
ar
X

iv
:1

81
2.

10
34

9v
1

 [
m

at
h.

O
C

]
 2

6
D

ec
 2

01
8

Fast minimization of structured convex quartics

Brian Bullins

Princeton University

December 27, 2018

Abstract

We propose faster methods for unconstrained optimization of structured convex quartics, which are
convex functions of the form

f(x) = c⊤x+ x⊤
Gx+T[x, x, x] +

1

24
‖Ax‖44

for c ∈ R
d, G ∈ R

d×d, T ∈ R
d×d×d, and A ∈ R

n×d such that A
⊤
A ≻ 0. In particular, we show how

to achieve an ε-optimal minimizer for such functions with only O(n1/5 logO(1)(Z/ε)) calls to a gradient
oracle and linear system solver, where Z is a problem-dependent parameter. Our work extends recent
ideas on efficient tensor methods and higher-order acceleration techniques to develop a descent method
for optimizing the relevant quartic functions. As a natural consequence of our method, we achieve an
overall cost of O(n1/5 logO(1)(Z/ε)) calls to a gradient oracle and (sparse) linear system solver for the
problem of ℓ4-regression when A

⊤
A ≻ 0, providing additional insight into what may be achieved for

general ℓp-regression. Our results show the benefit of combining efficient higher-order methods with recent
acceleration techniques for improving convergence rates in fundamental convex optimization problems.

1 Introduction

In this paper, we are interested in the unconstrained optimization problem

min
x∈Rd

f(x), (1)

where f(x) is a convex function of the form

f(x) = c⊤x+ x⊤Gx+T[x, x, x] +
1

24
‖Ax‖44 (2)

for some c ∈ R
d, G ∈ R

d×d, T ∈ R
d×d×d, and A ∈ R

n×d such that A⊤A ≻ 0 and {ai}i∈{1,...,n} are the
rows of A. We will refer to functions of this form as structured convex quartics, as we are given an explicit
decomposition of the fourth-order term, i.e.,

∇4f(x) =

n
∑

i=1

a⊗4
i , x ∈ R

d.

While fast minimization of convex quadratic functions f(x) = c⊤x + x⊤Gx has been an area of significant
research efforts [Cohen et al., 2015, Clarkson and Woodruff, 2017, Agarwal et al., 2017b,c], the structured
convex quartic case has been less explored.

In this work, we present a method, called FastQuartic, whose total cost to find an ε-optimal minimizer is
established in the following theorem.

1

http://arxiv.org/abs/1812.10349v1

Theorem 1.1. Let f(·) be a convex function of the form (2). Then, under appropriate initialization,
FastQuartic finds a point xN such that

f(xN)− f(x∗) ≤ ε

with total computational cost O(n1/5GO logO(1)(Z/ε) + n1/5LSS logO(1)(Z/ε)), where GO = O(nnz(c) +
nnz(G) + nnz(T) + nnz(A)) is the time to calculate the gradient of f(·), LSS is the time to solve a (sparse)
d× d linear system, and Z is a problem-dependent parameter.

In the case where n ≤ O
(

d5(3−ω)
)

, ω ∼ 2.373 being the matrix multiplication constant, and for n ≤ O(d5)
when the linear system is sufficiently sparse, our method improves upon (up to logarithmic factors) the

previous best rate of O(dGO log(dR/ε) + d3 logO(1)(dR/ε)) (where R is the radius of the box containing the
relevant convex set), which can be achieved by using a fast cutting plane method [Lee et al., 2015].

We believe that, in addition to improving the complexity for a certain class of convex optimization
problems, our approach illustrates the possibility of using an efficient local search-type method for some more
difficult convex optimization tasks, such as ℓ4-regression. This is in contrast to homotopy-based approaches
(such as interior-point or path-following methods) [Nesterov and Nemirovskii, 1994, Bubeck et al., 2018a],
cutting plane methods [Lee et al., 2015], and the ellipsoid method [Khachiyan, 1980].

1.1 Related work

In the general case, it has been shown to be NP-hard to find the global minimizer of a quartic polynomial
[Murty and Kabadi, 1987, Parrilo and Sturmfels, 2003], or even to decide if the quartic polynomial is convex
[Ahmadi et al., 2013]. However, in this paper we are able to bypass these hardness results by guaranteeing
the convexity of f(·).

In terms of optimization for higher-order smooth convex functions, for functions whose Hessian is L2-
Lipschitz, Monteiro and Svaiter [2013] achieve an error of O(1/k7/2) after Õ(k) calls to a second-order
Taylor expansion minimization oracle. Lower bounds have been established for the oracle complexity of
higher-order smooth functions, [Arjevani et al., 2018, Agarwal and Hazan, 2018] which match the rate of
Monteiro and Svaiter [2013] for p = 2, and recent progress has been made toward tightening these bounds.

Some recent work from Gasnikov et al. [2018], only available in Russian, establishes near-optimal rates
for higher-order smooth optimization, though to the best of our understanding, it appears that the paper
does not provide an explicit guarantee for the line search procedure. More recently, two independent works
[Jiang et al., 2018, Bubeck et al., 2018b], published on the arxiv over the past few days, establish near-
optimal rates for optimization of functions with higher-order smoothness, under an oracle model, along with
an analysis of the binary search procedure. In this paper, while we consider only the case for p = 3, we go
beyond the oracle model to establish an end-to-end complexity based on efficient approximations of tensor
methods [Nesterov, 2018a]. Furthermore, while our paper also relies on a careful handling of the binary
search procedure, our approach requires the more general setting of higher-order smoothness with respect to
matrix-induced norms, which does not appear to follow immediately from Jiang et al. [2018], Bubeck et al.
[2018b].

2 Setup

Let B ∈ R
d×d be a symmetric positive-definite matrix, i.e., B ≻ 0. We let ‖M‖ def

= λmax(M) for a matrix M,

and we denote the minimizer as x∗
def
= argminx∈Rd f(x). For any vector v ∈ R

d, we define its matrix-induced

norm (w.r.t. B) as ‖v‖B def
=
√
v⊤Bv. Throughout the paper, we will let r̂B(x, y)

def
= ‖x − y‖B. We say a

differentiable function f(·) is µp-uniformly convex (of degree p) with respect to ‖·‖B if, for all x, y ∈ R
d,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µp

p
‖y − x‖p

B
.

2

Note that for p = 2 and B = I, this definition captures the standard notion of strong convexity. As we shall
see, since our aim is to minimize structured quartic functions, we will be concerned with this definition for
p = 4 and B = A⊤A.

A related notion is that of (higher-order) smoothness. Namely, we say a p-times differentiable function
f(·) is Lp smooth (of degree p) w.r.t. ‖·‖B if the p-th differential is Lp Lipschitz continuous, i.e., for all
x, y ∈ R

d,
‖∇pf(y)−∇pf(x)‖∗B ≤ Lp‖y − x‖B,

where we define
‖∇pf(y)−∇pf(x)‖∗B

def
= max

h:‖h‖B≤1

∣

∣

∣∇pf(y)[h]p −∇pf(x)[h]p
∣

∣

∣ .

Again, since we our concerned with quartic functions, we will later show how f(·) is L3 smooth with respect
to the appropriate norm.

For f(·) that are L3 smooth w.r.t. ‖·‖B, we also have that, for all x, y ∈ R
d,

‖∇f(y)−∇Φx,B(y)‖B−1 ≤ L3

6
‖y − x‖3B, (3)

‖∇2f(y)−∇2Φx,B(y)‖∗B ≤
L3

2
‖y − x‖2B. (4)

It will eventually become necessary to handle the set of all points that might be reached by our method,
starting from an initial point x0. To that end, we consider the following objects, beginning with the set

K def
=
{

x : ‖x− x0‖2B ≤ 4‖x0 − x∗‖2B
}

. (5)

Given this set, we now consider the maximum function value attained over K, i.e., F def
= max

x∈K
f(x). Finally,

we let
P def

= max
x,y∈L

‖x− y‖2
B
, (6)

where L def
= {x : f(x) ≤ F}. We may also define G def

= max
x∈L
‖∇f(x)‖2

B−1 . We note that, since f(·) is L3

smooth, P is a problem-dependent parameter, i.e., it depends on c, G, T, and A. As we will later show, the
dependence on P in the final convergence rate will only appear as part of logarithmic factors.

2.1 Properties of convex quartic functions

Throughout the paper, following the conventions of Nesterov [2018a], we will let

Φx,p(y)
def
= f(x) +

p
∑

i=1

1

i!
∇pf(x)[y − x]i, p ≥ 1 (7)

denote the p-th order Taylor approximation of f(·), centered at x. Furthermore, for f(·) that is Lp smooth,
we define a model function

Ωx,p,B(y)
def
= Φx,p(y) +

2pLp

(p+ 1)!
‖y − x‖p+1

B
. (8)

As we are only concerned with functions that are L3 smooth, we will drop the p subscript to define Φx(y)
def
=

Φx,3(y) and

Ωx,B(y)
def
= Ωx,3,B(y) = Φx(y) +

L3

4
‖y − x‖4

B
. (9)

Note that Ωx,B(y) is 6L3 smooth (of degree 3) w.r.t ‖·‖B. The following theorem illustrates some useful
properties of the model Ωx,B(·).

3

Theorem 2.1 (Nesterov [2018a], Theorem 1, for M = 2L3). Suppose f(·) is convex, 3-times differentiable,
and L3 smooth (of degree 3). Then, for any x, y ∈ R

d, we have

0 � ∇2f(y) � ∇2Φx(y) +
L3

2
‖y − x‖2

B
B.

