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Abstract A generalized Fock-Bargmann-Hartogs domain Dy"P is defined as a domain fibered over
C™ with the fiber over z € C™ being a generalized complex ellipsoid ¥, (m, p). In general, a generalized
Fock-Bargmann-Hartogs domain is an unbounded non-hyperbolic domains without smooth boundary.
The main contribution of this paper is as follows. By using the explicit formula of Bergman kernels of
the generalized Fock-Bargmann-Hartogs domains, we obtain the rigidity results of proper holomorphic
mappings between two equidimensional generalized Fock-Bargmann-Hartogs domains. We therefore
exhibit an example of unbounded weakly pseudoconvex domains on which the rigidity results of proper
holomorphic mappings can be built.
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1 Introduction

A holomorphic map F : ; — € between two domains 5, € in C" is said to be proper if F~1(K)
is compact in €y for every compact subset K C {2s. In particular, an automorphism F' : Q —
Q of a domain ) in C" is a proper holomorphic mapping of € into 2. There are many works
about proper holomorphic mappings between various bounded domains with some requirements of
the boundary (e.g., Bedford-Bell [3], Diederich-Fornaess [3], Dini-Primicerio [9] and Tu-Wang [24]).
However, very little seems to be known about proper holomorphic mapping between the unbounded
weakly pseudoconvex domains. There are also some works about automorphism groups of hyperbolic
domains (e.g., Isaev [10], Isaev-Krantz [11] and Kim-Verdiani [14] ). In this paper, we mainly focus
our attention on some unbounded non-hyperbolic weakly pseudoconvex domains.
The Fock-Bargmann-Hartogs domain D,, (1) is defined by

Do) = {(z.w) € C* x €™ - [Jw||* < e #IHI°} for 1> 0,

where || - || is the standard Hermitian norm. The Fock-Bargmann-Hartogs domains D, ,,,(u) are
strongly pseudoconvex domains in C"™™ with smooth real-analytic boundary. We note that each
D, () contains {(2,0) € C" x C™} = C". Thus each D, »,(p) is not hyperbolic in the sense of
Kobayashi and D, ,,, (1) can not be biholomorphic to any bounded domain in C"*"™. Therefore, each
Fock-Bargmann-Hartogs domain D, ,,, (1) is an unbounded non-hyperbolic domain in C"*™.,

In 2013, Yamamori [25] gave an explicit formula for the Bergman kernels of the Fock-Bargmann-
Hartogs domains in terms of the polylogarithm functions. In 2014, by checking that the Bergman
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kernel ensures revised the Cartan’s theorem, Kim-Ninh-Yamamori [13] determined the automorphism
group of the Fock-Bargmann-Hartogs domains as follows.

Theorem 1.1 (Kim-Ninh-Yamamori [13]). The automorphism group Aut(D, ,(u)) is exactly the
group generated by all automorphisms of Dy m (1) as follows:

ou : (z,w) — (Uz,w), U eU(n);
o (2, w) — (Z,U/w), U’ e U(m);

oy (z,w) — (2 + v,e*“<z’”>7%”””2w), (veCn),
where U(k) is the unitary group of degree k, and (-,-) is the standard Hermitian inner product on C™.

Recently, Tu-Wang [23] has established the rigidity of the proper holomorphic mappings between
two equidimensional Fock-Bargmann-Hartogs domains as follows.

Theorem 1.2 (Tu-Wang [23]). If Dy, (1) and Dy (1) are two equidimensional Fock-Bargmann-
Hartogs domains with m > 2 and f is a proper holomorphic mapping of Dy m (1) into Dy s (1), then
[ is a biholomorphism between Dy, y (1) and Dy s (1).

A generalized complex ellipsoid (also called generalized pseudoellipsoid) is a domain of the form
Sm;p) = {(Gry- 5 6) € CM - x €'Y I GP < 1,
k=1

where n = (ny,--- ,n,) € N and p = (p1,--- ,pr) € (Ry)". In the special case where all the p, = 1,
the generalized complex ellipsoid ¥(n;p) reduces to the unit ball in C™** 7 Also, it is known
that a generalized complex ellipsoid ¥ (n;p) is homogeneous if and only if p, = 1 forall 1 < k <r
(cf. Kodama [15]). In general, a generalized complex ellipsoid is not strongly pseudoconvex and
its boundary is not smooth. The automorphism group Aut(X(n;p)) of ¥(n;p) has been studied by
Dini-Primicerio [9], Kodama [15] and Kodama-Krantz-Ma [16].

In 2013, Kodama [15] obtained the result as follows.

Theorem 1.3 (Kodama [15]). (i) If 1 does not appear in p1,--- ,py, then any automorphism ¢ €
Aut(X(n;p)) is of the form

@(Cl, e ’CT) = (71(4-0(1)), e a’yT(CU(r))) (11)
where o € S, is a permutation of the r numbers {1,--- ,r} such that Ng(i) = NiyPo@@) = Pis L <<
and 1, ,7y- are unitary transformation of C™ (nyq) = n1),- - ,C" (ng() = n,) respectively.

