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GYSIN TRIANGLES IN THE CATEGORY OF MOTIFS WITH MODULUS

KEIHO MATSUMOTO

Abstract. In this paper, we study a Gysin triangle in the category of motives with modulus (Theorem
1.2). We can understand this Gysin triangle as a motivic lift of the Gysin triangle of log-crystalline
cohomology due to Nakkajima and Shiho. After that we compare motives with modulus and Voevodsky
motives (Corollary 1.6). The corollary implies that an object in MDM

eff decomposes into a p-torsion part
and a Voevodsky motive part. We can understand the corollary as a motivic analogue of the relationship
between rigid cohomology and log-crystalline cohomology.

1. Introduction

The Gysin triangle (see [Voe00c, Prop.3.5.4]) in Voevodsky’s category of motives DMeff is a remarkable
result which is a motivic analogue of the purity theorem of étale cohomology [AGV71, 3, XVI, Thm.3.7].
In this paper we shall prove a generalization of Voevodsky’s theorem in the setting of motives of modulus
pairs. Our theorem is an analogue of the Gysin triangle of (log-)crystalline cohomology (see [NS08,
(2.18.8.2)]). As a corollary we give a remarkable equivalence which claims that the essential parts of a
motive with modulus are the p-torsion part and the Voevodsky part. Our proof uses the smooth blow up
formula in MDMeff (see [KS19]) and a new weighted smooth blow up formula (see Section 4).

To formulate his Gysin triangle, Voevodsky uses a smooth variety and a smooth closed subvariety. To
formulate our Gysin triangle in MDMeff we replace the smooth variety by a modulus pair with smooth
total space and a modulus whose support is a strict normal crossing divisor, and replace the closed
subvariety by a prime smooth Cartier divisor which intersects the modulus properly.

Situation 1.1. Let M be a smooth scheme over a field, M∞ ⊂ M an effective Cartier divisor, Z ⊂ M
a smooth integral closed subscheme not contained in M∞ such that the support |M∞ + Z| is a strict
normal crossings divisor on M . Write Z∞ for the intersection product of M∞ and Z.

Our main goal is the following two theorem.

Theorem 1.2. (Tame Gysin triangle) In the notation of Situation 1.1, there exsit a distinguish triangle

M(M,M∞ + Z)→M(M,M∞)→M(Z,Z∞)(1)[2] →M(M,M∞ + Z)[1],

in MDMeff .

Theorem 1.2 leads to the following.

Corollary 1.3 (Theorem 7.1). Let X be a smooth variety over k which has a compactification X such
that X is smooth and |X\X| is a strict normal crossings divisor on X, then the unit

M(X, |X\X|red)→ ωeff(M(X))

of the adjunction ωeff : MDMeff
⇄ DMeff : ωeff is an isomorphism.

Moreover, as an application of this corollary we get the following equivalence, which philosophically
has been expected since the beginning of the theory of motives with modulus.

Corollary 1.4 (Corollary 8.8). If the base field k has characteristic p ≥ 2, for any modulus pair
(M,M∞) such that M is smooth and M∞

red is strict normal crossing, then there is an isomorphism in

MDMeff(k,Z[1/p])

M(M,M∞)Z[1/p] ≃M(M,M∞
red)Z[1/p].
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Definition 1.5. We define MDMeff as the smallest full triangulated subcategory of MDMeff which
contains all of proper modulus pairs and is closed under small coproducts.

The category MDMeff is equivalent to the category in [KMSY20, Definition 3.2.4] because of [KMSY20,
Threorem 3.3.1(2), Theorem 5.2.2].

Theorem 1.6 (Theorem 8.9). If the base field k has characteristic p ≥ 2, admits log resolution of
singularities, and R is commutative ring containing 1/p then

MDMeff(k,R) ≃ DMeff(k,R).

Let us discuss the relationship between our results and other work.

