1812.10792v1 [cs.CR] 27 Dec 2018

arxXiv

Analysis of Difficulty Control in Bitcoin and Proof-of-Work Blockchains

Daniel Fullmer

Abstract— This paper presents a stochastic model for block
arrival times based on the difficulty retargeting rule used in
Bitcoin, as well as other proof-of-work blockchains. Unlike
some previous work, this paper explicitly models the difficulty
target as a random variable which is a function of the previous
block arrival times and affecting the block times in the next
retargeting period. An explicit marginal distribution is derived
for the time between successive blocks (the blocktime), while
allowing for randomly changing difficulty. This paper also
aims to serve as an introduction to Bitcoin and proof-of-
work blockchains for the controls community, focusing on the
difficulty retargeting procedure used in Bitcoin.

I. INTRODUCTION

Bitcoin is a decentralized digital currency (or cryptocur-
rency) operated by an ad-hoc network of computers. It
enables peer-to-peer payments without requiring a trusted
third party. Bitcoin’s original “whitepaper” [1] was released
late 2008, and the currency was launched in 2009. There
has been a significant amount of current interest in Bitcoin
and alternative cryptocurrencies, as well as the technology
underlying Bitcoin, the “blockchain.”

This paper focuses on one aspect of Bitcoin and
blockchain-based systems, specifically difficulty retargeting,
also called difficulty readjustment or difficulty control. Some
existing published analysis of difficulty control in Bitcoin
may be found in [2] and [3]. In [3], the authors note that
the block arrival times do not follow a Poisson distribution
and present a variety of modeling alternatives, testing them
against real data from the Bitcoin blockchain. In [2] the
Bitcoin mining process is treated as a nonhomogeneous
Poisson process with a deterministic intensity function A(¢).
Their analysis principally focuses on the design of a dif-
ficulty retargeting algorithm under the assumption of an
exponentially increasing hashrate. However, as noted in the
paper, [2] does not account for the fact that A\(¢) is itself
a stochastic process depending on the time of the arrivals
of the process.! This paper explicitly considers this case,
and furthermore derives a marginal distribution for the time
between successive blocks as well as their expected value
and variance. In order to derive these results, a stochastic
model for block arrival times is developed as well.
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Poisson processes whose intensity functions are themselves stochastic
processes are sometimes called “Cox processes” [4] or “doubly stochastic
Poisson processes.” The authors of this paper are not aware of the study
of general Poisson processes whose intensity function depends on previous
arrivals in the same way as considered in this paper.
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While this paper specifically focuses on the difficulty
retargeting rule used in Bitcoin, the analysis applies to a
number of related cryptocurrencies relying on proof-of-work
which use a similar retargeting rule.

In section II, Bitcoin and blockchains are described and
motivation is given for the difficulty adjustment mechanism.
In section III, the stochastic model for block arrival times
is developed. In section IV, this model is analyzed and the
main result of a marginal distribution, expected value, and
variance for block times is presented. Finally, in section V,
simulations of the block arrival process are presented and
compared with the analytical results given in the previous
section.

II. BACKGROUND

The following description of Bitcoin and blockchains
omits certain details which are not relevant to the specific
problem considered in this paper. With that said, it is
intended to describe and motivate the purpose of blockchains
for cryptocurrencies, the relevant property proof-of-work
blockchains ensure (immutability), and the purpose of dif-
ficulty retargeting. Readers already familiar these concepts
may skip to section III. Readers desiring additional details
are encouraged to read [1], [5].

Bitcoin is a cryptocurrency which relies on a public ledger
of transactions. All transactions are recorded on this public
ledger, called the “blockchain”. This ledger may be thought
of as an ordered list of transactions. Each transaction includes
the address of the sender, the recipient, the amount, and a
digital signature from the sender. Senders of the currency can
create, sign, and submit transactions to be included on the
public ledger. Recipients can check that transactions are valid
and included on the ledger (confirmed). A transaction is valid
if it meets a number of criteria, including, if digital signature
is valid and the payer has enough currency (as determined
by the history of valid transactions on the ledger before that
transaction.) There also is a special type of transaction for
creating new currency in the system.

