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Adelic geometry on arithmetic surfaces I: idelic and adelic

interpretation of the Deligne pairing

Paolo Dolce

Abstract

For an arithmetic surface X → B = SpecOK the Deligne pairing 〈 , 〉 : Pic(X)×Pic(X) → Pic(B)
gives the “schematic contribution” to the Arakelov intersection number. We present an idelic and
adelic interpretation of the Deligne pairing; this is the first crucial step for a full idelic and adelic
interpretation of the Arakelov intersection number.

For the idelic approach we show that the Deligne pairing can be lifted to a pairing 〈 , 〉
i
: ker(d1×)×

ker(d1×) → Pic(B), where ker(d1×) is an important subspace of the two dimensional idelic group A
×

X
.

On the other hand, the argument for the adelic interpretation is entirely cohomological.
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0 Introduction

0.1 Background

Problems of topological nature on (Q, | · |) (where | · | is the usual euclidean absolute value), are commonly
solved after an embedding of Q in its completion R with respect to | · |. In this way we can take advantage
of the completeness properties of R and the density of Q inside R. Any other absolute value which doesn’t
give the standard euclidean topology on Q is equivalent (in the sense of absolute values, see footnote) to
the p-adic absolute value | · |p for any prime p, so it makes sense to embed Q densely in its completion
Qp with respect to | · |p. The above way of reasoning can be easily generalized for any number field K,
and adeles were introduced in 1930s by Chevalley in order to consider simultaneously all the completions
of K with respect all possible places1. It is not very useful to study simply the product

∏
p Kp of all

completions because the resulting space is “too big” and fails to be a locally compact additive group. For
any non-archimedean place p let Op be the closed unit ball in Kp under the standard representative of
the place p, then the ring of adeles is defined as a subset of

∏
pKp, namely:

AK :=
∏′

p

Kp

1A place p is an equivalence class of absolute values on K where two absolute values are declared equivalent if they
generate the same topology.

1

http://arxiv.org/abs/1812.10834v5


where
∏′

is the restricted products with respect to the additive subgroups {Op : p is non-archimedean}.

Note that for archimedean places, the unit ball is not an additive subgroup. The most important features
of AK were well described in [24] and consist mainly in the fact that AK is a locally compact additive
group (so it admits a Haar measure), K is discrete in AK , and the quotient AK/K is compact. Moreover

the Pontryagin dual ÂK has a very simple description and AK
∼= ÂK .

The multiplicative version of the adelic theory is the idelic theory, and the group of ideles attached
to K is defined as:

A×
K =

∏′

p

K×
p

where the restricted product is taken with respect to the subgroups O×
p := {x ∈ Op : |x|p = 1}. In

this case O×
p has a group structure also in the archimedean case. But a number field K can be seen as

the function field of the nonsingular arithmetic curve B = SpecOK , where OK is the ring of integers
of K, and we know that there is a bijection between points of the completed curve B̂ in the sense of
Arakelov geometry and places of K. Therefore the ring of adeles attached to K can be described in a
more geometric way related to B̂:

A
B̂
:=
∏′

b∈B̂

Kb = AK

where Kb is still the local field attached to the “point” b. So, classical adelic theory can be deduced from
1-dimensional arithmetic geometry. We can adopt a similar approach but starting from 1-dimensional
algebraic geometry: fix a nonsingular algebraic projective curve X over a perfect field k with function
field denoted by k(X); then to each closed point x ∈ X we can associate a non-archimedean local field
Kx with its valuation ring denoted by Ox. The ring of adeles associated to X is then:

AX :=
∏′

x∈X

Kx ;

In this case AX is not a locally compact additive group unless k is a finite field. Each Kx is endowed
with a structure of locally linearly compact k-vector space (in the sense of [14]), therefore AX is again
locally linearly compact and one can show similarly to the arithmetic case that: k(X) is discrete in AX ,
the quotient AX/k(X) is a linearly compact k-vector space and AX is a self dual k-vector space. In
other words, from a topological point of view, the passage from arithmetic theory to algebraic theory
implies that we substitute the theory of compactness of groups with the theory of linear compactness
of vector spaces. In both arithmetic and geometric 1-dimensional case, adelic and idelic theory give a
generalization of the intersection theory (i.e. the theory of degree of divisors):

r Ideles can be easily seen as a generalization of line bundles (resp. Arakelov line bundles), so it is
natural to give an extension of the theory of divisors (resp. Arakelov divisors) from an idelic point
of view.

r For an algebraic curve X and any divisor D ∈ Div(X) we can define a subspace AX(D) ⊂ AX

and a complex AX(D). The cohomology of AX(D) is equal to the usual Zariski cohomology
Hi(X,OX(D)), therefore we can give an interpretation of deg(D) in terms of the characteristic

of AX(D) which will be called the adelic characteristic. For a completed arithmetic curve B̂ we

cannot define a complex A
B̂
(D̂) associated to an Arakelov divisor D̂, since for archimedean points

closed unit balls are not additive groups. However, one can recover the Arakelov degree of D̂ as the
product of volumes (with respect to an opportune choice of Haar measures) of certain closed balls
in Kb.

The above theory remains valid also in the case of singular curves, because by normalization we can
always reduce to the nonsingular case.

The first attempt to construct a 2-dimensional adelic/idelic theory from 2-dimensional geometry was
partially made by Parshin in [20], but he treated only rational adeles (i.e. a subset of the actual ring
of adeles) for algebraic surfaces. A more structured approach to the adelic theory for algebraic surfaces
was given in [21], still with a few mistakes2, and it can be summarized in the following way: let’s fix a
nonsingular, projective surface (X,OX) over a perfect field k, then to each “flag” x ∈ y made of a closed
point x inside an integral curve y ⊂ X we can associate the ring Kx,y which will be a 2-dimensional

2for example in [21] the definition of the object Kx, and consequently of the subspace A02, is wrong (compare with
section 1.2 for more details).
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local field if y is nonsingular at x, or a finite product of 2-dimensional local fields if we have a singularity.
Roughly speaking a 2-dimensional local field is a local field whose residue field is again a local field (see
subsection 1.1), and in our case Kx,y carries two distinct levels of discrete valuations: there is the discrete
valuation associated to the containment x ∈ y and the discrete valuation associated to y ⊂ X . Formally,
Kx,y is obtained through a process of successive localisations and completions starting from OX,x. With
the symbol Ox,y we denote the product of valuation rings inside Kx,y. Similarly to the 1-dimensional
theory, we perform a “double restricted product”, first over all points ranging on a fixed curve, and then
over all curves in X , in order to obtain the ring of adeles for surfaces:

AX :=
∏′′

x∈y
y⊂X

Kx,y ⊂
∏

x∈y
y⊂X

Kx,y .

The topology on Kx,y can be defined thanks to the construction by completions and localisations, and by
starting with the standardmx-adic topology on OX,x, then the topology onAX can be defined canonically.
The idelic group attached to X is A×

X .
For 2-dimensional local fields like Kx,y there is a well known theory of differential forms and residues

(see for example [25]); one can globalise the constructions in order to obtain a k-character ξω : AX → k
associated to a rational differential form ω ∈ Ω2

k(X)|k and the differential pairing:

dω : AX ×AX → k

(α, β) 7→ ξω(αβ) .

In [9] it is shown that: ξω induces the self duality in the category of k-vector spaces, of AX , the subspace
AX/k(X)⊥ is linearly compact (orthogonal spaces are calculated with respect to dω) and k(X) is discrete
in AX .

Both AX and A×
X carry some important subspaces which in turn lead to the construction of certain

complexes AX(D), for a divisor D, and A×
X (respectively the “adelic complex” and the “idelic complex”).

The cohomology of such complexes can be calculated by geometric methods thanks to the following
important results:

Hi(A×
X) ∼= Hi(X,O×

X) , (0.1)

Hi(AX(D)) ∼= Hi(X,OX(D)) . (0.2)

For a proof of (0.1) and (0.2) see respectively [6] and [9]. Again, idelic and adelic theory give an extension
of the intersection theory on X :

r In [21] it is shown that the group Div(X) can be lifted to a subspace if A×
X and the intersection

pairing on Div(X) can be extended at the level of ideles.

r In [9] it is shown that the characteristic of the complex AX(D) can be used to redefine the intersec-
tion pairing between two divisors in terms of adeles, even without using isomorphism (0.2). Such a
theory gives an alternative approach to the Riemann-Roch theorem for algebraic surfaces.

Most of the 2-dimensional constructions outlined above are true for any 2-dimensional, Noetherian, regular
scheme, so in particular for arithmetic surfaces. However, the adelic theory associated to an arithmetic
surface X → B = SpecOK (K is a number field) is more complicated and less developed. Locally,
the rings Kx,y have a completely different structure between each other as 2-dimensional local fields,
depending whether y is horizontal or vertical. Moreover, there was the global issue of interpreting the
archimedean data of the completed surface X̂ , in the sense of Arakelov geometry, in an adelic and idelic
way. A first definition of the “full” (or completed) ring of adeles A

X̂
has been given only recently in [8].

The purpose of this series of papers is to study the adelic and idelic theory for a completed arithmetic
surface and eventually obtain a 2-dimensional generalisation of the Tate thesis.

