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Abstract

Let a fourth and a second order evolution equations be coupled via the interface by

transmission conditions, and suppose that the first one is stabilized by a localized dis-

tributed feedback. What will then be the effect of such a partial stabilization on the decay

of solutions at infinity? Is the behavior of the first component sufficient to stabilize the

second one? The answer given in this paper is that sufficiently smooth solutions decay

logarithmically at infinity even the feedback dissipation affects an arbitrarily small open

subset of the interior. The method used, in this case, is based on a frequency method,

and this by combining a contradiction argument with the Carleman estimates technique

to carry out a special analysis for the resolvent.
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1 Introduction

There are several mathematical models representing physical damping. The most often en-
countered type of damping in vibration studies are linear viscous damping and Kelvin-Voigt
damping which are special cases of proportional damping. Viscous damping usually models
external friction forces such as air resistance acting on the vibrating structures and is thus
called "external damping", while Kelvin-Voigt damping originate from the internal friction
of the material of the vibrating structures and thus called "internal damping" or "material
damping".

The study of the stabilization problem for coupled systems has attracted a lot of attention
in recent years e.g. [AN10,AV09,Duy07,Fat11,Has15b,LZ99,RZZ05,Teb12,ZZ07,ZZ06,ZZ15].
The systems discussed in those paper involve thermoelastic systems, fluid-structure interaction
systems, and coupled wave-wave, plate-plate, or plate-wave equations. But in the case of plate-
wave and for the multi-dimensional space (of interest in this paper), and as far as we know, the
only models which has been treated in this subject are the model of coupled Euler-Bernoulli
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and wave equations with indirect damping mechanisms (see [Teb12]) and the model arising in
the control of noise, coupling the damped wave equation with a damped Kirchhoff thin plate
equation (see [AN10]). The system that we are going to discuss in the present paper is coupling
the transversal vibration of the Euler-Bernoulli beam with Kelvin-Voigt damping distributed
locally on any subdomain with the elastic wave equation.

A relevant question raised about the transmission problems and problems with locally
distributed damping, is the asymptotic behavior of the solutions. Does the solution goes to
zero uniformly? If this is the case, what is the rate of decay?

In [LL98] and recently in [Has15c] for the transmission problem case, longitudinal and
transversal vibrations of a clamped elastic beam was studied as problems with locally dis-
tributed damping. It was shown, for the one-dimensional case, that when viscoelastic damping
is distributed only on a subinterval in the interior of the domain, the exponential stability
holds for the transversal but not for the longitudinal motion. Besides, an optimality result was
shown for longitudinal case.

Let us describe this system in detail. Let Ω ⊂ R
n be a bounded domain with connected

and smooth boundary Γ. Let Ω1 be a sub-domain of Ω such that Ω1 ⋐ Ω and set Ω2 = Ω\Ω1.
We denote by S the interface that supposed to be connected and smooth, and ν denotes the
outward normal vector of Ω1 in S and of Ω2 in Γ (see Figure 1). We Consider the following
transmission problem

(1.1)





∂2t u1 +∆(∆u1 + a.∆∂tu1) = 0 in Ω1×]0,+∞[,
∂2t u2 −∆u2 = 0 in Ω2×]0,+∞[,
u1 = u2 on S×]0,+∞[,
∂ν∆u1 + ∂νu2 = 0 on S×]0,+∞[,
∂νu1 = 0 on S×]0,+∞[,
u2 = 0 on Γ×]0,+∞[,
u1(x, 0) = u01(x), ∂tu1(x, 0) = u11(x) in Ω1,
u2(x, 0) = u02(x), ∂tu2(x, 0) = u12(x) in Ω2.

Where a is a non negative bounded function on Ω1, vanishing near the interface S such that
there exist a non empty open domain ω ⊂ Ω1 in such a way a is strictly positive in ω.

+∆(a.∆∂tu1)

S

Γ

∂2t u1 +∆2u1Ω2

∂2t u2 −∆u2

supp(a)

Ω1

ν ν

Figure 1: The domains Ω1 and Ω2 and the plate and wave operators.

This vibrating system is assumed to coupling the transversal and longitudinal motions
(with dissipation on the plate affects an arbitrarily small open subset of its interior) through
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the transmission conditions as given in the third forth and fifth line of (1.1): The first, is called
the continuity condition, the second, is described by the fact that the slope of the beam is null
and the third, says that the transverse force caused by the tension is equal to the transverse
force due to shear. This problem was studied in [Has15a] for one-dimensional case. It was
proved that the energy of the solution is decreasing with a polynomial rate for the two cases
where the damping arising from the transversal motion and the damping arising from the
longitudinal motion.

The energy of a solution (u1, u2) of the system (1.1) at the time t ≥ 0 is given by

E(t) =
1

2

(∫

Ω1

|∂tu1(x, t)|
2 + |∆u1(x, t)|

2 dx+

∫

Ω2

|∂tu2(x, t)|
2 + |∇u2(x, t)|

2 dx

)
.

By means of the classical energy method, we show that

E(t2)− E(t1) = −

∫ t2

t1

∫

Ω1

a|∆∂tu1(x, t)|
2 dxdt, ∀ t1, t2 > 0.

Therefore, the energy is a non-increasing function of the time variable t and our system (1.1)
is dissipative. We define the Hilbert space H = X ×H where H = L2(Ω1)× L2(Ω2) and

X =
{
(u1, u2) ∈ H1(Ω1)×H1

Γ(Ω2) : ∆u1 ∈ L2(Ω1), u1 |S = u2 |S , ∂νu1 |S = 0
}
,

where H1
Γ(Ω2) is the space of elements in H1(Ω2) whose trace is zero on the boundary Γ. The

space H is equipped with the norm

‖(u1, u2, v1, v2)‖
2
H = ‖∆u1‖

2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

+ ‖v1‖
2
L2(Ω1)

+ ‖v2‖
2
L2(Ω2)

.

We define the operator

A




u1
u2
v1
v2


 = (v1, v2,−∆(∆u1 + a∆v1),∆u2)

whose domain is given by

D(A) =
{
(u1, u2, v1, v2) ∈ H : (v1, v2,∆(∆u1 + a∆v1),∆u2) ∈ H, ∂ν∆u1 |S + ∂νu2 |S = 0

}
.