1.1. Relationship to the Gysin triangle for (log-)Crystalline cohomology. First lets state the
Gysin triangle for crystalline cohomology, and a comparison theorem between rigid cohomology and
crystalline cohomology.

Theorem 1.7 ([NS08, Eq.2.18.8.2], [Shi02]). Let W be the Witt ring of the base field, let K be the
fractional field of W , and set S = SpecW . Consider the push forward functors f−/S : Sh(−/S)crys →
ShZar(S) from the (log-)crystalline sites of log schemes over S to the Zariski site of S, and the structure
sheaves O−/S on (−/S)crys. In the notation of Situation 1.1, there is a long exact sequence of Zariski
sheaves on S:

· · · → Rn−2fZ/S(OZ/W )(−1)→ RnfM/S(OM/S)

→ Rnf(M,Z/S)(O(M,Z)/S)→ Rn−1fZ/S(OZ/S)(−1)→ · · ·

and we have a natural and functorial isomorphism

comp : H i
crys((M,Z)/W )⊗W K ≃ H i

rig(M\Z/K).

Expectation 1.8. We expect that there exists an exact “crystalline realization functor”

RΓcrys : MDMeff(k,W )→ D(W )

satisfying

RΓcrys

(
M(M, ∅)

)
≃ RΓ

(
S,RfM/S(OM/S)

)
and

RΓcrys

(
M(M,Z)

)
≃ RΓ

(
S,Rf(M,Z)/S(O(M,Z)/S)

)
.

In this case, the tame Gysin triangle Theorem 1.2 would be a motivic lifting of the first claim of
Theorem 1.7.

Now consider rigid cohomology. Milne-Ramachandran [MR09] construct1 a rigid realization

RΓrig : DMeff(k,K)→ D(K)

satisfying
RΓrig(M(X)) = RΓrig(X)

for X smooth where the right hand side is Besser’s rigid complex. By Corollary 1.6 the functor ωeff
K :

DMeff(k,K)→MDMeff
prop(k,K) is an equivalence, with quasi-inverse ωeff ,K . Since ωeff sendsM(M,M∞

red)

to M(M\M∞), the second claim of Theorem 1.7 produces a natural isomorphism of functors

MDMeff(k,K)

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

RΓcrys⊗WK

ωeff
//

∼=

comp

DMeff(k,K)

RΓrigxxqq
qq
qq
qq
qq
q

D(K)

1This can be constructed as follows. Since K contains Q, by Ayoub’s work [Ayo14, App.B] there is an equivalence
DM

eff(k,K) ∼= DA
eff
ét (k,K) and so it suffices to construct a functor DA

eff
ét (k,K) → D(K). Since rigid cohomology satisfies

étale descent and A1-homotopy invariance (see [CT03]), the factorization of Besser’s rigid complex RΓrig(−) : (Sm /k) →

D(K) (see [Bes00, 4.9, 4.13]) through DA
eff
ét (k,K), is a rigid realization.
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In this light, if Expectation 1.8 holds, then the equivalence ωeff of Corollary 1.6 will be a motivic lifting
of the isomorphism comp of Theorem 1.7.

Remark 1.9. Binda-Park-Østvær constructed in [BPØ20, Section 1.3.2] a framework which is analogous to
MDMeff called log motives, and they are pursuing the construction of a log crystalline realisation functor
in their framework. It would be very interesting to investigate the relationship between log motives and
motives with modulus in the future.

1.2. Relationship to Miyazaki’s works on higher Chow groups with modulus. In [BS19] Binda-
Saito define higher Chow groups with modulus generalizing additive higher Chow groups (see [BE03]).
Miyazaki proves that after inverting p, higher Chow groups with modulus become independent of the
modulus.

Theorem 1.10. [Miy19, Theorem 5.1] If base field has characteristic p, then for any modulus pair
(M,M∞), we have an isomorphism

CHi(M |M∞, j,Z[1/p]) ≃ CHi(M |M∞
red, j,Z[1/p]).