Moreover, for all y ∈ R
d,

f(y) ≤ Ωx,B(y). (10)

With this representation of the model function Ωx,B(·) in hand, we let

TB(x)
def
= argminy∈Rd Ωx,B(y) (11)

denote a minimizer of the fourth-order model, centered at x. The following lemma concerning Ωx,B(·), which
will later prove useful, establishes a relaxed version of eq. (2.13) from Nesterov [2018a].

Lemma 2.2. Let ε > 0, and let TB(·) be as in (11). Then, for all x, y ∈ R
d,

〈∇f(x), y − x〉 ≥ 1

2L3r̂2B(x, y)
‖∇f(x)‖2

B−1 +
3L3

8
r̂4B(x, y)−

2Z(x, y)W (x, y)‖x− TB(y)‖B
2L3r̂2B(x, y)

, (12)

where

Z(x, y)
def
= ‖∇f(x) + L3r̂

2
B(x, y)B(x − y)‖B−1 ,

W (x, y)
def
=
(

‖B−1/2‖2‖H(x, y)‖‖B−1‖+ L3‖x− TB(y)‖2B
)

,

and

H(x, y)
def
= ∇2Ωy,B(TB(y)) +

1

2
∇3Ωy,B(TB(y))[x − TB(y)].

In order to get a handle on the regularity properties of f(·), we establish its smoothness and uniform
convexity parameters w.r.t. ‖·‖A⊤A.

Lemma 2.3 (L3 smoothness). Suppose f(·) is of the form (2). Then, for all x, y ∈ R
d,

‖∇3f(y)−∇3f(x)‖∗
A⊤A

≤ ‖y − x‖A⊤A. (13)

Lemma 2.4 (µ4 uniform convexity). Suppose f(·) is of the form (2). Then, for all x, y ∈ R
d,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ n

72
‖y − x‖4

A⊤A
. (14)

We may also observe that Ωx,B(·) is uniformly convex w.r.t. ‖·‖B.
Lemma 2.5. For all y, z ∈ R

d,

Ωx,B(z) ≥ Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
L3

12
‖z − y‖4

B
. (15)

3 Minimizing structured convex quartics

In order to show an overall convergence rate for minimizing structured convex quartics, we shall see that
the desired algorithm would be to find an exact minimizer of Ωx,B(·), for some x at each iteration of the
main algorithm. Thus, one of our main challenges will be to show that an approximate minimizer of Ωx,B(·)
is sufficiently accurate for the rest of the algorithm. To that end, we begin by considering the auxiliary
minimization problem, for which our method ApproxAuxMin converges at a linear rate to an ε̃aam-optimal
minimizer. With this approximate minimizer in hand, we find that, when taking ε̃aam small enough, it
provides a sufficiently accurate solution to be used as part of a binary search procedure, called RhoSearch.
This approach is needed for finding an appropriate value ρk which meets a certain approximation criterion.

Finally, once we have found an valid choice of ρk and its corresponding xk+1, we show how they can
be used as part of our main method, called FastQuartic, to lead to a final solution xN such that f(xN) −
f(x∗) ≤ ε in O(κ

1/5
4 log(1/ε)) iterations of FastQuartic. Furthermore, each of these iterations requires some

polylogarithmic factors incurred by RhoSearch and ApproxAuxMin.

4

3.1 Approximate auxiliary minimization

To begin, we consider the auxiliary minimization problem min
h∈Rd

Γx,B(h), where

Γx,B(h)
def
= 〈∇f(x), h〉 + 1

2
h⊤∇2f(x)h+

1

6
∇3f(x)[h]3 +

L3

4
‖h‖4

B
.

Note that Γx,B(h) is equivalent to Ωx,B(y), up to a change of variables. Our aim is to establish a minimization
procedure which returns an ε-optimal solution in O(log(A/ε̃aam)) iterations, where A is a problem-dependent

parameter. Furthermore, each iteration is dominated by O(logO(1)(1/ε̃aam)) calls to a (sparse) linear system
solver. This subroutine, which we call ApproxAuxMin, is described in Section 5 of Nesterov [2018a] and
is necessary for returning an approximate minimizer of Ωx,B(·). The approach involves showing that the
auxiliary function is relatively smooth and convex [Lu et al., 2018], and further that each iteration of the
method for minimizing such a function reduces to a minimization problem of the form

−min
λ>0

w(λ), (16)

where

w(λ)
def
=
λ2

2
+

1

2
〈(
√
2λB+∇2f(x))−1ct, ct〉

and
ct

def
= ∇Γx,B(ht) = ∇f(x) +∇2f(x)ht +∇3f(x)[ht]

2 + L3‖ht‖2BBht.
As noted by Nesterov [2018a], this minimization problem is both one-dimensional and strongly convex, and
so we may achieve global linear convergence. Taken together with the relative smoothness and convexity of
Γx,B(·), we have the following theorem.

Theorem 3.1 (Nesterov [2018a], eq.(5.9) (τ =
√
2). See also: Lu et al. [2018], Theorem 3.1). For all ht,

K ≥ t ≥ 0, generated by ApproxAuxMin(yk, ε̃aam) (Algorithm 1), we have that

Γyk,B(ht)− Γyk,B(h
∗) ≤ α

(√
2+1
2

)t

− 1
,

where h∗
def
= argminh∈Rd Γyk,B(h) and α

def
= 1√

2
(h0 − h∗)⊤∇2f(yk)(h0 − h∗) +

√
2L3

4 ‖h0 − h∗‖4B.

Algorithm 1 ApproxAuxMin

Input: yk, ε̃aam > 0, K = O(log(A/ε̃aam)), h0 = 0.
for t = 0 to K do

ct
def
= ∇f(yk) +∇2f(yk)(ht) +∇3f(yk)[ht]

2 + C‖ht‖2BB(ht)

ht+1 = argminh∈Rd

{

〈ct, h− ht〉+ 1√
2
(h− ht)⊤∇2f(yk)(h− ht) +

√
2L3

4 ‖h− ht‖4B
}

end for

return xk+1 = yk + hK

Corollary 3.2. Let xk+1 = yk + hK be the output from ApproxAuxMin(yk, ε̃aam), for yk ∈ L and K =

O(log(A/ε̃aam)), where A def
= 1 +max

z∈L
1√
2
(TB(z)− z)⊤∇2f(z)(TB(z)− z) +

√
2L3

4 ‖TB(z)− z‖4B. Then

Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≤ ε̃aam,

where each iteration requires time proportional to evaluating f(·) in order to compute ct, as well as O(log
O(1)(1/ε̃aam))

calls to a (sparse) linear system solver.

5

Proof. We first note that TB(yk) = yk + h∗, and so Ωyk,B(xk+1) − Ωyk,B(TB(yk)) = Γyk,B(ht) − Γyk,B(h
∗).

As observed by Nesterov [2018a] (see also: Appendix A in Agarwal et al. [2017a]), ct can be calculated in
time proportional to the cost of evaluating f(·), which takes time O(nnz(c) + nnz(G) + nnz(T) + nnz(A))
for f(·) of the form (2). In addition, Nesterov [2018a] notes that (16) can be found by any reasonable
linearly convergent procedure, and so given access to the gradient of w(λ), this problem can be optimized

(to sufficiently small error) in O(logO(1)(1/ε̃aam)) calls to a gradient oracle. Since

d

dλ
w(λ) = λ−

√
2

2
c⊤t (
√
2λB+∇2f(x))−1B(

√
2λB+∇2f(x))−1ct,

calculating the gradient requires O(LSS) time.
Finally, since K = O(log(A/ε̃aam)), by our choice of A, it follows from Theorem 3.1 that

Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≤ ε̃aam.

As we shall see, it will become necessary to handle the approximation error from ApproxAuxMin, and so
we provide the following lemmas to that end.

Lemma 3.3. Let ε > 0, let xk+1 be as output by ApproxAuxMin(yk, ε̃aam), and let TB(yk) be as in (11).
Then,

‖xk+1 − TB(yk)‖B ≤
(

12ε̃aam
L3

)1/4

.

Proof. By Lemma 2.5, we know that

Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≥ 〈∇Ωyk,B(TB(yk)), xk+1 − TB(yk)〉+
L3

12
‖xk+1 − TB(yk)‖4B

=
L3

12
‖xk+1 − TB(yk)‖4B,

and so it follows from Corollary 3.2 that

‖xk+1 − TB(yk)‖B ≤
(

12ε̃aam
L3

)1/4

.

Lemma 3.4. Let xk+1 = ApproxAuxMin(yk, ε̃aam). Then,

〈∇f(xk+1), yk−xk+1〉 ≥
1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1+

3L3

8
r̂4
B
(xk+1, yk)−

3Z(xk+1, yk)W (xk+1, yk)ε̃
1/4
aam

L
5/4
3 r̂2

B
(xk+1, yk)

.

Proof. The result follows from Lemmas 2.2 and 3.3.

Lemma 3.5. Let xk+1 be the output from ApproxAuxMin(yk, ε̃aam) for yk ∈ L. In addition, let r(yk)
def
=

‖TB(yk)− yk‖B. Then,

∣

∣r̂(xk+1, yk)
2 − r(yk)2

∣

∣ ≤ 6

(

ε̃aam
L3

)1/4

P1/2 +

(

12ε̃aam
L3

)1/2

.

6

Proof. Let β
def
= xk+1 − TB(yk). We have that

∣

∣r̂(xk+1, yk)
2 − r(yk)2

∣

∣ =
∣

∣‖TB(yk)− yk‖2B − ‖xk+1 − yk‖2B
∣

∣

=
∣

∣‖TB(yk)− yk‖2B − ‖TB(yk) + β − yk‖2B
∣

∣

=
∣

∣‖TB(yk)− yk‖2B + 2〈β,B(TB(yk)− yk)〉+ ‖β‖2B − ‖TB(yk)− yk‖2B
∣

∣

≤ 2‖β‖B‖TB(yk)− yk‖B + ‖β‖2
B
.