Previous digital currency systems required a trusted third
party intermediary to maintain and publish the ledger. How-
ever, a third party maintainer of the public ledger must
always be online and available. It is a centralized, single
point of failure. Although such a potential maintainer is
a trusted third party, it is not able to forge the digital
signatures required for valid transactions. As a result, it
cannot arbitrarily transfer funds from one user to another. It
can, however, add, remove, or reorder previous transactions
on the ledger, as well as censor transactions from particular
users. The ability to add, remove, or reorder transactions



in the past may invalidate later transactions. As a simple
example, if one user transfers some amount of currency
to another user to another exchange for some good, and
the maintainer later removes this transaction, the original
user then has both the good as well as his or her original
currency, and the other user has nothing. So, recipients in the
system would want to ensure that previous transactions are
unchangeable (immutable). The fundamental innovation of
Bitcoin was to create a distributed public ledger which could
ensure immutability for past transactions. This distributed
public ledger is the blockchain.

In a blockchain, transactions are grouped into blocks. Each
block contains a reference to the previous block, creating
a chain. Every user of the system keeps a copy of the
blockchain?. New blocks are created by users who decide
to participate in mining. These users are called miners. They
collect new transactions, attempt to create (mine) a new block
including those transactions, and publish the newly created
block to all other users. However, mining a new block is
intentionally difficult. It requires a proof-of-work [6], [7].
This proof-of-work can be thought of as a solution to a
difficult mathematical puzzle which depends on the data in
the candidate block. The purpose of the proof-of-work is to
enable immutability of the blockchain, as described below.

For our purposes, a proof-of-work function is a function
W : B xZ — [0,1], where B is the set of valid blocks, and
Z is the set of integers. The goal is to find, given a block
b € B, an integer “nonce” 7 satisfying the following:

1
W(b,n) < 7 )

for some (large) difficulty target d > 0. The function
W is assumed to be a random oracle, which means that
each unique evaluation of W produces a random number
uniformly in [0, 1]. Each miner repeatedly evaluates W with
different nonces until they find one satisfying the difficulty
target. Attempts to find a solution are successful with some
small probability as determined by d. If they find one, their
block with the included nonce is considered valid and will be
accepted by others in the network, and we say that the miner
has successfully found a block, or that the miner has mined
a block. A block and nonce with a low W (-) value is proof
that the miner has done a significant amount of work. For
Bitcoin, this proof-of-work function is based on the SHA-
256 hash function [8], but the details of this are not necessary
for this paper, and the model in (1) will suffice.

Successfully mining a block includes a block reward,
which is a special transaction creating a predetermined
amount of new currency which is allocated to the miner who
successfully mined the block. As a result, there is significant
incentive for each miner to dedicate computational resources
to the task of mining.

Since various miners may produce multiple blocks based
on the same previous block, multiple versions of the
blockchain may exist simultaneously on the network, but

2This is not strictly true, but is one of the details which is not relevant
for our discussion.

there is incentive for miners and users to come to a consensus
on one version. The rule which leads to consensus is this:
the longest® valid blockchain is the canonical one. A block
is valid if all transactions in the block are valid, the previous
block is valid, and the proof-of-work is satisfied. Because
of this rule, miners are incentivized to mine new blocks
which based on the existing longest blockchain, so that their
rewards are accepted by all other users.

As previously mentioned, the proof-of-work system con-
tributes to the immutability of the blockchain. If, for instance,
an adversarial miner wants to remove some transaction in
the past, he or she could create a new version of the
blockchain based on the block immediately preceding the
targeted transactions with that specific transaction omitted.
However, in order for this new blockchain to be accepted as
canonical, it would have to become longer than the existing
blockchain. If the adversary controls less than half of the
mining processing power, it will mine blocks less frequently
(on average) than the miners mining on top of the existing
blockchain. It is unlikely the adversary’s blockchain could
surpass the existing blockchain, and for this reason, blocks
far in the past are treated as immutable by the users in the
system. For more details, see [1].

