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IDENTIFIABILITY OF PARAMETRIC RANDOM MATRIX MODELS

TOMOHIRO HAYASE

Abstract. We investigate parameter identifiability of spectral distributions of random
matrices. In particular, we treat compound Wishart type and signal-plus-noise type. We
show that each model is identifiable up to some kind of rotation of parameter space. Our
method is based on free probability theory.
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1. Introduction

Identifiability analysis is fundamental in a theoretical understanding of statistical mod-
els, for example, log-likelihood maximization. A parametric statistical model (Pϑ)ϑ∈Θ, a
parametric family of probability measures, is said to be identifiable if the map ϑ ↦ Pϑ

is injective. For a statistical model, its identifiability is necessary for its regularity. Un-
der regularity condition, then maximal likelihood estimator has a good behavior such
as asymptotic normality. In general, a geometry of log-likelihood is determined by the
Fisher information matrix (see [2]), which is expected Hessian of log-likelihood with re-
spect to parameters. If a statistical model is non-identifiable, then the Fisher informa-
tion matrix is singular, and the eigenspace for the zero eigenvalue is determined by non-
identifiable parameters. Therefore, determining non-identifiable parameters is important
in non-identifiable models.

In this paper, we investigate identifiability of statistical models introduced for parameter
estimation of random matrix models. In [8], two typical random matrix models, the
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compound Wishart model WCW and the signal-plus-noise model WSPN are treated. They
are defined as the following:

WCW(D) = Z
∗DZ,

WSPN(A,σ) = (A + σZ)
∗(A + σZ),

where Z is p× d matrix of independent and identically distributed Gaussian random vari-
ables with mean zero and variance 1/d, D and A are deterministic matrices, and σ ∈ R.
For any self-adjoint matrix W , let us denote by µW the eigenvalue distribution defined as

µW =
1

d

d

∑
k=1

δλk
,

where λ1 ≤ λ2 ⋅ ⋅ ⋅ ≤ λd are eigenvalues of W . The parameter estimation method introduced
in [8] is minimizing modified KL-divergence between a statistical model

µ◻CW(D), D ∈Mp(C)

(resp.µ◻SPN(A,σ), A ∈Mp,d(C), σ ∈ R)

and a sample of the empirical eigenvalue distribution µWCW(D0) (resp.µWSPN(A0,σ0)), where

true parameters D0,A0, σ0 are unknown. The definition of the statistical models µ◻x is
based on free deterministic equivalent. The free deterministic equivalent is introduced by
[14], which is a deterministic and infinite-dimensional approximation of random matrices
based on a central limit theorem of the eigenvalue distribution.

It directly follows from the definition of µ◻x that

µD = µD′ Ô⇒ µ◻CW(D) = µ
◻
CW(D

′),

µA = µA′ , σ2 = σ
′2 Ô⇒ µ◻SPN(A,σ) = µ

◻
SPN(A

′, σ′).

In particular, these statistical models are not identifiable. For the CW model, it is easy
to show that the converse also holds:

µD = µD′ ⇐⇒ µ◻CW(D) = µ
◻
CW(D

′).

In other words, if we replace the parameter set by the set of eigenvalue distributions then
this model becomes identifiable. Note that there is a bijection between the set of eigenvalue
distributions and

{v ∈ Rp ∣ vk = vπ(k),∀k = 1, . . . , p, ∀π ∈ Sp},
where Sp is the permutation group of p elements. However, it is not clear that the converse
holds for the SPN model.

The main theorem of this paper is as follows.

Theorem 1.1. Let p, d ∈ N with p ≥ d. For A,B ∈ Mp,d(C) and σ,ρ ∈ R, the following
holds:

µ◻SPN(A,σ) = µ
◻
SPN(B,ρ) ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

µA∗A = µB∗B ,
σ2 = ρ2.
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In particular, if we replace the parameter space by the direct product of singular value
distribution and the nonzero real numbers, then this statistical model becomes identifiable.
Note that there is a bijective between the direct product and

{v ∈ Rd ∣ vπ(k) = vk ≥ 0 ∀k = 1, . . . , d,∀π ∈ Sd} × {v ∈ R ∣ v ≥ 0}.
Our proof consists of an analytic part based on operator-valued analytic free additive
subordination [3] and a combinatorial part based on free multiplicative deconvolution
[11, 12].

2. Related Works

The compound Wishart random matrix was introduced by [13]. It appears as sample
covariance matrices of correlated samplings [4, 5, 7]. The signal-plus-noise random matrix
appears in signal precessing [11, 6, 15].