Now, by Lemma 3.3, we know that ‖β‖B ≤
(

12ε̃aam

L3

)1/4

, and so it follows from the definition of P that

∣

∣r̂(xk+1, yk)
2 − r(yk)2

∣

∣ ≤ 6

(

ε̃aam
L3

)1/4

P1/2 +

(

12ε̃aam
L3

)1/2

.

3.2 Search procedure for finding ρk

In this section, we establish the correctness of RhoSearch, our subroutine for finding an appropriate choice of
ρk, given xk, vk as inputs. One of the key algorithmic components for achieving fast higher-order acceleration,
as observed by Monteiro and Svaiter [2013] and Nesterov [2018b], is to determine ρk such that ρk ≈ ζk(ρk),
where we define

ζk(ρ)
def
= ‖TB(yk(ρ)) − yk(ρ)‖2B, (17)

yk(ρ)
def
= (1− τk(ρ))xk + τk(ρ)vk, (18)

and

τk(ρ)
def
=

2

1 +
√
1 + 4L3Akρ

. (19)

We will also need to define an approximate version

ζ̂k(ρ)
def
= ‖xk+1(ρ)− yk(ρ)‖2B, (20)

where we let xk+1(ρ)
def
= ApproxAuxMin(yk(ρ), ε̃aam). We may observe that ζk(ρ) is continuous in ρ, and

furthermore that there exists some 0 ≤ ρ∗k ≤ ∞ such that ζk(ρ
∗
k) = ρ∗k, since if ρ = 0, then yk = vk,

and if ρk → ∞, then yk = xk. Thus, we may reduce it to a binary search problem, under an appropriate
initialization. For now, we assume that at each iteration k ≥ 0, RhoSearch is given initial bounds ρ−init and
ρ+init such that ρ−init ≤ ρ∗k ≤ ρ+init, thus ensuring it is a valid binary search procedure. We will later show how
FastQuartic can provide RhoSearch with such guarantees.

An important part of managing this process is to limit how quickly ζk(ρ) can grow, as we will need
to ensure a closeness in function value once our candidate bounds ρ− and ρ+ are sufficiently close. The
following theorem gives us precisely what we need, namely a differential inequality w.r.t. |ζ′k(ρ)|.
Theorem 3.6. Let ζk(ρ) > 0 be as defined in (17), for some yk(ρ) ∈ L. Then we have that, for all ρ ≥ ρ−init,

|ζ′k(ρ)| ≤
R

ζk(ρ)1/2
,

where R is as defined in (33).

Theorem 3.7. Given xk, vk ∈ L, 0 < ε̃rs < 1 as inputs, and ε̃aam > 0 chosen sufficiently small, the
RhoSearch algorithm outputs ρk and xk+1 such that

(1− ε̃rs)ζ̂k(ρk) ≤ ρk ≤ (1 + ε̃rs)ζ̂k(ρk) (21)

where ζ̂k(·) is as defined in (20).

7

Algorithm 2 RhoSearch

Input: xk, vk, Ak, ρ
+
init, ρ

−
init (s.t. ρ

+
init ≥ ρ∗k ≥ ρ−init), ε̃rs > 0, ε̃aam > 0, M = O(log(R/ε̃rs)).

Define δ̃
def
= 6

(

ε̃aam

L3

)1/4

P1/2 +
(

12ε̃aam

L3

)1/2

.

ρ+ ← ρ+init, ρ
− ← ρ−init

for t = 1 to M do

ρ̂ = ρ−+ρ+

2

âk+1 = 1+
√
1+4L3Akρ̂
2L3ρ̂

(

=⇒ â2k+1 =
Ak+âk+1

L3ρ̂

)

Ak+1 = Ak + âk+1

τk = âk+1

Ak+1

ŷk = (1 − τk)xk + τkvk
x̂k+1 ← ApproxAuxMin(ŷk, ε̃aam)

if ρ̂ > ζ̂(ρ̂) + δ̃ then

ρ+ ← ρ̂
else if ρ̂ < ζ̂(ρ̂)− δ̃ then

ρ− ← ρ̂
else

return ρ̂, x̂k+1, âk+1

end if

end for

return ρ−, x̂k+1, âk+1

3.3 Analyzing the convergence of FastQuartic

Having shown the correctness of the binary search procedure in RhoSearch, we now describe our main
algorithm, called FastQuartic, and prove its correctness. Our analysis follows that of Nesterov [2018b], though
we consider the case where f(·) is L3 smooth (as opposed to L2 smooth).

We begin by proving a useful inequality concerning the estimate sequence, as is standard for analyzing
accelerated methods. An important part of FastQuartic is to provide RhoSearch with appropriate ρ+init and
ρ−init that are valid upper and lower bounds, respectively, on ρ∗k. As we will see, setting ρ

+
init = P will provide

a sufficiently large upper bound on ρ∗k. For the lower bound, we will see that, for a small enough choice of
ρ−init, if it is still the case that ρ

∗
k < ρ−init, then we can show that our current iterate achieves sufficiently small

error, and so we are done. The following lemmas make these observations formal.

Lemma 3.8. Let c > 0, xk+1 = ApproxAuxMin(yk, ε̃aam), where yk ∈ L, and suppose ρ−init ≤ cr̂2
B
(xk+1, yk).

Then,

〈∇f(xk+1), yk − xk+1〉 ≥
1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4B(xk+1, yk)−

W ε̃
1/4
aam

cρ−init
.

where W > 0 is some problem-dependent parameter.

Proof. The lemma follows directly from Lemma 3.4, since

〈∇f(xk+1), yk − xk+1〉 ≥
1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4
B
(xk+1, yk)−

3Z(xk+1, yk)W (xk+1, yk)ε̃
1/4
aam

L
5/4
3 r̂2

B
(xk+1, yk)

1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4B(xk+1, yk)−

W ε̃
1/4
aam

cρ−init
,

where we let
W def

= max
x,y∈L

Z(x, y)W (x, y). (22)

8

Algorithm 3 FastQuartic

Input: ε > 0, x0 = 0, A0 = 0, B ≻ 0, 1
2 > ρ−init > 0, ρ+init = P , ε̃aam > 0, N .

Define ψ0(x)
def
= 1

2‖x− x0‖2B, ε̃fs
def
= min

{

3L2
3Pρ−

init

32G , 12

}

, ε̃rs
def
= min

{

3L3ρ
−

init
P2

16T , ρ−init,
1
2

}

, T as in (37).

for k = 0 to N do

vk = argminx∈Rd ψk(x)

a−k+1 =
1+
√

1+4L3Akρ
−

init

2L3ρ
−

init

(

=⇒
(

a−k+1

)2
=

Ak+a−

k+1

L3ρ
−

init

)

A−
k+1 = Ak + a−k+1

τ−k =
a−

k+1

A−

k+1

y−k = (1 − τ−k)xk + τ−k vk
x−k+1 ← ApproxAuxMin(y−k , ε̃aam)

if ρ−init > (1 + ε̃fs)‖x−k+1 − y−k ‖2B then

return x−k+1

else if ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y−k ‖2B and ρ−init > ‖x−k+1 − y−k ‖2B −Qε̃
1/4
aam (Q as defined in (34)) then

return x−k+1

else

ρk, xk+1, ak+1 ← RhoSearch(xk, vk, Ak, ρ
+
init, ρ

−
init, ε̃rs, ε̃aam)

ψk+1 = ψk + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]
end if

end for

return xN+1

Lemma 3.9. For any k ≥ 0, let Ak, xk, vk, yi{0≤i≤k−1} be as generated by k iterations of FastQuartic with

ε̃aam > 0 chosen sufficiently small, and suppose that for all k iterations, ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y−k ‖2B and

ρ−init ≤ ‖x−k+1 − y−k ‖2B −Qε̃
1/4
aam (for Q as in (34)). Then, we have that

Akf(xk) +Bk ≤ ψ∗
k

def
= min

x∈Rd
ψk(x), (23)

where Bk
def
= 3L3

16

k−1
∑

i=0

Ai+1r̂
4
B
(xi+1, yi). In addition,

f(xk) ≤ F , ‖vk − x∗‖2B ≤ ‖x0 − x∗‖2B, and vk, xk ∈ L. (24)

Corollary 3.10. For any k ≥ 0, let Ak, Bk, xk be as in the previous lemma statement. Then, we have

f(xk)− f(x∗) ≤
1

2Ak
‖x0 − x∗‖2B,

and

Bk ≤
1

2
‖x0 − x∗‖2B.

Lemma 3.11. For any k ≥ 0, we have that

Ak ≥
1

4L3

(

k−1
∑

i=0

1

ρ
1/2
i

)2

,

and thus Ak ≥ 1
4L3

1
ρi
, for all i ∈ {0, . . . , k − 1}.

9

Lemma 3.12. For any k ≥ 1, we have

Ak ≥
3

256L3‖x0 − x∗‖2B

(

k + 1

2

)5

. (25)

Theorem 3.13. For any k ≥ 1, we have

f(xk)− f(x∗) ≤
128L3‖x0 − x∗‖4B

3

(

2

k + 1

)5

. (26)

Proof. By combining Corollary 3.10 with Lemma 3.12, we observe that

f(xk)− f(x∗) ≤
1

2Ak
‖x0 − x∗‖2B ≤

128L3‖x0 − x∗‖4B
3

(

2

k + 1

)5

.

So far, we have shown the correctness in the case where, for all k ≥ 0, ρ−init ≤ (1+ ε̃fs)‖x−k+1− y−k ‖2B and

ρ−init ≤ ‖x−k+1− y−k ‖2B−Qε̃
1/4
aam. However, we need to ensure correctness of the case where, for some iteration

of FastQuartic, it happens that ρ−init > (1 + ε̃fs)‖x−k+1 − y−k ‖2B, or ρ−init ≤ ‖x−k+1 − y−k ‖2B−Qε̃
1/4
aam. We handle

these cases in the following theorem.