Recalling (1), if the difficulty target d is too high or
too low, solutions will be found by miners too frequently
or infrequently. The desired goal is to have new solutions
(and therefore new blocks) found every § = 10 minutes,
on average. This parameter 5 was chosen as a tradeoff
between ensuring blocks have sufficient time to propagate to
all users in the network, and ensuring that transactions do not
take too long to be confirmed (included on the blockchain).
Since miners continue to dedicate additional computational
resources to the task of mining, absent any accommodating
factor, blocks would be mined too frequently. So, there
is a difficulty retargeting algorithm as part of the Bitcoin
consensus rules which adjusts the difficulty upward if blocks
are found too frequently, or adjusts the difficulty downward
if blocks are found too infrequently. This may be thought of
as a difficulty control problem integral to blockchains which
rely on proof-of-work.

A. Notation

For a random variable X, X ~ Dist(-) is denotes that X
is distributed according to some distribution Dist(-). For a
continuous random variable X, fx (x; #) represent the proba-
bility density function of X parameterized by 6. The families
of probability distributions used in this paper are Exp()\),
Erlang(N, \), and Lomax (N, \) which are the exponential,
Erlang, and Lomax distributions with rate parameter A\ and
shape parameter N.

IIT. PROBLEM FORMULATION

Suppose blocks are found at the times given by the random
variables 0 < t; <ty < ... with the initial block time ¢ty =

3More precisely, the canonical blockchain is the one with the most
accumulated proof-of-work.



0. The time between blocks is denoted by Xy =t — tp—1
for £ > 1, and is called the blocktime for block k.

Recall that we treat the proof-of-work function W as
a random oracle, meaning each unique evaluation samples
uniformly a real value between 0 and 1. As a result, the
process of repeatedly evaluating W (-) until a nonce is found
which satisfies the difficulty target may be thought of as
Bernoulli trials. As such, the number of evaluations needed
until a success is found follows a geometric distribution.
The continuous analogue of a geometric distribution is the
exponential distribution The limiting behaviour of such a
geometric distribution as the number of parallel evaluations
and difficulty increases to infinity follows an exponential
distribution. See section 2.2.5 of [9].

In as similar way as in [2], for each £ > 1, the random
variable X}, is assumed to be distributed according to an
exponential distribution with a rate Ay given by

Tk

A = —
RS

2
where dj and r; are two positive real (random) vari-
ables, called the difficulty and the hashrate respectively.
The hashrate may be thought of as representing the sum
of the computational resources dedicated toward mining at
that time. This is determined exogenously by the miners. The
difficulty, however, is updated automatically according to the
Bitcoin consensus rules. Recall that the expected value of
an exponentially distributed random variable is equal to the
inverse of its rate. So, given a known Ag, E [ X | \g] = 1/ k.

The design of Bitcoin includes a “difficulty retargeting”
process which periodically updates the difficulty as the
hashrate increases or decreases. The goal is to have a new
block found according to a desired blocktime S = 10 minutes
(in expectation). The difficulty is adjusted according to*

84, ifkmod N =0
dpgy = { Zita X g 3)
dy, otherwise

where NV = 2016 is the number of blocks in each difficulty
retargeting period and d; is assumed to be initialized arbi-
trarily. Note that the difficulty is constant between difficulty
readjustments. Intuitively, if the time to mine the previous N
blocks took longer than N, then the difficulty is decreased.
Likewise, if the time to mine the previous N blocks was
shorter than N3, then the difficulty is increased.

In this paper, for simplicity, we additionally suppose that
ri, remains constant during each retargeting period.

We concerned with computing the marginal distribution
of the blocktimes X,k > 1, along with the expected value
and variance of block times while accounting for randomly
varying difficulty according to (3). These results may be
found in the sequel as Theorem 1 and Corollary 1.

4The update rule used in Bitcoin additionally restricts dj4+1 to only
change by a factor of 4 in either direction. Moreover, the Bitcoin code
includes a well-known bug which excludes the final X}, in the sum.