Remark 0.1. In [2] Beilinson shortly described how to attach a n-dimensional adelic theory to any n-
dimensional Noetherian scheme in a very abstract functorial way. Reworks and clarifications of this
approach are [11] and [19, 8]. In particular in [19, 8.4 and 8.5] it is proved that for dimensions 1 and 2
our explicit theory agrees with Beilinson theory of adeles.
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0.2 Results in this paper

In this first paper we explain the “schematic part” of the idelic and adelic lift of the Arakelov intersection
number (i.e. ignoring the fibres at infinity), whereas a full account of the theory will be published
subsequently together with other results.

Given two Arakelov divisors D̂ = D +
∑

σ ασXσ and Ê = E +
∑

σ βσXσ, where D,E ∈ Div(X), one

piece of the Arakelov intersection number D̂.Ê is obtained thanks to the Deligne pairing 〈OX(D),OX(E)〉 ∈
Pic(B). We define d1× to be an arrow of the idelic complex A×

X associated to X , then we construct an
idelic Deligne pairing:

〈 , 〉i : ker(d
1
×)× ker(d1×)→ Pic(B)

which descends to the Deligne pairing through the composition:

ker(d1×)× ker(d1×)→ Div(X)×Div(X)→ Pic(X)× Pic(X) .

This will be the arithmetic version of Parshin idelic lift given in [21]. Our approach will be from local to
global: the main idea consists in globalising Kato’s local symbol for 2-dimensional local fields containing
a local field (see [12] or [15]), which is the generalisation of the usual tame symbol for valuation fields
(see appendix A). In the arithmetic framework given by the arithmetic surface ϕ : X → B, we have the
following constructions: for any point x sitting on a curve y ⊂ X we define a ring, which is a finite sum of
2-dimensional local fields, denoted by Kx,y; moreover Kb is the local field associated to the point b ∈ B
such that ϕ(x) = b. Then Kato’s symbol translates into a skew symmetric, bilinear map:

( , )x,y : K×
x,y ×K×

x,y → K×
b .

Roughly speaking, by composing it with the valuation vb on Kb and by summing over all flags x ∈ y such
that ϕ(x) = b, we show that we obtain a well defined integer nb. By repeating the argument for each
b ∈ B we obtain a divisor

∑
b∈B nb[b]. At this point we prove that such a pairing descends to the Deligne

pairing.
The adelic theory is very similar to the geometric case and the crucial point consists in considering

the arithmetic analogue of the Euler-Poincare characteristic of coherent sheaves, i.e. the determinant of
cohomology. We use the cohomological properties of the adelic complex of the base scheme B in order
to give the definition of the adelic determinant of cohomology. Then it is enough to use the fact that the
Deligne pairing can be expressed in terms of the (adelic) determinant of cohomology.

Overview of the contents. Section 1 is a quick review of adelic geometry for arithmetic surfaces, where
just by simplicity, we ignore the contribution of fibres at infinity. A more comprehensive introduction to
adelic geometry can be found in [6]. In section 2 and 3 we construct respectively the idelic and adelic
Deligne pairing. Finally, appendix A is just a collection of the basic notions of algebraic K-theory needed
in this paper and appendix B is a review of the main features of the determinant of cohomology.

Basic notations. All rings are considered commutative and unitary. When we pick a point x in a
scheme X we generally mean a closed point if not otherwise specified, also all sums

∑
x∈X are meant to

be “over all closed points of X”. The cardinality of a set T is denoted as #(T ). If F is a field, then F
doesn’t denote the algebraic closure. For a morphisms of schemes f : X → S, the schematic preimage
of s ∈ S is Xs. Sheaves are denoted with the “mathscr” lateχ font; particular the structure sheaf of a
scheme X is OX (note the difference with the font O). For any OX -module F and any D ∈ Div(X) we
put F (D) := F ⊗OX

OX(D). The notation det(·) is used for the notion of “determinant” in the category
of free modules over a ring and in the category of free OX -modules; the exact meaning will be clear from
the context. If K is a number field and X → SpecOK is an integral scheme over the ring of integers OK ,
then the function field of X is denoted by K(X). Finally it is important to point out that the letter K
will denote different mathematical objects in this paper (and in different contexts), so the reader should
check at the beginning of each section its specific meaning from time to time.

Acknowledgements. I would like to thank Ivan Fesenko and Weronika Czerniaswka from the univer-
sity of Nottingham for the interesting discussion they had with me about the topic and their support.
Moreover a special thanks to Fedor Bogomolov and Nikolaos Diamantis for reading my work and to
Dongwen Liu for answering to my questions.

This work is supported by the EPSRC programme grant EP/M024830/1 (Symmetries and correspon-
dences: intra-disciplinary developments and applications).
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1 Review of 2-dimensional adelic geometry

1.1 Abstract local theory

Let’s recall the definition of local field:

Definition 1.1. A local field (or a 1-dimensional local field) F , is one of the fields listed below:

(1) F = R endowed with the usual real absolute value| · |.

(2) F = C endowed with the usual complex absolute value || · ||.

(3) F is a complete discrete valuation field (the valuation is surjective) such that the residue field F is
a perfect field. The valuation ring of F is denoted as OF and its maximal ideal is pF . Moreover if
v is the valuation on F , then the absolute value is given by |x|v := q−v(x), where q = #(F ) if F is
a finite field, and q = e := exp(1) otherwise.

If F is of type (1) or (2), it is an archimedean local field otherwise it is a non-archimedean local field. A
local field is topologized with the topology induced by the absolute value. A morphism between local
fields is a continuous field homomorphism.

Remark 1.2. According to our definition, a non-archimedean local field endowed with its natural topology
is in general not locally compact.

Remember that if F is a non-archimedean local field there exists only one surjective complete valuation
on it (see [19, Theorem 1.4]). A higher local field is a simple generalization of definition 1.1: given a
complete discrete valuation field F , it might happen that the residue field F (1) := F is again a complete
discrete valuation field; by taking one more time the residue field we have the field F (2). In other words,
a complete discrete valuation field might originate a potentially infinite sequence of fields {F (i)}i≥0 such

that F (0) = F and F (i+1) = F (i). Each F (i) is called the i-th residue field.

Definition 1.3. A n-dimensional local field, for n ≥ 2, is a complete discrete valuation field F admitting
sequence of residue fields {F (i)}i>0 such that F (n−1) is a local field. If F (n−1) is an archimedean local field,
then F is called archimedean, otherwise we say that F is non-archimedean. F has mixed characteristic if
char(F ) 6= char(F ).

Example 1.4. The simplest n-dimensional local field is the field of iterated Laurent series over a perfect
field K:

F = K((t1)) . . . ((tn)) .

If f =
∑

ajt
j
n ∈ F , with ai ∈ K((t1)) . . . ((tn−1)), we have the complete discrete valuation defined by

v(f) = min{j : aj 6= 0}. The valuation ring is OF = K((t1)) . . . ((tn−1))[[tn]] and the residue field is
F (1) = K((t1)) . . . ((tn−1)). Clearly F (n) = K. When n = 2, the elements of K((t1))((t2)) are the formal
power series

∑
i,j ai,jt

i
1t

j
2 such that ai,j = 0 when the indexes i and j are chosen in the following way:

let’s plot the couples (j, i) as a lattice on the plane, then we select a semiplane like the one which is not
coloured in figure 1. The coordinate j is bounded from right, whereas the coordinate i is bounded from
above by a descending staircase line.

Remark 1.5. The above definition of dimension for a n-dimensional local field might seem quite counter-
intuitive, indeed a n-dimensional local field can also be a m-dimensional local field for m 6= n. For
instance F = K((t1)) . . . ((tn)) is m-dimensional for any m = 1, . . . , n. For our purposes it will be clear
from the context which dimension we want to take in account. Often it is convenient to consider the
maximum amongst all possible dimensions (when it exists).

Remark 1.6. Note in the case of archimedean n-dimensional local fields the n-th residue field doesn’t
exist.

Let’s give a less trivial example of higher local field:

Example 1.7. Let (K, vK) be a non-archimedean local field and consider the following set of (double)
formal series:

K{{t}} :=





∞∑

j=−∞

ajt
j : aj ∈ K, inf

j
vK(aj) > −∞, lim

j→−∞
aj = 0
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j

i

ai,j = 0

Figure 1: A cartesian diagram showing the lattice of couples (j, i) corresponding to the coefficients ai,j
of a power series in

∑
i,j ai,jt

i
1t

j
2 ∈ K((t1))((t2)).

Addition and multiplication in K{{t}} are defined in the following way:

∞∑

j=−∞

ajt
j +

∞∑

j=−∞

bjt
j =

∞∑

j=−∞

(aj + bj)t
j (1.1)

∞∑

j=−∞

ajt
j ·

∞∑

j=−∞

bjt
j =

∞∑

j=−∞

(
∞∑

r=−∞

arbj−r

)
tj (1.2)

and K{{t}} becomes a field. Note that the series with index r in equation (1.2) is actually a convergent
series in K. We can also define the following discrete valuation v on K{{t}}:

v




∞∑

j=−∞

ajt
j


 := inf

j
vK(aj) . (1.3)

It is not difficult to verify that v is a well defined valuation and K{{t}} is complete with respect to v.
Let’s now analyse the structure of F = K{{t}} as valuation field:

OF =





∞∑

j=−∞

ajt
j ∈ K{{t}} : aj ∈ OK





pF =





∞∑

j=−∞

ajt
j ∈ K{{t}} : aj ∈ pK





Consider the surjective homomorphism:

π : OF → K((t))∑
ajt

j 7→
∑

ajtj

6



where clearly aj is the natural image of aj in K. Now it is evident that π induces an isomorphism
F ∼= K((t)). In other words F has a structure of 2-dimensional local field such that F (1) = K((t)) and
F (2) = K. Clearly such a construction can be iterated several times to get the field:

K{{t1}} . . .{{tn}} .