Theorem 3.14. Suppose there is some 1 ≤ i ≤ N such that for all iterations 1 ≤ j < i, ρ−init ≤ (1 +

ε̃fs)‖x−j+1 − y−j ‖2B and ρ−init ≤ ‖x−j+1 − y−j ‖2B −Qε̃
1/4
aam, and for iteration i, either

(a) ρ−init > (1 + ε̃fs)‖x−i+1 − y−i ‖2B, or

(b) ρ−init ≤ (1 + ε̃fs)‖x−i+1 − y−i ‖2B and ρ−init > ‖x−i+1 − y−i ‖2B −Qε̃1/4aam.

Then, FastQuartic returns xi+1 such that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B. (27)

4 Main results

Now that we have established the necessary results for proving the correctness of the output from ApproxAuxMin

and RhoSearch, we may combine these observations with those of Section 3.3 to prove one of the key theorems
of the paper, which establishes the total cost of optimizing smooth f(·).
Theorem 4.1. Suppose f(x) is L3 smooth. Then, under appropriate initialization, FastQuartic finds a point
xN such that

f(xN)− f(x∗) ≤ ε

in O

(

(

L3‖x0−x∗‖4
B

ε

)1/5
)

iterations, where each iteration requires O(logO(1)(Z/ε)) calls to a gradient oracle

and linear system solver, and where Z is a problem-dependent parameter.

Combining Theorem 4.1 with the appropriate notion of uniform convexity, we may establish a rate of

linear convergence, based on the condition number κ4
def
= L3

µ4
. In addition, the proof of the main theorem

follows almost immediately.

Theorem 4.2. Suppose f(x) is L3-smooth and µ4-uniformly convex w.r.t. ‖·‖B. Then, under appropriate
initialization, FastQuartic finds a point xN such that

f(xN)− f(x∗) ≤ ε

in Õ
(

κ
1/5
4 log(1/ε)

)

iterations, where each iteration requires O(logO(1)(Z/ε)) calls to a gradient oracle and

linear system solver, and where Z is a problem-dependent parameter.

10

Proof. Begin by running the FastQuartic algorithm for k =

⌈

(

512L3

3µ4

)1/5
⌉

iterations. By combining Theorem

4.1 with the fact that f(·) is uniformly convex, we have that

f(xk)− f(x∗) ≤
128L3‖x0 − x∗‖4B

3

(

2

k + 1

)5

≤ 512L3(f(x0)− f(x∗))
3µ4k5

.

It follows from our choice of k that

f(xk)− f(x∗) ≤
f(x0)− f(x∗)

2
.

Because we reduce the optimality gap by a constant factor every k iterations, it suffices to run FastQuartic
for N = O(κ4 log(1/ε)) iterations to achieve a point xN such that

f(xN)− f(x∗) ≤ ε.

Having developed all of the necessary results, we may now prove our main theorem.

Proof of Theorem 1.1. The proof follows by combining Theorem 4.2 with Lemmas 2.3 and 2.4.

As a consequence of our result, we have the following guarantee for the problem of ℓ4-regression, which
improves upon (up to logarithmic factors) the O∗(n1/4) calls to a sparse linear system solver as shown by
Bubeck et al. [2018a], when A⊤A ≻ 0 and A is sparse.

Corollary 4.3. For the problem of ℓ4-regression, i.e., problems of the form

min
x∈Rd

f(x) = c⊤x+ ‖Ax− b‖44,

for c ∈ R
d, b ∈ R

n, A ∈ R
n×d such that A⊤A ≻ 0, the FastQuartic algorithm finds, under appropriate

initialization, a point xN such that
f(xN)− f(x∗) ≤ ε

with O(n1/5 logO(1)(Z/ε)) calls to a gradient oracle and (sparse) linear system solver.

Proof. Note that for all x ∈ R
d, ∇4f(x) = 24

n
∑

i=1

a⊗4
i , where A = [a1a2 . . . an]

⊤
. Since f(x) is a quartic

function, we may equivalently express it as its fourth-order Taylor expansion

f(x) = f(0) +∇f(0)⊤x+
1

2
x⊤∇2f(0)x+

1

6
∇3f(0)[x, x, x] +

1

24
∇4f(0)[x]⊗4

= f(0) +∇f(0)⊤x+
1

2
x⊤∇2f(0)x+

1

6
∇3f(0)[x, x, x] + ‖Ax‖44,

and so since f(·) is of the form (2), for A⊤A ≻ 0, the result follows from Theorem 1.1, and the observation
that each iteration of ApproxAuxMin requires solving a sparse linear system, if A is sparse.

5 Conclusion

We have presented the method FastQuartic for efficiently minimizing structured convex quartics. Moving
forward, we believe one future direction would be to explore how FastQuartic might be a useful tool for
achieving faster convergence in various other convex optimization problems. An interesting open problem
would be to reduce the dependence on n to d. We would further like to note the connection between the
‖Ax‖44 term in (2) and polynomial norms as studied by Ahmadi et al. [2017], as this perspective may prove
useful as part of future work.

11

Acknowledgements

The authors would like to thank Naman Agarwal, Cyril Zhang, and Yi Zhang for helpful discussions. We
would especially like to thank Karan Singh for numerous enlightening discussions, as well as for help with
proofreading the manuscript.

References

Naman Agarwal and Elad Hazan. Lower bounds for higher-order convex optimization. In Proceedings of
the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages
774–792. PMLR, 06–09 Jul 2018.

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local
minima faster than gradient descent. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1195–1199. ACM, 2017a.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine learning
in linear time. The Journal of Machine Learning Research, 18(1):4148–4187, 2017b.

Naman Agarwal, Sham Kakade, Rahul Kidambi, Yin Tat Lee, Praneeth Netrapalli, and Aaron Sidford.
Leverage score sampling for faster accelerated regression and erm. arXiv preprint arXiv:1711.08426,
2017c.

Amir Ali Ahmadi, Alex Olshevsky, Pablo A Parrilo, and John N Tsitsiklis. Np-hardness of deciding convexity
of quartic polynomials and related problems. Mathematical Programming, 137(1-2):453–476, 2013.

Amir Ali Ahmadi, Etienne de Klerk, and Georgina Hall. Polynomial norms. arXiv preprint arXiv:1704.07462,
2017.

Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for smooth convex
optimization. Mathematical Programming, pages 1–34, 2018.

Sébastien Bubeck, Michael B Cohen, Yin Tat Lee, and Yuanzhi Li. An homotopy method for l p regression
provably beyond self-concordance and in input-sparsity time. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1130–1137. ACM, 2018a.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method for highly
smooth convex optimization. arXiv preprint arXiv:1812.08026, 2018b.

Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time.
Journal of the ACM (JACM), 63(6):54, 2017.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford.
Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, pages 181–190. ACM, 2015.

Alexander Gasnikov, Dmitry Kovalev, Ahmed Mohhamed, and Elena Chernousova. The global rate of
convergence for optimal tensor methods in smooth convex optimization. arXiv preprint arXiv:1809.00382,
2018.

Bo Jiang, HaoyueWang, and Shuzhong Zhang. An optimal high-order tensor method for convex optimization.
arXiv preprint arXiv:1812.06557, 2018.

Leonid G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics
and Mathematical Physics, 20(1):51–68, 1980.

12

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for
combinatorial and convex optimization. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 1049–1065. IEEE, 2015.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Renato DC Monteiro and Benar Fux Svaiter. An accelerated hybrid proximal extragradient method for
convex optimization and its implications to second-order methods. SIAM Journal on Optimization, 23(2):
1092–1125, 2013.

Katta G Murty and Santosh N Kabadi. Some np-complete problems in quadratic and nonlinear programming.
Mathematical Programming, 39(2):117–129, 1987.

Yurii Nesterov. Implementable tensor methods in unconstrained convex optimization. Technical report,
Université catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2018a.

Yurii Nesterov. Lectures on Convex Optimization. Springer International Publishing, 2018b.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming, vol-
ume 13. Siam, 1994.

Pablo A Parrilo and Bernd Sturmfels. Minimizing polynomial functions. In Algorithmic and Quantitative
Real Algebraic Geometry, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
volume 60, pages 83–99, 2003.

A Proofs

A.1 Proof of Lemma 2.2

Proof. Let x, y ∈ R
d, let r̂B(x, y)

def
= ‖x − y‖B, and let δ(x, y)

def
= ∇Ωy,B(x). Using the L3 smoothness of

f(x), we have by (3) and the triangle inequality that

‖∇f(x) + L3r̂
2
B
(x, y)B(x − y)‖ − ‖δ(x, y)‖ ≤ ‖∇f(x) + L3r̂

2
B
(x, y)B(x− y)− δ(x, y)‖B−1

= ‖∇f(x)−∇Φy(x)‖B−1

≤ L3

6
r̂3B(x, y),

where the last inequality follows from (3). Squaring both sides gives us

‖∇f(x) + L3r̂
2
B
(x, y)B(x − y)‖2

B−1 −∆(x, y) ≤ L2
3

36
r̂6
B
(x, y),

where
∆(x, y)

def
= 2Z(x, y)‖δ(x, y)‖B−1 − ‖δ(x, y)‖2

B−1

and
Z(x, y)

def
= ‖∇f(x) + L3r̂

2
B(x, y)B(x− y)‖B−1 .

After expanding and rearranging the terms in the inequality, we arrive at

‖∇f(x)‖2
B−1 +

35

36
L2
3r̂

6
B
(x, y)−∆(x, y) ≤ 2L3r̂

2
B
(x, y)〈∇f(x), y − x〉.

13

Diving both sides by 2L3r̂
2
B
(x, y) gives us

‖∇f(x)‖2
B−1

2L3r̂2B(x, y)
+

35

72
L3r̂B(x, y)

4 − ∆(x, y)

2L3r̂2B(x, y)
≤ 〈∇f(x), y − x〉. (28)

All that remains is to bound ∆(x, y). Note that, by (3) and using the fact that ∇Ωy,B(TB(y)) = 0,

‖∇Ωy,B(x)−∇Ωy,B(TB(y))−∇2Ωy,B(TB(y))[x− TB(y)]−
1

2
∇3Ωy,B(TB(y))[x − TB(y)]2‖B−1

= ‖∇Ωy,B(x)−∇2Ωy,B(TB(y))[x − TB(y)]−
1

2
∇3Ωy,B(TB(y))[x − TB(y)]2‖B−1

≤ L3‖x− TB(y)‖3B.

