj41 > C}, and so

0'°Cri1 < (Cra1 — Ck)(Crsr + Ck)
< 2Ck41(Cry1 — Ck).

Thus, it follows that Cj, > §/5(1 + 1(k — 1)) for all k > 1. Taken together, this gives us that

E+1\° E+1)° E+1\°
Ak29(02)5/229(91/5—;— > _92< ;)) ng =T (;r > .
3 0 — B

23

A.11 Proof of Theorem [3.14
3L2Pp;1ic 1

Proof. By the algorithm statement, we have that £¢; = min{ oo™ 5 } By €4am > 0 sufficiently small,

€ < min <£>4
aam = V(1+Eyps) '

For both cases (a) and (b), it holds by Lemma B9l (and the statement of this lemma) that

we mean that

Aif(x:) + Bi < 97 % min ¢(a).
z€R4
We begin by considering the case where (a) holds. We first observe that, since f(-) is convex, we have that,
for all z € L,

f(z) = f(@*) < PYRVf(2)llg-1-

If |V f(zr11)llg-1 < 5, then we are done, as f(z)—f(z*) < ¢, so we consider the case where ||V f(zx41)[|5-1 >

£

P
Thus, by Lemma [3.4] we have that

— Ve, 3L3 4

\Y% — — ||V 2
(Vf(@re1), ye — Trr1) > 2L37'B(=Tk+1,yk) IVf(@r1)llg-1 + 5 g (Tht1, Uk,

6Z(x,y)W (z,y)P)

def
where V = max 71

z,yel e? Ly
Since piy > (1+Eps)llziiy —yi |B = (14 Ers)Ph(wit1,¥:) (by (a)), we may follow the same approach
as before to arrive at

2
. a;
min ¥ 1 (z) > Ay f(@ig1) + Bi — ;1 IVf(@ir)l|B-1 + (Vf(@is1), Aig1(yi — zig1))

reRd
A;
> Aipr f(wig1) + Bi — Lap s — IV f(zip1) |+
30 init
Veihm 3L,
A’i 5, < v 7 4 7 s I
+ Ain1 <2L3TB(%+17%)H fi)g— + == 3 B(Tit1, i)
Ai+1 2
Ai i Bz — = = V 7 -
> +1f($ +1)+ 2L3(1+€fs)7a]23(xi+layi)” f(il? +1)HB 1

Vérim 3L;
Al T ~9 7/ N\ v 1 4 K2 b K3
+Ain <2L3TB(%+17%) IVf(@ig1) [+ == 3 B(Tit1,Yi)

((1 &5 (1 - Vézlzéil) - 1) IV f (i)l 3L

=Aipif(xigr) + Bi + Aipa — 7B (Tit1, i)

2L3TA’B (Il’+17 yz) 8
_ . 4
Thus, since €7, = min { 3L§£§i““ , %} and €,am < (%) , it follows that
3L3A;41 .
m]lél Yiy1(x) > A1 f(wigr1) + Bi + % P (ig1,¥i) = Aig1 f(@it1) + Big1.

As before, we may observe that

i+1 1+1
Yiy1(x) = —||I—I0|\B+Z% (iv1) +(Vf(it1), 2 — zi1)] < —|\$—$0||B+Zaaf
7=0

=Ainf(x)+ §H33 — zo||B,

24

and so it follows that

1
T; — f(z*) < xo — z*%.
f(@iy1) — f(a¥) A [|zo B

By Lemma BT we know that A;11 > ﬁ, and so it follows that
3Pinit
f@irr) = f(&") < 2Lsppyelleo — " (|5

We now consider the case where (b) holds, i.e., pi;, < (14&s)l|2 4 — vy I and piy > 2 — vy 1B —