Our main result is the following

Theorem 1.1 For any k ∈ N there exists C > 0 such that for any initial data (u00, u
0
1, u

1
0, u

1
1) ∈

D(Ak) the solution (u1(x, t), u2(x, t)) of (1.1) starting from (u00, u
0
1, u

1
0, u

1
1) satisfying

E(t) ≤
C

(ln(2 + t))2k
‖(u00, u

0
1, u

1
0, u

1
1)‖

2
D(Ak), ∀ t > 0.

We should mention here that the subject of stabilization of transmission problems with localized
Kelvin-Voigt dissipation is perhaps not intensively studied but is not new in fact, in [ARSV11]
the authors consider the transmission problem of a material composed by three components, one
of them is a Kelvin-Voigt viscoelastic material, the second is an elastic material (no dissipation)
and the third is an elastic material inserted with a frictional damping mechanism where they
show different types of decay rate of energy depends on which component is in the middle, and
in [RBA11] the authors consider a transmission problem for the longitudinal displacement of
a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material
with Kelvin-Voigt constitutive relation in which they show that the semigroup associated to
the system is exponentially stable.
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The method of analysis

Besides the fact that the Kelvin-Voigt damping is unbounded in the energy space and the fact
that the resolvent of the system operator is not compact, the main difficulty of our problem
is none other than the different speeds of propagation due to the coupling between the wave
equation and the plate equation. The method that we consider here consist to the use of the
Burq’s result [Bur98] (see also [BD08]) which links, for dissipative operators, logarithmic decay
to resolvent estimates with exponential loss. The main idea, as introduced by Lebeau [Leb96]
is to use the what’s called, Carleman estimates (see also [Duy07] for the case of non linear
damping and [ET12] for the case of hyperbolic systems). Unlike to the works of [Bel03,Duy07,
Fat11], here Carleman estimate does not seem to be enough, that is why we have combined
it with some contradiction arguments to establish the kind of resolvent estimate cited above.
Moreover, to deal with the high order of the plate equation, Carleman estimate (Theorem 3.2)
is established for system of second order (3.4) which is derived from the resolvent problem (4.8)
by decomposing the plate equation into two second order operators (4.11).

The outline of this paper is as follows: In section 2 we show that the corresponding model
are well posed, in section 3 we give the Carleman estimates and we construct a suitable weight
functions that satisfy the Hörmander’s assumption. In section 4 we prove the resolvent estimate
which provides the logarithmic decay result given by Theorem 1.1.

2 Existence and uniqueness

In this section and through the semigroup theory we will show that the problem (1.1) is Well-
posed. The system (1.1) can be written in the abstract form as a Cauchy problem as follows





∂t




u1
u2
v1
v2


 (t, x) = A




u1
u2
v1
v2


 (t, x) if (t, x) ∈]0,+∞[×Ω,




u1
u2
v1
v2


 (0, x) =




u01
u02
u11
u12


 (x) if x ∈ Ω,

where we recall that the operator A is defined by

A




u1
u2
v1
v2


 = (v1, v2,−∆(∆u1 + a∆v1),∆u2)

with domain

D(A) =
{
(u1, u2, v1, v2) ∈ H : (v1, v2,∆(∆u1 + a∆v1),∆u2) ∈ H, ∂ν∆u1 |S + ∂νu2 |S = 0

}
.

In the space Y = L2(Ω1)×H1
Γ(Ω2) we define the operator G as follows

G

(
u1
u2

)
=

(
−∆u1
u2

)
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with domain

D(G) = X =
{
(u1, u2) ∈ H1(Ω1)×H1

Γ(Ω2) : ∆u1 ∈ L2(Ω1), u1 |S = u2 |S , ∂νu1 |S = 0
}
.

We define a norm in the space X by

‖(u1, u2)‖
2
X = ‖∆u1‖

2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

.

The graph norm of G is given by

‖(u1, u2)‖
2
gr(G) = ‖u1‖

2
L2(Ω1)

+ ‖∆u1‖
2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

.

Lemma 2.1 (X, ‖ . ‖X ) is a Hilbert space with a norm equivalent to the graph norm of G.

Proof :

Let’s note first, by setting u = 1Ω1
u1 + 1Ω2

u2, that the continuity transmission condition
u1 |S = u2 |S allows to look at u as an element of H1(Ω). Hence by Green’s formula and
Poincaré inequality there exists C > 0 such that for every (u1, u2) ∈ X we have

〈
G

(
u1
u2

)
,

(
u1
u2

)〉

Y

= ‖∇u1‖
2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

≥ C(‖u1‖
2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

).

In particular G is a strictly positive operator on Y . Besides, since for every (u1, u2) ∈ X we
have

‖(u1, u2)‖X .‖(u1, u2)‖Y = ‖G(u1, u2)‖Y .‖(u1, u2)‖Y ≥

〈
G

(
u1
u2

)
,

(
u1
u2

)〉

Y

≥ C‖(u1, u2)‖
2
Y ,

then the equivalence of the two norms holds.
To finish the proof we have only to prove that G is a closed operator on Y . Let (u1,n, u2,n) ∈ Y ,
(u1, u2) and (f1, f2) such that

u1,n −→ u1, −∆u1,n −→ f1 in L2(Ω1) and u2,n −→ f2, u2,n −→ u2 in H1
Γ(Ω2) as n −→ +∞.

Therefore, u2 = f2 ∈ H1
Γ(Ω2) and in since for all ϕ ∈ C∞

c (Ω1),

〈−f1, ϕ〉D′(Ω1) = lim
n→+∞

〈∆u1,n, ϕ〉D′(Ω1) = lim
n→+∞

〈u1,n,∆ϕ〉D′(Ω1) = 〈u1,∆ϕ〉D′(Ω1) = 〈∆u1, ϕ〉D′(Ω1),

then we obtain also −∆u1 = f1 ∈ L2(Ω1). In the other hand, while

‖∇(u1,n − u1,m)‖L2(Ω1) = −〈∆(u1,n − u1,m), u1,n − u1,m〉2L2(Ω1)
−→ 0 as n,m −→ +∞

then u1,n is a Cauchy sequence in H1(Ω1), that converge to u1 in H1(Ω1) where we argue this
fact as follows,

lim
n→+∞

〈∇u1,n, ϕ〉D′(Ω1) = − lim
n→+∞

〈u1,n,∇ϕ〉D′(Ω1) = −〈u1,∇ϕ〉D′(Ω1) = 〈∇u1, ϕ〉D′(Ω1).

For the transmission conditions we have

‖u1−u2‖
H

1
2 (S)

= ‖u1−u1,n+u2,n−u2‖
H

1
2 (S)

≤ C(‖u1−u1,n‖H1(Ω1)+‖u2−u2,n‖H1(Ω2)) −→ 0.
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and

‖∂νu1‖
H− 1

2 (S)
= ‖∂ν(u1 − u1,n)‖

H− 1
2 (S)

≤ C(‖u1 − u1,n‖H1(Ω1) + ‖∆u1 −∆u1,n‖L2(Ω1)) −→ 0,

where we have used here [TW09, Theorem 13.7.6]. This show now that G is a closed operator
and this conclude the proof.

Theorem 2.1 The operator A is m-dissipative and especially it generates a strongly semigroup
of contraction in H.