By triangle inequality and rearranging, we have

‖∇Ωy,B(x)‖B−1 ≤ ‖H(x, y)(x− TB(y))‖B−1 + L3‖x− TB(y)‖3B (29)

where H(x, y)
def
= ∇2Ωy,B(TB(y))+

1
2∇3Ωy,B(TB(y))[x−TB(y)]. Note that, by our choice of B, we may write

its eigendecomposition as B = UΛU⊤, and we may define B1/2 def
= UΛ1/2U⊤ and B−1/2 def

= UΛ−1/2U⊤.
Thus, we can then rewrite

‖H(x, y)(x− TB(y))‖B−1 = ‖B−1/2H(x, y)(x − TB(y))‖
≤ ‖B−1/2‖‖H(x, y)‖‖x− TB(y)‖
= ‖B−1/2‖‖H(x, y)‖‖B−1‖‖B−1/2B1/2(x − TB(y))‖
≤ ‖B−1/2‖‖H(x, y)‖‖B−1‖‖B−1/2‖‖B1/2(x − TB(y))‖
= ‖B−1/2‖2‖H(x, y)‖‖B−1‖‖x− TB(y)‖B,

and so it follows that

‖∇Ωy,B(x)‖B−1 ≤
(

‖B−1/2‖2‖H(x, y)‖‖B−1‖+ L3‖x− TB(y)‖2B
)

‖x− TB(y)‖B =W (x, y)‖x− TB(y)‖B.

Taken together with (28), we have that

〈∇f(x), y − x〉 ≥ ‖∇f(x)‖
2
B−1

2L3r̂2B(y)
+

35

72
L3r̂B(y)

4 − 2Z(x, y)W (x, y)‖x− TB(y)‖B
2L3r̂2B(y)

.

A.2 Proof of Lemma 2.3.

Proof. Note that for all ξ ∈ R
d,

‖∇4f(ξ)‖∗B = max
h:‖h‖B≤1

∣

∣

∣∇4f(ξ)[h]4
∣

∣

∣ = max
h:‖h‖B≤1

‖Ah‖44 ≤ max
h:‖h‖B≤1

‖Ah‖42. (30)

Setting B = A⊤A gives us
max

h:‖h‖
A⊤A

≤1
‖Ah‖42 ≤ 1.

By the mean value theorem, we have, for some ξ along the line between x and y,

‖∇3f(y)−∇3f(x)‖∗
A⊤A

‖y − x‖A⊤A

= ‖∇4f(ξ)‖∗
A⊤A

≤ 1,

and so it follows that
‖∇3f(y)−∇3f(x)‖∗

A⊤A
≤ ‖y − x‖A⊤A.

14

A.3 Proof of Lemma 2.4.

Proof. Following the same idea as in the proof of Lemma 2.3, we note that, for all x, y ∈ R
d,

f(y) = Φx,4(y).

Since f(y) is convex by definition, it follows that

0 � ∇2f(y) = ∇2f(x) +∇3f(x)[y − x] + 1

2
∇4f(x)[y − x, y − x].

Let h = y − x. Then, following the approach of Nesterov [2018a], we have

−∇3f(x)[h] � ∇2f(x) +
1

2
∇4f(x)[h, h].

Since this holds for any x, y (and therefore, for any direction h), we can replace h with τh for any τ > 0 and
arrive at

−τ∇3f(x)[h] � ∇2f(x) + τ2
1

2
∇4f(x)[h, h].

Furthermore, we can replace h by −h to get

τ∇3f(x)[h] � ∇2f(x) + τ2
1

2
∇4f(x)[h, h],

and so after dividing through by τ , we obtain

− 1

τ
∇2f(x)− τ

2
∇4f(x)[h, h] � ∇3f(x)[h] � 1

τ
∇2f(x) +

τ

2
∇4f(x)[h, h].

We may now observe that

f(y) = f(x) + 〈∇f(x), y − x〉+ 1

2
∇2f(x)[y − x, y − x] + 1

6
∇3f(x)[y − x]3 + 1

24
∇4f(x)[y − x]4

≥ f(x) + 〈∇f(x), y − x〉+
(

1

2
− 1

6τ

)

∇2f(x)[y − x, y − x] +
(

1

24
− τ

12

)

∇4f(x)[y − x]4.

Setting τ = 1
3 gives us

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1

72
∇4f(x)[y − x]4

= f(x) + 〈∇f(x), y − x〉+ 1

72
‖A(y − x)‖44

≥ f(x) + 〈∇f(x), y − x〉+ n

72
‖A(y − x)‖42

= f(x) + 〈∇f(x), y − x〉+ n

72
‖y − x‖4

A⊤A
,

which gives us (14).

A.4 Proof of Lemma 2.5.

Proof. We note that, for all y, z ∈ R
d, since Ωx,B(z) is convex, it follows from the proof of Lemma 2.4 that

Ωx,B(z) = Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
1

2
(z − y)⊤∇2Ωx,B(y)(z − y) +

1

6
∇3Ωx,B(y)[z − y]3 +

1

24
∇4Ωx,B(y)[z − y]4

≥ Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
1

72
∇4Ωx,B(y)[z − y]4

= Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
L3

12
‖z − y‖4B.

15

A.5 Proof of Theorem 3.6.

Proof. Note that ζk(ρ) = (m ◦ yk)(ρ), where m(yk) = ‖TB(yk) − yk‖2B and yk(ρ) is as defined in (18).
Therefore, by the chain rule, we have

|ζ′k(ρ)| = |Jρyk(ρ)∇yk
m(yk(ρ))|

≤ ‖Jρyk(ρ)‖B‖∇yk
m(yk(ρ))‖B−1

≤ λmax(B
−1)1/2‖Jρyk(ρ)‖B‖∇yk

m(yk(ρ))‖,

where we let J denote the Jacobian. For ‖Jρyk(ρ)‖B, we know by (18) and (19) that

yk(ρ) = (1− τk(ρ))xk + τk(ρ)vk

and

τk(ρ) =
2

1 +
√
1 + 4L3Akρ

.

Thus, it follows that

Jρyk(ρ) = −
d

dρ
τk(ρ) · xk +

d

dρ
τk(ρ) · vk.

Note that
∣

∣

∣

∣

d

dρ
τk(ρ)

∣

∣

∣

∣

=
4L3Ak

(1 +
√
1 + 4L3Akρ)2

√
1 + 4L3Akρ

≤ 4L3Ak

(1 + 4L3Akρ)
3/2
≤ 1

ρ
.

Taken together, this gives us that

‖Jρyk(ρ)‖B ≤
∣

∣

∣

∣

d

dρ
τk(ρ)

∣

∣

∣

∣

(‖xk‖B + ‖vk‖B) ≤
‖xk‖B + ‖vk‖B

ρ
.

To provide a bound for ‖∇yk
m(yk(ρ))‖, we begin by letting g(x, z)

def
= Ωx,B(z). We may see that TB(yk) =

argminz∈Rd g(yk, z). As long as
[

∂2zg(yk, TB(yk))
]−1 ≻ 0, which we will see holds when ‖TB(yk)− yk‖B > 0,

we have that, by the implicit function theorem,

JxTB(x) = −
[

∂2zg(x, TB(x))
]−1

∂x∂zg(x, TB(x)).

Note that, since g(x, z) = Φx(z) +
L3

4 ‖z − x‖4B, we have

∂zg(x, z) = ∇f(x) +∇2f(x)[z − x] + 1

2
∇3f(x)[z − x]2 + L3‖z − x‖2BB(z − x),

and so it follows that

∂2zg(x, z) = ∇2f(x) +∇3f(x)[z − x] + 2L3B(z − x)(z − x)⊤B+ L3‖z − x‖2BB
� ∇2f(x) +∇3f(x)[z − x] + L3‖z − x‖2BB,

and

∂x∂zg(x, z) = ∇2f(x) +∇3f(x)[z − x]−∇2f(x) +
1

2
∇4f(x)[z − x]2

−∇3f(x)[z − x] + 2L3B(z − x)(z − x)⊤B− L3‖z − x‖2BB
= ∇4f(x)[z − x]2 + 2L3B(z − x)(z − x)⊤B− L3‖z − x‖2BB.

Thus,
‖∂x∂zg(x, z)‖ ≤ H(x, z), (31)

16

where
H(x, z)

def
= ‖∇4f(x)[z − x]2‖+ 2L3‖B(z − x)(z − x)⊤B‖+ L3‖z − x‖2B‖B‖.

By Theorem 2.1 we have that ∇2f(x) +∇3f(x)[z − x] + L3

2 ‖z − x‖2BB � 0, and so

∂2zg(x, z) � ∇2f(x) +∇3f(x)[z − x] + L3‖z − x‖2BB

� L3‖z − x‖2B
2

B.