Free probability is invented by Voiculescu [16]. In free probability theory, motivated by
solving a problem in operator algebras, some infinite-dimensional operators are described
as infinite-dimensional limit of random matrices. The approximation is based on a central
limit theorem, which is called the free central limit theorem, of eigenvalue distribution
of random matrices [17]. Conversely, the purpose of free deterministic equivalent is to
approximate fixed-size but large random matrix models by deterministic operators.

For analysis of non-identifiable models, generic identifiability was introduced in [1].

3. Preliminary

3.1. Freeness.

First, we summarize some definitions from operator algebras and free probability theory.
See [9] for the detail.

Definition 3.1.

(1) A C∗-probability space is a pair (A, τ) satisfying followings.
(a) The set A is a unital C∗-algebra, that is, a possibly non-commutative subal-

gebra of the algebra B(H) of bounded C-linear operators on a Hilbert space
H over C satisfying the following conditions:

(i) it is stable under the adjoint ∗ ∶ a → a∗, a ∈ A,
(ii) it is closed under the topology of the operator norm of B(H),
(iii) it contains the identity operator idH as the unit 1A of A.

(b) The function τ on A is a faithful tracial state, that, is a C-valued linear
functional with

(i) τ(a) ≥ 0 for any a ≥ 0, and the equality holds if and only if a = 0,
(ii) τ(1A) = 1,
(iii) τ(ab) = τ(ba) for any a, b ∈ A.

(2) A subalgebra B of a C∗-algebra A is called a ∗-subalgebra if it is stable under the
adjoint operator ∗. Moreover, it is called a unital C∗-subalgebra if the ∗-subalgebra
is closed under the operator norm topology and contains 1A as its unit.

(3) Two unital C∗-algebras are called ∗-isomorphic if there is a bijective linear map
between them which preserves the ∗-operation and the multiplication.

(4) Let us denote by As.a. the set of self-adjoint elements, that is, a = a∗ of A.
(5) Write Rea ∶= (a + a∗)/2 and Ima ∶= (a − a∗)/2i for any a ∈ A.
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(6) The distribution of a ∈ As.a. is the probability measure µa ∈ Bc(R) determined by

∫ xkµa(dx) = τ(ak), k ∈ N.

(7) For a ∈ As.a., we define its Cauchy transform Ga by Ga(z) ∶= τ[(z−a)−1] (z ∈ C∖R),
equivalently, Ga ∶= Gµa .

Definition 3.2. A family of ∗-subalgebras (Aj)j∈J of A is said to be free if the following
factorization rule holds: for any n ∈ N and indexes j1, j2, . . . , jn ∈ J with j1 ≠ j2 ≠ j3 ≠ ⋯ ≠
jn, and al ∈ Al with τ(al) = 0 (l = 1, . . . , n), it holds that

τ(a1⋯al) = 0.
Let (xj)j∈J be a family of self-adjoint elements xj ∈ As.a.. For j ∈ J , let Aj be the ∗-
subalgebra of polynomials of xj . Then (xj)j∈J is said to be free if Aj is free.

We introduce special elements in a non-commutative probability space.

Definition 3.3. Let (A, τ) be a C∗-probability space.

(1) An element s ∈ As.a. is called standard semicircular if its distribution is given by
the standard semicircular law;

µs(dx) =
√
4 − x2
2π

1[−2,2](x)dx,
where 1S is the indicator function for any subset S ⊆ R.

(2) Let v > 0. An element c ∈ A is called circular of variance v if

c =
√
v
s1 + is2√

2
,

where (s1, s2) is a pair of free standard semicircular elements. In addition. c is
called standard circular element if v = 1.

(3) A ∗-free circular family (resp. standard ∗-free circular family) is a family {cj ∣ j ∈ J}
of circular elements cj ∈ A such that ⋃j∈J{Re cj , Im cj} is free (resp. and each
elements is of variance 1).

Definition 3.4. Let (A, τ) be a C∗-probability space and B be a unital C∗-subalgebra of
A. Recall that they share the unit: IA = IB.

(1) Then a linear operator E∶A → B is called a conditional expectation onto B if it
satisfies following conditions;
(a) E[b] = b for any b ∈B,
(b) E[b1ab2] = b1E[a]b2 for any a ∈ A and b1, b2 ∈B,
(c) E[a∗] = E[a]∗ for any a ∈ A.

(2) We write H
+(B) ∶= {W ∈ B ∣ there is ε > 0 such that IW ≥ εIA} and H

−(B) ∶=
−H+(B).

(3) Let E∶A → B be a conditional expectation. For a ∈ As.a., we define a E-Cauchy
transform as the map GE

a ∶H+(B)→ H
−(B), where

GE
a (Z) ∶= E[(Z − a)−1], Z ∈ H+(B).