For example if K = Qp, then K{{t}} is a 2-dimensional local field of mixed characteristic.

Remember that we have the following classical classification theorem for local fields:

Theorem 1.8 (Classification theorem for local fields). Let F be a local field:

(1) When F is archimedean, then F = R or F = C.

(2) When F is not archimedean there are two cases:

(2a) If charF = charF , then F ∼= F ((t)).

(2b) If charF 6= charF = p, then F is isomorphic to Kp which denotes a finite extension of Qp.

Proof. (1) is true just by definition. For (2) see for example [10, II.5].

Such a classification can be extended for higher local fields, in particular any n-dimensional local field
can be obtained by “combining” the higher local fields presented in examples 1.4 and 1.7:

Theorem 1.9 (Classification theorem for n-dimensional local fields). Let F be a n-dimensional local field
with n ≥ 2.

(1) If charF = charF (1) = . . . = charF (n−1), then

F ∼= F (n−1)((t1)) . . . ((tn−1))

and F (n−1) is isomorphic to one of the four fields listed in theorem 1.8.

(2) If r ∈ {2, 3, . . . n} is the unique number such that charF (n−r) 6= charF (n−r+1) = p, then:

(2a) When r 6= n, F is isomorphic to a finite extension of:

Kp{{t1}} . . . {{tr−1}}((tr)) . . . ((tn−1)) .

(2b) When r = n (i.e. in the mixed characteristic case), F is isomorphic to a finite extension of:

Kp{{t1}} . . . {{tn−1}} .

Proof. See [19, Theorem 2.18].

In this paper we will focus mainly on 2-dimensional local fields, so let’s give a table with all possible
2-dimensional local fields by using the classification theorem:

2-dimensional local fields
Geometric Arithmetic Archimedean

(0, 0, 0), (p, p, p) (0, p, p) (0, 0, p)

K((t1))((t2))
with K perfect

finite extension of
Kp{{t}}

Kp((t)) C((t)) or R((t))
(1.4)

For a non-archimedean local field (F, v), we have the notion of local parameter ̟ which is any generator
of the maximal ideal pF , or equivalently any element such that v(̟) = 1. Clearly we have the (recursive)
generalization for n-dimensional local fields.

Definition 1.10. Let F be a non-archimedean n-dimensional local field, then a sequence of local param-
eters for F is a n-tuple (̟1, . . . , ̟n) ∈ F × . . .× F satisfying the following properties:

r ̟n is a local parameter for F .

7



r (̟1, . . . , ̟n−1) ∈ OF × . . . × OF and the sequence of natural projections (̟1, . . . , ̟n−1) is a
sequence of local parameters for the residue field F .

One can obtain a sequence of local parameters, by applying the following algorithm: choose any
local parameter for F (n−1), then pick any of its liftings in F , this will be ̟1. Choose choose any local
parameter for F (n−2), then pick any of its liftings in F , this will be ̟2, etc. Let’s give another basic
definition:

Definition 1.11. Let F be a n-dimensional local field and put O
(0)
F := F , then we define recursively the

j-th valuation ring (for j ≥ 1):

O
(j)
F :=

{
x ∈ OF : x ∈ O

(j−1)

F

}

It is clear that O
(1)
F = OF . For the algebraic properties of O

(j)
F the reader can check [19, 3].

From now on in this section we assume that F is a 2-dimensional local field such that:

r charF = 0 and charF (2) = p.

r F is endowed with a ST-ring3 topology and there exists a mixed characteristic local field K with a
fixed embedding K →֒ F of ST-rings (K has the discrete valuation topology).

In this case we say that F is an arithmetic 2-dimensional local field over K. The presence of the local
field K inside F comes from the theory of arithmetic surfaces and it will be explained in section 2.

Equal characteristic. Let F be an arithmetic 2-dimensional local field such that charF = 0.

Definition 1.12. The coefficient field of F (with respect to K) is the algebraic closure of K inside F
and it is denoted as kF .

The coefficient field kF is a finite extension of K and moreover F = kF . In particular F ∼= kF ((t)).
The valuation field F is naturally endowed with the usual tame symbol ( , )F : F××F× → k×F , so we can
obtain the Kato symbol (or two dimensional tame symbol) by simply composing it with the field norm
map:

Definition 1.13. The Kato symbol for F (with respect to K) is given by:

( , )F |K : NkF |K ◦ ( , )F : F× × F× → K× .

Mixed characteristic. Now we assume that F is an arithmetic 2-dimensional local field of mixed
characteristic. By the classification theorem Qp is contained in F and we have the notion of constant
field of F which replaces the one of coefficient field:

Definition 1.14. The constant field of F is the algebraic closure of Qp in F , and it is denoted by kF .

Remark 1.15. Note that the definition of the constant field doesn’t depend on K so it makes sense for
any 2-dimensional local field of mixed characteristic. Of course it might happen that K = Qp.

Since K is a finite extension of Qp (by the 1-dimensional classification theorem), we know that kF is
an intermediate field between K and F . The constant field kF is a finite extension of Qp (so also a finite
extension of K).

Definition 1.16. We say that an arithmetic 2-dimensional local field of mixed characteristic F is standard
if there is a kF isomorpshism F ∼= kF {{t}}. When an isomorphism is given, we say that we have fixed a
parametrization of F .

We will study standard fields first and extend any result for a generic F thanks to the following result:

Proposition 1.17. There exists a standard field L contained in F such that: [F : L] <∞, kF = kL and
F = L.

Proof. See [18, Lemma 2.14].

3A ST-ring (semi-topological ring) is just a ring endowed with a linear topology as additive group such that the
multiplication for any fixed element is continuous. Note that a ST-ring is not necessarily a topological ring. See [25] for
more details.
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So, from now on in this subsection we fix L to be a standard field contained in F with the properties
described in proposition 1.17. Clearly we have the following field extensions that need to be kept always
in mind (we mark the finite extensions with the superscript f):

Qp ⊆
f K ⊆f kL = kF ⊆ L ∼= kL{{t}} ⊆

f F . (1.5)

Finally, we want to define the Kato symbol for F and the strategy is the usual one: we start from
kL{{t}} and we extend our arguments to F by checking that everything is independent from parametriza-
tions and from the choice of the standard fields. We will heavily use some K-theoretic notions developed
in appendix A.

Fix just for the moment L = kL{{t}}, then we define:

( , )L|K : L× × L× K2(L) K̂2(L) K̂1(kL) = k×L K×{ , } − res
(2)
L

NkL|K

(1.6)

where:

r { , } is the natural projection arising from the definition of K2(L) (see proposition A.2).

r The morphism K2(L) → K̂2(L) is the map given by the construction of K̂2(L) as projective limit
(see equation (A.2)).

r res
(2)
L is the higher Kato residue map constructed in theorem A.8. Note that K̂1(kL) = k×L because

kL is already complete.

Moreover by simplicity we use the following notation:

∂L : K2(L) K̂2(L) k×L .
− res

(2)
L

(1.7)

Remark 1.18. [15] gives an explicit description of res
(2)
L which involves winding numbers.

Definition 1.19. Let L be a generic standard field and fix a parametrization: p : L→ kL{{t}} then we
define:

( , )L|K : L× × L× K2(L) K2(kL{{t}}) k×L K×{ , } K2(p) ∂kL{{t}} NkL|K

and we put ∂L := ∂kL{{t}} ◦K2(p).

Proposition 1.20. Let L be a standard field, then the definition of ( , )L|K doesn’t depend on the
parametrization of L.

Proof. See [15, Corollary 3.7].

At this point we are ready to give the general definition of the Kato symbol:

Definition 1.21. Let F an arithmetic 2-dimensional local field and let L be a standard field contained
in F , then the Kato symbol for F (with respect to K) is given by:

( , )F |K : F× × F× K2(F ) K2(L) k×L K×{ , } K2(NF |L) ∂L
NkL|K

(1.8)

Proposition 1.22. The definition of ( , )F |K doesn’t depend on the choice of L inside F .

Proof. See [12, Proposition 3].
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1.2 Adelic geometry

Let’s fix B = SpecOK for a number field K; ϕ : X → B is a B-scheme satisfying the following properties:

r X is two dimensional, integral, and regular. The generic point of X is η and the function field of
X is denoted by K(X).

r ϕ is proper and flat.

r The generic fibre, denoted by XK , is a geometrically integral, smooth, projective curve over K. The
generic point of B is denoted by ξ.

We say that X is an arithmetic surface over B. We consider the set of all possible flags x ∈ Y ⊂ X
where x is a closed point of X contained in an integral curve Y .

From now on a curve Y on X will always be an integral curve and its unique generic point will be
denoted with the letter y. By simplicity we will often identify Y with its generic point y, which means
that by an abuse of language and notation we will use sentences like “let y ⊂ X be a curve on X ...” or
“let x ∈ y ⊂ X be a flag on X ...”. In other words y is considered as a scheme or as a point depending on
the context.

Definition 1.23. Fix a closed point x ∈ X , then:

r Ox := ÔX,x. It is a Noetherian, complete, regular, local, domain of dimension 2 with maximal ideal
m̂x.

r K ′
x := FracOx.

r Kx := K(X)Ox ⊆ K ′
x. Notice that this is not a field.