On the other hand, it is expected that Voevodsky’s isomorphism [Voe00c, Cor.4.2.9]

(1.1) CHn−i(X, j−2i) ∼= hom
DM

eff (Z(i)[j],M c
gm(X))

can be generalized to a relationship between higher Chow groups with modulus and MDMeff . If this is
the case, then the equivalence of Corollary 1.6 can be seen as an analogue of Miyazaki’s independence
result.

1.3. Relationship to reciprocity sheaves. If the base field k has characteristic p, then for a Nisnevich
reciprocity sheaf F (see [KSY14]), the kernel of the canonical surjective morphism F → H0(F ) must be p-
primary torsion, (see [BCKS17, Corollary 3.10]). In fact Binda-Cao-Kai-Sugiyama prove an equivalence of
categories RecNis[

1
p ] ≃ HINis[

1
p ] between the category of reciprocity sheaves and the category of homotopy

invariant Nisnevich sheaves with transfers.

On the other hand, there is a tower of fully faithful functors HINis
iNis
rec
→֒ RecNis

ωCI
rec
→֒ CIspNis (see [KSY17,

Thm.3.6.6], [KSY17, Cor.3.8.2], [BS18]). In analogy to the fact that the heart of DMeff is HINis (see
[Voe00c, Thm.3.1.12]), it is expected that the heart of MDMeff is CIspNis (log version of this story is

proved by Binda-Merici [BM20, Theorem 5.7]). By definition the composition ωCI
rec ◦ i

Nis
rec is compatible

with ωeff : DMeff → MDMeff . If we assume that the heart of MDMeff is CIspNis then Cor.1.6 implies

an equivalence CIspNis[
1
p ]
∼= HINis[

1
p ]. Then the two inclusions iNis

rec [
1
p ] and ω

CI
rec[

1
p ] become equivalences, so

Corollary 1.6 can be seen as an analogue of this story.
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2. Definition and Preparation

In this paper, we work over a perfect field k. As in [KMSY19a, Definition 1.3.1] we write MCor for
the category of modulus pairs and left proper admissible correspondences. We write

Ztr : MCor→ PSh(MCor)

for the associated representable additive presheaf functor.
We set MNST to be the category of Nisnevich sheaves on MCor defined in [KMSY19a, Definition

4.5.2].
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We define MDMeff to be the Verdier quotient of D(MNST) by the smallest localising subcategory
containing all complexes of the form:
(CI) for M ∈MCor ,

Ztr(M⊗�)→ Ztr(M).

Note that complexes of the following form are quasi-isomorphic to zero in D(MNST):
(MV) for M ∈MCor and an elementary Nisnevich cover2(U,V) of M,

Ztr(U×M V)→ Ztr(U)⊕ Ztr(V)→ Ztr(M).

We define MDMeff to be the smallest subcategory of MDMeff containing the objects M(M,M∞) for
modulus pair (M,M∞) such that M is proper, and closed under isomorphisms, direct sums, shifts, and
cones.

We have a functor
ω : MCor→ Cor

with ω(M,M∞) =M◦ := M \ M∞. This functor ω induces a triangulated functor

ωeff : MDMeff → DMeff .

Definition 2.1. In Situation 1.1, we define the closed Thom space as

Th(NZM, cl) := Cone

(
M(P(NZM ⊕O), π

∗Z∞ + {∞}Z)

→M(P(NZM ⊕O), π
∗Z∞)

)
.

in MDMeff , where π : P(NZM ⊕O)→ Z is the canonical projection.

Notice that the closed Thom space is a lifting of Voevodsky’s Thom spaces in the sense that ωeff sends
Th(NZM, cl) to Th(NZ◦M◦).

For a smooth variety and a vector bundle E on X, Voevodsky defined the Thom space in DMeff :

ThX(E) = Cone(PX(E ⊕O)\{∞}X → PX(E ⊕O)).