If there is no confusion, we also call E a B-valued Cauchy transform.
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Definition 3.5. (Operator-valued Freeness) Let (A, τ) be a C∗-probability space, and
E ∶ A → B be a conditional expectation. Let (Bj)j∈J be a family of ∗-subalgebras of A
such that B ⊆ Bj . Then (Bj)j∈J is said to be E-free if the following factorization rule
holds: for any n ∈ N and indexes j1, j2, . . . , jn ∈ J with j1 ≠ j2 ≠ j3 ≠ ⋯ ≠ jn, and al ∈ Bl

with E(al) = 0 (l = 1, . . . , n), it holds that
E(a1⋯al) = 0.

In addition, a family of elements Xj ∈ As.a. (j ∈ J) is called E-free if the family of ∗-
subalgebra of the B-coefficient polynomials of Xj is E-free.

3.2. Random Matrix Models and Free Deterministic Equivalents.

Definition 3.6. Fix a probability measure space (Ω,F,P). Write E[⋅] = ∫ ⋅ P(dω). Let
p, d ∈ N. Then real (resp. complex) p×d Ginibre random matrix of variance v > 0 is defined
as p × d matrix of independent and identically distributed real (resp. complex) Gaussian
random variables Zij (i = 1, . . . , p, j = 1, . . . , d) such that

E[Zij] = 0,E[Z̄ijZij] = v.
Definition 3.7. Let K = R (resp.K = C). Let us denote by Z the real (resp. complex)
p × d Ginibre random matrix of variance 1/d.

(1) A real (resp. complex) compound Wishart model ( CW model for short) of type(p, d) is defined as a parametric family WCW, where

WCW(D) ∶= Z∗DZ, D ∈Mp(K).
(2) A real (resp. complex) signal-plus-noise model (SPN model for short ) of type (p, d)

is defined as a parametric family WSPN, where

WSPN(A,σ) ∶= (A + σZ)∗(A + σZ), A ∈Mp,d(K), σ ∈ R.
Here we introduce free deterministic equivalent of each random matrix model. Note

that the free deterministic equivalent does not depend on the choice of the field R or C.

Definition 3.8. Let p, d ∈ N. Fix a C∗-probability space (A, τ). Let us denote by C the
p × d matrix of ∗-free circular elements in (A, τ) so that

τ(Cij) = 0, τ(C∗ijCij) = 1/d.
(1) The free deterministic equivalent of CW model (FDECW model, for short) of type(p, d) is defined as a parametric family W◻

CW, where

W◻
CW(D) = C∗DC, D ∈Mp(C).

In addition, we denote by µCW(D) the distribution ofW◻
CW(D) in the C∗-probability

space (Md(A), trd⊗τ):
µ◻CW(D) = µW◻

CW
(D).

(2) The free deterministic equivalent of SPN model (FDESPN model, for short) of
type (p, d) is defined as a parametric family W◻

SPN, where

W◻
SPN(A,σ) = (A + σC)∗(A + σC), A ∈Mp,d(C), σ ∈ R.
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In addition we denote by µSPN(A,σ) the distribution of W◻
SPN(A,σ) in the C∗-

probability space (Md(A), trd⊗τ), that is,
µ◻SPN(A,σ) = µW◻

SPN
(A,σ).

4. Identifiability

4.1. Identifiability of CW Model.

First, we quickly check the identifiability of the CW model. Fix p, d ∈ N. Let D,D′ ∈
Mp(C)]s.a. and v = (v1 ≤ v2 ≤ . . . vp), v′ = (v′1 . . . v′d) ∈ Rp be the vectors of eigenvalues of
D,D′ respectively. Assume that

µ◻CW(D) = µ◻CW(D′). (4.1)

Now since µ◻CW(D) is a compound free Poisson law ( see [10]), the R-transform of µ◻CW(D)
is given by the following.

R(b, v) = 1

d

p

∑
k=1

vk

1 − vkb , b ∈ H
−(C).

By the assumption (4.1), it holds that

R(b, v) =R(b, v′), b ∈ H−(C).
Since all polos of R(⋅, v) are order one, v and v′ are equal up to permutation of entries,
that is, there is a permutation π ∈ Sp such that

vπ(k) = v
′
k, k = 1, . . . , p.

Equivalently, we have

µD = µD′.

4.2. Identifiablity of SPN Model.

Next, we work on the SPN model. We prove the following identifiability of the statistical
model µ◻SPN for the random matrix model WSPN. The proof is divided into an analytic
part and a combinatorial one.

