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AUTOMORPHISMS OF RELATIVE QUOT SCHEMES

CHANDRANANDAN GANGOPADHYAY

Abstract. Let k be an algebraically closed field of characteristic zero.
Let S be a smooth projective variety over k and let pS : X → S be a
family of smooth projective curves over S. Let E be a vector bundle
over X. For s ∈ S let Xs be the fibre of pS over s and let Es be the
restriction of E to Xs. Fix d ≥ 1. Let Q(E,d) → S be the relative
Quot scheme parameterizing torsion quotients of Es over Xs of degree d

for all s ∈ S. In this article we compute the identity component of rel-
ative automorphism group scheme which parameterizes automorphisms
of Q(E,d) over S.

1. Introduction

Let k be an algebraically closed field of characteristic zero. Let Y → S be
a smooth morphism between two projective varieties over k. Associated to
this morphism we have the automorphism group scheme Aut(Y/S) which pa-
rameterizes automorphisms of Y over S. Let us denote identity component
of Aut(Y/S) by Auto(Y/S). It is known that Auto(Y/S) is an algebraic
group and if TY/S is the relative tangent bundle, then Lie(Auto(Y/S)) =

H0(Y,TY/S) [MO67, Theorem 3.7], [Bri18, Theorem 2.3]. We refer to [Bri14],
[Bri18] for other properties of this group scheme.

We refer to [HL10, Section 2] for definitions and properties of Quot
Schemes in general. The Quot Scheme which we will study in this arti-
cle can be defined in the following manner. Let pS : X → S be a family of
smooth projective curves over an algebraically closed field k of characteristic
zero. Assume X and S are smooth projective varieties. Let E be a vector
bundle over X of rank r. For a closed point s ∈ S let Xs be the fibre of pS
over s and let Es be the restriction of E toXs. Fix d ≥ 1. Then associated to
the morphism pS and the vector bundle E we have the relative Quot scheme
πS : Q(E, d) → S whose closed points correspond to quotients Es → Bd,
∀s ∈ S where Bd is a torsion sheaf of degree d over the smooth projective
curve Xs [HL10, Theorem 2.2.4]. It is known that Q(E, d) is a smooth pro-
jective variety [HL10, Proposition 2.2.8]. These schemes have been studied
extensively. We refer the reader to [BGL94], [BDW96], [BDH15] for other
properties of this scheme. In this article we compute the group scheme
Auto(Q(E, d)/S). We recall that in the case when S is a point and E the
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trivial bundle of rank r this group scheme was computed in [BDH15]. In
[BM16] this group scheme was computed in another special case. We refer
to Corollary 3.2 and Corollary 3.5 where these results are stated explicitly.

Over X we fix a certain ample line bundle M (this line bundle is defined
just before Lemma 2.12). Then the main theorem of this article is

Theorem (Theorem 2.15). Suppose either r := rank E ≥ 3 or r = 2, E is
semistable with respect to M and genus of Xs is ≥ 2 for s ∈ S. In both of
these cases we have isomorphisms

(1) Auto(Q(E, d)) ∼= Auto(P(E)/S) .
(2) H0(P(E),TP(E)/S) ∼= H0(Q(E, d),TQ(E,d)/S) .

As consequences of Theorem 2.15 we deduce the results of [BDH15] and
[BM16] as Corollary 3.2 and Corollary 3.5. We also compute the identity
component of the automorphism group scheme of the flag scheme parame-
terizing chains of torsion quotients of trivial bundle over a smooth projective
curve(Corollary 3.4). We refer to Section 3 for more details.

2. Main Theorem

Let us denote the projection X×SQ(E, d) → X by πX and the projection
X ×S Q(E, d) → Q(E, d) by pQ i.e. we have the following diagram:

X ×S Q(E, d) X

Q(E, d) S

πX

pQ pS

πS

We denote the universal quotient on X ×S Q(E, d) by

π∗
QE → B → 0 .

Lemma 2.1. We have a closed immersion of algebraic groups

Auto(P(E)/S) →֒ Auto(Q(E, d)/S) .