(i) If 1 appears inpy,--- ,pr, we can assume, without loss of generality, that py = 1,pa # 1,--- ,py #
1, then Aut(X(n;p)) is generated by elements of the form (1.1) and automorphisms of the form

a(Cr oy G) = (Ta(C)s (a2, G (WalG2))2P7) (1.2)

where Ty, is an automorphism of the ball B in C™', which sends a point a € B™ to the origin and

1— [l
(1= (¢, a))*

In this paper, we define the generalized Fock-Bargmann-Hartogs domains Dy () as follows:

T;Z)a(CI) =

l
. 2
D:Ll(’)p(/j/) _ {(Z’w(1)7... ,w(l)) cC x C™ x ... x CM - § Hw(])H2p] < e*l"”Z“ } (M > 0)’
i=1
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where p = (p1,--,pm) € (R, n = (ng,---,m), w) = (i1, ,wjp;) € C%, in which n; is a
positive integer for 1 < j < [. Here and henceforth, with no loss of generality, we always assume that
pi #1(2<i<I1) for DpP(u).

Obviously, each generalized Fock-Bargmann-Hartogs domain Dj;P is an unbounded non-hyperbolic
domain. In general, a generalized Fock-Bargmann-Hartogs domain is not a strongly pseudoconvex
domain and its boundary is not smooth.

In this paper, we prove the following results.

Theorem 1.4. Suppose Dp;P (1) and D% (v) are two equidimensional generalized Fock-Bargmann-
Hartogs domains. Let f : DpP(pn) — Dmi3(v) be a biholomorphic mapping. Then there exists
¢ € Aut(Digd(v)) such that

A

I
po f(z,w) = (2,W(g(1)), s W) I’ : (1.3)

Iy
where o € Sy is a permutation such that ny;y = my, Py = ¢; (1 < j < 1), \/%A eUn) (n:=mny=
mo), and Ty € U(m;) (1 <i<1).

Corollary 1.5. Let f: DpP(n) — DniP(n) be a biholomorphic mapping with f(0) = 0. Then we
have

A

I
f(zw) = (2, W), s Weay) Iz ;

I

where o € Sy is a permutation such that ne;y = nj, pey)y = p; (1 < j < 1), A € U(ng) and
I e Z/[(?”Lz) (1 <1< l)

As a consequence, it is easy for us to prove the following results.

Theorem 1.6. The automorphism group Aut(Dn:P (1)) is generated by the following mappings:
pa(z,wy, s wey) — (A way, - w));

©p = (2,0, waey) = (2, (W), We)))D);

1

2 1 2
©a i (z,w) — (2 + a’w(l)(672u<z,a>7ullall )21, ’w(l)(e*2u<z,a>7ullall )2n),
where a € C™, A € U(ng), o € ) is a permutation such that ng;y = nj, pe;y =pj (1 <j <1), and

I'y
Iy

in which T'; € U(n;) (1 <i<1).

Now, for p and q, we introduce notation:

17 p1:1 5 17 (h:l
€= , = .
07 pl#l 07 Q17é1
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Theorem 1.7. Suppose Dp;X (1) and Dpm;(v) are two equidimensional generalized Fock-Bargmann-
Hartogs domains with min{ny ¢, na, -+ ,n;,ny + -+ +n} > 2 and min{my5,mo, -+ ,my,my +--- +
my} > 2. Then any proper holomorphic mapping between Dp:P(u) and Dy (v) must be a biholomor-
phism.

Remark 1.1. The conditions min{nii.,no, -+ ,n;} > 2 can not be removed. For example, ny = 1
(i.e, w1 € C), p1 # 1, and

F(z,w) : (z,wq), - wgy) = (2,00, W), wg)):

Then F is a proper holomorphic mapping between DnP (1) and Dpi* (i) where q = (p1/2,p2,+ ,p1)-
F' is not a biholomorphism.

Corollary 1.8. Suppose Dp:P (1) is a generalized Fock-Bargmann-Hartogs domain with
min{nl_;_g,ng, e an,ny e+ nl} > 2.
Then any proper holomorphic self-mapping of DniP (1) must be an automorphism.

Remark 1.2. The conditions n1 + --- +n; > 2 can not be removed. For instance, with no loss of
generality, we can assume ny =1 andn; =0 (2 <i<1). Then

F:(z,wy) — (\/—zwl))
is a proper holomorphic self-mapping of Dn¥ (1) which is not an automorphism.

The paper is organized as follows. In Section 2, using the explicit formula for the Bergman kernels
of the generalized Fock-Bargmann-Hartogs domains, we prove that a proper holomorphic mapping
between two equidimensional generalized Fock-Bargmann-Hartogs domains extends holomorphically
to their closures and check that the Cartan’s theorem holds also for the generalized Fock-Bargmann-
Hartogs domains. In Section 3, we exploit the boundary structure of generalized Fock-Bargmann-
Hartogs domains to prove our results in this paper.