Thus,

‖
[

∂2zg(x, z)
]−1‖ ≤ 1

λmin ([∂2zg(x, z))])
≤ 2

L3λmin(B)‖z − x‖2
B

. (32)

We may now observe that, for m(y),

∇yk
m(yk) = 2(Jyk

T (yk)− I)B(T (yk)− yk),

and so, by standard matrix norm inequalities,

‖∇yk
m(yk)‖ = 2‖(Jyk

TB(yk)− I)B1/2B1/2(T (yk)− yk)‖
≤ 2‖Jyk

TB(yk)‖ · ‖B1/2‖ · ‖T (yk)− yk‖B + ‖B1/2‖ · ‖T (yk)− yk‖B
≤ 2λmax(B

1/2)
(

‖
[

∂2zg(yk, TB(yk))
]−1

∂x∂zg(yk, TB(yk))‖ · ‖TB(yk)− yk‖B + ‖T (yk)− yk‖B
)

≤ 2λmax(B
1/2)

(

‖
[

∂2zg(yk, TB(yk))
]−1‖ · ‖∂x∂zg(yk, TB(yk))‖ · ‖TB(yk)− yk‖B + ‖T (yk)− yk‖B

)

≤ 2λmax(B
1/2)

(

2H(yk, TB(yk)) + L3λmin(B)‖T (yk)− yk‖2B
L3λmin(B)‖TB(yk)− yk‖B

)

where the last inequality follows from (31) and (32), and since ‖TB(yk)− yk‖B > 0 (as if TB(yk) = yk, then
yk is a minimizer of f(·)).

All together, this gives us that

|ζ′(ρ)| ≤ λmax(B
−1)1/2‖Jρyk(ρ)‖‖∇yk

m(yk(ρ))‖

≤ λmax(B
−1)1/2

(‖xk‖B + ‖vk‖B
ρ

)(

2λmax(B
1/2)

(

2H(yk(ρ), TB(yk(ρ))) + L3λmin(B)‖T (yk(ρ))− yk(ρ)‖2B
L3λmin(B)‖TB(yk(ρ)) − yk(ρ)‖B

))

.

Let H def
= max

x,z∈L
H(x, z), ρ−init be our initial lower bound on ρ∗k, and P be as in (6). Since yk(ρ) ∈ L and

ζ(ρ) = ‖TB(yk(ρ))− yk(ρ)‖2B by definition, it follows that

|ζ′(ρ)| ≤ R
ζ(ρ)1/2

,

where

R def
=

4P1/2λmax(B
1/2) (2H+ L3λmin(B)P)

L3λmin(B)ρ−init
. (33)

A.6 Proof of Theorem 3.7.

Proof. By sufficiently small, we mean that ε̃aam is chosen such that ε̃aam ≤ min

{

(

ε̃2rs
100Q

)4

,
(

ε̃2rs
100W

)4
}

, for

W as defined in (22), and for

Q def
=

(

6P1/2

L
1/4
3

+
5

L
1/2
3

)

. (34)

17

We proceed by proving the correctness of the binary search procedure. Consider ρ̂ from the algorithm, and
let x̂k+1 be the output from the call to ApproxAuxMin(ŷk, ε̃aam) in the RhoSearch algorithm. Then, at each
iteration, one of the following three conditions must hold:

(a) ρ̂ > ζ̂k(ρ̂) + δ̃; or

(b) ρ̂ < ζ̂k(ρ̂)− δ̃; or

(c) ζ̂k(ρ̂)− δ̃ ≤ ρ̂ ≤ ζ̂k(ρ̂) + δ̃,

where

δ̃
def
= 6

(

ε̃aam
L3

)1/4

P1/2 +

(

12ε̃aam
L3

)1/2

.

Note that, based on our choice of ε̃aam, we ensure that δ̃ ≤ ε̃2rs
4 . Suppose condition (a) holds. Then, by

Lemma 3.5 (with yk = yk(ρ̂)), we have that ζk(ρ̂)− δ̃ ≤ ζ̂(ρ̂), and so it follows that ρ̂ > ζk(ρ̂). Thus, ρ̂ is an
upper bound on ρ∗k, and so this proves the correctness ρ+ remaining an upper bound on ρ∗k after updating
ρ+ ← ρ̂. By similar reasoning, we may conclude that if condition (b) holds, ρ̂ is a lower bound on ρ∗k, and
so ρ− remains a lower bound on ρ∗k after updating ρ− ← ρ̂.

If condition (c) holds, then it must be the case that ζ̂k(ρ̂) ≥ ε̃rs
2 , since if we suppose that ζ̂k(ρ̂) <

ε̃rs
2 ,

this implies that ρ̂ ≤ ζ̂k(ρ̂) + δ̃ ≤ 3ε̃rs
4 . However, this is a contradicition since we ensure that ρ̂ ≥ ρ−init ≥ ε̃rs.

Therefore, since δ̃ ≤ ε̃2rs
4 ≤ ε̃rsζ̂k(ρ̂), it follows that

(1 − ε̃rs)ζ̂k(ρ̂) ≤ ρ̂ ≤ (1 + ε̃rs)ζ̂k(ρ̂),

which means that condition (21) is met.
Based on our choice of update, anytime condition (a) or (b) holds and the update takes place, we

guarantee a decrease in |ρ+ − ρ−|, and so after O(log(R/ε̃rs)) iterations, we are assured that |ρ+ − ρ−| ≤
ε̃3rs

100R . At this point, we make use of Theorem 3.6 to argue that ρ− must fall in the desired range, i.e.,

(1− ε̃rs)ζ̂k(ρ−) ≤ ρ− ≤ (1 + ε̃rs)ζ̂k(ρ
−). To show this, we first note that |ρ∗k − ρ−| ≤

ε̃3rs
100R . Thus, using the

fact that ζk(ρ) ≥ 0, Theorem 3.6 implies that

∣

∣

∣ζ′k(ρ)(ζk(ρ))
1/2
∣

∣

∣ ≤ R =⇒ −R ≤ ζ′k(ρ)(ζk(ρ))1/2 ≤ R.

Note that ρ− ≤ ρ∗k. By integrating with respect to ρ, we have

∫ ρ−

ρ∗

k

Rdρ ≤
∫ ρ−

ρ∗

k

ζ′k(ρ)(ζk(ρ))
1/2dρ ≤

∫ ρ−

ρ∗

k

−Rdρ.

It follows that
2

3
ζk(ρ

∗
k)

3/2 + L(ρ− − ρ∗k) ≤
2

3
ζk(ρ

−)3/2 ≤ 2

3
ζk(ρ

∗
k)

3/2 −R(ρ− − ρ∗k),

and so we have

(

ζk(ρ
∗
k)

3/2 +
3R
2

(ρ− − ρ∗k)
)2/3

≤ ζk(ρ−) ≤
(

ζk(ρ
∗
k)

3/2 − 3R
2

(ρ− − ρ∗k)
)2/3

.

18

We may now observe that

ζk(ρ
−) ≤

(

ζk(ρ
∗
k)

3/2 − 3R
2

(ρ− − ρ∗k)
)2/3

=

(

ζk(ρ
∗
k)

3/2 +
3R
2

(ρ∗k − ρ−)
)2/3

≤
(

ζk(ρ
∗
k)

3/2 +
ε̃3rs
50

)2/3

≤ ζk(ρ∗k) +
(

1

50

)2/3

ε̃2rs,

and so

ζk(ρ
−)− ζk(ρ∗k) ≤

ε̃2rs
10
. (35)

We again use Lemma 3.5 to see that

∣

∣

∣ζ(ρ−)− ζ̂k(ρ−)
∣

∣

∣ ≤ 6

(

ε̃aam
L3

)1/4

P1/2 +

(

12ε̃aam
L3

)1/2

≤ Qε̃1/4aam, (36)

where Q is as defined in (34),
and the last inequality follows from the fact that ε̃aam ≤ 1

2 . Thus, since by our choice of ε̃aam we know

that ε̃aam ≤
(

ε̃2rs
100Q

)4

, it follows that

∣

∣

∣ζk(ρ
−)− ζ̂k(ρ−)

∣

∣

∣ ≤ ε̃2rs
100

.

For the sake of clarity, we assume R ≥ 1 – otherwise, we can choose M = O(log(1/ε̃rs)), and a similar

analysis holds. Taken together with (35) and the fact that |ρ− − ρ∗k| ≤
ε̃3rs

100R and ε̃rs ≤ 1, we have that

ρ− ≥ ρ∗k −
ε̃3rs

100R = ζk(ρ
∗
k)−

ε̃3rs
100R ≥ ζk(ρ

∗
k)−

ε̃2rs
100
≥ ζk(ρ−)−

11ε̃2rs
100

≥ ζ̂k(ρ−k)−
12ε̃2rs
100

.

Note that, by a similar reasoning as above, it must be the case that ζ̂k(ρ
−) ≥ ε̃rs

2 . Since we have ensured

throughout the procedure that ρ− ≤ ζ̂k(ρ−), it follows that

(1− ε̃rs)ζ̂k(ρ−) ≤ ρ− ≤ (1 + ε̃rs)ζ̂k(ρ
−),

as desired, and so we set ρk = ρ−.

A.7 Proof of Lemma 3.9.

Proof. By sufficiently small, we mean that ε̃aam > 0 is chosen such that ε̃aam ≤ min

{

(

ε̃2rs
100Q

)4

,
(

ε̃2rs
100W

)4

, 12

}

,

where ε̃rs is as defined in the algorithm.
Following the standard line of reasoning, as presented by Nesterov [2018b], we proceed via proof by

induction. For k = 0,

A0f(x0) +B0 = min
x∈Rd

ψ0 = 0, f(x0) ≤ F , ‖v0 − x∗‖2B = ‖x0 − x∗‖2B, and v0 = x0 ∈ L.