For a curve y ⊂ X we put:

r Oy := ÔX,y. It is a complete DVR with maximal ideal m̂y.

r Ky := FracOy. It is a complete discrete valuation field with valuation ring Oy. The valuation is
denoted by vy.

For any point b ∈ B we put:

r Ob := ÔB,b. It is a complete DVR.

r Kb := FracOb. It is a local field with finite residue field. The valuation is denoted by vb.

Fix a flag x ∈ y ⊂ X , then we have a surjective local homomorphism OX,x → Oy,x with kernel py,x
induced by the closed embedding y ⊂ X (note that py,x is a prime ideal of height 1).

The inclusion OX,x ⊂ Ox induces a morphism of schemes φ : SpecOx → SpecOX,x and we define the
local branches of y at x as the elements of the set

y(x) := φ−1(py,x) = { z ∈ SpecOx : z ∩OX,x = py,x } .

If y(x) contains only an element, we say that y is unbranched at x.

Remark 1.24. If x is a cusp point on y, one can show that y unbranched at x.

Definition 1.25. Let z ∈ y(x) be a local branch of a curve y at point x, then let’s define the field

Kx,z := Frac
(
(̂Ox)z

)
.

in other words: we localise Ox at the prime ideal z, then we complete it at its maximal ideal and finally

we take the fraction field. By convenience we put Ox,z := (̂Ox)z.

The proof of the following proposition relies on some basic commutative algebra results:

Proposition 1.26. Let x ∈ y ⊂ X be a flag and let z ∈ y(x). Then Kx,z is a 2-dimensional valuation

field such that OKx,z
= Ox,z and K

(2)
x,z is a finite extension of k(x).
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y
X
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y(x)

Figure 2: Informally the local branches of y at x can be depicted in the following way: consider a small neighbourhood
of x, then each distinct “piece of y” that we see passing through x corresponds to a local branch z. In this particular case
y has a simple node at x, so 2 local branches at x.

Proof. First of all ht z ≥ ht py,x = 1, but if ht z = 2 then z is the maximal ideal of Ox and we have

that z ∩ OX,x = mx, a contradiction. Therefore ht z = 1 and dim (Ox)z = 1. It follows that (̂Ox)z is a
Noetherian, complete, local, domain of dimension 1, i.e. a complete DVR which is the valuation ring of
the complete discrete valuation field Kx,z. The residue field of Kx,z is by definition:

K
(1)
x,z := (Ox)z /z (Ox)z = Frac (Ox/z) .

Note that Ox/z is a Noetherian, complete, local domain of dimension 1 (in general we may lose the

regularity by passing to the quotient). Consider the normalisation Õx/z of Ox/z; the domain Õx/z is
obviously normal and again Noetherian and complete. Moreover by Nagata theorem (see [3, Ch. IX, 4,

no 2, Theorem 2]) Ox/z is a Japanese ring, therefore in particular Õx/z is a finite Ox/z-module. Now [7,

Corollary 7.6] implies that Õx/z is also local, and by summing up all the listed property we can conclude

that Õx/z is a complete DVR with fraction field Frac (Ox/z). This proves that K
(1)
x,z is a complete

valuation field.
It remains to show only that the second residue field K

(2)
x,z is a finite extension of k(x). By definition

K
(2)
x,z is the residue field of the local ring Õx/z, but we already know that Õx/z is a finite Ox/z-module,

so K
(2)
x,z is a finite extension of:

(Ox/z)
/
(m̂x/z) ∼= Ox/m̂x

∼= OX,x/mx = k(x) .

It is not amongst the purposes of this paper to treat the topology ofKx,z, but it is enough to know that
there are several ways to topologise Kx,z, some of them are equivalent, and we end up with a structure
of ST-ring on Kx,z. See for example [4, 1.] for a survey about topologies on Kx,z.
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Definition 1.27. Let x ∈ y ⊂ X be a flag and let z ∈ y(x), then we put Ex,z := K
(1)
x,z and kz(x) := K

(2)
x,z .

Kx,z Ox,z := OKx,z
O

(2)
x,z := O

(2)
Kx,z

Ex,z := K
(1)
x,z OEx,z

kz(x) := K
(2)
x,z

⊃ ⊃

⊃

The valuation on Kx,z is vx,z and the valuation on Ex,z is v
(1)
x,z. Moreover:

Kx,y :=
∏

z∈y(x)

Kx,z , Ox,y :=
∏

z∈y(x)

Ox,z , O(2)
x,y :=

∏

z∈y(x)

O
(2)
x,z ,

Ex,y :=
∏

z∈y(x)

Ex,z , ky(x) :=
∏

z∈y(x)

kz(x) .

Remark 1.28. Remember from commutative algebra the following chain of implications:

(A regular local)⇒ (A a UFD)⇒ (Any prime p s.t. ht(p) = 1 is principal) .

So, OX,x is a UFD and py,x is principal, but also Ox is a UFD and z is principal.

Proposition 1.29. Let py,x = (̟y) for ̟y ∈ OX,x, then we can choose the uniformizing parameter for
Kx,z to be ̟y.

Proof. We show that ̟y generates the maximal ideal of Ox,z. First of all we notice that the ring

OX,x/̟yOX,x
∼= Oy,x is reduced, and this implies that Ôy,x = Ox/̟yOx is reduced too. By remark 1.28

̟y has a unique factorization ̟y = p1 . . . pm in Ox, and all the p′is are distinct prime elements thanks
to the fact that Ox/̟yOx is reduced. Again remark 1.28 implies that z = (pj) for some index j. Any
element of z(Ox)z can be written as

pja

b
with b /∈ z but:

pja

b
=

p1 . . . pma

p1 . . . pj−1pj+1 . . . pmb
=

̟ya

p1 . . . pj−1pj+1 . . . pmb

Since p1 . . . pj−1pj+1 . . . pmb /∈ z, we can conclude that ̟y generates the prime ideal z(Ox)z of (Ox)z.

Corollary 1.30. If ̟y is a uniformizing parameter for the complete valuation field Ky, then it is a
uniformizing parameter for Kx,z.

Proof. It follows from proposition 1.29 and the fact that (OX,x)py,x
∼= OX,y.

Remark 1.31. Fix a flag x ∈ y ⊂ X . The local homomorphism OX,x → Oy,x induces a local homomor-

phism Ox → Ôy,x which gives a bijective correspondence between the ideals in y(x) and the minimal

prime ideals of Ôy,x. Hence the ring of adeles of the curve y is recovered in the following way:

Ay =
∏′

x∈y

Ex,y .

Proposition 1.32. Let’s denote with vx,z the valuation of Kx,z and with vy the valuation of Ky. Then
the restriction of vx,z to Ky is equal to vy.

Proof. By remark 1.31 we deduce that Ex,z contains k(y), which is in turns the residue field of Ky, so
the claims follows directly from corollary 1.30.

The structure of Kx,z depends on the nature of the curve y and we can distinguish two cases:

y is a vertical curve. If ϕ(y) = b ∈ B, then y is a projective curve over the finite field k(b); we assume
that k(b) has characteristic p. Kx,z has characteristic 0 since we have the embeddings Q ⊂ K ⊂ K(X) ⊂
Kx,z and the residue field Ex,z has characteristic p since k(b) ⊂ k(y) ⊂ Ex,z. We conclude that Kx,z is a
two dimensional local field of type (0, p, p) and by the classification theorem we have that Kx,z is a finite
extension of Kp{{t}} where Kp is a finite extension of Qp.
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y is a horizontal curve. In this case Kx,z has still characteristic 0, but we have the embedding
K ⊆ k(y) given by the surjective map y → B; therefore Ex,z has characteristic 0. Moreover, if ϕ(x) = b,
the local homomorphism ϕ#

x : OB,b → OX,x induces a field embedding k(b) ⊆ k(x) and this implies that
kz(x) has characteristic p. We conclude that Kx,z is a two dimensional local field of type (0, 0, p) and by
the classification theorem we have that Kx,z

∼= Kp((t)).

If ϕ(x) = b we have an induced embedding Kb →֒ Kx,z, so we can conclude that Kx,z is an arithmetic
2-dimensional local field over Kb and we can apply the local theory developed in subsection 1.1.

The ring of adeles AX will be the result of a “glueing” of the local data {Kx,y}x∈y⊂X where the
couple (x, y) runs amongst all flags in X . The glueing procedure will be described precisely, but roughly
speaking we will define AX inside the big product of rings

AX ⊂
∏

x∈y,
y⊂X

Kx,y

as a sort of “double restricted product”.

First “restricted product”: the rings A
(r)
y and Ay. In this paragraph we fix a curve y ⊂ X , and

denote with Jx,y the Jacobson radical of Ox,y.

Definition 1.33. Let’s put:

A(0)
y =





(αx,y)x∈y ∈
∏

x∈y

Ox,y : ∀s > 0, αx,y ∈ Ox + Jsx,y

for all but finitely many x ∈ y.




⊂
∏

x∈y

Ox,y

then for any r ∈ Z

A(r)
y := m̂r

yA
(0)
y ⊂

∏

x∈y

Kx,y .

Clearly A
(r)
y ⊇ A

(r+1)
y and

⋂
r∈Z

A
(r)
y = 0. Moreover we define

Ay :=
⋃

r∈Z

A(r)
y .