Proof. By [MO67, Corollary 2.2] any automorphism g ∈ Auto(P(E)/S) de-
scends to an automorphism h ∈ Auto(X/S). Therefore we have the following
diagram:

P(E) ∼= P((g1)∗E) P(E)

X X

g

p p

h

Then E ∼= h∗E ⊗ p∗L for some line bundle L on X. Let us denote this
isomorphism of bundles by Ψg. On X ×S Q(E, d) consider the quotient

π∗
QE

∼= π∗
Qh

∗E ⊗ π∗
QL → (h× id)∗B ⊗ π∗

QL

where the first isomorphism is induced from Ψg and the second morphism is
the pullback of the universal quotient π∗

QE → B → 0 under the map (h× id)
tensored with π∗

QL. This gives a quotient of π∗
QE over X ×S Q(E, d) and
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by the universal property of Quot schemes this induces an automorphism of
Q(E, d). Hence, we have a homomorphism

Auto(P(E)/S) → Auto(Q(E, d)/S) .

Next we show that this homomorphism is injective. At the level of closed
points the above automorphism of Q(E, d) induced by g ∈ Auto(P(E)/S) is
given by

[Es → Bd → 0] → [Es
Ψg,s
−−−→ h∗(Es → Bd → 0)⊗ Ls]

Suppose g ∈ Auto(P(E)/S) induces the identity automorphism on Q(E, d).
We will show that g = id. First we show that h = id. Fix x ∈ X and let
pS(x) = s ∈ S. Consider any quotient

Es → OXs,x/m
d
Xs,x

where OXs,x is the local ring of Xs at x and mXs,x is its maximal ideal.
Then under the automorphism induced by g the image of this quotient is of
the form

Es → OXs,h(x)/m
d
Xs,h(x)

Hence if g induces the identity automorphism of Q(E, d) then h = id. Next
we show that g = id. Let v ∈ P(E), let p(v) = x and pS(x) = s. Then

v corresponds to a quotient of vector spaces E|x
v
−→ k. Since, h = id,

p(g(v)) = x. is a quotient of the form E|x → k. Let us fix d − 1 degree

1 quotients E
vi−→ kxi

for 1 ≤ i ≤ d − 1 such that all xi, x are distinct and
pS(xi) = pS(x) = s. Then the summation of these quotients gives us a point
in Q(E, d)

Es → E|x ⊕
d−1
⊕

i=1

E|xi
→ kx ⊕

d−1
⊕

i=1

kxi
.

Note that each of the quotients E|x
h
−→ k and E|xi

→ k can be recovered from
the above degree d quotient simply by restricting this quotient to the points
x and xi respectively. By assumption the automorphism induced by g is
identity. Therefore applying the automorphism induced by g and restricting
it to x, we get that g(v) = v. This completes the proof of injectivity. �

Corollary 2.2. We have an inclusion of lie algebras

H0(P(E),TP(E)/S) →֒ H0(Q(E, d),TQ(E,d)/S) .

Proof. This follows from Lemma 2.1 and [MO67, Theorem 3.7]. �

Let Z be the fibered product of d copies of P(E) over S. We will con-
struct a rational map Φ : Z 99K Q(E, d). Note that this map was already
constructed in [Gan18, Section 2] in the special case when S = {pt} and
E = Or

X . First we set some notations.
Notation 2.3.

(1) Let p : P(E) → X be the projection.
(2) Let pi : Z → P(E) be the i-th projection.
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(3) For, i 6= j, let ∆i,j →֒ Z be the closed subscheme given by the
equation pi = pj.

(4) For i, j distinct let ∆i,j,X →֒ Z be the closed subscheme given by the
equation p ◦ pi = p ◦ pj.

(5) For i, j, k all distinct, let ∆i,j,k,X →֒ Z be the closed subscheme given
by the equation p ◦ pi = p ◦ pj = p ◦ pk.

(6) Let π1 : X ×S Z → X and π2 : X ×S Z → Z be the first and second
projections respectively.

(7) Let pi ◦ π2 : X ×S Z → P(E) be denoted by π2,i.
(8) Let ∆i →֒ X ×S Z be the closed subscheme given by the equation

π1 = p ◦ π2,i.