Theorem 4.1. Let p, d ∈ N with p ≥ d, A,B ∈Mp,d(C), and σ,ρ ∈ R. Then µ◻SPN(A,σ) =
µ◻SPN(B,ρ) if and only if µA∗A = µB∗B and σ2 = ρ2.

The proof is postponed to Section 4.2.5.

4.2.1. Analytic Part.
Write

D2 = {[z1Id 0
0 z2Ip

] ∣ z1, z2 ∈ C} ⊆Mp+d(C) ⊆Mp+d(A).
We identify D2 and C

2 via the following isomorphism D2 ≃ C2:

[z1Id 0
0 z2Ip

]↦ [z1
z2
] .
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We define a conditional expectation E∶Mp+d(A) → C
2 by

E(X) = [trd⊗τ(X+,+)
trp⊗τ(X−,−)] ,

where X+,+ ∈Md(A) is the d×d-upper left corner of X ∈Mp,d(A) and X−,− ∈Mp(A) is the
p×p-lower right corner of X. For X ∈Mp+d(A) and z ∈ H+(C2) = {(z1, z2) ∈ C2 ∣ Iz1,Iz2 >
0}, we write

GX(z) = E[(z −X)−1],
hX(z) = GX(z)−1 − z.

For any rectangular matrix Y ∈Mp,d(A), write
Λ(Y ) = [0 Y ∗

Y 0
] .

Let z = (α,β) ∈ C2. Then we have

(z −Λ(Y ))−1 = [αId −Y ∗
−Y βIp

]−1 = [β(αβId − Y ∗Y )−1 Y ∗(αβIp − Y Y ∗)−1(αβIp − Y Y ∗)−1Y α(αβIp − Y Y ∗)−1 ] .
Applying E, we have

GΛ(Y )(z) = [β trd⊗τ[(αβId − Y ∗Y )−1]α trp⊗τ[(αβIp − Y Y ∗)−1]] .
In particular, GΛ(Y ) is determined by µY ∗Y . Let C ∈ Mp,d(A) be a matrix of ∗-free
standard circular elements. By [8, Proposition 5.30], Λ(C) is a C

2-valued semicircular
element (see [9, Section 9.1] for the definition) with the following variance mapping η∶C2

→

C
2:

η ([x
y
]) = [(p/d)y

x
] .

Hence the following equations hold for any z ∈ H+(C2):
GσΛ(C)(z)−1 = z − σ2η(GσΛ(C)(z)),
hσΛ(C)(z) = σ2η(GσΛ(C)(z)). (4.2)

Next, to prove a key lemma, we refer to an analytic free additive subordination formula
based on [3].

Corollary 4.2. Set a ∶= Λ(A) and s ∶= σΛ(C). Then there exists a pair of Fréche analytic
(equivalently, holomorphic) mappings ψ1, ψ2 ∈ Hol(H+(C2)) so that for all z ∈ H+(C2),

Iψj(z) ≥ Iz,∀j ∈ {1,2},
ha(ψ1(z)) + z = ψ2(z),
hs(ψ2(z)) + z = ψ1(z), (4.3)

Ga+s(z) = Ga(ψ1(z)), and, (4.4)

Ga+s(z) = Gs(ψ2(z)). (4.5)
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Proof. By [8, Proposition 5.30], the pair (a, s) is E-free. Then the assertion follows from
[3, Theorem 2.7]. �

Lemma 4.3. Let p, d ∈ N with p ≥ d. Let A ∈ Mp,d(C) and σ ∈ R. Then we have the

following equation between holomorphic mappings on H
+(C2):

GΛ(A+σC)(z) = GΛ(A) [σ2η (GΛ(A+σC)(z)) + z] ,∀z ∈ H+(C2).
Proof. Set a ∶= Λ(A) and s ∶= Λ(C). Pick same holomorphic mappings ψ1 and ψ2 as in
Corollary 4.2. Then for any z ∈ H+(C2),

Ga+s(z) = Ga(ψ1(z)) (by (4.4))

= Ga (hs(ψ2(z)) + z) (by (4.3))

= Ga (σ2η(Gs(ψ2(z))) + z) (by (4.2))

= Ga (σ2η(Ga+s(z)) + z) . (by (4.5))

�

Now we have prepared to prove the first key lemma.

Lemma 4.4. Fix p, d ∈ N with p ≥ d. Let A,B ∈ Mp,d(C) and σ ∈ R. If µ◻SPN(A,σ) =
µ◻SPN(B,0) then σ = 0.
Proof. Assume that µ◻SPN(A,σ) = µ◻SPN(B,0). Then G

Λ(A+σC) = GΛ(B) since GΛ(Y ) is

determined by µY ∗Y for any Y ∈Mp,d(A).
In the case B = 0, it holds that (A+σC)∗(A+σC) = 0. Thus A = −σC and A∗A = σ2C∗C.