Proof :

According to Lumer-Phillips theorem (see [TW09, Theorem 3.8.4]) we have only to prove that
A is m-dissipative.
Let (u1, u2, v1, v2) ∈ D(A) then by Green’s formula we have

Re

〈
A




u1
u2
v1
v2


 ,




u1
u2
v1
v2




〉

H

= Re

〈



v1
v2

−∆(∆u1 + a∆v1)
∆u2


 ,




u1
u2
v1
v2




〉

H

= −‖a
1

2∆v1‖
2
L2(Ω1)

≤ 0.

This shows that A is dissipative.
Let (f1, f2, g1, g2) ∈ H and let’s find a quadruplet (u1, u2, v1, v2) ∈ D(A) such that

(Id−A)




u1
u2
v1
v2


 =




u1 − v1
u2 − v2

v1 +∆(∆u1 + a∆v1)
v2 −∆u2


 =




f1
f2
g1
g2


 ,

This amounts to finding (u1, u2, v1, v2) ∈ D(A) that satisfies the following system




v1 = u1 − f1 in Ω1

v2 = u2 − f2 in Ω2

u1 +∆((1 + a)∆u1 − a∆f1) = f1 + g1 in Ω1

u2 −∆u2 = f2 + g2 in Ω2.

From Lemma 2.1 and the Riesz representation theorem, we can find a unique (u1, u2) ∈ X such
that for all (ϕ1, ϕ2) ∈ X we have

〈f1 + g1, ϕ1〉L2(Ω1) + 〈f2 + g2, ϕ2〉L2(Ω2) + 〈a∆f1,∆ϕ1〉L2(Ω1) = 〈u1, ϕ1〉L2(Ω1)

+〈(1 + a)∆u1,∆ϕ1〉L2(Ω1) + 〈u2, ϕ2〉L2(Ω2) + 〈∇u2,∇ϕ2〉L2(Ω2).

Then by Green’s formula we obtain

〈∆((1 + a)∆u1 − a∆f1) + (u1 − f1 − g1), ϕ1〉L2(Ω1) + 〈f2 + g2 +∆u2 − u2, ϕ2〉L2(Ω2)

= 〈∂νu2 + ∂ν∆u1, ϕ1〉L2(S).
(2.1)

In particular for all (ϕ1, ϕ2) ∈ C∞
c (Ω1)× C∞

c (Ω2) we have

〈∆((1 + a)∆u1 − a∆f1) + (u1 − f1 − g1), ϕ1〉L2(Ω1) + 〈f2 + g2 +∆u2 − u2, ϕ2〉L2(Ω2) = 0
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then we find

(2.2)

{
u1 +∆((1 + a)∆u1 − a∆f1) = f1 + g1 in L2(Ω1),
u2 −∆u2 = f2 + g2 in L2(Ω2).

Then from (2.1) and (2.2) we obtain

〈∂νu2 + ∂ν∆u1, ϕ1〉L2(S) = 0

and this show the following equality

∂ν∆u1 |S + ∂νu2 |S = 0.

And this give end to our proof.

One consequence of this last result is that if we assume that (u01, u
0
2, u

1
1, u

1
2) ∈ D(A), there

exists a unique solution of (1.1) which can be expressed by means of a semigroup on H as
follows

(2.3)




u1
u2
∂tu1
∂tu2


 = etA




u01
u02
u11
u12




where etA is the semigroup of the operator A. And we have the following regularity of the
solution 



u1
u2
∂tu1
∂tu2


 ∈ C([0,+∞[,D(A)) ∩ C1([0,+∞[,H).

And if (u01, u
0
2, u

1
1, u

1
2) ∈ H, the function (u1(t), u2(t)) given by (2.3) is the mild solution of (1.1).

3 Carleman estimate near the surface

This section is devoted to establish the Carleman estimate.
We set the operator

A(x,D) :=





A1(x,D) := −∂2xn
+R1(x, ∂x′/i) ±

1

h
xn > 0

A2(x,D) := −∂2xn
+R2(x, ∂x′/i) −

1

h2
xn < 0

with h is a small semi-classical parameter and where

R(x, ξ′) =

{
R1(x, ξ

′) xn > 0
R2(x, ξ

′) xn < 0

is a second order polynomial in ξ′ with coefficients in R with principal symbol

r(x, ξ′) =

{
r1(x, ξ

′) xn > 0
r2(x, ξ

′) xn < 0
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that satisfy {
r1(x, ξ

′) ≥ C|ξ′|2 ∀xn > 0, ∀ ξ′ ∈ R
n−1

r2(x, ξ
′) ≥ C|ξ′|2 ∀xn < 0, ∀ ξ′ ∈ R

n−1.

We consider the following transmission problem

(3.1)





A(x,D)(w) = f xn 6= 0
hw(x′, 0+) = w(x′, 0−) + θ
∂νw(x

′, 0+) = ∂νw(x
′, 0+) + Θ.

Let V = V ′×]− ǫ, ǫ[ be an open set of R
n, follow to [RR10] we set

R
n
− = {x : xn < 0}, R

n
+ = {x : xn > 0}, V g = V ∩ R

n
−, V d = V ∩ R

n
+.

For a compact set K of V we set Kg = K∩Rn
− and Kd = K∩Rn

+. We then denote by C∞
c (Kd)

(resp. C∞
c (Kg)) the space of functions that are C∞ in Rn

+ (resp. Rn
−) with support in Kd

(resp. Kg).
We let ϕ a weight function and we define in both side of S the conjugate operator

Aϕ = h2eϕ/hAe−ϕ/h

with principal symbol

aϕ(x, ξ) =

{
(ξn + i(∂xnϕ))

2 + r1(x, ξ
′ + i(∂x′ϕ)) xn > 0

(ξn + i(∂xnϕ))
2 + r2(x, ξ

′ + i(∂x′ϕ))− 1 xn < 0.

We suppose that the weight function ϕ is in C (V ), ϕ|Rn
−

∈ C∞(V
g
), ϕ|Rn

+
∈ C∞(V

d
) and such

that

1. |∇ϕ|(x) > 0 in V .

2. For all x′ ∈ V ′

(3.2)

{
(∂xnϕ)(x

′, 0+) > 0 and (∂xnϕ)(x
′, 0−) > 0

(∂xnϕ)
2(x′, 0+)− (∂xnϕ)

2(x′, 0−) > 1.

3. The sub-ellipticity condition:

(3.3) ∀ (x, ξ) ∈ V × R
n; aϕ(x, ξ) = 0 =⇒ {Re(aϕ), Im(aϕ)}(x, ξ) > 0.