Remark 1.34. We have the inclusion Ay ⊂
∏

x∈y Kx,y, therefore we can interpret Ay as a “restricted
product” of the rings Kx,y for y fixed and x ∈ y. Thus we can write:

Ay =
∏′

x∈y

Kx,y

where
∏′

here is just a piece of notation without any formal meaning.

Each A
(r)
y can be endowed with a ind/pro linear topology, and Ay can be seen as linear direct limit

of the topological groups A
(r)
y . More details about such topologies will be given in the second paper of

the series.

Second “restricted product”: the ring AX . The construction of Ay can be seen as a way to take
the restricted product of

∏
x∈y Kx,y. The final step in order to construct the ring of adeles AX is to take

the restricted product of the groups Ay over all the curves in X with respect to the subgroups A
(0)
y .

Definition 1.35.

AX :=



(βy)y⊂X ∈

∏

y⊂X

Ay : βy ∈ A(0)
y for all but finitely many y



 ⊂

∏

x∈y,
y⊂X

Kx,y .
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In a more suggestive way, we write by commodity

AX =
∏′′

x∈y
y⊂X

Kx,y

where the symbol “
∏′′

” is just a piece of notation which remembers that we are taking a “double

restricted product”.

Remark 1.36. It is fundamental to recall that AX is not the full ring of adeles associated to the completed
surface X̂ , bcause we didn’t take in account the fibres at infinity.

In order to topologise AX we need to recall the description of the restricted product, by means of
categorical limits, for linearly topologised groups. Let {Gi}i∈I a set of linearly topologised groups and
for any i let Hi ⊂ Gi be a subgroup endowed with the subspace topology. We denote the family of finite
subsets of I as Pf (I); it forms a directed set with the relation J ⊆ J ′. For any J ∈ Pf (I) define

GJ :=
∏

i∈J

Gi ×
∏

i6∈J

Hi ,

if J ⊆ J ′ the identity in each factor induces an embedding GJ →֒ GJ′ , thus we have a direct system
{GJ}J and it is easy to see that ∏′

i

Gi = lim
−→
J

GJ ,

where
∏′

i
Gi is the usual restricted product of the Gi with respect to the subgroups Hi. At this point,

on each GJ we put the product topology and
∏′

i
Gi is endowed with the linear direct limit topology.

By definition AX is the restricted product of the groups Ay with respect to the subgroups A
(0)
y for any

y ⊂ X . Therefore we endow AX with the topology described above.
We now introduce some important subspaces in order to construct the adelic complexes associated

to the surface X . Here the definitions are made “by hands”, but such subspaces can be recovered as
a particular case of the general theory of Beilinson adeles (see [19, 8]). First of all let’s consider the
following diagonal embeddings:

Kx ⊂
∏

y∋x

Kx,y, Ky ⊂
∏

x∈y

Kx,y ,

so we can consider: ∏

x∈X

Kx ⊂
∏

x∈y
y⊂X

Kx,y,
∏

y⊂X

Ky ⊂
∏

x∈y
y⊂X

Kx,y .

Let’s define:
A012 := AX ; A12 := AX ∩

∏

x∈y
y⊂X

Ox,y =
∏

y⊂X

A(0)
y ;

A02 := AX ∩
∏

x∈X

Kx ; A2 := AX ∩
∏

x∈X

Ox ; A01 := AX ∩
∏

y⊂X

Ky ;

A1 := AX ∩
∏

y⊂X

Oy ; A0 := K(X)

The containment relations are depicted in the following diagram:

A0

A01 A012 A02

A1 A12 A2
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and we have the adelic complex:

AX : A0 ⊕A1 ⊕A2 A01 ⊕A02 ⊕A12 A012

(a0, a1, a2) (a0 − a1, a2 − a0, a1 − a2)

(a01, a02, a12) a01 + a02 + a12 .

d0 d1

(1.9)

If D =
∑

y⊂X ny[y] is a divisor of X we can define the subgroups

AX(D) :=
∏

y⊂X

A(−ny)
y .

Note that AX(D) is a well defined subgroup of AX because ny = 0 for all but finitely many y. Let’s
define the subspaces

A12(D) := A012 ∩AX(D) = AX(D) .

A1(D) := A01 ∩AX(D); A2(D) := A02 ∩AX(D);

in order to get the complex

AX(D) : A0 ⊕A1(D)⊕A2(D)
d0
D−−→ A01 ⊕A02 ⊕A12(D)

d1
D−−→ A012 (1.10)

such that the maps are the same of those in equation (1.9). Furthermore note that AX = AX(0). There
is also the idelic version of complex (1.9):

A×
X : A×

0 ⊕A×
1 ⊕A×

2 A×
01 ⊕A×

02 ⊕A×
12 A×

012 = A×
X

(a0, a1, a2) (a0a
−1
1 , a2a

−1
0 , a1a

−1
2 )

(a01, a02, a12) a01a02a12

d0
× d1

×

(1.11)

and we have a well defined surjective map:

p : ker(d1×) → Div(X)

(α, β, α−1β−1) 7→
∑

y⊂X

vy(αx,y)[y] .

2 Idelic Deligne pairing

Let’s still consider the arithmetic surface ϕ : X → B, and let’s denote with AB and A×
B respectively the

nonarchimedean parts of the one dimensional adeles and ideles associated to the base B (in other words
we are not considering the archimedean places of K). Remember that for any two divisors D,E on X
with no common components we have:

ix(D,E) := lengthOX,x
OX,x/ (OX(−D)x + OX(−E)x) .

The Deligne pairing is a bilinear and symmetric map:

〈 , 〉 : Pic(X)× Pic(X)→ Pic(B)

which was introduced for the first time in [5]. More details about the construction of 〈 , 〉 can be found
in [6, D.2.3]. First of all let’s see how the Deligne pairing can be lifted to a pairing at the level of divisors
on X and with target in Pic(B):
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Proposition 2.1. There exists a unique pairing

[[ , ]] : Div(X)×Div(X)→ Pic(B)

satisfying the following properties:

(1) It is bilinear and symmetric.

(2) It descends to the Deligne pairing

〈 , 〉 : Pic(X)× Pic(X)→ Pic(B) .

(3) If D,E ∈ Div(X) are two divisors with no common components then [[D,E]] is equal to the class
of the divisor 〈D,E〉 in Pic(B) (here the bracket 〈D,E〉 denotes the pushforward through ϕ of the
0-cycle collecting all the local intersection numbers between D and E). In other words:

[[D,E]] =
∑

x∈D∩E

[k(x) : k(ϕ(x))]ix(D,E) [ϕ(x)] ∈ Pic(B) .

Proof. For any D,E ∈ Div(X) it is enough to put:

[[D,E]] := 〈OX(D),OX(E)〉

where on the right hand side we have the Deligne pairing between invertible sheaves. Uniqueness follows
from properties (1)-(3) and what is commonly called “the moving lemma” ([16, Proposition 9.1.11]).

At this point we will try to work in complete analogy to the geometric case and we will use the Kato
symbol defined in section 1.1 to obtain the map, denoted below with a question mark, which makes the
following diagram commutative:

ker(d1×)× ker(d1×) A×
B

Div(X)×Div(X)

Pic(X)× Pic(X) Pic(B) ∼= CH1(B)

?

p×p

[[ , ]]

〈 , 〉

(2.1)

As usual, fix a flag x ∈ y with z ∈ y(x) and assume that ϕ(x) = b, then we define

( , )x,z := ( , )Kx,z|Kb
: K×

x,z ×K×
x,z → K×

b

where ( , )Kx,z|Kb
is the Kato symbol defined in section 1.1. Remember that depending on whether y is

horizontal or vertical, we have a different expression for ( , )x,z. Then we put:

( , )x,y :=
∏

z∈y(x)

( , )x,z : K
×
x,y ×K×

x,y → K×
b .

It is important to point out that ( , )x,y maps O×
x,y ×O

×
x,y to O×

b .

Proposition 2.2. The pairing ( , )x,y is a skew-symmetric bilinear form on K×
x,y satisfying the following

properties:

(1) Let r, s ∈ K×
x , then for all but finitely many curves y containing x we have that (r, s)x,y = 1 and

moreover
∏

y∋x(r, s)x,y = 1.

(2) Let y be a vertical curve and let r, s ∈ K×
y , then

∏
x∈y(r, s)x,y = 1. In particular (r, s)x,y ∈ O

×
b for

all but finitely many x ∈ y.

Proof. Skew symmetry and bilinearity are clear. See [15, Theorem 4.3] for (1); note that in [15] the proof
is made for r, s ∈ K(X)×, but it is easy to see that it actually works also for r, s ∈ K×

x . See [15, Theorem
5.1] for (2).
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Definition 2.3. The idelic Deligne pairing

〈 , 〉i : ker(d
1
×)× ker(d1×)→ CH1(B)

is given by:

(r, s) 7→ 〈r, s〉i :=
∑

b∈B

nb(r, s)[b] ∈ CH1(B) (2.2)

such that:
nb(r, s) :=

∑

x∈Xb,
y∋x

vb ((γx,y, βx,y)x,y) (2.3)

for r = (α, β, α−1β−1), s = (γ, δ, γ−1δ−1) ∈ ker(d×1 ) and where vb is the complete discrete valuation on
Kb. It is crucial to emphasize the fact the we consider

∑
b∈B nb(r, s)[b] in its linear equivalence class

in CH1(B) and not just as a divisor. By simplicity of notation we avoid to mention the canonical map
Div(B)→ CH1(B).