We define an open set

U := Z \ (
⋃

i,j

∆i,j

⋃ ⋃

i,j,k

∆i,j,k,X) .

Consider the following compostion of morphisms over X ×S Z

q : π∗
1E →

d
⊕

i=1

π∗
1E|∆i

∼=

d
⊕

i=1

π∗
2,iE|∆i

→
d

⊕

i=1

π∗
2,iO(1)|∆i

.

Let u ∈ U . Then q|X×Su is the morphism

E →
d

⊕

i=1

E|p◦pi(u) →
d

⊕

i=1

kp◦pi(u)

where the map E|p◦pi(u) → kp◦pi(u) is given by pi(u) ∈ P(E). Since u ∈
U for any 1 ≤ i ≤ d, there can exist atmost one pair j 6= i such that
p ◦ pi(u) = p ◦ pj(u), and for such a pair (i, j), pi(u) 6= pj(u). Hence q|X×Su

is a surjection. Therefore q|X×SU is a surjection. By universal property of
Q(E, d) the surjection q|X×SU induces a map

Φ : U → Q(E, d) .

Then we prove the following proposition

Proposition (Propositon 2.14). Suppose either r ≥ 3 or r = 2, E is
semistable with respect to M and genus of C is ≥ 2. In both of these cases
we have an isomorphism

H0(U ,Φ∗TQ(E,d)/S) =

d
⊕

i=1

H0(P(E),TP(E)/S) .

To prove Proposition 2.14 we need a few lemmas. We define F(E, d) :=
ker q.

Lemma 2.4. We have an isomorphism of vector bundles

Φ∗TQ(E,d)/S
∼=

d
⊕

i=1

(π2)∗H om(F(E, d), π∗
2,iO(1)|∆i

)|U .
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Proof. Over X ×S Q(E, d), we have the universal exact sequence:

0 → A(E, d) → π∗
XE → B(E, d) → 0 .

Then it is known that A(E, d) is a vector bundle of rank r [Gan18, Lemma
2.2] and by [HL10, Proposition 2.2.7] we have

TQ(E,d)/S = (pQ)∗Hom(A(E, d),B(E, d)) .

Consider the following diagram:

X ×S U X ×S Q(E, d)

U Q(E, d)

idX×Φ

π1 pQ

Φ

By Grauert’s theorem [Har77, Corollary 12.9], We get that

Φ∗TQ(E,d)/S =(Φ)∗(pQ)∗Hom(A(E, d),B(E, d))

∼=(π1)∗(idX × Φ)∗Hom(A(E, d),B(E, d)) .

Since A(E, d) is a vector bundle, we have

(idX ×S Φ)∗H om(A(E, d),B(E, d))

= H om((idX ×S Φ)∗A(E, d), (idX ×S Φ)∗B(E, d)) .

By the definition of the map Φ we have

(idX ×S Φ)∗B(E, d) ∼= (

d
⊕

i=1

π∗
2,iO(1)|∆i

)|X×SU .

Also

Φ∗A(E, d) ∼= F(E, d)|X×SU .

since by [Gan18, Lemma 2.2] F(E, d)|X×SU is again a vector bundle of rank
r and there exists a surjection Φ∗A(E, d) ։ F(E, d)|X×SU . This completes
the proof of the lemma. �

Lemma 2.5. For 1 ≤ i, j ≤ d and i 6= j we have

H om(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

) = 0 .

Proof. By adjunction, we have

H om(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

) = H om(π∗
2,iO(1)|∆i∩∆j

, π∗
2,jO(1)|∆j

)

Since ∆j is an integral scheme and ∆i ∩ ∆j is a proper subset of ∆j, the
later term in the above expression is zero. �

Lemma 2.6. For any 1 ≤ j ≤ d we have

H0(X ×S U ,H om((π1 × π2,j)
∗F(E, 1), π∗

2,jO(1)|∆j
)) = H0(P(E),TP(E)/S) .
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Proof. The projection π2 induces isomorphism ∆j
∼
−→ Z. Identifying ∆j

with Z we have

H0(X ×S U ,Hom((π1 × π2,j)
∗F(E, 1), π∗

2,jO(1)|∆j
))

= H0(U ,Hom(p∗jF(E, 1)|∆1
, p∗jO(1)))

= H0(U , p∗j (F(E, 1)∨|∆1
⊗O(1))) .