2 Preliminaries

2.1 The Bergman kernel of the domain D'P

For a domain € in C", let A%(Q) be the Hilbert space of square integrable holomorphic functions on
Q) with the inner product:

(f.g) = /f V(z) (f.9 € OQ).

where dV is the Euclidean volume form. The Bergman kernel K(z,w) of A%(Q) is defined as the
)

reproducing kernel of the Hilbert space A?(€2), that is, for all f € A?(Q2), we have

/f K(z,w)dV(w) (z € Q).

For a positive continuous function p on €, let A%(Q,p) be the weighted Hilbert space of square
integrable holomorphic functions with respect to the weight function p with the inner product:

/f ()dV(2) (f.9 € O®Q).
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Similarly, the weighted Bergman kernel K 42(q,) of A%(Q,p) is defined as the reproducing kernel of
the Hilbert space A%(Q, p). For a positive integer m, define the Hartogs domain Qp.p over £ by

Q= {(zw) € 2 x T ¢ Ju]® < p(2)}.

Ligocka [17, 18] showed that the Bergman kernel of €2,, , can be expressed as infinite sum in terms
of the weighted Bergman kernel of A?(Q,p*) (k= 1,2,---) as follows.

Theorem 2.1 (Ligocka [13]). Let Ky, be the Bergman kernel of Qi , and let K y2(q xy be the weighted
Bergman kernel of A%(Q,p*) (k=1,2,---). Then

m! o~ (m+ 1)y,

Tm — k!

Km((27w)7(t7 S)) = KAQ(Q,pk+m)(th)<was>k7

where (a)y denotes the Pochhammer symbol (a)r = a(a+1)---(a +k —1).

The Fock-Bargmann space is the weighted Hilbert space AZ((C",e_“”Z”Q) on C" with the Gaus-
sian weight function e #I#I” (4 > 0). The reproducing kernel of A2(C" e~ #IZI*) called the Fock-
Bargmann kernel, is p"et*? /7" (see Bargmann [2]). Thus, the Fock-Bargmann-Hartogs domain
Do = {(z,w) € C* x C™ : |Jw|)?* < e*“”zHQ} (1 > 0) and the Fock-Bargmann space A2(C", e—#l=I7)
are closely related. In 2013, using Theorem 2.1 and the expression of the Fock-Bargmann kernel,
Yamamori [25] gave the Bergman kernel of the Fock-Bargmann-Hartogs domain D,, ,, as follows.

Theorem 2.2 (Yamamori [25]). The Bergman kernel of the Fock-Bargmann-Hartogs domain Dy, p, is
given by

oo

mlu”™ m+ 1) (k+m)" )z
Ky (2,0, (1,) = T 52 00 DREL IO st g,
k=0 '

where (a) denotes the Pochhammer symbol (a)y = ala+1)---(a+k —1).

Following the idea of Theorem 2.1, we compute the Bergman kernel for the generalized Fock-
Bargmann-Hartogs domain Dp;P. In order to compute the Bergman kernel, we first introduce some
notation.

Let
o = (), o) € (Ry)™ X -+ x (Ry)™,
where oy = (i1, -+, @in;) € (Ry)™ for 1 <4 <[ For a € (Ry)", we define
Hl'—1 I'(ov)
Bla) = == ;
I(al)
see D’Angelo [7]. Here I is the usual Euler Gamma function.

Lemma 2.3 (D’Angelo [7], Lemma 1). Suppose o € (R;)"™. Then we have

20—1 _ B(a)
/B r dVir) = o]’

n
+

20—1 _ Bla)
/Si_l w do(w) = =T’

where dV is the Euclidean n-dimensional volume form, dS is the Euclidean (n—1)-dimensional volume
form, and the subscript “+7 denotes that all the variables are positive, that is, BY = B"N(RL)" and
St = 8" N (Ry)™, in which B™ is the unit ball in R™ and S"~' is the unit sphere in R™.
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Theorem 2.4. Suppose a = (1), ) € (Ry)™ -+ (Ry)™, agy = (g,

1 < l. Then we have the formula:

.:N

-
I
A

I(as+ 1) [] ()

Jo o, etV = @
5l |7

Proof. For the integral

—~
3
—~

~
I
-
<.
I
-

[eeteY
l . wrw dV(’w),
/_ g |72 <t

g
I (Jaa] + n)0(% lglen: |
=1

,Ocmi) € (R_,_)"i,l <
Loy l+ny
=t P (2.1)

1)

(2.2)

by applying the polar coordinates w = se’ (namely, wi; = sijewif, 1<j<n, 1<i<I, s=

(8(1):** »8@))), we have

(2.2) = (2m)mr / l s2 LAV (s).

o1 <

Sji>0,1§i§”j ,1<5<1

Using the spherical coordinates in the variables s(1), s(2), "+, 5(;) respectively, we get

2041
; , $%YTdV (s)
/ Ml 7 <t

Sji>0, lgignj,

2]a(qy[+2n1—1 2lapy[+2n—1
_ dpydpsy - d
/zl: pal2Pi<t P1 P prap Pl
i=1

pi>0,1<i<l

1<5<1

2a +1 200 +1
/n1 1 /nl W (1 --w(l)“) do(wy) -+~ do(wgy).