Remark 2.2. Note that Th(NZM) is a direct summand ofM(P(NZM⊕O), π
∗Z∞) sinceM(P(O), π∗Z∞) ≃

M(Z,Z∞). Cf. [KS19, Lemma 6]. In fact, by the projective bundle formula [KMSY20, Theorem 7.3.2],
the closed Thom spaces are just Tate twists: Th(NZM, cl) ∼= M(Z,Z∞)(1)[2].

Remark 2.3. For any proper birational morphism of schemes f : X → Y and effective Cartier divisors
Y∞ ⊂ Y and X∞ = f∗Y∞ satisfying Y \Y∞ ≃ X\X∞, there is an isomorphism

M(Y, Y ∞) ≃M(X,X∞)

in MCor. Cf. [KMSY19a, Proposition 1.9.2.(b)].

The following basic homological algebra result will be useful.

Lemma 2.4. Consider a commutative diagram.

A //

��

B

��

// C

��

A′

��

// B′

��

// C ′

��

A′′ // B′′ // C ′′

in an additive category A such that all horizontal and vertical compositions are zero. Suppose we have a
triangulated functor Φ : Kb(A)→ T to some triangulated category T such that (the complexes associated

2By elementary Nisnevich cover we mean morphisms {(U,U∞) → M, (V , V ∞) → M} such that {U → M,V → M}
is an elementary Nisnevich cover in Voevodsky’s sense, and U∞, V ∞ are the pullbacks of M∞. By U ×M V we mean
(U ×M V , pr−1

1 U∞ + pr−1
2 V ∞).
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to) all three columns and two of the rows are sent to zero in T . Then the (the complex associated to) the
third row is sent to zero in T as well.

Proof. Clear. �

3. Excision

In this section we prove some basic excision results and prove that Thom spaces are invariant under
change of étale neighbourhood.

Let M = (M,M∞) and Z = (Z,Z∞) be as in Situation 1.1. For n ∈ Z≥0 we define a presheaf on
MCor

CM
nZ = Coker

(
Ztr(U,U

∞) →֒ Ztr(M,M∞ + nZ)
)

where U =M \Z, U∞ =M∞|U and Ztr(U,U
∞)→ Ztr(M,M∞ +nZ) is induced by the open immersion

U →M .
For a morphism f : (M,M∞) → (N,N∞) induced by a morphism of schemes f : M → N , we call f

minimal if we have M∞ = f
∗
N∞.

Proposition 3.1. Let f : (N,N∞) → (M,M∞) be an étale morphism (i.e., f is induced by an étale

morphism f : N → M and is minimal). If f
−1
Z → Z is an isomorphism, then for any n ∈ Z≥0, the

natural morphism CN
nf−1Z → CM

nZ is a isomorphism in MDMeff .

Proof. Let V = N\f−1Z. We have a diagram in PSh(MCor).

0 // Ztr(V , V ∩M∞) //

��

Ztr(N,N∞ + nf−1Z) //

��

CN
nf−1Z

//

��

0

0 // Ztr(U,U∞) // Ztr(M,M∞ + nZ) // CM
nZ

// 0

The left hand-side square is homotopy Cartesian in MDMeff by the definition of MDMeff . So we get
the claim. �

Theorem 3.2. Let f : (N,N∞) → (M,M∞) be an étale morphism. If f
−1
Z → Z is an isomorphism,

then for any n ≥ m ≥ 0 there is a diagram in PSh(MCor),

0 // Ztr(N,N
∞ + nf−1Z)

iN
//

��

Ztr(N,N
∞ +mf−1Z) //

��

Coker(iN ) //

��

0

0 // Ztr(M,M∞ + nZ)
iM

// Ztr(M,M∞ +mZ) // Coker(iM ) // 0

such that Coker(iN )→ Coker(iM ) is an isomorphism in MDMeff .