Follows to Le Rousseau and Robbiano result [RR10] we can prove by using the same argument
and the exactly the same steps we can prove the following result

Theorem 3.1 Let K be a compact subset of V and ϕ a weight function satisfying the above
assumption, then there exist C > 0 and h0 > 0 such that

h‖eϕ/hw‖20 + h3‖eϕ/h∇w‖20 + h|eϕ/hw|xn=0± |
2
0 + h3|eϕ/h∇x′w|xn=0± |

2
0 + h3|eϕ/h∂xnw|xn=0± |

2
0

≤ C(h4‖eϕ/hf‖20 + h|eϕ/hθ|20 + h3|eϕ/h∇x′θ|20 + h3|eϕ/hΘ|20)

for all 0 < h ≤ h0, w and f satisfying (3.1) where w|Rn
−

∈ C∞
c (Kg) and w|Rn

+
∈ C∞

c (Kd).
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The proof of Carleman estimate is the same for both, in this paper and in the Le Rousseau
and Robbiano paper [RR10] even that the transmission conditions are different. In fact,
while in [RR10] they are depending on some diffusion coefficients where an additional as-
sumption ( [RR10, (2.2)]), on the jump at the interface of the weight functions, is assumed
in addition to that given above, here the transmission conditions depend on the pseudo-
differential parameter h where, for h small enough this scaling coefficient allows us to en-
sure the assumption of Le Rousseau and Robbiano [RR10, (2.2)] which became in our case
(∂xnϕ)(x

′, 0+) − h(∂xnϕ)(x
′, 0−) > 0. Thus we may notice how the scaling coefficient h is

playing the same role as the diffusion coefficients in the Rousseau and Robbiano paper [RR10].
Noting also another version of this analysis appeared more recently in [RLR13].

The purpose of the rest of this section is to provide a global Carleman estimate for a
transmission problem with three entries governed by a three elliptic operators. Besides, we will
try to construct a suitable weight functions that will be needed in the next section.

Let O1 and O2 be two open and disjoint domains with smooth boundary and we suppose
that ∂O1 = γ ∪ γ1 and ∂O2 = γ ∪ γ2 such that γ1 ∩ γ = γ2 ∩ γ = γ1 ∩ γ2 = ∅. We denote by ν
the outward normal vector of O1 in γ and γ1 and of Ω2 in γ2 (see Figure 2). We consider the
following boundary and transmission value problem

(3.4)





A′
1y

′
1 = f ′1 in O1

A′′
1y

′′
1 = f ′′1 in O1

A2y2 = f2 in O2

hy′1 = y2 + hy′′1 on γ
∂νy

′
1 = ∂νy2 on γ

hy′′1 = y2 + θ on γ
∂νy

′′
1 = ∂νy2 on γ

y2 = 0 on γ2.

where A′
1, A

′′
2 and A2 are differential operators defined by

A′
1y

′
1 = −∆y′1 − y′1/h, A′′

1y
′′
1 = −∆y′′1 + y′′1/h, A2y2 = −∆y2 − y2/h

2.

γ

γ2

γ1O2
O1

ν ν
ν

Figure 2: The domains O1 and O2.

We define the conjugate operators of A′
1, A

′′
1 and A2 respectively by

A′
ϕ1
(x,D, h) = h2eϕ1/hA′

1e
−ϕ1/h, A′′

ϕ1
(x,D, h) = h2eϕ1/hA′′

1e
−ϕ1/h,

Aϕ2
(x,D, h) = h2eϕ2/hA2e

−ϕ2/h,
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where A′
ϕ1
(x,D, h) and A′′

ϕ1
(x,D, h) are of principal symbol

aϕ1
(x, ξ) = |ξ + i∇ϕ1|

2

and that of Aϕ2
(x,D, h) is

aϕ2
(x, ξ) = |ξ + i∇ϕ2|

2 − 1

where ϕ1 and ϕ2 are two weight functions defined respectively in O1 and O2.
We suppose that the weight functions ϕ1 ∈ C∞(O1), ϕ2 ∈ C∞(O2) and satisfy

1. ϕ1 |γ = ϕ2 |γ .

2. |∇ϕ1|(x) > 0 in O1 and |∇ϕ2|(x) > 0 in O2.

3. ∂νϕ1 |γ < 0 and ∂νϕ2 |γ < 0.

4. (∂νϕ1 |γ)
2 − (∂νϕ2 |γ)

2 > 1

5. ∂νϕ1 |γ1 6= 0 and ∂νϕ2 |γ2 < 0.

6. The sub-ellipticity condition:

(3.5)

{
∀ (x, ξ) ∈ O1 × R

n; aϕ1
(x, ξ) = 0 =⇒ {Re(aϕ1

), Im(aϕ1
)}(x, ξ) > 0

∀ (x, ξ) ∈ O2 × R
n; aϕ2

(x, ξ) = 0 =⇒ {Re(aϕ2
), Im(aϕ2

)}(x, ξ) > 0.

Under these assumption the global Carleman estimate is given by the following

Theorem 3.2 Let ϕ1 and ϕ2 the two weight functions as described above, then there exist
C > 0 and h0 > 0 such that

h‖eϕ1/hy′1‖
2
L2(O1)

+ h3‖eϕ1/h∇y′1‖
2
L2(O1)

+ h|eϕ1/hy′1|
2
L2(γ) + h3|eϕ1/h∇y′1|

2
L2(γ)

+h3|eϕ1/h∂νy
′
1|
2
L2(γ) + h‖eϕ1/hy′′1‖

2
L2(O1)

+ h3‖eϕ1/h∇y′′1‖
2
L2(O1)

+ h|eϕ1/hy′′1 |
2
L2(γ)

+h3|eϕ1/h∇y′′1 |
2
L2(γ) + h3|eϕ1/h∂νy

′′
1 |

2
L2(γ) + h‖eϕ2/hy2‖

2
L2(O2)

+ h3‖eϕ2/h∇y2‖
2
L2(O2)

+h|eϕ2/hy2|
2
L2(γ) + h3|eϕ2/h∇y2|

2
L2(γ) + h3|eϕ2/h∂νy2|

2
L2(γ) ≤ C(h4‖eϕ1/hf ′1‖

2
L2(O1)

+h4‖eϕ1/hf ′′1 ‖
2
L2(O1)

+ h4‖eϕ1/hf2‖
2
L2(O2)

+ h|eϕ/hθ|2L2(γ) + h3|eϕ/h∇θ|2L2(γ)

+h|eϕ1/hy′1|
2
L2(γ1)

+ h3|eϕ1/h∂νy
′
1|
2
L2(γ1)

+ h|eϕ1/hy′′1 |
2
L2(γ1)

+ h3|eϕ1/h∂νy
′′
1 |

2
L2(γ1)

)

for all 0 < h ≤ h0 and y′1, y
′′
1 ∈ C∞(O1), y2 ∈ C∞(O2), f ′1, f

′′
1 and f2 satisfying to the

system (3.4).