Since F(E, 1) is vector bundle over Z and codimension of Z \U ≥ 2 we have

H0(U , p∗j (F(E, 1)∨|∆1
⊗O(1))) = H0(Z, p∗j (F(E, 1)∨|∆1

⊗O(1))) .

Using projection formula for the morphism pj we get that

H0(U , p∗j (F(E, 1)∨|∆1
⊗O(1))) = H0(P(E), (F(E, 1)∨ |∆1

⊗O(1))) .

Now over P(E) we have

F(E, 1)∨|∆1
⊗O(1) ∼= TP(E)/S .

This completes the proof of the lemma. �

Lemma 2.7. For 1 ≤ i, j ≤ d, i 6= j, we have an isomorphism of sheaves:

E xt1(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

) ∼= π∗
2,iO(−1)⊗ π∗

2,jO(1)) ⊗ π∗
1TX/S |∆i∩∆j

.

Proof. Consider the exact sequence:

0 O(−∆i) OX×SZ O∆i
0

Applying H om( ,O∆j
) to the above exact sequence, we get:

0 O∆j
O(∆i)|∆j

E xt1(O∆i
,O∆j

) 0

Therefore

E xt1(O∆i
,O∆j

) ∼= π∗
1TX/S |∆i∩∆j

.

and the statement follows immediately from this. �

The following corollary follows immediately from Lemma 2.7.

Corollary 2.8. We have an isomorphism of sheaves on Z

(π2)∗E xt1(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

) ∼= p∗iO(−1)⊗p∗jO(1)⊗(p◦pi)
∗TX/S |∆i,j,X

.

Lemma 2.9. Fix 1 ≤ i, j ≤ d with i 6= j. Then for 1 ≤ k, l,m ≤ d with
k, l,m distinct we have

(1) codim(∆k,l ∩∆i,j,X ,∆i,j,X) ≥ 2 if {k, l} 6= {i, j}.
(2) codim(∆i,j∩,∆i,j,X,∆i,j,X) = r.
(3) If {i, j} * {k, l,m} then codim(∆k,l,m,X ∩∆i,j,X,∆i,j,X) ≥ 2.
(4) codim(∆i,j,k,X ,∆i,j,X) = 1.

Proof. Without loss of generality we can assume (i, j) = (1, 2). Then

∆1,2,X
∼= P(E)2X ×S P(E)d−2

S .
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(1) Let {k, l} ∩ {1, 2} = ∅. Without loss of generality we can assume
(k, l) = (3, 4). Then

∆k,l ∩∆1,2,X
∼= P(E)2X ×S P(E)×S P(E)d−4

S .

Let {k, l} ∩ {1, 2} = {2}. Without loss of generality we can assume
(k, l) = (2, 3). Then

∆k,l ∩∆1,2,X
∼= P(E)2X ×S P(E)d−3

S .

Therefore in both these cases it have codimension ≥ 2 in ∆1,2,X .

(2) If {k, l} = {1, 2} then ∆1,2
∼= P(E) ×S P(E)d−2

S . Hence it has codi-
mension r in ∆1,2,X .

(3) Let {1, 2} ∩ {k, l,m} = ∅. Without loss of generality we can assume
(k, l,m) = (3, 4, 5). Then

∆k,l,m,X ∩∆1,2,X
∼= P(E)2X ×S P(E)3X ×S P(E)d−5

S .

Let {i, j}∩{k, l,m} = {i}. Without loss of generality we can assume
k = i = 1 and (l,m) = (3, 4). Then

∆k,l,m,X ∩∆1,2,X
∼= P(E)4X ×S P(E)d−4

S .

Hence in both of these two cases it has codimension ≥ 2 in ∆1,2,X .

(4) ∆1,2,k,X
∼= P(E) ×X P(E) ×X P(E) ×S P(E)d−3

S . Hence it has codi-
mension 1 in Y .