1

, -1
Let pPi =7;,1 <1 <[. Then we have dp; = piipil*pldm = piir-’” dr;. Therefore, Lemma 2.3 and the

above formulas yield

2|aqy [+2nq Q\Q(I)H—in
1 Blag+1)  Blag +1) e —a—
(2.2) = (2m)mtrm ] ogni—1 T om—1 /Z 2t rp 7 ey M dry -« - dry.
Hl pl T >0 1<:i<1
1=
Let r = (ry,72,--- ,7) € (Ry) and k := t~3r. Then dr = t3dk. After a straightforward computation,
we obtain that (2.2) equals
l \a(i)H—ni 2\a(1)\+2n1 2\a(l)\+2nl
1 Blag+1)  Blag+1) > —5— ———-1
(27T)n1+ +ny l ! ST . ti=1 P Ll k Pl kl P dkl dkl
I1 pi .
i=1 ’
Applying Lemma 2.3 to the above formula, we get
’ Lo Jegyy 14y
Bla X T
(2.2) =(r)"1 ™ B(agy + 1) Blagy + 1) —LE L
[ T1 pi
i=1
l l (2.3)
[T T(ag) +1) [] r(2ar) gy i
(m)mttm 1 i=1 i=1 =

l l l
1+
[T p T1 (o] 4 m)P(3 2l 4 )
i=1 i=1 i=1
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’ lor1y|[+na loy [+ !
where a = ( (1))1 R (;n ) € (Ry)". O

Now we consider the Hilbert space A?(Dyn:P(u)) of square-integrable holomorphic functions on
Dng” ().
Lemma 2.5. Let f € A?>(DpP (). Then

flz,w) = Zfa(z)wa,

where the series is uniformly convergent on compact subsets of Dp¥ (1), fa(z) € AQ(C"O,G_“)‘(*”Z”Q)
l

fOT any & = (a(l)a"' ,a(l)) € N™ x- .- x N™, Qi) = (aily"' aaim) eNM 1< < L, Ao = Z
i=1

in which Az((C",e_“)‘a”z”Q) denotes the space of square-integrable holomorphic functions on C" with

levgsy | +mq
Di 7

2
respect to the measure e M elZlI" qvs,

Proof. Since DpP (1) is a complete Reinhardt domain, each holomorphic function on Dp:P (1) is the
sum of a locally uniformly convergent power series. Thus, for f € A%(Dn® (1)), we have

flz,w) = Zfa(z)w“,

where the series is uniformly convergent on compact subsets of Dp;P(1). We choose a sequence of
compact subsets Dy (1 < k < c0)

!
Dy, = {(z,w(), () €C™ x C™ x -+ x C Y gy |7 < el — %} B0k,
j=1

o0

where B(0, k) is the ball in C"0 ™14 of the radius k. Obviously, Dy € Dyyq and |J Dy = DpiP (11).
k=1

Since Dy, is a circular domain, then

fa(2)u® L fo(z)w? (o #B)
in the Hilbert space A%(Dy,). Hence we have
122 = 3 Wfal2)w® oy
|a|=0
Since f(z,w) € A%(Dn:P (1)), we have
| fa(2)w |22 (py) < 1F 1720y < HfH%?(DZ(’)p(M))'

Then f,(2)w® € A?(Dn:P(1)). Therefore,

/ | fa(2)Pww®dV < oo
Dy ()

= [l P | w*wdV (w) < oo.
cro 3wyl <e—nl=l?
=1

By (2.1), it follows
/ ]fa(z)\Qe*“)“D‘HzHQdV(z) < 0.
Cno

l . .
Consequently, f,(z) € A%(CM, e*“’\a”zHQ), where A\, = > ‘a(%ﬁ. O
i=1 ’
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Lemma 2.5 implies that f(z)w® where f(z) € A?(C", e_")‘a”ZHQ) form a linearly dense subset of
A%(DpiP(u)). Now we can express the Bergman kernel of DyP (1) as follows.

Theorem 2.6. The Bergman kernel of DpP (1) can be expressed by the following form

(e o]

Agouno zZ,8 (a6
KD,%p(u)[(Z’w)’ (s,t)] = Z Ca o eretlz) o ) (2.4)
|ar|=0
where o = (1), -+, aq)) € N x o X N ) = (i1, -+ 5 up,) € N1 <0 <, and
l l l ‘a(i)|+ni
[T pi TT T(les] +na) D32 —— + 1) U lows .
=1 =1 =1 o ‘a(l)‘ +n;
. Ao =3 Ll
! Lo lal+niy ; i
(ﬂ-)m—l—----i—m H P(Oé(z) +1) H p(M) i=1
i=1

1 pi

= i
Proof. Since Dp:P (1) is a complete Reinhardt domain, it follows

[e.e]