Now suppose, for some k ≥ 0, that (23) and (24) hold. To show that ρ+init = P is a valid upper bound on
ρ∗k, we note that for any τ ∈ [0, 1], letting yk = (1−τ)xk+τvk, f(yk) ≤ max {f(xk), f(vk)} ≤ max {F , f(vk)},

19

by our inductive assumption. We also know by our inductive assumption that ‖vk − x∗‖2B ≤ ‖x0 − x∗‖2B.
Thus, since

‖vk − x0‖2B ≤ 2‖vk − x∗‖2B + 2‖x0 − x∗‖2B ≤ 4‖x0 − x∗‖2B,
it follows that vk ∈ K, which means that f(vk) ≤ F , and so f(yk) ≤ F . It follows that, for all τ ∈ [0, 1],
‖TB(yk) − yk‖2B ≤ P , where P is defined as in (6), since f(TB(yk)) ≤ f(yk) for all x ∈ R

d. Thus, P is a
valid upper bound on ρ∗k.

For the lower bound on ρ∗k, we note that, based on the condition for when the RhoSearch procedure is
reached in FastQuartic, it must be the case that ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y−k ‖2B and ρ−init ≤ ‖x−k+1 − y−k ‖2B −
Qε̃1/4aam. Thus, from (36), it can be seen that ρ−init ≤ ζ(ρ−init), and so it follows that ρ−init ≤ ρ∗k. Therefore, the
correctness of RhoSearch can be ensured.

With this observation in hand, we may see that, for any x ∈ R
d,

ψk+1(x) ≥ ψ∗
k +

1

2
‖x− vk‖2B + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≥ Akf(xk) +Bk +
1

2
‖x− vk‖2B + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≥ Ak(f(xk+1) + 〈∇f(xk+1), xk − xk+1〉) +Bk +
1

2
‖x− vk‖2B + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

= Ak+1f(xk+1) +Bk +
1

2
‖x− vk‖2B + 〈∇f(xk+1), Ak(xk − xk+1) + ak+1(x − xk+1)〉

= Ak+1f(xk+1) +Bk +
1

2
‖x− vk‖2B + 〈∇f(xk+1), ak+1(x− vk) +Ak+1(yk − xk+1)〉,

where the last equalities is due to the fact that Ak+1yk = Akxk + ak+1vk. Note that

min
x∈Rd

1

2
‖x− vk‖2B + 〈∇f(xk+1), ak+1(x − vk)〉 = −

a2k+1

2
‖∇f(xk+1)‖2B−1 .

Combining this observation with Lemma 3.8, the fact that ρ−init ≤ ‖x−j+1− y−j ‖2B, and our choice of ε̃aam, we
have

min
x∈Rd

ψk+1(x) ≥ Ak+1f(xk+1) +Bk −
a2k+1

2
‖∇f(xk+1)‖2B−1 + 〈∇f(xk+1), Ak+1(yk − xk+1)〉

≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3ρk
‖∇f(xk+1)‖2B−1

+Ak+1

(

1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4B(xk+1, yk)−

W ε̃
1/4
aam

ρ−init

)

≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3ρk
‖∇f(xk+1)‖2B−1

+Ak+1

(

1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4B(xk+1, yk)−

ε̃2rs
100ρ−init

)

.

We also know, by the guarantees of RhoSearch in Theorem 3.7, along with the choice of ε̃aam, that ρk ≥
(1− ε̃rs)ζ̂(ρk) = (1− ε̃rs)r̂2B(xk+1, yk), and so

min
x∈Rd

ψk+1(x) ≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3(1− ε̃rs)r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1

+Ak+1

(

1

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4
B
(xk+1, yk)−

ε̃2rs
100ρ−init

)

≥ Ak+1f(xk+1) +Bk +Ak+1

(

3L3

8
r̂4
B
(xk+1, yk)− ε̃curr

)

,

20

where

ε̃curr
def
=

ε̃rs

2L3(1− ε̃rs)ρ−init
‖∇f(xk+1)‖2B−1 +

ε̃2rs
100ρ−init

.

Therefore, by our choice of ε̃rs ≤ 3L3ρ
−

init
P2

16T , where

T def
=
G
L3

+
1

100
, (37)

(23) holds for k + 1, proving the induction step. In addition, we may note that

ψk+1(x) =
1

2
‖x− x0‖2B +

k+1
∑

i=0

ai [f(xk+1) + 〈∇f(xk+1), x− xk+1〉] ≤
1

2
‖x− x0‖2B +

k+1
∑

i=0

aif(x)

= Ak+1f(x) +
1

2
‖x− x0‖2B.

Since vk+1 = argminx∈Rd ψk+1(x) and ψk+1(x) is a quadratic function, it follows that, for all x ∈ R
d,

ψk+1(x) = ψk+1(vk+1) + 〈∇ψk+1(vk+1), x − vk+1〉+
1

2
‖x− vk+1‖2B

= ψk+1(vk+1) +
1

2
‖x− vk+1‖2B

≤ Ak+1f(x) +
1

2
‖x− x0‖2B.

Taken together, this gives us that

Ak+1f(xk+1) +Bk+1 +
1

2
‖x− vk+1‖2B ≤ min

x∈Rd
ψk+1(x) +

1

2
‖x− vk+1‖2B

= ψk+1(vk+1) +
1

2
‖x− vk+1‖2B

≤ Ak+1f(x) +
1

2
‖x− x0‖2B.

Rearranging and letting x = x∗, we have that

Ak+1(f(xk+1)− f(x∗)) +Bk+1 +
1

2
‖x∗ − vk+1‖2B ≤

1

2
‖x∗ − x0‖2B,

and so it follows that
‖vk+1 − x∗‖2B ≤ ‖x0 − x∗‖2B

and vk+1, xk+1 ∈ L.

A.8 Proof of Corollary 3.10.

Proof. Note that, for all k ≥ 0, x ∈ R
d,

ψk(x) =
1

2
‖x− x0‖2B +

k
∑

i=0

ai [f(xk) + 〈∇f(xk), x− xk〉] ≤
1

2
‖x− x0‖2B +

k
∑

i=0

aif(x) = Akf(x) +
1

2
‖x− x0‖2B,

and so it follows from Lemma 3.9 that

Akf(xk) +Bk ≤ min
x∈Rd

ψk(x) ≤ min
x∈Rd

Akf(x) +
1

2
‖x− x0‖2B = Akf(x

∗) +
1

2
‖x∗ − x0‖2B.

21

Rearranging, we have

3L3

16

k−1
∑

i=0

Ai+1r̂
4
B(xi+1, yi) = Bk ≤ Ak(f(x

∗)− f(xk)) +
1

2
‖x∗ − x0‖2B ≤

1

2
‖x∗ − x0‖2B

and so

f(xk)− f(x∗) ≤
1

2Ak
‖x∗ − x0‖2B.

A.9 Proof of Lemma 3.11.

Proof. Note that, by our choice of Ak and ak,

A
1/2
k+1 −A

1/2
k =

ak+1

A
1/2
k+1 +A

1/2
k

=
1

A
1/2
k+1 +A

1/2
k

√

Ak+1

L3ρk
≥
√

1

4L3ρk
. (38)

Again, we procede with a proof by induction. A0 = 0, thus the case for k = 0 holds. Now, suppose for some
k ≥ 0,

Ak ≥
1

4L3

(

k−1
∑

i=0

1

ρ
1/2
i

)2

.

By (38), we know that

A
1/2
k+1 ≥ A

1/2
k +

√

1

4L3ρk
≥
√

1

4L3

k−1
∑

i=0

1

ρ
1/2
i

+

√

1

4L3ρk
=

√

1

4L3

k
∑

i=0

1

ρ
1/2
i

which concludes the induction step.

A.10 Proof of Lemma 3.12.

Using Theorem 3.7 and the fact that ε̃rs < 1, we have that ρi ≤ 2r̂2
B
(xi+1, yi). By Lemma 3.11, it follows

that, for all k ≥ 0,

Ak ≥
1

4L3

(

k−1
∑

i=0

1

ρ
1/2
i

)2

≥ 1

8L3

(

k−1
∑

i=0

1

r̂B(xi+1, yi)

)2

. (39)

Note that, for all k ≥ 0, x ∈ R
d,

ψk(x) =
1

2
‖x− x0‖2B +

k
∑

i=0

ai [f(xk) + 〈∇f(xk), x− xk〉] ≤
1

2
‖x− x0‖2B +

k
∑

i=0

aif(x) = Akf(x) +
1

2
‖x− x0‖2B,

and so it follows that

Akf(xk) +Bk ≤ min
x∈Rd

ψk(x) ≤ min
x∈Rd

Akf(x) +
1

2
‖x− x0‖2B = Akf(x

∗) +
1

2
‖x∗ − x0‖2B.

Rearranging, we have

3L3

16

k−1
∑

i=0

Ai+1r̂
4
B(xi+1, yi) = Bk ≤ Ak(f(x

∗)− f(xk)) +
1

2
‖x∗ − x0‖2B ≤

1

2
‖x∗ − x0‖2B. (40)

22

The objective now is to lower bound the quantity
k−1
∑

i=0

1
r̂B(xi+1,yi)

from (39), subject to the constraint given

by (40). After defining ξi
def
= r̂B(xi+1, yi) and D

def
= 8

3L3
‖x0 − x∗‖2B, our aim is to minimize

min
ξ∈Rk

{

k−1
∑

i=0

1

ξi
:

k−1
∑

i=0

Ai+1ξ
4
i ≤ D

}

.

We may introduce a Lagrange multiplier λ, giving us the following optimality conditions:

1

ξ2i
= λAi+1ξ

3
i , i ∈ {0, . . . , k − 1} .