�

On ∆i,j,X we define the line bundle

L := p∗iO(−1)⊗ p∗jO(1)⊗ (p ◦ pi)
∗TX/S |∆i,j,X

.

By Lemma 2.9 we have that ∆i,j,k,X ⊂ ∆i,j,X is a divisor on ∆i,j,X.

Lemma 2.10. Fix 1 ≤ i, j ≤ d with i 6= j. For any n ≥ 0 we have

H0(∆i,j,X ,L ⊗O(
∑

k 6=i,j

n ·∆i,j,k,X)) = 0 .

Proof. Let f : ∆i,j,X → P(E)d−1
S be the product of all the projections except

the i-th projection. Then by projection formula

f∗(L ⊗O(
∑

k 6=i,j

n ·∆i,j,k,X)) = (f∗p
∗
iO(−1))⊗ L′

for some line bundle L′ on P(E)d−1
S . Consider the following fibered diagram:

∆i,j,X P(E)

P(E)d−1
S X

pi

f p

gi
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Here gi is the composition of i-th projection from P(E)d−1
S and the morphism

p : P(E) → X. Since gi is flat we have

f∗p
∗
iO(−1) = g∗i p∗O(−1) .

Since p∗O(−1) = 0 we have that f∗p
∗
iO(−1)) = 0. This completes the proof

of the lemma. �

Proposition 2.11. Let r = rank E ≥ 3. For 1 ≤ i, j ≤ d, i 6= j we have

H0(X ×S U ,E xt1(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

)) = 0 .

Proof. By Corollary 2.7 it is enough to show

H0(U ∩∆i,j,X ,L) = 0 .

Since r ≥ 3 by Lemma 2.9 we have

H0(U ∩∆i,j,X ,L) = H0(∆i,j,X \ (
⋃

k 6=i,j

∆i,j,k,X),L) .

Let s ∈ H0(V,L|V ). Then for some n large enough, there exists a section
0 6= t ∈ H0(∆i,j,X ,O(

∑

k 6=i,j

n ·∆1,2,k,X)) such that the section stn extends to

a global section of L ⊗ O(
∑

k 6=i,j

n ·∆1,2,k,X). However by Lemma 2.10 there

are no global sections of this line bundle and this completes the proof of the
proposition. �

Since pS is a projective morphism, we have a pS-ample line bundleOX(1).
Let OS(1) be an ample line bundle on S. Then for a ≫ 0 the line bundle
OX(1) ⊗ OS(a) is an ample line bundle on X. We fix such an ample line
bundle M on X.

Lemma 2.12. Let E be semistable with respect to M, rank E = 2 and
genus of Xs ≥ 2 for any s ∈ S. Fix 1 ≤ i ≤ d. Then for any n ≥ 0 we have

H0(Z, p∗i T
n
P(E)/X ⊗ (p ◦ pi)

∗TX/S ⊗O(
∑

k 6=i

n ·∆i,k,X)) = 0 .

Proof. Without loss of generality we can assume i = 1. Let us denote the
j-th projection from (X)dS to X by pj,X . We define Xj ⊆ (X)dS to be the
closed set defined by the equation p1,X = pj,X . By projection formula we
have

(
∏

j

(p ◦ pj))∗(p
∗
i T

n
P(E)/X ⊗ (p ◦ pi)

∗TX/S ⊗O(
∑

k 6=i

n ·∆i,k,X))

= p∗1,X(S2n(E)⊗ (det(E∨))n)⊗ p∗1.XTX/S ⊗O(

d
∑

k=2

n ·Xk) .

Now we have the following exact sequence

0 O(nXk) O((n + 1)Xk) O((n+ 1)Xk)|Xk
0
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Note that O((n+1)Xk)|Xk
= p∗1,XT n+1

X/S . Tensoring the above exact sequence

with p∗1,X(S2n(E)⊗ (det(E∨))n)⊗ p∗1.XTX/S and applying H0 we get that it
is enough to show

H0(Z, p∗1,X(S2n(E) ⊗ (det(E∨))n)⊗ pm1.XTX/S) = 0 ∀n ≥ 0,m ≥ 1 .