Proof :

The proof follows easily from Theorem 3.1 in fact, system (3.4) can be shown as a combination
of two transmission problems, the first is by consider only the equation with entries y′1 and y2
only, where in the first transmission equation the term θ′ = hy′′1 should be seen as an error in
the continuity of the trace of y′1 and y2, namely we have





A′
1y

′
1 = f ′1 in O1

A2y2 = f2 in O2

hy′1 = y2 + θ′ on γ
∂νy

′
1 = ∂νy2 on γ

∂νy
′′
1 = ∂νy2 on γ

y2 = 0 on γ2.
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and the second problem is with the entries y′′1 and y2 only as follow





A′′
1y

′′
1 = f ′′1 in O1

A2y2 = f2 in O2

hy′′1 = y2 + θ on γ
∂νy

′′
1 = ∂νy2 on γ

y2 = 0 on γ2.

We apply Theorem 3.1 for each of these systems by taking into account [LR97, Proposition 1]
and [LR95, Proposition 2] then we get

h‖eϕ1/hy′1‖
2
L2(O1)

+ h3‖eϕ1/h∇y′1‖
2
L2(O1)

+ h|eϕ1/hy′1|
2
L2(γ) + h3|eϕ1/h∇y′1|

2
L2(γ)

+h3|eϕ1/h∂νy
′
1|
2
L2(γ) + h‖eϕ2/hy2‖

2
L2(O2)

+ h3‖eϕ2/h∇y2‖
2
L2(O2)

+ h|eϕ2/hy2|
2
L2(γ)

+h3|eϕ2/h∇y2|
2
L2(γ) + h3|eϕ2/h∂νy2|

2
L2(γ) ≤ C(h4‖eϕ1/hf ′1‖

2
L2(O1)

+ h4‖eϕ1/hf2‖
2
L2(O2)

+h|eϕ/hθ′|2L2(γ) + h3|eϕ/h∇θ′|2L2(γ) + h|eϕ1/hy′1|
2
L2(γ1)

+ h3|eϕ1/h∂νy
′
1|
2
L2(γ1)

),

and

h‖eϕ1/hy′′1‖
2
L2(O1)

+ h3‖eϕ1/h∇y′′1‖
2
L2(O1)

+ h|eϕ1/hy′′1 |
2
L2(γ) + h3|eϕ1/h∇y′′1 |

2
L2(γ)

+h3|eϕ1/h∂νy
′′
1 |

2
L2(γ) + h‖eϕ2/hy2‖

2
L2(O2)

+ h3‖eϕ2/h∇y2‖
2
L2(O2)

+ h|eϕ2/hy2|
2
L2(γ)

+h3|eϕ2/h∇y2|
2
L2(γ) + h3|eϕ2/h∂νy2|

2
L2(γ) ≤ C(h4‖eϕ1/hf ′′1 ‖

2
L2(O1)

+ h4‖eϕ1/hf2‖
2
L2(O2)

+h|eϕ/hθ|2L2(γ) + h3|eϕ/h∇θ|2L2(γ) + h|eϕ1/hy′′1 |
2
L2(γ1)

+ h3|eϕ1/h∂νy
′′
1 |

2
L2(γ1)

).

The result follows easily now by combing the two last estimates where the terms θ′ = hy′′1 are
absorbed to the left hand side for h > 0 small enough.

We return now to our geometric baseline as described in the introduction of this paper and
we denote by Ω̃1 = Ω1\Br where Br is an open ball of Ω1 with radius r > 0 such that Br ⊂ Ω1.
We try to find four phases ϕ1,1, ϕ1,2, ϕ2,1 and ϕ2,2 satisfying the Hörmander’s condition except
in a finite number of balls where ϕ1,1 or ϕ1,2 (resp. ϕ2,1 or ϕ2,2) do not satisfy this condition
the other does and is strictly greater.

According to [Bur98, Proposition 3.2] we can find two C∞ functions ϕ1,1 and ϕ1,2 in Ω̃1

(resp. ϕ2,1 and ϕ2,2 in Ω2) such that there exists a finite number of points xj1,1 ∈ Ω̃1 for j =

1, . . . , N1,1 and xj1,2 ∈ Ω̃1 for j = 1, . . . , N1,2 (resp. xj2,1 ∈ Ω2 for j = 1, . . . , N2,1 and xj2,2 ∈ Ω2

for j = 1, . . . , N2,2) and ǫ > 0 such that B(xj1,1, 2ǫ) ⊂ Ω̃1, B(xj1,2, 2ǫ) ⊂ Ω̃1, B(xj11,1, 2ǫ) ∩

B(xj21,2, 2ǫ) = ∅ and in B(xj1,k, 2ǫ) we have ϕ1,k+1 > ϕ1,k (resp. B(xj2,1, 2ǫ) ⊂ Ω2, B(xj2,2, 2ǫ) ⊂

Ω2, B(xj12,1, 2ǫ)∩B(xj21,2, 2ǫ) = ∅ and in B(xj2,k, 2ǫ) we have ϕ2,k+1 > ϕ2,k), where k+1 is equal

to 2 if k = 1 and equal to 1 if k = 2. Furthermore, by setting U1,k = Ω̃1

⋂



N1,k⋃

j=1

B(xj1,k, 2ǫ)




c

and U2,k = Ω2

⋂



N2,k⋃

j=1

B(xj2,k, 2ǫ)




c

for k = 1, 2, γ1 = ∂Br, γ2 = Γ2 and γ = S, the phases

verifying that |∇ϕ1,1| > 0 in U1,1, |∇ϕ1,2| > 0 in U1,2,|∇ϕ2,1| > 0 in U2,1, |∇ϕ2,2| > 0 in U2,2,
∂νϕ1,k |γ1 6= 0, ∂νϕ2,k |γ2 < 0, ∂νϕ1,k |γ < 0, ∂νϕ2,k |γ < 0, and ϕ1,1, ϕ1,2, ϕ2,1 and ϕ2,2 verifying
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the Hörmander’s condition (3.5) respectively in U1,1, U1,2, U2,1 and U2,2. We can let also
(see [Bel03]) ϕ1,1 |S = ϕ2,1 |S where by construction we obtain ϕ1,2|S = ϕ2,2|S and by argument
of density we can suppose that (∂νϕ1,1 |S)

2− (∂νϕ2,1 |S)
2 > 1 and (∂νϕ1,2 |S)

2− (∂νϕ2,2 |S)
2 > 1.

And that concludes our construction of the weight functions.

4 Resolvent Estimate

This section is devoted to prove a resolvent estimate, precisely we will show that for some
constant C > 0 we have

(4.1) ‖(A− iµ Id)−1‖L(H) ≤ CeC|µ|,

for every µ ∈ R large enough in absolute value, Which by Burq’s result follow the kind of
energy decay rate given in Theorem 1.1.