A. Derivation of adjustment algorithm

Below is a description of how such a rule (3) might be
derived. Specifically, it’s designed so that /\,;1 (the expected
time to mine the kth block) is approximately 3, assuming the
hashrate is unchanging from the previous to the next period.
To derive this update rule, we first attempt to estimate the
hashrate in the previous period, i, knowing only dj and the
previous Xj_ N4, 1 < i < N. Toward this end, we estimate
the g, and call it A, by setting the expected time to mine
N blocks equal to the actual time to mine N blocks.

NE {X;g\j\k} = ;\V = ZXk—N+i “4)
k i=1

Let ;\k = ', /dy, where 7 is the estimate of the hashrate in
the previous period.

Ndy,
-
Zi:l Xk N+i
With this estimate of the hashrate, the goal is to set djy1

such that the expected blocktime of the next block Xy is
equal to 3, with 7,4, assumed to be equal to 7.

P = Apdy =

&)

1 d d
B =E[Xpr1|As1] = SV ML _ T ()
k+1 Tk+1 Tk
From this and (5),
NpB
d = —————d @)
hH Zi:l Xk—N+i ¥

which matches the update rule in (3).

IV. ANALYSIS

Since dj and r; are assumed to be constant during each
retargeting period, it proves convenient to introduce the
following notation.

dn =d(n-1)N+1 =dm-1)N+2 = - = dnN (8)
Tn =T(m-1)N+1 = T(n-1)N+2 = " = TnN 9
An = Am—1)N+1 = Am—1)N+2 = *** = AuN (10)
N
Tp =Y Xp-nnie (1D
k=1
for each n > 1. From this and (3) it follows that
NGB -
dn+1 = dena n>1 (12)
From this and (2), for each n > 1
Y ":nJrl 7:n+lTn ’Fn+1FnTn Tn Iy
)\nJrl - = - = = = — 5n+17)\n
(13)

where §,, = 7,/T,_1 for n > 1. It proves convenient to
define 6,, = Jgf—’g for n > 1. So,

- T

Antl = An
i 9n+1

(14)

for each n > 1.
So for each n > 1 and 1 < k < N, the block time

X(n—1)N+r is exponentially distributed according to Ay.



However, while )\; is a fixed value, each 5\,1, n>1lisa
random variable. In other words:

Xk ~ EXP(E\l)
X(nfl)NJrklAn ~ Exp()‘n)

So, the (conditional) probability density functions are as
follows:

1<k<N
n>1, 1<k<N

15)
(16)

ka (:E) = 5\1675‘1:”
fX(7L—1)N+k‘5\n (1'7 >\) = )\G_Aw

Here the distribution of each X, 1)nyyx, n>1, 1 <k <
N is conditional on the value of \,. Since each T,, is the
sum of N i.i.d, exponentially distributed random variables
whose parameter is \,, 7}, follows an Erlang distribution
with parameters N and \,,. Similarly,

1<k<N (17)
n>1, 1<k<N (18)

Ty ~ Erlang(N, \;) (19)

Ty |An ~ Erlang(N, A,,) n>1 (20)
S\{Vthlefj\lt

fri(t) = NCE Q1)
)\NtN—le—At

fra 5, (8:A) = N oOr n>1 (22)

We next derive the conditional density function for
Ani1|An, n > 1. Since \,,1 is monotonically increasing
in T},, we can perform a change of variables from ), to
T, to determine the p.d.f. of 5\n+1 conditioned on \,,. From
(14),

d 9n+1)\/ 9n+1)‘,
Frniaan NA) = (dXA) Iz, 5, (/\ A

From this and (22),

N YT o
/ Ont1 (9"+17> c
Fieain, VIV = =3 (N — 1)
arjzvﬂ()\l)Nfle_e"“/\/
(N —-1)!
Note two things: First, this is an Erlang distribution with

parameters N and 6,,. Second, this expression is independent
of \. Writing this more succinctly,

_ N
An ~ Erlang(N,6,,) where 6, = 6—6, n>1. (23)
Knowing this, the expected value can be easily calculated as
< N 0,
E\ )| =7—=— 24
Ml=5=73 (24)

for n > 1.