Qé,llé%n. We may observe that

- a2 > Pinit
kaJrl ur lIs > 1+e.. N

. 4
and so, if we choose €,qm < (5{%{5‘;2)) , it follows that

éfspi:]it >

Pinit > ||$1;+1 - yl;HQB - Qétlu/zzrln > ”551;-1-1 - y;;HzB - (1 +£7s) (1- ng)Hx/;-i-l - yl;||]237
S

and so we have that
(=)l = vr lIs < P < (L4 Er)llzy — v .
Following a line of reasoning as before, we may use Lemma [B.8 with ¢ = (1 + &¢;), along with the fact
that pig, = (1— £7) 27, — v [, o see that

2
. a;
min $i1(2) 2 A1 f(@i1) + Bi — ;1 IV f(@ip)51 + (VF(@ig1), A1 (i — 2it1))
A;
> Aip1 f(@iv1) + Bi — 2L;Lp1i IV f (i)l

1 3L Wese,
A | s V@)l + 2 (g,) — e
+1 <2L3T]23($i+1,yi)|| f(Jl’l)HB 1) B(+1 y) (1 +€j’s)pinit
Air

= N V €Z; 2 _
2L3(1 — E.fs)r%(xi-‘rlayi) || f(+1)||B 1

> Aip1f(zig1) + Bi —

1 304 Weds,
At | s IV F@esn) B + S22 (1) —
+1 <2L3T]23($i+1,yi) || f(Jl’l)HB 1 8 B(+1 y) (1 _|_ st)pinit

3Ls3 . N
= A1 f(@ig1) + Bi+ Aipa (737“413 (Tig1,v5) — Ecurr) ,

where 1/a
~ def gfs 2 WE aam
Ecurr = — — ||vf($k+1)||]3—1 +
2L3(1 = E15) Pinit (L4 €7s)Pinit
2 - 2 — 4
Thus, for €45 = min {%5‘““, %}, and E,4m < (%) , it follows that

. 3Ls .
min Yiv1(x) > A1 f(@ip1) + Bi + A (1—637%(5101'“,%)) = A1 f(xig1) + Biga.

xTE

Therefore, it follows that

lwo — 2" |13,

. 1
f(@it1) — f(z¥) < A

and since by Lemma [3.171] we know that A;, 1 > ﬁ, we have that
3

init

f(@is1) = f(@*) < 2Lspigsllzo — 2" ||

25

A.12 Proof of Theorem 4.1l

Proof. Let Z €f nax {A,G,P,Q,R,V,W, Ls}. By appropriate initialization, we mean that p; ., £qam are

chosen such that p;; < 5775, and

g < min 572"5 ! 572“5 ! gfs ! gfspi:lit ! 3L3,P2pi:1it ! 1
aam 100Q/) "\100W) "\ V(1+£ss)) "\ Q1 +Ess)/) 32W 92
€ 1
< mi Z)). 2
< mln{O (poly (Z))) 2} ;

where €7, and €, are as defined in the FastQuartic algorithm. Thus, based on our choices of p;;; and Eqam,
the iteration complexity follows immediately from Theorems B.13 and [3141 Each iteration of FastQuartic
requires at most O(log(£)) iterations of RhoSearch, each of which requires at most O(log(£)) iterations of

ApproxAuxMin, and each iteration of ApproxAuxMin requires at most O(logo(l)(g)) calls to a gradient oracle

and linear system solver. Taken together, this gives us a total computational cost of O(logo(l)(%)) calls to
a gradient oracle and linear system solver per iteration of FastQuartic. O

26

	1 Introduction
	1.1 Related work

	2 Setup
	2.1 Properties of convex quartic functions

	3 Minimizing structured convex quartics
	3.1 Approximate auxiliary minimization
	3.2 Search procedure for finding k
	3.3 Analyzing the convergence of FastQuartic

	4 Main results
	5 Conclusion
	A Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??.
	A.3 Proof of Lemma ??.
	A.4 Proof of Lemma ??.
	A.5 Proof of Theorem ??.
	A.6 Proof of Theorem ??.
	A.7 Proof of Lemma ??.
	A.8 Proof of Corollary ??.
	A.9 Proof of Lemma ??.
	A.10 Proof of Lemma ??.
	A.11 Proof of Theorem ??.
	A.12 Proof of Theorem ??.