Since µC∗C has no atom and µA∗A is a sum of delta measures, we have σ = 0.
Consider the case B ≠ 0. Write β ∶= ∥B∗B∥1/2 > 0. Now for any z ∈ H+(C2), by the

assumption and Lemma 4.3, the following holds:

GΛ(A) [σ2η (GΛ(B)(z)) + z] = GΛ(B)(z), z ∈ H+(C2). (4.6)

Let

g(z) ∶= GΛ(B)(z),
f(z) ∶= (z2z1 − β2)GΛ(B)(z).

Then

lim
γ→+0

f(β + iγ, β + iγ) = (mβ
d
,
mβ

p
) ≠ 0, (4.7)

where m ≥ 1 is the multiplicity of the eigenvalue β of
√
B∗B. Let a1 ≤ ⋅ ⋅ ⋅ ≤ ad be

eigenvalues of
√
A∗A. Then

GΛ(A) (z1, z2) = (z2
d

d

∑
k=1

1

z2z1 − a2k
,
z1

p

d

∑
k=1

1

z2z1 − a2k
+ p − d
pz2
).

Now for any k = 1, . . . , d and j = 1,2,

g(z)j
g(z)1g(z)2 − a2k =

f(z)j
f(z)1f(z)2 − a2k(z1z2 − β2)2 (z1z2 − β

2). (4.8)

Let γ > 0 and z1 = z2 = β + iγ. Then (4.8) converges to 0 as γ → +0 by (4.7).
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Assume that σ ≠ 0, then by (4.8), it holds that

lim
z=(β+iγ,β+iγ)

γ→+0

GΛ(A) [σ2η (GΛ(B)(z)) + z] = (0, p − d
pβ
).

In particular,

lim
z=(β+iγ,β+iγ)

γ→+0

(z1z2 − β2)GΛ(A) [σ2η (GΛ(B)(z)) + z] = 0.
By (4.6), this contradicts (4.7). Therefore σ = 0. �

4.2.2. Combinatorial Part.
We use the free multiplicative deconvolution introduced by [12, 11]. We quickly review

the deconvolution.
First, we introduce a family of formal power series, since the deconvolution is defined

as an operation between moment power series. Let us denote by Ξ the set of formal power
series without the constant term of the form

f(z) = ∞∑
n=1

αnz
n, (4.9)

with αn ∈ C(∀n ∈ N). Let f ∈ Ξ be as in (4.9). For every n ∈ N we denote

Cfn(f) = αn.

Second, we introduce Kreweras complement and boxed convolution. Here we only need
one-dimensional boxed convolution. See [10, Lecture 17, 18] for the detail. Let n ∈ N and
π ∈ NC(n). Write [n] = {1,2, . . . , n} and consider the discriminant union [n]∐[n]. We
write the elements from the second entry as k̄ (k ∈ [n]), and write [n̄] = {1̄, 2̄,⋯n̄}. We
define an order as follows:

1 ≤ 1̄ ≤ 2 ≤ 2̄ ⋅ ⋅ ⋅ ≤ n ≤ n̄.
Then the set [n]∐[n] is a totally ordered set. Let π ∈ NC(n) and

J ∶= {ρ ∈ NC([n̄]) ∣ π ∪ ρ ∈ NC([n] ∪ [n])}.
Then J has the biggest element with respect to the following partially order of NC(n):
for ρ and π ∈ NC(n), ρ ≤ π if ∀V1, V2 ∈ ρ,∃W ∈ π such that V1 ∪ V2 ⊆ W . The Kreweras
complement of π, denoted by K(π) is defined as

K(π) ∶=maxJ. (4.10)

For n ∈ N and NC(n), we denote

Cfn;π(f) ∶= ∏
V ∈π

Cf ∣V ∣(f),
where ∣V ∣ is the number of elements in V . For f, g ∈ Ξ, the one dimensional boxed convo-
lution (boxed convolution, for short), denoted by f⋆g is defined as

(f⋆g)(z) ∶= ∞

∑
m=1

∑
π∈NC(m)

Cfn;π(f)Cfn;K(π)(g)zm,
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where K(π) is the Kreweras complement (4.10). One has the operation ⋆ is associative
and commutative [10, Proposition 17.5, Corollary 17.10]. In addition, let us denote by ∆
the series in Ξ defined as

∆(z) = z.
Then ∆ is the unit of (Ξ, ⋆) [10, Proposition 17.5]. We denote by Ξ× the set of invertible

elements in Ξ with respect to ⋆. For f ∈ Ξ, we denote by f−1 its inverse with respect to
⋆. Then by [10, Proposition 17.7],

Ξ× = {f ∈ Ξ ∣ Cf1(f) ≠ 0}.
Third, we define the Zeta function as

Zeta(z) ∶= ∞∑
n=1

zn.