One can verify that definition 2.3 makes sense:

Proposition 2.4. The summations (2.2) and (2.3) are finite.

Proof. Thanks to the second adelic restricted product over curves it is enough to check it only for a fixed
nonsingular vertical curve y ⊂ Xb. Let’s write βx,y = fsx,y ∈ K(X)×O×

x , then

(γx,y, βx,y)x,y = (γx,y, f)x,y(γx,y, sx,y)x,y . (2.4)

[15, Lemma 5.2] shows that
∏

x∈y(γx,y, f)x,y is convergent, and this means that (γx,y, f)x,y ∈ O
×
b for

all but finitely many x ∈ y. Moreover if p = char k(b), then p is a uniformizing parameter for Kx,y, so
γx,y = prcx,y with cx,y ∈ O

×
x,y. Thus:

(γx,y, sx,y)x,y = (pr, sx,y)x,y(cx,y, sx,y)x,y

Obviously (cx,y, sx,y)x,y ∈ O
×
b , so in order to finish the proof it remains to show that (pr, sx,y)x,y lies in

O×
b too. Just for simplicity of calculations let’s assume that Kx,y is a standard field and Kx,y = Kp{{t}}

(the argument works easily also for non standard fields). By the explicit expression of the Kato’s residue
homomorphism (cf. [15, equation (8)]) we can calculate that:

(pr, sx,y)x,y = NKp|Kb
(prw)

where w ∈ Z is the winding number associated to sx,y (see [15, equation (7)] for details). But we know
that sx,y ∈ O

×
x = O×

Kp
+ tOKp

[[t]], thus:

sx,y = a+ t
∑

i≥0

ait
i = a


1 + t

∑

i≥0

ai
a
ti


 .

It follows that w = 0 and the proof is complete.

Remark 2.5. For any b ∈ B we have the following decomposition for the big product (2.3):

∑

x∈Xb,
y∋x

vb (( , )x,y) =
∑

y⊂Xb,
x∈y

vb (( , )x,y) +
∑

x∈Xb,
y∋x,

y horiz.

vb (( , )x,y) .

We put 〈 , 〉i as the undetermined function in diagram (2.1) and we have the following fundamental
result:

Theorem 2.6. Consider the notation of diagram (2.1). The pairing 〈 , 〉i satisfies the following proper-
ties:

(1) It is bilinear and symmetric.

(2) Let r, s, r′, s′ ∈ ker(d1×) such that p(r) = p(r′) and p(s) = p(s′), then 〈r, s〉i = 〈r
′, s′〉i.
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(3) It descends naturally to a pairing H1(A×
X)×H1(A×

X)→ Pic(B).

Proof. Let’s fix r = (α, β, α−1β−1), s = (γ, δ, γ−1δ−1) ∈ ker(d1×); moreover we can fix b ∈ B and work
componentwise.
(1) Bilinearity is clear. We will show that as elements of Div(B) we have 〈r, s〉i = 〈s, r〉i + (f) with
f ∈ K×. For any flag x ∈ y: α−1

x,yβ
−1
x,y ∈ O

×
x,y and γ−1

x,yδ
−1
x,y ∈ O

×
x,y so we have that:

0 =
∑

x∈Xb,
y∋x

vb
(
(α−1

x,yβ
−1
x,y, γ

−1
x,yδ

−1
x,y)x,y

)
=

=
∑

x∈Xb,
y∋x

vb ((αx,y, γx,y)x,y)

︸ ︷︷ ︸
(i)

+
∑

x∈Xb,
y∋x

vb((αx,y, δx,y)x,y)

︸ ︷︷ ︸
(ii)

+

+
∑

x∈Xb,
y∋x

vb((βx,y, γx,y)x,y)

︸ ︷︷ ︸
(iii)

+
∑

x∈Xb,
y∋x

vb((βx,y, δx,y)x,y)

︸ ︷︷ ︸
(iv)

.

(2.5)

Now we analyze in detail the underbraced terms in equation (2.5): for (i) we have the following decom-
position thanks to remark 2.5:

(i) =
∑

y⊂Xb,
x∈y

vb((αx,y, γx,y)x,y) +
∑

x∈Xb,
y∋x,

y horiz.

vb((αx,y, γx,y)x,y) =

(prop.2.2(2)) = 0 +
∑

x∈Xb

∑

y∋x,
y horiz.

vb((αx,y, γx,y)x,y) .

By definition we have that (ii) = nb(s, r) and (iii) = −nb(r, s). Finally:

(iv) =
∑

x∈Xb

∑

y∋x

(βx,y, δx,y)x,y =(prop.2.2(1)) 0

By substituting in equation (2.5) we conclude that

nb(r, s) = nb(s, r) +
∑

x∈Xb,
y∋x,

y horiz.

vb((αx,y, γx,y)x,y) . (2.6)

Let y be an horizontal curve and let x ∈ y such that ϕ(x) = b, then the coefficient field of Kx,z is
k(y)x. The two dimensional valuation vx,z extends the valuation vy on k(y) and moreover that the norm
Nk(y)x|Kb

extends Nk(y)|K . It follows that ( , )x,z extends the one dimensional tame symbol

( , )y := Nk(y)|K ◦ ( , )k(y) : K
×
y ×K×

y → k(y)× → K× .

This means that for any two elements u, v ∈ Ky, where y is horizontal, we have that:

(u, v)x,y = (u, v)y ∈ K

for any x ∈ y. Therefore we can rewrite equation (2.6):

nb(r, s) = nb(s, r) +
∑

y horiz.

vb((αx,y, γx,y)y) . (2.7)

Let’s put f =
∏

y horiz.(αx,y, γx,y)y ∈ K×, then equation (2.7) implies the following equality:

〈r, s〉i = 〈s, r〉i +
∑

b∈B

vb(f)[b] = 〈s, r〉i + (f) .

(2) Let r′ = (α′, β′, (α′)−1(β′)−1) and s′ = (γ′, δ′, (γ′)−1(δ′)−1). Since p(r) = p(r′) and p(s) = p(s′),
then vy(αx,y) = vy(α

′
x,y) and vy(γx,y) = vy(γ

′
x,y). This means that γ′

x,y = fx,yγx,y and α′
x,y = gx,yαx,y
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for fx,y, gx,y ∈ O
×
y (for any x ∈ y). Then we have the following chain of equalities depending on what we

showed in claim (1):

nb(r
′, s′) =

∑

x∈Xb,
y∋x

vb((fx,yγx,y, β
′
x,y)x,y) =

=
∑

x∈Xb,
y∋x

((fx,y, β
′
x,y)x,y) +

∑

x∈Xb,
y∋x

vb((γx,y, β
′
x,y)x,y) =

=
∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y) + nb(r

′, s) =
∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y) + nb(s, r

′) + vb(f) =

=
∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y) +

∑

x∈Xb,
y∋x

vb((gx,yαx,y, δx,y)x,y) + vb(f) = (∗)

Where f ∈ K×.

(∗) =
∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y) +

∑

y⊂Xb,
x∈y

vb((gx,y, δx,y)x,y) +
∑

x∈Xb,
y∋x

vb((αx,y, δx,y)x,y) + vb(f) =

=
∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y)

︸ ︷︷ ︸
(i)

+
∑

x∈Xb,
y∋x

vb((gx,y, δx,y)x,y)

︸ ︷︷ ︸
(ii)

+nb(r, s) + vb(fg) .

Note that in the last line we used the fact that nb(s, r) = nb(r, s) + vb(g) for g ∈ K×. We have to show
that the terms (i) and (ii) are valuations at b of elements of K×. Since (α′)−1

x,y(β
′)−1
x,y ∈ O

×
x,y, we have:

0 =
∑

x∈Xb,
y∋x

vb((fx,y, (α
′)−1
x,y(β

′)−1
x,y)x,y) =

=
∑

x∈Xb,
y∋x

vb((fx,y, α
′
x,y)x,y) +

∑

x∈Xb,
y∋x

vb((fx,y, β
′
x,y)x,y) =

= vb(h) +
∑

y⊂Xb,
x∈y

vb((fx,y, β
′
x,y)x,y) .

with h =
∏

y horiz.(fx,y, α
′
x,y)y ∈ K×. For (ii) the argument is similar.

(3) Let r, s ∈ im(d0×). It means that α = lm−1, β = tl−1, γ = uv−1, δ = zu−1 for l, u ∈ A×
0 = K(X)×,

m, v ∈ A×
1 and t, z ∈ A×

2 . So:

nb(r, s) =
∑

x∈Xb,
y∋x

vb((uv
−1
x,y, tx,yl

−1)x,y) =

=
∑

x∈Xb,
y∋x

vb((u, tx,y)x,y) +
∑

x∈Xb,
y∋x

vb((u, l
−1)x,y)+

+
∑

x∈Xb,
y∋x

vb(v
−1
x,y, tx,y)x,y) +

∑

x∈Xb,
y∋x

vb((v
−1
x,y, l

−1)x,y) .