Using this, it is possible to derive the p.d.f. for all X
beyond the initial period. These random variables have distri-
butions whose parameters are themselves random variables,
which are referred to as compound distributions [10]. Specif-
ically, the distribution for X,_yn4%, n > 1, 1<k <N
is a Lomax distribution, which is the result of compounding
an exponential distribution (18) with its rate parameter ),
set according to an Erlang distribution (23). Computing the

p.d.f. for X(,_1)n4x, > 1, 1 <k < N using (18) and
(23) gives:

fX(n—l)N+k (:C) = o fX(,L,l)NJrkD\n (33, )‘)fj\n ()‘)d)‘

A=
— /Oo )\efx\cv 071;/')\]\7*16*/\9" d)\
~ Jamo (N -=1)!
o N@TJ;[ o (I + 971)N+1>\N67(m+0"))‘ d/\
(x0T L, N!
NOY * .
= CETALE Erlang(A\; N + 1,2 + 6,,)dA
_ o NoY
= (33 T 971)N+1

This gives our main result:

Theorem 1: Using the difficulty retargeting rule in (3), for
n>1, 1 <k < N the marginal distribution of X, _1)n4x
is the Lomax distribution with parameters N and 6,,. i.e.

Xm—-1)N+k ~ Lomax(N,0,), n>1, 1<k<N

The expected blocktime and variance are easily computed
knowing this distribution.

Corollary 1: Using the difficulty retargeting rule in (3),
forn>1 1<k<N

O N
E (X = =
[ (71, 1)N+k} N —1 (N—l)(snﬁ
assuming N > 1. Additionally,

02N

Var| X, = n
8.1'[ (n 1)N+k] (N—1)2(N—2)
N3

= 52
(N = 1)*(N —2)3
assuming N > 2.

If, instead, the difficulty dj was assumed to be constant,
each blocktime would indeed be distributed according to an
exponential distribution with fixed rate parameter A = 1/,
whose expected value would be 3 and variance would be 2.
It is clear that the difficulty retargeting procedure in (3) leads
to slightly higher expected value and variance. So, even in
the case of constant hashrate §,, = 1, the Bitcoin blockchain
runs too fast by a factor of N/(N — 1). However, for the
value of N used in Bitcoin, 2016, N/(N — 1) is very close
to 1.

One modification to (3) which would provide slightly
better results would be to change N to (N — 1). With this
modification, 0,, = (N — 1)3/,,. And, supposing §,, = 1,
the expected value of X¢,_ynyip, > 1,1 <k < Nis
just 3, as desired, and its variance is %/32.

V. SIMULATIONS

In this section, we sample a realization of the random
variables X} and d; for £ > 1 and different values of the
parameter N. Figure 1 and Figure 2 are two realizations
of the stochastic process Xi, for N = 2 and N = 20
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respectively. The blue ‘x’s represent individual block times
X}, and the red line represents the value of 1/\j, which is
the expected value of Xj. Note that the y-axes used in these
figures are logarithmic.

In these simulations the parameter S is set to 10 and \;
set to 1/10, so the blocktimes in the initial period have an
expected value of 10. For Figure 2, A is adjusted every other
unit of time based on the values of X}, for the previous two
blocks, which leads to significantly more variation in the
value of A\, as compared with Figure 1. The quality of the
difficulty adjustment algorithm may be intuitively evaluated
by how closely the red line stays to the value 10. As can
be seen by Corollary 1, the variance of these block times
becomes particularly bad for small values of N. In fact, for
N = 2, the blocktimes have infinite variance, as a result of
them being Lomax-distributed.

VI. CONCLUSION

Future work may consider additional difficulty retargeting
rules used in other cryptocurrencies, as well as studying
the interaction between multiple blockchains which share a
common proof-of-work scheme.
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