Clearly Zeta ∈ Ξ×. Then we define the R-transform of formal power series.

Definition 4.5. (R-transform) Let f ∈ Ξ. Let us define the R-transform of f as

Rf ∶= f⋆Zeta−1.
For any probability measure µ on R with all moments finite, we denote by Mµ its

moment formal power series:

M[µ](z) = ∞∑
n=1

mn(z)zn.
Let (A, ϕ) be a C∗-probability space, and let a be an element of A. The moment power
series of a, denote by Ma, is a formal power series defined as

M[a](z) = ∞∑
n=1

ϕ(an)zn.
We simply write

R[µ] = RM[µ],

R[a] = RM[a]. (4.11)

Usually R-transform of a ∈ A is defined as formal power series whose coefficients are
free cumulants (see [10]). The compatibility of our definition (4.11) and usual definition
is proven in [10, Proposition 17.4]. In addition, the following holds.

Lemma 4.6. Let (A, ϕ) be a C∗-probability space and a, b ∈ A. Assume that (a, b) is free.
Then

R[ab] = R[a]⋆R[b].
Proof. This is a direct consequence of [10, Proposition 17.2]. �

Lastly, note that it holds that for f ∈ Ξ,

f ∈ Ξ× if and only if Rf ∈ Ξ×,

since Cf1(Rf) = Cf1(f). Now we have prepared to define the free multiplicative deconvo-
lution.
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Definition 4.7. (free multiplicative deconvolution) For f ∈ Ξ and g ∈ Ξ×, the free multi-
plicative deconvolution of f with g is defined as

f ∖ g ∶= (Rf ⋆R−1g )⋆Zeta.
Equivalently, f ∖ g is the unique formal power series in Ξ determined by

Rf = Rg⋆R(f ∖ g).

Example 4.8. Let β ∈ R and δβ be the delta measure on R whose support is {β} ⊆ R.
Then

M[δβ](z) = ∞∑
n=1

βnzn = [Zeta⋆(β∆)](z),
since

Cfn;K(π)(β∆) =
⎧⎪⎪⎨⎪⎪⎩
βn ;π = {{1,2, . . . , n}},
0 ; otherwise.

Note that K({{1,2, . . . , n}}) = {{1},{2}, . . . ,{n}}. Hence
R[δβ] = β∆.

Then for any f ∈ Ξ, we have

Rf(β ⋅ )[z] = ∞∑
n=1

Cfn(Rf)βnzn = Rf ⋆R[δβ](z).
In particular, if f ∈ Ξ×, it holds that

f(β ⋅ ) ∖ f =M[δβ]. (4.12)

In the case f =M[a] with a ∈ A, it is easy to show that

M[βa] ∖M[a] =M[β] =M[δβ],
since each scalar is free from any element of A.

Definition 4.9. Let f, g ∈ Ξ. Then their free additive convolution, denoted by f ⊞ g ∈ Ξ,
is defined as

f ⊞ g ∶= (Rf +Rg)⋆Zeta.
Equivalently, f ⊞ g is the unique formal power series in Ξ determined by

Rf⊞g = Rf +Rg.

Notation 4.10. Let (A, ϕ) be a C∗-probability space. Let q ∈ A be a non-zero projection,
that is, q = q∗ = q2. Then

(qAq, 1

ϕ(q)ϕ)
becomes a C∗-probability space. For a ∈ A, we denote by M qAq[qaq] the moment power
series of qaq (a ∈ A) in (qAq,ϕ(q)−1ϕ):

M qAq[qaq] = ∞∑
n=1

1

ϕ(q)ϕ[(qaq)n]zn.
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Proposition 4.11. Let (A, ϕ) be a C∗-probability space. Assume that a, c, p ∈ A satisfies
the following conditions:

(1) a∗ = a,
(2) c is a circular element, that is,

c = σ
s1 + is2√

2
,

where (s1, s2) is a pair of free standard semicircular elements in (A, ϕ) and σ ∈ R,
(3) q is a projection, and,
(4) ({c, c∗},{a, q}) is a pair of free families.

Set λ ∶= ϕ(q) and
fλ(z) ∶= ∞∑

n=1

λn−1zn.

Then we have

M qAq[q(a + c)∗(a + c)q] ∖ fλ = (M qAq[qa∗aq] ∖ fλ) ⊞ (M qAq[qc∗cq] ∖ fλ).
Proof. This is a direct consequence of [12, Theorem 3.4]. �

4.2.3. Free Poisson Distribution.
The formal power series fλ in Proposition 4.11 is R-transform of a free Poisson distri-

bution. We review on the free Poisson distribution.