We suppose that the resolvent estimate (4.1) is false. Then there exist two sequences Km >
0 and µm ∈ R and two families (u1,m, u2,m, v1,m, v2,m) ∈ D(A) and (f1,m, f2,m, g1,m, g2,m) ∈ H,
m = 1, 2, . . . such that

(4.2) |µm| −→ +∞, Km −→ +∞, ‖(u1,m, u2,m, v1,m, v2,m)‖H = 1,

and

(4.3) eKm|µm|(A− iµm)




u1,m
u2,m
v1,m
v2,m


 =




f1,m
f2,m
g1,m
g2,m


 −→ 0 in H.

This implies that

(4.4) eKm|µm|




v1,m − iµmu1,m
v2,m − iµmu2,m

−∆(∆u1,m + a∆v1,m)− iµmv1,m
∆u2,m − iµmv2,m


 =




f1,m
f2,m
g1,m
g2,m


 −→ 0 in H.

From (4.2) and (4.3), we get

(4.5) Re

〈



f1,m
f2,m
g1,m
g2,m


 ,




u1,m
u2,m
v1,m
v2,m




〉

H

= −eKm|µm|

∫

Ω1

a|∆v1,m|2 dx −→ 0.

Then from the first equation of (4.4) and (4.5), we obtain

(4.6) |µm|2eKm|µm|

∫

Ω1

a|∆u1,m|2 dx −→ 0.

Since, from (4.4) we have

∆v1,m = iµme−Km|µm|∆u1,m + e−Km|µm|∆f1,m
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then by elliptic estimates it follows that

‖v1,m‖H2(ω) ≤ C
(
|µm|.‖∆u1,m‖L2(Ω1)e

−Km|µm| + ‖∆f1,m‖L2(Ω1)e
−Km|µm| + ‖v1,m‖L2(Ω1)

)

which mean that ‖v1,m‖H2(ω) is bounded. We multiply the third equation of (4.4) by µ−1
m ψ.v1,m

where ψ ∈ C∞(Ω1) and supp(ψ) ⊂ ω then from (4.5) and (4.6) we obtain

e
Km
4

|µm|

∫

ω
|v1,m|2ψ dx −→ 0.

In particular we have

e
Km
4

|µm|

∫

B4r

|v1,m|2 dx −→ 0.

So that, from the first equation of (4.4) we show that

(4.7) e
Km
4

|µm|

∫

B4r

|u1,m|2 dx −→ 0.

We consider now the following transmission problem

(4.8)





v1 − iµu1 = f1 in Ω1

v2 − iµu2 = f2 in Ω2

−∆(∆u1 + a∆v1)− iµv1 = g1 in Ω1

∆u2 − iµv2 = g2 in Ω2

u1 = u2, ∂νu1 = 0 on S
∂ν∆u1 + ∂νu2 = 0 on S
u2 = 0 on Γ.

By setting

(4.9)

{
Φ1 = g1 + iµf1
Φ2 = g2 + iµf2,

then (4.8) can be recast as follows

(4.10)





v1 = f1 + iµu1 in Ω1

v2 = f2 + iµu2 in Ω2

−∆(∆u1 + a∆v1) + µ2u1 = Φ1 in Ω1

−∆u2 − µ2u2 = −Φ2 in Ω2

u1 = u2, ∂νu1 = 0 on S
∂ν∆u1 + ∂νu2 = 0 on S
u2 = 0 on Γ.

We denote by

(4.11)





z′1 = ∆u1 + a∆v1 − |µ|u1
z′′1 = ∆u1 + a∆v1
z2 = −u2,
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it follows from (4.10) that z′1, z
′′
1 and z2 are solution of the following transmission problem

(4.12)





−∆z′1 − |µ|z′1 = Φ1 − |µ|a∆v1 in Ω1

−∆z′′1 + |µ|z′′1 = Φ1 + |µ|z′1 in Ω1

−∆z2 − |µ|2z2 = Φ2 in Ω2
1
|µ|z

′
1 = z2 +

1
|µ|z

′′
1 on S

∂νz
′
1 = ∂νz2 on S

1
|µ|z

′′
1 = z2 +

1
|µ|θ on S

∂νz
′′
1 = ∂νz2 on S

z2 = 0 on Γ,

where θ = −z′1 + 2z′′1 .
We set B5r a ball of radius 5r > 0 such that a(x) > 0 in B5r ⊂ ω. We set as the previous

section Ω̃1 = Ω1\Br. The most important ingredient of the proof of the resolvent estimate (4.1)
is the following lemma which is essentially the result of the Carleman estimate.

Lemma 4.1 There exist a constant C > 0 such that for any (u1, u2, v1, v2) ∈ D(A) solution
of (4.8) the following estimate holds

‖u1‖
2
L2(Ω1)

+ ‖∆u1‖
2
L2(Ω1)

+ ‖u2‖
2
L2(Ω2)

+ ‖∇u2‖
2
L2(Ω2)

≤ CeC/h

(
‖∆f1‖

2
L2(Ω1)

+‖f2‖
2
L2(Ω2)

+ ‖g1‖
2
L2(Ω1)

+ ‖g2‖
2
L2(Ω2)

+

∫

Ω1

a|∆u1|
2 dx+

∫

B5r

|u1|
2 dx

)
.

(4.13)

for all |µ| > 0 large enough.

Proof :

We introduce the cut-off function χ ∈ C∞(Ω1) by setting

χ(x) =

{
1 in Bc

3r

0 in B2r.

Next, we denote by z̃′1 = χz′1 and z̃′′1 = χz′′1 . Then by (4.12), one sees that

(4.14)

{
−∆z̃′1 − |µ|z̃′1 = Φ̃′

1 = χΦ1 − |µ|χa∆v1 − [∆, χ]z′1
−∆z̃′′1 + |µ|z̃′′1 = Φ̃′′

1 = χΦ1 + |µ|z̃′1 − [∆, χ]z′′1 .