Applying projection formula for the morphism p1,X we get

(p1,X)∗(p
∗
1,X(S2n(E) ⊗ (det(E∨))n)⊗ pm1,XTX/S)

= S2n(E)⊗ (det(E∨))n ⊗ T m
X/S .

Hence it is enough to show that

H0(X,S2n(E)⊗ (det(E∨))n ⊗ T m
X/S) = 0 ∀n ≥ 0,m ≥ 1 .

Now

deg S2n(E) =

(

2 + 2n− 1

2

)

deg E = n(2n+ 1)deg E

and rank S2n(E) = 2n+ 1. Therefore

deg S2n(E)⊗ (det(E∨))n ⊗ T m
X/S = m(2n + 1)(deg TX/S) .

Since genus of each fibre of X → S is ≥ 2, deg TX/S < 0. Hence

deg S2n(E)⊗ (det(E∨))n ⊗ T m
X/S < 0 .

Since E is semistable we have that the bundle S2n(E)⊗(det(E∨))n⊗T m
X/S is

also semistable with negative degree. Therefore it does not have any global
section. �

Proposition 2.13. Let r = rank E = 2, E is semistable with respect to M
and genus of C is ≥ 2. For 1 ≤ i, j ≤ d, i 6= j we have

H0(X ×S U ,E xt1(π∗
2,iO(1)|∆i

, π∗
2,jO(1)|∆j

)) = 0 .

Proof. By Corollary 2.7 it is enough to show

H0(U ∩∆i,j,X ,L) = 0 .

Define the open set

V := ∆i,j,X \ (∆i,j

⋃

d
⋃

k 6=i,j

∆i,j,k,X) ⊂ ∆i,j,X .

By Lemma 2.9 we have

H0(∆i,j,X ∩ U ,L) = H0(V,L) .

Therefore, to show that this space vanishes, it is enough to show that

H0(Y,L(n(∆i,j +
∑

k 6=i,j

∆i,j,k,X))) = 0 ∀n ≥ 0 .

Now consider the following exact sequence:

0 O(n ·∆i,j) O((n+ 1) ·∆i,j) O(n ·∆i,j)|∆i,j
0
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Tensoring the above exact sequence by L(n ·
∑

k 6=i,j

∆i,j,k,X) and applying H0

we see that it is enough to show that

H0(∆i,j,L(n(∆i,j +

d
∑

i=1

∆i,j,k,X))|∆i,j
) = 0 .

Note that O(∆i,j)|∆i,j
= p∗i TP(E)/S |∆i,j

. Then

L(n(∆i,j +
∑

k 6=i,j

∆i,j,k,X))|∆i,j

=p∗iO(−1)⊗ p∗jO(1)⊗ (p ◦ pi)
∗TX/S ⊗ p∗i T

n
P(E)/X ⊗O(

∑

k 6=i,j

n ·∆i,j,k,X))|∆i,j

=p∗i T
n
P(E)/X ⊗ (p ◦ pi)

∗TX/S ⊗O(
∑

k 6=i,j

n ·∆i,j,k,X))|∆i,j
.

Identifying ∆i,j with P(E)d−1
S the statement follows from Lemma 2.12. �

Proposition 2.14. Suppose either r ≥ 3 or r = 2, E is semistable with
respect to M and genus of C is ≥ 2. In both of these cases we have an
isomorphism

H0(U ,Φ∗TQ(E,d)/S) =

d
⊕

i=1

H0(P(E),TP(E)/S) .

Proof. By Lemma 2.4 we have

Φ∗TQ(E,d)/S
∼=

d
⊕

i=1

(π2)∗H om(F(E, d), π∗
2,iO(1)|∆i

)|U .

Hence for a fixed 1 ≤ j ≤ d it is enough to show

H0(X ×S U ,H om(F(E, d), π∗
2,jO(1)|∆j

) = H0(P(E),TP(E)/S) .