Definition 4.12. (Free Poisson Distribution) Let λ > 0, α ∈ R. Then the free Poisson
distribution with rate λ and jump size α is defined as the probability measure on R

determined by

R[νλ,α] = λ ∞∑
n=1

αnzn.

Usually free Poisson law is defined as the limit law of free version of law of small num-
bers [10, Definition 12.12]. The compatibility between our definition and usual definition
is given by [10, Proposition 12.11]. Note that νλ,α is, in fact, a compactly supported
probability measure. Note that

fλ = R[νλ−1,λ].
Lemma 4.13. Let (A, ϕ) be a C∗-probability space, a ∈ A, and q ∈ A be a non-zero
projection free from a. Then it holds that

RqAq[qaq](z) = λ−1R[a](λz),
where λ ∶= ϕ(q).

This is well-known, but for the reader’s convenience, we sketch the proof.

Proof. Note that M qAq[qaq] = λ−1M[qaq]. By the tracial condition and Lemma 4.6,

M[qaq] =M[aq] = R[aq]⋆Zeta = R[a]⋆R[q]⋆Zeta = R[a]⋆M[q] = R[a]⋆(λZeta).
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By definition of the boxed convolution, we have

R[a]⋆(λZeta)(z) = ∞∑
n=1

∑
π∈NC(n)

Cfn;π(R[a])λ#K(π)zn.

Since #π +#K(π) = n + 1, this is equal to
λ
∞

∑
n=1

∑
π∈NC(n)

Cfn;π(1
λ
R[a])λzn = λ[(λ−1R[a](λ ⋅ ))⋆Zeta](z).

Thus

M qAq[qaq] = (λ−1R[a](λ ⋅ ))⋆Zeta,
RqAq[qaq] = λ−1R[a](λ ⋅ ).

�

Example 4.14. Let q, c ∈ A and q be a nonzero-projection. Assume that ({q},{c, c∗}) is
free pair in (A, τ) and c is a standard circular element. Then by Lemma 4.13,

RqAq[qc∗cq](z) = λ−1R[c∗c](λz) = λ−1 ∞∑
n=1

λnzn = R[νλ−1,λ](z) = fλ(z).
4.2.4. Second Lemma.

In this section, we convert the model to an operator of the form qaq where q is a
projection. Let (A, ϕ) be a C∗-probability space. Let p, d ∈ N with p ≥ d and write λ = d/p.
In this section and in next one, we denote by Cp,d be a p × d matrix of ∗-free circular
elements with

ϕ[(Cp,d
ij )∗Cp,d

ij ] = 1

d
.

Recall that

W◻

SPN(A,σ) = (A + σCp,d)∗ (A + σCp,d) .
Now we identify Cp,d with d × d upper-left corner of Cp,p with a normalization as the
following:

C
p,p
ij =

√
λC

p,d
ij , ∀i ∈ {1,2, . . . , p}, ∀j ∈ {1,2, . . . , d}.

Recall that a family {Cp,p
ij ∣ 1 ≤ i, j ≤ p } is a ∗-free family of circular elements such as

ϕ[(Cp,p
ij )∗Cp,p

ij )] = 1

p
.

We write

C ∶=Mp(A), τ ∶= trp⊗ϕ.
Then Cp,p is a circular element in (C, τ), and it is standard, that is,

Cfn(R(Cp,p)∗Cp,p) = 1.
We define a projection Π ∈Mp(C) ⊆ C as

Πij =
⎧⎪⎪⎨⎪⎪⎩
1, if i = j ≤ d,
0, otherwise.
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One has τ(Π) = λ. For a p × d-matrix A, let us denote by Ã be the p × p-square matrix
obtained by adding zeros to A;

Ã ∶= [A Op,d] .
Now by definition, we have

Π(Ã + σ√
λ
Cp,p)∗ (Ã + σ√

λ
Cp,p)Π = [(A + σCp,d)∗ (A + σCp,d) Od,p−d

Op−d,d Op−d,p−d
] .

Therefore, for any m ∈ N,

1

d
Trd⊗ϕ [W◻

SPN(A,σ)m] = 1

λ

1

p
Trp⊗ϕ{[Π(Ã + σ√

λ
Cp,p)∗ (Ã + σ√

λ
Cp,p)Π]m} ,

trd⊗ϕ [W◻

SPN(A,σ)m] = 1

trp⊗ϕ(Π) trp⊗ϕ{[Π(Ã +
σ√
λ
Cp,p)∗ (Ã + σ√

λ
Cp,p)Π]m} .