Keeping the same notations as the end of the previous section, and focus now to the sys-
tem (4.12). Taking ϕ1,1, ϕ1,2, ϕ2,1, and ϕ2,2 the four weight functions that satisfy the con-
clusion of the end of section 1.1. We set χ1,1, χ1,2, χ2,1 and χ2,2 four cut-off functions that

equal to one respectively in




N1,1⋃

j=1

B(xj1,1, 2ǫ)




c

,




N1,2⋃

j=1

B(xj1,2, 2ǫ)




c

,




N2,1⋃

j=1

B(xj2,1, 2ǫ)




c

and




N2,2⋃

j=1

B(xj2,2, 2ǫ)




c

and supported in




N1,1⋃

j=1

B(xj1,1, ǫ)




c

,




N1,2⋃

j=1

B(xj1,2, ǫ)




c

,




N2,1⋃

j=1

B(xj2,1, ǫ)




c

and




N2,2⋃

j=1

B(xj2,2, ǫ)




c

respectively (in order to eliminate the critical points of the phases func-

tions ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2, ϕ2,1 and ϕ2,2). We set y′1,1 = χ1,1z̃
′
1, y

′
1,2 = χ1,2z̃

′
1, y

′′
1,1 = χ1,1z̃

′′
1 ,
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y′′1,2 = χ1,2z̃
′′
1 , y2,1 = χ2,1z2 and y2,2 = χ2,2z2. Then from (4.12) and (4.14) and by noting

h =
1

|µ|
for k = 1, 2 we obtain

(4.15)





−∆y′1,k − y′1,k/h = Ψ′
1,k in U1,k

−∆y′′1,k + y′′1,k/h = Ψ′′
1,k in U1,k

−∆y2,k − y2,k/h
2 = Ψ2,k in U2,k

hy′1,k = y2,k + hy′′1,k on S
∂νy

′
1,k = ∂νy2,k on S

hy′′1,k = y2,k + hθ on S
∂νy

′′
1,k = ∂νy2,k on S

y2,k = 0 on Γ,

where

(4.16)





Ψ′
1,k = −[∆, χ1,k]z

′
1 + χ1,kΦ̃

′
1

Ψ′′
1,k = −[∆, χ1,k]z

′′
1 + χ1,kΦ̃

′′
1

Ψ2,k = −[∆, χ2,k]z2 + χ2,kΦ2.

Applying Carleman estimate of Theorem 3.2 to the systems (4.15) then for k = 1, 2 we obtain

h‖eϕ1,k/hy′1,k‖
2
L2(U1,k)

+ h‖eϕ1,k/hy′′1,k‖
2
L2(U1,k)

+ h‖eϕ2,k/hy2,k‖
2
L2(U2,k)

+

h3‖eϕ1,k/h∇y′1,k‖
2
L2(U1,k)

+ h3‖eϕ1,k/h∇y′′1,k‖
2
L2(U1,k)

+ h3‖eϕ2,k/h∇y2,k‖
2
L2(U2,k)

+

h|eϕ1,k/hy′1,k|
2
L2(S) + h|eϕ1,k/h∇y′1,k|

2
L2(S) + h|eϕ1,k/hy′′1,k|

2
L2(S)+

h|eϕ1,k/h∇y′′1,k|
2
L2(S) ≤ C(h4‖eϕ1,k/hΨ′

1,k‖
2
L2(U1,k)

+ h4‖eϕ1,k/hΨ′′
1,k‖

2
L2(U1,k)

+h4‖eϕ2,k/hΨ2,k‖
2
L2(U2,k)

+ h3|eϕ1,k/hθ|2L2(S) + h5|eϕ1,k/h∇θ|2L2(S)).

(4.17)

The two last terms of the right hand side of (4.17) can be absorbed to the left hand side for
h > 0 small enough and since θ = −y′1,k + 2y′′1,k, therefore by (4.16) we arrive at

h‖eϕ1,k/hy′1,k‖
2
L2(U1,k)

+ h‖eϕ1,k/hy′′1,k‖
2
L2(U1,k)

+ h‖eϕ2,k/hy2,k‖
2
L2(U2,k)

+h3‖eϕ1,k/h∇y′1,k‖
2
L2(U1,k)

+ h3‖eϕ1,k/h∇y′′1,k‖
2
L2(U1,k)

+ h3‖eϕ2,k/h∇y2,k‖
2
L2(U2,k)

≤ Ch4(‖eϕ1,k/hΦ̃′
1‖

2
L2(U1,k)

+ ‖eϕ1,k/hΦ̃′′
1‖

2
L2(U1,k)

+ ‖eϕ2,k/hΦ2‖
2
L2(U2,k)

+‖eϕ1,k [∆, χ1,k]z̃
′
1‖

2
L2(U1,k)

+ ‖eϕ1,k [∆, χ1,k]z̃
′′
1‖

2
L2(U1,k)

+ ‖eϕ2,k [∆, χ2,k]z2‖
2
L2(U2,k)

).

(4.18)

We addition the two last estimates for k = 1, 2 and using the properties of phases ϕ1,k < ϕ1,k+1

in




N1,k⋃

j=1

B(xj1,k, 2ǫ)


 and ϕ2,k < ϕ2,k+1 in




N2,k⋃

j=1

B(xj2,k, 2ǫ)


 then we can absorb the terms

[∆, χ1,k]z̃
′
1, [∆, χ1,k]z̃

′′
1 and [∆, χ2,k]z2 at the right hand side of (4.18) into the left hand side
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for h > 0 small. Namely, we find

h

∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|z̃′1|
2 dx+ h

∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|z̃′′1 |
2 dx

+h

∫

Ω2

(e2ϕ2,1/h + e2ϕ2,2/h)|z2|
2 dx+ h

∫

Ω2

(e2ϕ2,1/h + e2ϕ2,2/h)|∇z2|
2 dx

≤ C

(
h4

∫

Ω1

(e2ϕ1,1/h + e2ϕ1,2/h)|Φ1|
2 dx+ h4

∫

Ω2

(e2ϕ2,1/h + e2ϕ2,2/h)|Φ2|
2 dx

h4
∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|[∆, χ]z′1|
2 dx+ h4

∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|[∆, χ]z′′1 |
2 dx

+h2
∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|a∆v1|
2 dx+ h2

∫

Ω̃1

(e2ϕ1,1/h + e2ϕ1,2/h)|z′1|
2 dx

)
.

(4.19)

For h > 0 small we can absorb the last term of the right hand side of (4.19) into the left hand
side. Besides, by remarking that Ω1 = Ω̃1 ∪B3r and by taking the maximum of ϕ1,1, ϕ1,2, ϕ2,1

and ϕ2,2 into the right hand side of (4.19) and their minimum into the left hand side then it
follows from the definitions of Φ1 and Φ2 in (4.9) that

∫

Ω1

|z′1|
2 dx+

∫

Ω1

|z′′1 |
2 dx+

∫

Ω2

|z2|
2 dx+

∫

Ω2

|∇z2|
2 dx ≤ CeC/h

(∫

Ω1

|f1|
2 dx

+

∫

Ω2

|f2|
2 dx+

∫

Ω1

|g1|
2 dx+

∫

Ω2

|g2|
2 dx+

∫

B3r

|z′1|
2 dx+

∫

B3r

|z′′1 |
2 dx

+

∫

Ω1

a|∆v1|
2 dx+

∫

Ω1

|[∆, χ]z′1|
2 dx+

∫

Ω1

|[∆, χ]z′′1 |
2 dx

)
.