Over X ×S U we have the following commutative diagram:

0 F(E, d) π∗
1E

d
⊕

i=1
π∗
2,iO(1)|∆i

0

0 (π1 × π2,j)
∗F(E, 1) π∗

1E π∗
2,jO(1)|∆j

0

∼=

Using snake lemma for the above diagram we get the following exact se-
quence over X ×S U

0 → F(E, d) → (π1 × π2,j)
∗F(E, 1) →

d
⊕

i=1,i 6=j

π∗
2,iO(1)|∆i

→ 0
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We apply H om( , π∗
2,jO(1)|∆j

) and then the the functor H0. Now the result
follows from Lemma 2.5, Lemma 2.6 and Proposition 2.13. �

Theorem 2.15. Suppose either r := rank E ≥ 3 or r = 2, E is semistable
with respect to M and genus of Xs is ≥ 2 for s ∈ S. In both of these cases
we have isomorphisms

(1) Auto(Q(E, d)) ∼= Auto(P(E)/S).
(2) H0(P(E),TP(E)/S) ∼= H0(Q(E, d),TQ(E,d)/S).

Proof. By Corollary 2.2 we have an inclusion of lie algebras:

(2.16) H0(P(E),TP(E)/S) →֒ H0(Q(E, d),TQ(E,d)/S) .

By Lemma 2.4 and Proposition 2.14 we have an inclusion

H0(Q(E, d),TQ(E,d)/S) →֒
d

⊕

i=1

H0(P(E),TP(E)/S) .

Since Z → Q(E, d) is invariant under the action of the symmetric group Sd

we get that this inclusion factors through

H0(Q(E, d),TQ(E,d)/S) →֒ (
d

⊕

i=1

H0(P(E),TP(E)/S))
Sd = H0(P(E),TP(E)/S) .

Comparing the dimensions we get that the (2.16) is an isomorphism. Hence
the inclusion in Lemma 2.1 is an isomorphism. �

3. Applications

Corollary 3.1. Suppose either r ≥ 3 or r = 2, E is semistable with respect
to M and genus of C is ≥ 2. Then we have the following left exact sequence
of algebraic groups

0 → GL(E)/k∗ → Auto(Q(E, d)/S) → Auto(X/S)

The corresponding sequence of lie algebras is given by

0 → H0(X, ad E) → H0(Q(E, d),TQ(E,d)/S) → H0(X,TX/S)

Proof. The left exactness of the above sequences follow from Theorem 2.15
and from the fact that Auto(P(E)/S) and its lie algebra fits into the above
exact sequences. �

Corollary 3.2. Let the genus of the fibres of X → S is ≥ 2. Suppose either
r ≥ 3 or r = 2 and E is semistable with respect to M. Then

(1) Auto(Q(E, d)/S) = GL(E)/k∗.
(2) H0(Q(E, d),TQ(E,d)/S) = H0(X, ad E).

Proof. If genus of each fibre is ≥ 2 then (pS)∗TX/S = 0. In particular

H0(X,TX/S) = 0. Hence Auto(X/S) = 0. Now the corollary follows from
Corollary 3.1. �



12 CHANDRANANDAN GANGOPADHYAY

Taking S to be a point and E = Or
C in Corollary 3.2 we get [BDH15,

Theorem 3.1] and [BDH15, Corollary 3.2].

Corollary 3.3. Let C be a smooth projective curve of genus ≥ 2 over an
algebraically closed field k of characteristic zero. Then

(1) Auto(Q(Or
C , d)/S) = PGL(r).

(2) H0(Q(Or
C , d),TQ(Or

C
,d)) = sl(r).

Let C be a smooth projective curve of genus ≥ 2 over an algebraically
closed field k of characteristic zero. Fix d = (d1, d2, . . . , dk) ∈ Nk with
d1 > d2 > . . . > dk and r ≥ 1. Let D(r, d) be the flag scheme parametrizing
chain of quotients of Or

C → B1 → B2 → . . . → Bd where Bi is a torsion
quotient of degree di [HL10, 2.A.1]. It is known that D(r, d) is a smooth
projective variety.

Corollary 3.4. We have the following isomorphisms of algebraic groups
and lie algebras

(1) Auto(D(r, d)) ∼= PGL(r).
(2) H0(D(r, d),TD(r,d)) = sl(r).