Equivalently, we have

M[W◻

SPN(A,σ)] =MΠCΠ [Π(Ã + σ√
λ
Cp,p)∗ (Ã + σ√

λ
Cp,p)Π] . (4.13)

Recall that

MΠCΠ[ΠXΠ](z) = ∞∑
n=1

1

τ(Π)τ[(ΠXΠ)n]zn.
Lemma 4.15. Let α ∈ R. Then

MΠCΠ[αΠ(Cp,p)∗Cp,pΠ](z) ∖M[νλ−1,λ] =M[δα],
where δα is the delta measure on R whose support is {α}.
Proof. Now {Cp,p} and {Ã,Π} is ∗-free in (C, τ), since the entries of A and Π are scalar.
By Lemma 4.13,

RΠCΠ[Π(Cp,p)∗Cp,pΠ](z) = λ−1R[(Cp,p)∗Cp,p](λz)
= λ−1

∞

∑
n=1

(λz)n
= R[νλ−1,λ].

Hence by (4.12),

MΠCΠ[αΠ(Cp,p)∗Cp,pΠ](z) ∖M[νλ−1,λ] =M[νλ−1,λ](α ⋅ ) ∖M[νλ−1λ] =M[δα].
�

Corollary 4.16. Let p, d ∈ N, A ∈ Mp,d(C), σ ∈ R. Assume that p ≥ d and set λ ∶= d/p.
Then

M[W◻

SPN(A,σ)] ∖ fλ = (M[A∗A] ∖ fλ) ⊞M[δσ2/λ].
Proof. By (4.13) and Proposition 4.11, the left-hand side is equal to

(MΠCΠ[ΠÃ∗ÃΠ] ∖ fλ) ⊞ (MΠCΠ[σ2
λ
Π(Cp,p)∗Cp,pΠ] ∖ fλ) .
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Now

MΠCΠ[ΠÃ∗ÃΠ] = 1

τ(Π)M[Ã∗Ã] =
1

τ(Π)
d

p
M[A∗A] =M[A∗A].

By Lemma 4.15, it holds that

MΠCΠ[σ2
λ
Π(Cp,p)∗Cp,pΠ] ∖ fλ =M[δσ2/λ].

Hence the assertion holds. �

Lemma 4.17. Assume that α,β ∈ R, and f, g ∈ Ξ satisfy

f ⊞M[δα] = g ⊞M[δβ]. (4.14)

Then

f ⊞M[δα−β] = g. (4.15)

Proof. Apply ∖ Zeta to both hand side of (4.14), then

Rf(z) + αz = Rg(z) + βz,
Rf(z) + (α − β)z = Rg(z).

Applying ⋆Zeta to both hand side, we have (4.15). �

Now we prove the second key lemma.

Lemma 4.18. Let p, d ∈ N, σ,ρ ∈ R, and, A and B ∈Mp,d(C). Assume that σ2 ≥ ρ2 and

µ◻SPN(A,σ) = µ◻SPN(B,ρ).
Then

µ◻SPN(A,√σ2 − ρ2) = µ◻SPN(B,0).
Proof. By Corollary 4.16 and the assumption, we have

(MA∗A ∖ fλ) ⊞M[δσ2/λ] = (MB∗B ∖ fλ) ⊞M[δρ2/λ].
Thus by Lemma 4.17, it holds that

(M[A∗A] ∖ fλ) ⊞M[δ(σ2
−ρ2)/λ] =M[B∗B] ∖ fλ.

By using Corollary 4.16 again, we have

M[µ◻SPN(A,√σ2 − ρ2)] ∖ fλ =M[µ◻SPN(B,0)] ∖ fλ.
Equivalently,

R[µ◻SPN(A,√σ2 − ρ2)]⋆R[fλ]−1 = R[µ◻SPN(B,0)]⋆R[fλ]−1.
Applying ⋆R[fλ]⋆Zeta to the both hand sides, we have

M[µ◻SPN(A,√σ2 − ρ2)] =M[µ◻SPN(B,0)].
Since any compactly supported probability measure is determined by its moments, the
assertion holds. �
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4.2.5. Proof of Identifiability.

proof of Theorem 4.1. Without loss of generality, we may assume that σ2 ≥ ρ2. Let
µ◻SPN(A,σ) = µ◻SPN(B,ρ). First, by Lemma 4.18, we have

µ◻(A,√σ2 − ρ2) = µ◻(B,0).
Second, Lemma 4.4 implies

√
σ2 − ρ2 = 0. Then µA∗A = µB∗B, which completes the proof.

�
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