(2.8)

Now it is enough to appeal to one of the arguments previously used to conclude that each summand of
equation (2.8) is either 0 or of the form vb(f) for f ∈ K×. It means that 〈r, s〉i = 0 in CH1(B).
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We want to give an alternative formula for the coefficient nb(r, s). Notice that:

−
∑

x∈Xb,
y∋x

vb((αx,y, γ
−1
x,yδ

−1
x,y)x,y) =

=
∑

x∈Xb,
y∋x

vb((αx,y, γx,y)x,y) +
∑

x∈Xb,
y∋x

vb((αx,y, δx,y)x,y) =

= vb(f) +
∑

x∈Xb,
y∋x

vb((αx,y, δx,y)x,y) = vb(f) + nb(s, r) = vb(fg) + nb(r, s)

(2.9)

for f, g ∈ K×. Therefore, we can also express:

nb(r, s) = −
∑

x∈Xb,
y∋x

vb((αx,y, γ
−1
x,yδ

−1
x,y)x,y) . (2.10)

In particular if y is a horizontal curve:

− vb((αx,y, γ
−1
x,yδ

−1
x,y)x,y) = vy(αx,y)vb

(
Nk(y)x|Kb

(
γ−1
x,yδ

−1
x,y

))
. (2.11)

The following lemmas are fundamental in order to understand the relationship between 〈r, s〉i and Deligne
pairing.

Lemma 2.7. Let Xb ⊂ X the fiber over b ∈ B and assume that Xb has at least two irreducible components.
If D ⊂ Xb is an integral curve, then there exists a divisor D′ ∼ D such that D′ doesn’t have components
contained in Xb.

Proof. Consider Γ running amongst all irreducible components of Xb, then put

S :=
⋃

Γ⊂Xb

Γ6=D

(Γ ∩D) .

By the moving lemma we can find D′ ∼ D not passing by S. It is clear by the definition of S that D′

cannot have vertical components contained in Xb.

Lemma 2.8. Let D,E two prime divisors on X and let x ∈ D ∩ E a nonsingular point for both D and
E. Moreover let dx, ex ∈ OX,x be the local equations at x of D and E respectively. Then we have the
equality:

v
(1)
x,D(ex) = ix(D,E)

where v
(1)
x,D : E×

x,D → Z is the one dimensional valuation and ex ∈ E×
x,D is the natural projection through

the map Ox,D → E×
x,D.

Proof. Put y = D and v = v
(1)
x,D. First of all notice that OX,x ⊆ OX,y, therefore ex ∈ Oy,x and it is the

image on the natural map OX,x → Oy,x ⊂ k(y). We have to show that v(ex) = lengthOX,x

OX,x

(dx,ex)
, but we

know that Oy,x =
OX,x

dxOX,x
, thus

lengthOX,x

OX,x

(dx, ex)
= lengthOy,x

Oy,x

exOy,x

= v(ex) .

Theorem 2.9. If r, s ∈ ker(d1×) such that D = p(r) and E = p(s) are two nonsingular prime divisors on
X with no common components, then 〈r, s〉i = [[D,E]].

Proof. Fix r = (α, β, α−1β−1), s = (γ, δ, γ−1δ−1). We want to show that it is enough to restrict to the
case when either D or E is horizontal. In any case, by theorem 2.6(2) we always choose δx,y in the

20



following way: δx,y = 1 if x /∈ D ∩ E and δx,y = t−1
x , where tx ∈ OX,x is the local equation of E at x, if

x ∈ D ∩ E. For any y 6= D, αx,y ∈ O
×
y , since p(a) = D, therefore:

nb(r, s) = −
∑

x∈D∩Xb

vb((αx,D, γ−1
x,Dδ−1

x,D)x,D) . (2.12)

If D ⊆ Xb and E ⊆ Xb′ with b 6= b′, then by proposition 2.2(2) and the choice of δx,y we have:

nb(r, s) = −
∑

x∈D∩Xb

vb((αx,D, γ−1
x,D)x,D) = 0 . (2.13)

So in such a particular case 〈r, s〉i = [[D,E]] = 0.
If D,E ∈ Xb we can apply lemma 2.7 and find a divisor D′ =

∑
j njΓj ∼ D such that Γj 6⊂ Xb. Clearly

[[Γj , E]] =
∑

j

nj [[Γj , E]]

therefore from now on we can restrict our calculation to the case where either D or E is horizontal. By
symmetry we can fix D to be horizontal and we denote with K(D) its function field. In this case we have
an explicit expression given by equation (2.11):

nb(r, s) =
∑

x∈D∩Xb

vb

(
NK(D)x|Kb

(
γ−1
x,Dtx

))
=

∑

x∈D∩Xb

vb

(
NK(D)|K

(
γ−1
x,Dtx

))
=

=
∑

x∈D∩Xb

vb

(
NK(D)x|Kb

(
γ−1
x,D

))
+

∑

x∈D∩E∩Xb

vb
(
NK(D)x|Kb

(
tx
))

.

Now by the theory of extensions of valuation fields (see [10, II(2.5)]), we know that if vx := v
(1)
x,D is the

valuation on K(D)x, then:

vx =
1

[k(x) : k(b)]
vb ◦NK(D)x|Kb

.

Therefore we obtain:

nb(r, s) =
∑

x∈D∩Xb

[k(x) : k(b)]vx

(
γ−1
x,D

)
+

∑

x∈D∩E∩Xb

[k(x) : k(b)]vx
(
tx
)
. (2.14)

Put by simplicity f = γ−1
x,D ∈ K(D)×, consider the restricted morphism of arithmetic curves ϕ : D → B

and the principal divisor (f) ∈ Princ(D), then:

ϕ∗((f)) =
∑

b∈B

( ∑

x∈D∩Xb

[k(x) : k(b)]vx(f)

)
[b] .

Moreover vx
(
tx
)
= ix(D,E) by lemma 2.8. Equation 2.14 implies that in Div(B) we have the following

equality:
〈r, s〉i = ϕ∗((f)) + [[D,E]] .

But by [16, 7 Remark 2.19] we know that ϕ∗((f)) =
(
NK(D)|K(f)

)
∈ Princ(B), so the proof is complete.

We obtained the idelic representation of Deligne pairing:

Corollary 2.10. Diagram (2.1) is commutative.

Proof. For any two divisors D,E ∈ Div(X) define the pairing:

Θ(D,E) := 〈r′, s′〉i

for a choice of r′, s′ ∈ ker(d1×) such that p(r′) = D and p(s′) = E. By theorem 2.6(2) Θ is well defined
and moreover by 2.6(1), 2.6(3) and 2.9 we can conclude that Θ(D,E) = D.E. Thus for any a, b ∈ ker(d1×)
we have that:

〈r, s〉i = Θ(p(r), p(s)) = p(r).p(s) .
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3 Adelic Deligne pairing

A clever and quick adelic interpretation of intersection theory on algebraic surfaces is given in [9] and
the strategy is very simple: first of all one defines the adelic Euler-Poincare characteristic χa(·) which
associates an integer to any divisor on the surface (or more in general to any invertible sheaf) by using
just data coming from the adelic complex. Then the adelic intersection pairing is defined accordingly to
equation (B.1) by using χa(·) instead of the usual Euler-Poincare characteristic. Here we try to follow
the same approach; so, it is evident that we have to define the adelic determinant of the cohomology

detaRϕ∗ : Pic(X)→ Pic(B)

which should be a function involving only adelic data, and then the adelic Deligne pairing according to
theorem B.3.

For any coherent sheaf F on B and any closed point b ∈ B, we define the following objects:

Kb(F ) := Fξ ⊗K Kb = (Fb ⊗OB,b
K)⊗K Kb = Fb ⊗OB,b

Kb ,

Ob(F ) := Fb ⊗OB,b
Ob .

AB(F ) :=
∏′

b∈B

Kb(F )

where the restricted product is taken with respect to the rings Ob(F ), and

AB(F )(0) :=
∏

b∈B

Ob(F ) .

Moreover recall that we have the following one dimensional adelic complex given by:

AB(F ) : 0→ Fξ ⊕AB(F )(0) → AB(F )→ 0

(f, (αb)b) 7→ (f − αb)b

It is important to point out that we want to consider AB(F ) as a complex of OK-modules in the natural
way.

Definition 3.1. Let D be a divisor on X satisfying proposition B.1. For any invertible sheaf L on B we
put by simplicity G := ϕ∗L (D) and H := ϕ∗(L (D)/L ). Then the adelic determinant of cohomology
is given by:

detaRϕ∗(L ) := det
(
H0(AB(G ))

)
⊗
(
det
(
H0(AB(H ))

))∗

Where with ∗ we denote the algebraic dual. Note that detaRϕ∗(L ) is a OK-module, but by abuse of
notation we can consider it as an element in Pic(B) after taking the associated sheaf (detaRϕ∗(L ))∼

(see [16, 5.1.2]). In other words we omit the operator ∼ by simplicity of notations.

Definition 3.2. The adelic Deligne pairing between two invertible sheaves L and M on B is defined
as:

〈L ,M 〉a :=

detaRϕ∗(OX)⊗ (detaRϕ∗(L ))−1 ⊗ (detaRϕ∗(M ))−1 ⊗ detaRϕ∗(L ⊗M )

It is immediate to verify that the definition of the adelic Deligne pairing coincides with the usual
Deligne pairing by using equation (B.3). Indeed thanks to [11]H0(AB(G )) ∼= H0(B,G ) andH0(B,G )∼ ∼=
G by affine Serre’s theorem (see [22, II,4]). Obviously the same holds for F .

Appendices

A Topics in K-theory

Algebraic K-theory is a very wide subject with a long history. It can be approached in many different
ways and several links can be build between all approaches (see for example [23]). This appendix is not
a short introduction to algebraic K-theory, but just a mere collection of definition and notations needed
in this text.