Proof. Let d′ := (d2, d3, . . . , dk). Over C × D(r, d′) we have the universal
chain of filtrations:

A(r, d2) ⊂ A(r, d3) ⊂ . . . ⊂ A(r, dk) ⊂ Or
C×D(r,d′) .

ThenD(r, d) is the relative quot scheme of torsion quotients of degree d1−d2
of the vector bundle A(r, d2) for the map

C ×D(r, d′) → D(r, d′) .

By Corollary 3.2 we get that

H0(D(r, d),TD(r,d)/D(r,d′)) = H0(C ×D(r, d′), ad A(r, d2)) .

By [Gan18, Theorem 3.2.4, Theorem 5.1] the bundle A(r, d2) is stable with
respect to certain polarisations on C × D(r, d′). Hence by Corollary 3.2 we
have

H0(C ×D(r, d′), ad A(r, d2)) = 0 .

By induction on k we get that

H0(D(r, d),TD(r,d)) = H0(C, ad Or
C) = sl(r) .

This completes the proof of the corollary. �

Let C be a smooth projective curve over an algebraically closed field of
characteristic zero. In [BM16] the authors computed the identity compo-
nent of automorphism group scheme of a certain generalized quot scheme
QC(r, dp, dz). We recall the definition of this scheme: Fix r ≥ 2, dp, dz ≥ 1.
Consider the quot schemeQ(Or

C , dp) and the universal kernel bundleA(r, dp)
over C×Q(Or

C , dp). Then Q(r, dp, dz) is defined as the relative Quot scheme
associated to the projection C × Q(Or

C , dp) → Q(Or
C , dp) and the bundle
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A(r, dp)
∨. By [Gan18, Theorem 3.2.4] A(r, dp) is stable with respect to cer-

tain polarisations. Hence H0(C × Q(r, dp), ad A(r, dp)
∨) = 0. Now from

Theorem 2.15 we get the result proved in [BM16]:

Corollary 3.5. [BM16, Theorem 2.1] Let C be a smooth projective curve
of genus ≥ 2 over an algebraically closed field k of characteristic zero. We
have the following isomorphisms of algebraic groups and lie algebras

(1) Auto(Q(r, dp, dz)) ∼= PGL(r).
(2) H0(Q(r, dp, dz),TQ(r,dp,dz)) = sl(r).

Corollary 3.6. Let C be a smooth projective curve over an algebraically
closed field k. Let E be a vector bundle of rank ≥ 3 over C. Fix d ≥ 1. Let
Q(E, d) be the quot scheme of torsion quotients of E of degree d. Then we
have

(1) If genus of C = 0,i.e. C ∼= P1, then

Auto(Q(E, d)) = PGL(2, k) ⋉GL(E)/k∗ .

(2) If genus of C = 1 and if E is semistable then we have the following
sequence of algebraic groups

0 → GL(E)/k∗ → Auto(Q(E, d)) → Auto(C) → 0 .

(3) If E is not semistable, then Auto(Q(E, d)) = GL(E)/k∗.

Proof. If C ∼= P1 then any vector bundle E admits a GL(2) linearisation,
in paricular we have a homomorphism GL(2) → Auto(Q(E, d)). This ho-
momorphism factors through PGL(2, k) and gives a section to the map
Auto(Q(E, d)) → PGL(2, k). Therefore the left exact sequence in Corol-
lary 3.1 is exact in this case and it splits.

From now on we assume that genus of C is 1 i.e. C is an elliptic curve. Re-
call that a bundleE is called semi-homogeneous if Auto(P(E)) → Auto(C) =
C is surjective ([Muk78, Definition 5.2]). By [Muk78, Proposition 6.13] every
semi-homogenous bundle is semistable. Hence (3) follows from Corollary 3.1.
Let us assume E is semistable. Then E ∼= ⊕Ei, where Ei are indecompos-
able of slope µ(Ei) = µ(E). By [Ati57, Theorem 10] any indecomposable
bundle over C is semi-homogenous and therefore by [Muk78, Proposition
6.9] we have that E is semi-homogenous. Now (2) follows from Corollary
3.1. �
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