Therefore, ξi =
(

1
λAi+1

)1/5

. This gives us

D =

k−1
∑

i=0

Ai+1

(

1

λAi+1

)4/5

=
1

λ4/5

k−1
∑

i=0

A
1/5
i+1.

Thus, we have

ξ∗ =

k−1
∑

i=0

(λAi+1)
1/5 =

1

D1/4

(

k−1
∑

i=0

A
1/5
i+1

)5/4

,

and so
k−1
∑

i=0

1

r̂
1/2
B

(yi)
≥ 1

D1/4

(

k−1
∑

i=0

A
1/5
i+1

)5/4

.

It follows that

Ak ≥
1

8L3D1/2

(

k
∑

i=1

A
1/5
i

)5/2

, k ≥ 1.

Let θ = 1
8L3D1/2 and Ck =

(

k
∑

i=1

A
1/5
i

)1/2

. Then, we have that

C2
k+1 − C2

k ≥ θ1/5Ck+1.

Thus, we have that C03253 ≥ θ1/5, Ck+1 ≥ Ck, and so

θ1/5Ck+1 ≤ (Ck+1 − Ck)(Ck+1 + Ck)

≤ 2Ck+1(Ck+1 − Ck).

Thus, it follows that Ck ≥ θ1/5(1 + 1
2 (k − 1)) for all k ≥ 1. Taken together, this gives us that

Ak ≥ θ
(

C2
k

)5/2 ≥ θ
(

θ1/5
k + 1

2

)5

= θ2
(

k + 1

2

)5

=
3

256L3‖x0 − x∗‖2B

(

k + 1

2

)5

.

23

A.11 Proof of Theorem 3.14.

Proof. By the algorithm statement, we have that ε̃fs = min
{

3L2
3Pρ−

init

32G , 12

}

. By ε̃aam > 0 sufficiently small,

we mean that

ε̃aam ≤ min

{

(

ε̃fs
V(1 + ε̃fs)

)4
}

.

For both cases (a) and (b), it holds by Lemma 3.9 (and the statement of this lemma) that

Aif(xi) +Bi ≤ ψ∗
i

def
= min

x∈Rd
ψi(x).

We begin by considering the case where (a) holds. We first observe that, since f(·) is convex, we have that,
for all z ∈ L,

f(z)− f(x∗) ≤ P1/2‖∇f(z)‖B−1 .

If ‖∇f(xk+1)‖2B−1 <
ε2

P , then we are done, as f(z)−f(x∗) ≤ ε, so we consider the case where ‖∇f(xk+1)‖2B−1 ≥
ε2

P .
Thus, by Lemma 3.4, we have that

〈∇f(xk+1), yk − xk+1〉 ≥
1− V ε̃1/4aam

2L3r̂2B(xk+1, yk)
‖∇f(xk+1)‖2B−1 +

3L3

8
r̂4
B
(xk+1, yk),

where V def
= max

x,y∈L
6Z(x,y)W (x,y)P

ε2L
1/4
3

.

Since ρ−init > (1 + ε̃fs)‖x−i+1 − y−i ‖2B = (1 + ε̃fs)r̂
2
B
(xi+1, yi) (by (a)), we may follow the same approach

as before to arrive at

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi −
a2i+1

2
‖∇f(xi+1)‖2B−1 + 〈∇f(xi+1), Ai+1(yi − xi+1)〉

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3ρ
−
init

‖∇f(xi+1)‖2B−1

+Ai+1

(

1− V ε̃1/4aam

2L3r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1 +

3L3

8
r̂4B(xi+1, yi)

)

> Ai+1f(xi+1) +Bi −
Ai+1

2L3(1 + ε̃fs)r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1

+Ai+1

(

1− V ε̃1/4aam

2L3r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1 +

3L3

8
r̂4B(xi+1, yi)

)

= Ai+1f(xi+1) +Bi +Ai+1

(

(1 + ε̃fs)
(

1− V ε̃1/4aam

)

− 1
)

‖∇f(xi+1)‖2B−1

2L3r̂2B(xi+1, yi)
+

3L3

8
r̂4B(xi+1, yi)

 .

Thus, since ε̃fs = min
{

3L2
3Pρ−

init

32G , 12

}

and ε̃aam ≤
(

ε̃fs

V(1+ε̃fs)

)4

, it follows that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi +
3L3Ai+1

8
r̂4B(xi+1, yi) = Ai+1f(xi+1) +Bi+1.

As before, we may observe that

ψi+1(x) =
1

2
‖x− x0‖2B +

i+1
∑

j=0

aj [f(xi+1) + 〈∇f(xi+1), x− xi+1〉] ≤
1

2
‖x− x0‖2B +

i+1
∑

j=0

ajf(x)

= Ai+1f(x) +
1

2
‖x− x0‖2B,

24

and so it follows that

f(xi+1)− f(x∗) ≤
1

2Ai+1
‖x0 − x∗‖2B.

By Lemma 3.11, we know that Ai+1 ≥ 1
4L3ρ

−

init

, and so it follows that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B.

We now consider the case where (b) holds, i.e., ρ−init ≤ (1+ ε̃fs)‖x−k+1−y−k ‖2B and ρ−init > ‖x−k+1−y−k ‖2B−
Qε̃1/4aam. We may observe that

‖x−k+1 − y−k ‖2B ≥
ρ−init

1 + ε̃fs
,

and so, if we choose ε̃aam ≤
(

ε̃fsρ
−

init

Q(1+ε̃fs)

)4

, it follows that

ρ−init > ‖x−k+1 − y−k ‖2B −Qε̃1/4aam ≥ ‖x−k+1 − y−k ‖2B −
ε̃fsρ

−
init

(1 + ε̃fs)
≥ (1 − ε̃fs)‖x−k+1 − y−k ‖2B,

and so we have that
(1− ε̃fs)‖x−k+1 − y−k ‖2B ≤ ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y−k ‖2B.

Following a line of reasoning as before, we may use Lemma 3.8 with c = (1 + ε̃fs), along with the fact
that ρ−init ≥ (1− ε̃fs)‖x−i+1 − y−i ‖2B, to see that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi −
a2i+1

2
‖∇f(xi+1)‖2B−1 + 〈∇f(xi+1), Ai+1(yi − xi+1)〉

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3ρi
‖∇f(xi+1)‖2B−1

+Ai+1

(

1

2L3r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1 +

3L3

8
r̂4B(xi+1, yi)−

W ε̃
1/4
aam

(1 + ε̃fs)ρ
−
init

)

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3(1 − ε̃fs)r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1

+Ai+1

(

1

2L3r̂2B(xi+1, yi)
‖∇f(xi+1)‖2B−1 +

3L3

8
r̂4B(xi+1, yi)−

W ε̃
1/4
aam

(1 + ε̃fs)ρ
−
init

)

= Ai+1f(xi+1) +Bi +Ai+1

(

3L3

8
r̂4
B
(xi+1, yi)− ε̂curr

)

,

where

ε̂curr
def
=

ε̃fs

2L3(1− ε̃fs)ρ−init
‖∇f(xk+1)‖2B−1 +

W ε̃
1/4
aam

(1 + ε̃fs)ρ
−
init

.

Thus, for ε̃fs = min
{

3L2
3Pρ−

init

32G , 12

}

, and ε̃aam ≤
(

3L3P2ρ−

init

32W

)4

, it follows that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi +Ai+1

(

3L3

16
r̂4
B
(xi+1, yi)

)

= Ai+1f(xi+1) +Bi+1.

Therefore, it follows that

f(xi+1)− f(x∗) ≤
1

2Ai+1
‖x0 − x∗‖2B,

and since by Lemma 3.11, we know that Ai+1 ≥ 1
4L3ρ

−

init

, we have that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B.

25

A.12 Proof of Theorem 4.1.

Proof. Let Z def
= max {A,G,P ,Q,R,V ,W , L3}. By appropriate initialization, we mean that ρ−init, ε̃aam are

chosen such that ρ−init ≤ ε
2L3P , and

ε̃aam < min

{

(

ε̃2rs
100Q

)4

,

(

ε̃2rs
100W

)4

,

(

ε̃fs
V(1 + ε̃fs)

)4

,

(

ε̃fsρ
−
init

Q(1 + ε̃fs)

)4

,

(

3L3P2ρ−init
32W

)4

,
1

2

}

≤ min

{

O
(

poly
(ε

Z
))

,
1

2

}

,

where ε̃fs and ε̃rs are as defined in the FastQuartic algorithm. Thus, based on our choices of ρ−init and ε̃aam,
the iteration complexity follows immediately from Theorems 3.13 and 3.14. Each iteration of FastQuartic
requires at most O(log(Zε)) iterations of RhoSearch, each of which requires at most O(log(Zε)) iterations of

ApproxAuxMin, and each iteration of ApproxAuxMin requires at most O(logO(1)(Zε)) calls to a gradient oracle

and linear system solver. Taken together, this gives us a total computational cost of O(logO(1)(Zε)) calls to
a gradient oracle and linear system solver per iteration of FastQuartic.

26

	1 Introduction
	1.1 Related work

	2 Setup
	2.1 Properties of convex quartic functions

	3 Minimizing structured convex quartics
	3.1 Approximate auxiliary minimization
	3.2 Search procedure for finding k
	3.3 Analyzing the convergence of FastQuartic

	4 Main results
	5 Conclusion
	A Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??.
	A.3 Proof of Lemma ??.
	A.4 Proof of Lemma ??.
	A.5 Proof of Theorem ??.
	A.6 Proof of Theorem ??.
	A.7 Proof of Lemma ??.
	A.8 Proof of Corollary ??.
	A.9 Proof of Lemma ??.
	A.10 Proof of Lemma ??.
	A.11 Proof of Theorem ??.
	A.12 Proof of Theorem ??.