22



Definition A.1. Let G be an abelian group, and fix an integer ≥ 1. A r-Steinberg map is an homomor-
phism of Z-modules f : (F×)⊕r → G such that f(a1, . . . , ar) = 0 whenever there exist two indexes i, j
such that i 6= j and ai + aj = 1.

Let’s denote with St(r) the category whose objects are the r-Steinberg maps f : (F×)⊕r → G and
the morphisms are the commutative diagrams:

(F×)⊕r G

H

f

g
φ

where φ is a group homomorphism.

Proposition A.2. The category St(r) has the initial object.

Proof. We construct the initial objects by hands. Let’s define

Kr(F ) := F× ⊗Z . . .⊗Z F×

︸ ︷︷ ︸
r times

/
S

where S is the (multiplicative) subgroup generated by the following set:

{a1 ⊗ . . .⊗ ar : ai + aj = 1 for some i 6= j} .

The natural image of a pure tensor a1 ⊗ . . . ⊗ ar in Kr(F ) is denoted by {a1, . . . , ar}. Clearly we have
an induced map:

{ } : (F×)⊕r → Kr(F )

(a1, . . . , ar) 7→ {a1, . . . , ar}

At this point it is straightforward to see that { } : (F×)⊕r → Kr(F ) is the initial object for St(r).

Definition A.3. For r = 0 we put K0(F ) := Z and in general we call the group Kr(F ) constructed in
proposition A.2 the r-th K-group of F . Note that K1(F ) = F×. The map { } : (F×)⊕r → Kr(F ) is
called the r-th symbol map and in the cases r = 0, 1 it is just the identity.

Remark A.4. The groups introduced in definitons A.3 are usually called MilnorK-groups and the standard
notation is KM

r . However in this text we can simplify the notation.

The construction Kr( ) is functorial, in fact let f : F× → L× be a group homomorphism, then the
composition:

(F×)⊕r f⊕r

−−→ (L×)⊕r { , }
−−→ Kr(L)

is evidently a Steinberg map. By the universal property it induces a morphism Kr(f) : Kr(F )→ Kr(L).
When F is a complete discrete valuation field there exists a nice relationship between K-groups of F

and K-groups of the residue fields:

Theorem A.5. Let F be a discrete valuation field (not necessarily complete) then there is a unique group
homomorphism:

∂r : Kr(F )→ Kr−1(F )

satisfying the following property:

∂r({x1, . . . , xr−1, ̟}) = {x1, . . . , xr−1}

for any local parameter ̟ of F and any x1, . . . , xr−1 ∈ O
×
F .

Proof. See [17].

Definition A.6. The map ∂r described in theorem A.5 is called the (Milnor) r-th boundary map.
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Consider the tame symbol for a complete discrete valuation field (F, v):

( , )F : F× × F× → F
×

(a, b) 7→ (a, b)F = (−1)v(a)v(b) av(b)b−v(a) .
(A.1)

We have a nice description of the boundary map ∂2 in relation to the tame symbol. By the universal

property of K2(F ), the tame symbol ( , )F induces a unique map Ψ : K2(F ) → F
×
= K1(F ) such that

Ψ({ , }) = ( , )F . Let a ∈ O×
F and let ̟ be a local parameter for F , then Ψ({a,̟}) = (a,̟)F = a; this

actually means that ∂2 = Ψ. In other words the 2-nd boundary map for a complete discrete valuation
field is exactly the map induced naturally by the tame symbol.

For a discrete valuation field F (not necessarily complete) we have the multiplicative group U
(i)
F :=

1 + piF for i ≥ 1 and we have also the K-theoretic version of it:

U iKr(F ) := {{a1 . . . ar} ∈ Kr(F ) : aj ∈ U
(i)
F ∀j = 1, . . . , r}

and we put:
K̂r(F ) := lim

←−
i

Kr(F )/U iKr(F ) . (A.2)

Clearly we have a natural homomorphism Kr(F ) → K̂r(F ) and moreover if F̂ is the completion of F

there is an isomorphism K̂r(F ) ∼= K̂r(F̂ ). Now put L = Frac (OF [[t]]), for any prime ideal p of height 1
in OF [[t]] we have that OF [[t]]p is a discrete valuation ring and in particular F{{t}} is the completion of
L at p = pFOF [[t]]. Consider the set:

S := {p ∈ Spec(OF [[t]]) : ht p = 1, p 6= pFOF [[t]]} ,

and for any p ∈ S let’s denote with ∂
(p)
r : Kr(L) → Kr−1(k(p)) the r-th boundary map relative to the

valuation defined by p.

Definition A.7. For r ≥ 1, the r-th (Kato) residue map on L is given by the following composition:

res
(r)
L : Kr(L)

⊕

p∈S

Kr−1(k(p)) Kr−1(F )
(∂(p)

r )p∈S

∑
p∈S

Kr(Nk(p)|F )

Theorem A.8. The r-th residue map satisfies:

res
(r)
L

(
U (i)Kr(L)

)
⊆ U (i)Kr−1(F ) ∀i ≥ 1

therefore it induces a homomorphism:

res
(r)
F{{t}} : K̂r(F{{t}}) ∼= K̂r(L)→ K̂r−1(F ) .

Proof. See [12, Theorem 1].

B Determinant of cohomology

For an algebraic surface Z over a field k, intersection theory can be introduced by using the Euler-Poincare
characteristic χk : Coh(Z) → Z “restricted” to Pic(Z). In fact, the intersection number between two
invertible sheaves L and M on Z can be calculated by the following formula:

L .M := χk(OZ)− χk(L
−1)− χk(M

−1) + χk(L
−1 ⊗M

−1) (B.1)

In the Arakelov setting given by the arithmetic surface ϕ : X → B, we want to define a map Coh(X)→
Pic(B) such that, when we take the “restriction” to Pic(X), we obtain a formula, similar to (B.1), relating
our map to the Deligne pairing. In other words, we would like to have the arithmetic equivalent notion
of the Euler-Poincare characteristic. The answer to our query will be the determinant of the cohomology,
denoted by detRϕ∗, and in this section we are going to construct it step by step.

The first thing to notice is that χk is a cohomological object and in the case of ϕ : X → B the
“relative cohomology” is captured by the higher direct image functors Riϕ∗. By keeping in mind that
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the output of the determinant of the cohomology should be an invertible sheaf on the base B, in analogy
with the definition of χk, the most reasonable definition should be something like:

detRϕ∗(F ) :=
⊗

j≥0

(detRjϕ∗F )(−1)j = detϕ∗(F ) ⊗ (detR1ϕ∗(F ))−1 (B.2)

Unfortunately equation (B.2) doesn’t make any sense in general, since the higher direct images Rjϕ∗F

are not locally free sheaves, so we cannot take the determinant. However, we will cook up a definition of
detRϕ∗(F ) which agrees with equation (B.2) when Rjϕ∗F are locally free.

The following proposition is fundamental:

Proposition B.1. There exists an effective divisor D on X which doesn’t contain any fibre of ϕ such
that for any coherent sheaf F on X we get an exact sequence:

0→ ϕ∗F → ϕ∗F (D)→ ϕ∗(F (D)/F )→ R1ϕ∗F → 0 (B.3)

such that ϕ∗F (D) and ϕ∗(F (D)/F ) are both locally free sheaves on B.

Proof. See [1, XIII section 4.] or [13, VI, Lemma 1.1].

Definition B.2. Let F ∈ Coh(X) and let D be a divisor as in proposition B.1; the determinant of the
cohomology of F is:

detRϕ∗(F ) := detϕ∗(F (D)) ⊗ (detϕ∗(F (D)/F ))−1 ∈ Pic(B)

Moreover detRϕ∗(F ) doesn’t depend on the choice of D (for the proof of this statement see [1, XIII
section 4.] or [13, VI]).

Now we want to show that if R0ϕ⋆F = ϕ∗F and R1ϕ⋆F are both locally free, then detRϕ∗(F ) is
given by equation (B.2). Consider the exact sequence of equation (B.3), put

f : ϕ∗F (D)→ ϕ∗(F (D)/F ) ,

g : ϕ∗(F (D)/F )→ R1ϕ∗F ,

and G = im(f) = ker(g). Then we get the following two short exact sequences of locally free sheaves:

0→ ϕ∗F → ϕ∗F (D)
f
−→ G → 0 ; (B.4)

0→ G → ϕ∗(F (D)/F )
g
−→ R1ϕ∗F → 0 . (B.5)

At this point we use the properties of the determinant on short exact sequences and we obtain:

detRϕ∗(F ) = detϕ∗(F (D)) ⊗ (detϕ∗(F (D)/F ))−1 ∼=

∼= detϕ∗F ⊗ detG ⊗ (detG )−1 ⊗ (detR1ϕ∗(F ))−1 ∼=

∼= detϕ∗F ⊗ detR1ϕ∗(F ))−1 .

The relationship between the determinant of cohomology and Deligne pairing is given by the following
theorem:

Theorem B.3. Let L ,M be two invertible sheaves on X, then

〈L ,M 〉 ∼= detRϕ∗(OX)⊗ (detRϕ∗(L ))−1 ⊗ (detRϕ∗(M ))−1 ⊗ detRϕ∗(L ⊗M ) .

Proof. See [1, XIII, Theorem 5.8].
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