KD,%p(M)[(Z’w)’ (s,t)] = Z Cﬁgﬁ(zas)wﬁfﬁa
181=0

where the sum is locally uniformly convergent, by the invariance of the Bergman kernel K DEP(u) ON

1)
DpiP (1) under the unitary subgroup action

(21, Zng ) = (V7021 o eV T Wnotiniz ) (61,5 By 4 jn| € R).
For any a = (1), @) € N™ x - x N™ with ag) = (i1, qin,) € N (1 <4 <), any

- 2 l o) |+ o n
f(z) € A2(Cro, e mAall2l™y (2, = 21 %), we have f(2)w® € A2(DpP(1)). Thus

few = | oy /O Konp (200, 5,010
= /(Cno f(s)Z%gﬁ(z, s wldV (s) /l P aAv ()

520 > Ity 1773 <ewllsl®
j=1

! lev(yy I4+mg

—ut [ falz e IE T aves) by (2),

By Bargmann [2], we get that the Bergman kernel of A%(C"™, e_")‘a”ZHQ) can be described by the form

A0 ;70
Ky (z,w) = %6)‘“’“2"”). (2.5)
Thus we obtain 370 70
9a(z,8) = 7‘;5) rarlzs),
This completes the proof. O

The transformation rule for Bergman kernels under proper holomorphic mapping (e.g., Th. 1 in Bell
[1]) is also valid for unbounded domains (e.g., see Cor. 1 in Trybula [21]). Note that the coordinate
functions play a key role in the approach of Bell [1] to extend proper holomorphic mapping, but, in
general, are no longer square integrable on unbounded domains. In order to overcome the difficulty,
by combining the transformation rule for Bergman kernels under proper holomorphic mapping in Bell
[1] and our explicit form (2.4) of the Bergman kernel function for Dy;P (1), we prove that a proper
holomorphic mapping between two equidi- mensional generalized Fock-Bargmann-Hartogs domains
extends holomorphically to their closures as follows.
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Lemma 2.7. Suppose that f : Dp:P () — Dmi*(v) is a proper holomorphic mapping between two
equidimensional generalized Fock-Bargmann-Hartogs domains. Then f extends holomorphically to a
neighborhood of the closure Dp:P (u).

In fact, using the explicit form (2.4) of the Bergman kernel function for Dp:P (1), we immediately
have Lemma 2.7 by a slightly modifying the proof of Th. 2.5 in Tu-Wang [23].

2.2 Cartan’s Theorem on the D}P

Suppose D is a domain in CV and let Kp(z,w) be its Bergman kernel. From Ishi-Kai [12], we know
that if the following conditions are satisfied:

(a) Kp(0,0) > 0;

(b) Tp(0,0) is positive definite,

where Tp is an N x N matrix

9% log Kp(z,w) o 9% log Kp(z,w)
0z10w1 0z10wWN
Tp(z,w) = : =
9% log Kp(z,w) o 9% log Kp(z,w)
OznOwL 0zNOWN

Then the Cartan’s theorem can also be applied to the case of unbounded circular domains. The above
conditions are obviously satisfied by the bounded domain.
Kim-Ninh-Yamamori [13] proved the following result.

Lemma 2.8 (Kim-Ninh-Yamamori [13], Th. 4). Suppose that D is a circular domain and its Bergman
kernel satisfies the above conditions (a) and (b). If ¢ (€ Aut(D)) preserves the origin, then ¢ is a
linear mapping.

Ishi-Kai [12] proved the generalization of Lemma 2.8 as follows.

Lemma 2.9 (Ishi-Kai [12], Prop. 2.1). Let Dy be a circular domain (not necessarily bounded) in CN
with 0 € Dy, (k= 1,2), and let ¢ : D1 — Day be a biholomorphism with ¢(0) = 0. If Kp, (0,0) > 0 and
Tp, (0,0) is positive definite (k =1,2), then ¢ is linear.

Therefore, by using the expressions of Bergman kernels of generalized Fock-Bargmann-Hartogs
domains, we have the following result.

Theorem 2.10. Suppose that ¢ : DpP(u) — Dpmi(v) be a biholomorphic mapping between two
equidimensional generalized Fock-Bargmann-Hartogs domains with (0) = 0. Then ¢ is linear.

Proof. By using the expressions (2.4) of Bergman kernels of generalized Fock-Bargmann-Hartogs do-
mains and a straightforward computation, we show that the Bergman kernel of every generalized
Fock-Bargmann-Hartogs domain satisfies the above conditions (a) and (b). So we get Th. 2.10 by
Lemma 2.9. U

3 Proof Of The Main Theorem

To begin, we exploit the boundary structure of DpP (1) which is comprised of
BDRP (1) = by DRP (1) U by DR () U ba D (1),

where

boDyP (1)

l
= {20y, ) € €0 s x C 2 Y flugy [P = e gy |* £ 0, 14+ e <5 < 1);
j=1
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b1DyP ()
!

l
= U {wy. - wg) €€ xx € 3 fug | = e g |* = 0, p; > 13;
Jj=1+e j=1

baDpoP (1)
l l
= | {(zway. o wg) €C0 % x €Y g | = e P ey |P = 0, by < 1)
j=1+e j=1

Now we give the following proposition.