(4.20)

Let χ̃ be a cut-off function equal to 1 in a neighborhood of B4r and supported in B5r then by
the second equation of (4.10) and of (4.11) we have

(−1 +∆)(χ̃z′′1 ) = [∆, χ̃]z′′1 − χ̃z′′1 − |µ|2χ̃u1 − χ̃g1 − iµχ̃f1.

Hence by elliptic estimates (see [WRL95]) we get

‖z′′1‖
2
H1(B4r)

≤ C(‖(−1 + ∆)(χ̃z′′1 )‖
2
H−1(B5r)

+ ‖z′′1‖
2
L2(B5r)

)

≤ C(‖g1‖
2
L2(Ω1)

+ |µ|2‖f1‖
2
L2(Ω1)

+ |µ|4‖u1‖
2
L2(B5r)

+ ‖z′′1‖
2
L2(B5r)

).(4.21)

Since supp([∆, χ]) ⊂ B3r we deduce from (4.11) and (4.21) that
∫

B3r

|z′′1 |
2 dx+

∫

Ω1

|[∆, χ]z′′1 |
2 dx ≤ C‖z′′1‖

2
H1(B4r)

≤ C
(
‖g1‖

2
L2(Ω1)

+ |µ|2‖f1‖
2
L2(Ω1)

+‖∆u1‖
2
L2(B5r)

+ ‖a∆v1‖
2
L2(B5r)

+ |µ|4‖u1‖
2
L2(B5r)

)
.

(4.22)

Similarly, we prove also that
∫

B3r

|z′1|
2 dx+

∫

Ω1

|[∆, χ]z′1|
2 dx ≤ C

(
‖g1‖

2
L2(Ω1)

+ |µ|2‖f1‖
2
L2(Ω1)

+‖∆u1‖
2
L2(B5r)

+ ‖a∆v1‖
2
L2(B5r)

+ |µ|2‖u1‖
2
L2(B5r)

)
.

(4.23)
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We combine (4.20) with (4.22) and (4.23) and we recall the expression of z′′1 and z2 in (4.11)
then we find

‖∆u1‖
2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

+ ‖u2‖
2
L2(Ω2)

≤ CeC/h

(
‖f1‖

2
L2(Ω1)

+ ‖f2‖
2
L2(Ω2)

+

‖g1‖
2
L2(Ω1)

+ ‖g2‖
2
L2(Ω2)

+

∫

B5r

|∆u1|
2 dx+

∫

Ω1

a|∆v1|
2 dx+

∫

B5r

|u1|
2 dx

)
.

(4.24)

We substitute the expression of v1 and v2 in (4.10) into (4.24) then we obtain

‖∆u1‖
2
L2(Ω1)

+ ‖∇u2‖
2
L2(Ω2)

+ ‖u2‖
2
L2(Ω2)

≤ CeC/h

(
‖f1‖

2
L2(Ω1)

+ ‖∆f1‖
2
L2(Ω1)

+‖f2‖
2
L2(Ω2)

+ ‖g1‖
2
L2(Ω1)

+ ‖g2‖
2
L2(Ω2)

+

∫

Ω1

a|∆u1|
2 dx+

∫

B5r

|u1|
2 dx

)
.

(4.25)

The estimate (4.13) holds now from (4.25), Poincaré inequality and Lemma 2.1.

Applying inequality (4.13) to the system (4.4) it follows that

‖∆u1,m‖2L2(Ω1)
+ ‖∇u2,m‖2L2(Ω2)

+ ‖u1,m‖2L2(Ω1)
+ ‖u2,m‖2L2(Ω2)

≤

CeC|µm|

(
e−2Km|µm|

(
‖∆f1,m‖2L2(Ω1)

+ ‖∇f2,m‖2L2(Ω2)
+ ‖g1,m‖2L2(Ω1)

+ ‖g2,m‖2L2(Ω2)

)

+

(∫

Ω1

a|∆u1,m|2 dx+

∫

B4r

|u1,m|2 dx

))
.

We use the expression of u1,m and u2,m in (4.4) we follows that

‖∆u1,m‖2L2(Ω1)
+ ‖∇u2,m‖2L2(Ω2)

+ ‖v1,m‖2L2(Ω1)
+ ‖v2,m‖2L2(Ω2)

≤

CeC|µm|

(
e−2Km|µm|

(
‖∆f1,m‖2L2(Ω1)

+ ‖∇f2,m‖2L2(Ω2)
+ ‖g1,m‖2L2(Ω1)

+ ‖g2,m‖2L2(Ω2)

)

+

(∫

Ω1

a|∆u1,m|2 dx+

∫

B4r

|u1,m|2 dx

))
.

(4.26)

Finally (4.2), (4.3) and (4.5) and (4.7) shows that the right hand side of (4.26) go to zero as
m −→ +∞, hence we obtain a contradiction with (4.2), therefore the resolvent estimate (4.1)
is proved now.

Now, follows to [CLL98, Lemma 4.1] it just remains to show that A has no purely imaginary
eigenvalue. Further, 0 ∈ ρ(A), where ρ(A) stands for the resolvent set of A. Let µ 6= 0 be a
real number. Suppose that for some U = (u1, u2, v1, v2) ∈ D(A), one has

(4.27) AU = iµU.

We shall show that U = 0. Taking the inner product with U on both side of (4.27) and taking
the real part we immediately find that v1 = 0 in supp(a). Now (4.27) can be recast as

(4.28)





v1 = iµ1u1 in Ω1,
v2 = iµ2u2 in Ω2,
−∆(∆u1 + a∆v1)− iµv1 = 0 in Ω1,
∆u2 − iµv2 = 0 in Ω2.
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Since v1 = 0 in supp(a) and µ 6= 0 the top line of (4.28) yields u1 = 0 in supp(a). The third
line of (4.28) combined with the first one could be written as

∆z + µz = 0 in Ω1 and z = 0 in supp(a),

where we denoted by z = ∆u1 − µu1. Since ω ⊂ supp(a) then by Calderón’s theorem [RL09,
Theorem 4.2] for elliptic operators we find that z = 0, this mean that ∆u1 − µu1 = 0 which
imply for the same argument as previously that u1 = 0 in Ω1. Reporting that in the first line
of (4.28), we derive v1 = 0 in Ω1. The second and fourth line of (4.28) lead to

∆u2 + µ2u2 = 0 in Ω2

with the boundary conditions

u2 = 0 on ∂Ω2 and ∂νu2 = 0 on S.

By standard theory in linear elliptic equations u2 = 0 in Ω2. Using the second line of (4.28),
we get v2 = 0 in Ω2; hence U = 0. Therefore, A has no purely eigenvalue.
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