Proposition 3.1. (1) The boundary byDpP (1) is a real analytic hypersurface in CroT™M++n gng
DyniP(p) is strongly pseudoconvex at all points of boDniP (i).

(2) DpP (1) is weakly pseudoconver but not strongly pseudoconvex at any point of by Dp:X (1) and is
not smooth at any point of ba DpP(11).

Proof. Let
l
20 _ 2
plz,wqy, - wgy) = Y Jwg [T — e E
j=1
Then p is a real analytic definition function of by DpiP (1). Fix a point (20, w(1yo, -+, wy) € boDng” (1)

and let T' = (¢, me1y, -+ 1)) € T(1 0 (boDpiP(11)). Then by definition, we know that

20,W(1)05" " sW(1)0)

l 2(pr—1) 2
ZpkHw(k)OH PR W00 - e + pe~ Ml =5 ¢ =0 (3.2)
k=1
! 2
> Hlwgoll = e=I=I” < o. (3.3)
=

Thanks to (3.1), (3.2) and (3.3), the Levi form of p at the point (20, w(1)9," - ,w()o) can be computed
as follows:

Lp(T,T)
no+m§+j+m P \IT
= A V0, W0, s Wiyo) il
Bj=1 OT.IT,

l !
= prlpr — )lwieyoll >~ [wgmo - n|* + Zpknw(k)OHQ(pkil)H77(k)H2
k=1 k=1

+ eIl — el g
l 2 2
=" pi2 w2 @i - ngw|” + pe 0171 )|F — p2e ol 1z ¢ 2
k=1
l

+ 3" prllwayol 2 (lwagol*lng II” — @ - 10y 1)
k=1
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[
Z g I%) (mew ool2P D s mm?) (Z ||w(k>ou2pk>
k=1
2
= (5 ol
k=1

H (Pi—1) W0 - (k)

[
_ ozl
+ > prllwgeo 2’<||w<k)ou2||n<k)||2 — |w<k)o-n<k)|2> + pe M=l )12
k=1

l
Zuw(mum [(Zpk gl 272 [ - w)(}j\\w(k)ou?pk)
k=1

k=1
2

| 2(pr— :| _{_Meﬂullzo”?HCHQ

w(k 0 " T(k)

l

_ “ullzall?
+Zpkuw<k>o||2<pk 2>(uw<k>o||2un<k>u2— |w<k>o-n<k>|2) > pe Ml ¢)12 > 0
k=1

by the Cauchy-Schwarz inequality, for all T' = (¢, 71y, ;1)) € T(lz’o0 - w(l)o)(boDﬁg)p(u)). Obvi-
ously, if ¢ # 0, then L,(T,T) > 0.
On the other hand, combining with (3.1), (3.2) and (3.3), we know that the equality holds if and
only if
¢=0, (3.4)

lwayol*lmg I* = [@y0 - 1 |* = 0, (3.5)

Zpk wiyol PP~ [ an(kon?pk
K ) (35 o™

2]

Suppose ¢ = 0, then T = (C777(1)7 -+ ,n@) # 0 implies that there exists n;, # 0. If L,(T,T) = 0
forall T # 0 € T, (boDpniP (1)), then by (3.1), (3.2), (3.3) and (3.6), we have 7, = 0

(3.6)

W(k)0 * (k)

(zo W(1)05" sW(1)0)
(1<k<I). Thisis a contradiction.
When there exists jo > 1+ € such that Hw(]o 0H2 = 0 and pj, > 1, then (20, w(1)o," (1)0) €
le,rLl(’)p(u). Let Ty = (0,--- s 7(jo)» 05+ ,0), Hnjo || # 0. Then L (TO,TO) = (0. Hence D (,u)

weakly pseudoconvex but not strongly pseudoconvex on any point of by DpP ().
It is obvious that Dp;P () is not smooth at any point of by Dy (11). The proof is completed. U

Lemma 3.1 (Tu-Wang [24]). Let X(n;p) and X(m;q) be two equidimensional generalized pseudoel-
lipsoids, n,m € N!, p,q € (R+)l (where pg, qr # 1 for 2 <k <1). Let h : X(n;p) — X(m;q) be
a biholomorphic linear isomorphism between ¥(n;p) and X(m;q). Then there exists a permutation
o € S, such that ny ;) = mi, ps(;) = ¢i and

Uy
Us
h(gla"' ?CT):(CO'(:L)"” ’Co(r)) )
Uy

where U; is a unitary transformation of C™ (m; = ng(;) for 1 <i <.



12 E.Bi & Z.Tu

Define
Vi = {(z,w(l),--- ,w(l)) ceC"xC"Mx...xCM . weyy = 0,--- y W) = 0} (’E (Cno),

Vo i={(z,wqy, -+ ,wpy) € C™ x C™ x oo x C™ 1wy =0, ,wgy =0} (= C™).
Then we have the following lemma.

Lemma 3.2. Suppose DpP(p) and Dm(v) are two equidimensional generalized Fock-Bargmann-
Hartogs domains, f : DpP (1) — Dmi*(v) is a biholomorphic mapping. Then we have f(Vi) C Va
and fly, : Vi — V4 is biholomorphic. Consequently ny = my.

Proof. Let f(z,0) = (fi(2), f2(2)), then we get Z | f2i]|?% < evINi(z 9IP < 1. Then we obtain that

the bounded entire mapping f2;(z) on C™ is Constant (1 <i <) by Liouville’s Theorem. Since f(z)
is biholomorphic, f1(z) is an unbounded function. Hence there exist {zx} such that fi(zx) — oo as
k — oo. It implies fa(z) = 0. This proves f(V1) C V5. Similarly, by making the same argument for
f=1, we have f=1(V3) C V1. Namely, f|y;, : V4 — V4 is biholomorphic. Hence ng = mo. O

Now we give the proof of Theorem 1.4.
The proof of Theorem 1.4. Let f(0,0) = (a,b) (thus b = 0 by Lemma 3.2) and define

2 1
p2v<z,0>— v|a))? )qu 2v<z,a>—v||al] )2ql)‘

d(z, 0wy, wey) = (2 — a,w)(e L w (e

Obviously, ¢ € Aut(Dm;(v)) and ¢ o f(0,0) = (0,0). Then ¢ o f is linear by Theorem 2.10. We
describe ¢ o f as follows:

po flz,w) = (z w)( é g>:(zA+wC,zB+wD).

According to Lemma 3.2, we have f(z,0) = (f1(2),0). Thus B = 0. Since g := ¢o f is biholomorphic,
A and D are invertible matrices. We write g(z,w) as follows:

A 0 0
A 0 Ci1 D -+ Dy
g(z,w)z(z,w)(c D>:(’Z’w(1)"”’w(l)) : : ’
Cn Dn Dy
which implies that
AL 0 0
_ AL 0 Eynw Gu -+ Gy
g l(z,w):(z,w)< _D—ch—l D—l > :(z’w(l)"” ’w(l)) . : :
Eyn Gn - Gp

! !
Set 2(n;p) = {(wqy, - ,wyy) € CMx--x C™ zl Jw(j)|I?"# < 1}. Then, if Zl lwe 1% < e=#I01 =
J= J=

1, we obtain

!
Z lwyDij + - +w(l)Dlj”2qj < e IwCI? -
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and if Y [Jwe [ < e VI0I" =1, we have
j=1
! —14-1Y]|?
Z ||w(1)G1j + -+ w(l)Gleij < G_MHw(_D ca | < 1.
j=1

Therefore, we conclude that the mapping go(w) : ¥(n;p) — X(m;q) given by

Dy -+ Dy
g2(w(ry, -+, wey) = wD = (way, -+ we)) N

Dy -+ Dy

is a biholomorphic linear mapping. By Lemma 3.1, go can be expressed in the form:

I'y
Iy
g2(way, -+ s ww) = Wy W) . ;
Iy
where o € ) is a permutation with n, ;) = my, pe) = ¢; (j =1,--- ;1) and I'; € U(m;) (1 <@ <1).
Hence g can be rewritten as follows:
A
A 0 Coan Tt
g('z’w) = (Z,’U)) < C D > = (Z’w(a(l)), T ,w(a(l))) CO.(Z)l I’

Co(1 I

Next we prove that C' = 0. The linearity of g yields that g(bDp?) = bDmi? Let (0,w) =
1
(0,0, ,w(,0,---,0) € bDyP, namely, Hw(j)HQ = (e’“”OHQ)"J' =1 AsT; (1 <j <) are uni-

tary matrices, moreover, assuming o (i) = j, we have

2
w17 = oo Tio |20 = e~ VIwetionCotign|l” = 1.

This implies w;Cj; = 0 for all ||w(j)||2 =1. S0 Cj1 =0 (1 <j <1). Thus we have

A
I'

g(Z, Wy, ’w(l)) = (Z’ W(a(1))s """ aw(a(l))) I’

I
Lastly, we show \/%A €U(n) (n:=ng =myg). For z € C™, take (w(y), -+ ,w() such that ehll=l® =

! !
21 ||w(j)||2pj. By g(bDpP) = bDpi?, we have 21 ||w(o(j))1‘j||2qj — —1IZAI? Since T;(j=1,---,1) are
j= j=
unitary matrices, we get
2 ! ! 2
e M= Tl 1770 = D lwyTill*» = eI,
= =1

Therefore, v||zA|? = pl|z||* (z € C"). Then we get \/EA € U(n), and the proof is completed. O

13
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The proof of Corollary 1.5. In fact, the significance of the above ¢ is just to ensure ¢o f(0) = 0. Then
the proof of Theorem 1.4 implies that Corollary 1.5 is obvious. O

The proof of the Theorem 1.6. Obviously, ¢4, pp and ¢, are biholomorphic self-mappings of DpP (11).
On the other hand, for ¢ € Aut(DpP(p)), we assume (0,0) = (a,b) (then b = 0 by Lemma 3.2).
Hence ¢_, o ¢ preserves the origin. Then by Corollary 1.5, we obtain ¢_, o o = @p o w4 for some
pA,pp. Hence o = ¢, 0 pp o p4, and the proof is complete. U

The proof of Theorem 1.7. Let f be a proper holomorphic mapping between two equidimensional
generalized Fock-Bargmann-Hartogs domains DyiP(p) and Dip;%(v). Then by Th. 2.7, f extends

holomorphically to a neighborhood Q of DpP (1) with
FODRP (1)) € bDp(v).
Then by Proposition 3.1 and Lemma 1.3 in Pin¢uk [19], we have
FM b DiP (i) C b1 Dy (v) U by Dyl (v) (3.7)

where M := {z € Q,det(g—ic;) = 0} is the zero locus of the complex Jacobian of the holomorphic
mapping f on Q.

If M NbDpP(p) # 0, then, from min {ny e, no, - ,n;} > 2, we have M N boDpP(u) # 0. Take
an irreducible component M’ of M with M’ M byDpP (1) # 0. Then the intersection Ey; of M’ with
boDniP () is a real analytic submanifold of dimensional 2(ng + ny + -+ + n;) — 3 on a dense, open
subset of Ey. By (3.7), we have f(Ey) C by Dim(v) U bo D% (v). Hence

>
0.

l

M D) c | PriDndw)), (38)
Jj=1+6

where Pri(Dm;d(v)) := {(z,wqy, -+ ,wy) € Dmgd(v), llwyl =0} (1+6 <i <), by the uniqueness

!
theorem. Since codimM’ = 1, codim[ |J Pri(Dmg(v))] > min{mqs,--- ,my,mi+---+my} > 2 and
j=146
[ DpP () — Dm?(v) is proper, this is contradiction with (3.8). Thus we have M N bDypP (1) = 0.
Let S := M N DpP(1). Hence we have

$C D2P(u), SNbDEP(u) = 0.

If S # 0, then S is a complex analytic set in C"0t™M* 7 also. For any (z,w) € S, we have

l
[win, |2 < 3 w7 < e #IFIP < 1. Thus
j=1

Jwin, 2 <1< 14 (2wl (3.9)

where w = (w', wy,,). Then S is an algebraic set of C"0 ™™+ 4 Ly §7.4 Th. 3 of Chirka [5].

Suppose S; is an irreducible component of S. Let S; be the closure of S; in Protmit+n_ Then by
§7.2 Prop. 2 of Chirka [5], S; is a projective algebraic set and dim S; = ng +ny +--- +n; — 1. Let
[€, z,w] be the homogeneous coordinate in P01+ +1 we embed CoTit+m jnto Protnit+m a9
the affine piece Uy = {[¢, z,w] € Protmt+m_ ¢ £ 0} by (z,w) < [1,2,w]. Then we have

l

n lw I el
Dn;)p(u)mUO: [5,2’,’11}], 57&07 ZW <e l€] .
7=1
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Let H = {¢ = 0} c Protmt+m_ Consider another affine piece Uy = {[¢, z,w] € Protmit—+m o,
0} with affine coordinate ((,t,8) = ((,t2, - ,tngs8(1), -+ ,5@w)). Let t' = (1,12, ,tpn,). Since

j ; ; ; llz11% =02 12112 1+|tg |2+ +tng |2
llws 1?79 w1779 |21 |2Pd (e —H 2 —H 2 e —p— .
U el Bl g - R T e ot
Dy (u) nUo N UL
L s P il
sii || S 1 (3.10)
:{(C’tQ,... atnoas(l)a"' ’S(l)) € Crotnit Jrnz’ E LQPJ <e iz U

= I

Let S’ =S, NU; and H = HNU; = {¢ = 0} (note & = Z—Cl) For every u € S’ N Hy, there exists a
sequence of points {u;} € S1N((UgNUy)\Hy) such that u, — u (k — 00), The formula (3.10) implies

702
"l

sy ()| < (¢ (uge)|PPre e 1 < j < 1. (3.11)

Since u € Hy, that means ((u) = 0 and ((ug) — 0 (k — o0). Therefore we have Hs(j)(u)HQPj <0(1<
j <l)as k — oco. Hence

S'NH, C {CZO, 5(1) = = 8 :0}.
Then dim(S’ N Hy) < ng — 1. Shafarevich [20] §6.2 Th. 6 implies
no —1>dim(S'N Hy) > dim S +dim Hy —ng—ng — - —n; > dim S’ — 1. (3.12)
This means dim S” < ng, and thus ng+ni+---+n;—1 = dim S’ < ng. Therefore, we get nq+---+n; <1,
a contradiction with assumption min {nii¢,ne, -+ ,n;,ny +---+ng} > 2.
Therefore, S = () and thus f is unbranched. Since the generalized Fock-Bargmann-Hartogs domain
is simply connected, f : DpP (1) — Dm%(v) is a biholomorphism. The proof is completed. O
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