Proof. We consider the following commutative diagram in PSh(MCor),

0

��

0

��

0

��
0 // Ztr(U, U∞)

=
//

��

Ztr(U,U∞)

��

// 0

��

0 // Ztr(M,M∞ + nZ)

��

iM
// Ztr(M,M∞ +mZ)

��

// Coker(iM )

||

��

// 0

0 // CM
nZ

cM
//

��

CM
mZ

//

��

Coker(iM ) //

��

0

0 0 0
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where iM is the natural map and cM is the unique map determined by iM . Now all columns and the two
top rows are exact. Now by the nine lemma, we get that the bottom row is also exact. The morphisms
iM and f induce the commutative diagram:

CN
nf−1Z

��

cN
// CN

mf−1Z

��

CM
nZ

cM
// CM

mZ

By Proposition 3.1, the vertical morphisms become isomorphisms in MDMeff . Hence the map between
the cokernels of the two horizontal presheaf monomorphims become isomorphisms in MDMeff . �

Corollary 3.3. In the situation of Theorem 3.2 Thom spaces are isomorphic

Th(Nf−1ZN, cl) ≃ Th(NZM, cl)

Proof. In the situation of Theorem 3.2 for any n ∈ {0, 1} the natural morphism

f : (P(Nf−1ZN ⊕O), π
′∗Z ′∞ + n{∞}f−1Z)→ (P(NZM ⊕O), π

∗Z∞ + n{∞}Z)

is minimal étale morphism where Z ′∞ := f−1Z.N∞ and π′ is the projection P(Nf−1ZN ⊕ O) → f−1Z.

Moreover f induces an isomorphism {∞}f−1Z ≃ {∞}Z since f−1Z ≃ Z. By Proposition 3.1 and Theorem
3.2 we obtain the claim. �

4. Blow up formula with weight

4.1. Introduction. Kelly-Saito proved a blow up formula for motives with modulus (see [KS19]), but to
construct tame Gysin map we need another formula, namely, Theorem 4.2. In this section, we calculate
some motives of Fano surfaces with modulus, after that we have constructed the formula which we need.
We begin with the notation that we will need to perform the deformation to the normal cone technique.

Notation 4.1. In the Situation 1.1, we use the following notations.

M := (M,M∞),

Z := (Z,Z∞),

B
(Z)
M

πM−−→M × P1 : the blow up of M × P1 at Z × {0},

B∞
M := π∗M (M∞ × P1 +M × {∞}),

WM : the strict transform of Z × P1 w.r.t. BM →M × P1,

B
(Z)
M,cl := (B

(Z)
M , B∞

M +WM),

UM :=M × P1 \ Z × P1,

E
(Z)
M := the exceptional divisor of πM ,

E
(Z)
M,cl :=

(
EM , (EM ∩B

∞
M ) + (EM ∩WM )

)
.

The goal of this section is to prove the following theorem.

Theorem 4.2. In the notation of Situation 1.1, there exist a distinguished triangle in MDMeff .

M(E
(Z)
M,cl)→M(Z)⊕M(B

(Z)
M,cl)→M(M ⊗�)

+
−→ .
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4.2. Special case. Let H0,H1,H2 be the hyperplanes on P2 given by {[0 : ⋆ : ⋆]}, {[⋆ : 0 : ⋆]}, {[⋆ : ⋆ : 0]}.

We set b : B → P2 to be the blow up of P2 along H0 ∩H1, and set H̃0, H̃1, H̃2 to be the strict transforms
of H0,H1,H2. We set

Bcl := (B, H̃0 + H̃2) and Ecl := (E,E ∩ H̃0),

where E is the exceptional divisor of the blow up.

Proposition 4.3. There is a split distinguish triangle

(4.1) M(Ecl)

[

p i
]

−−−−→M(Speck)⊕M(Bcl)

[

j
−b

]

−−−−→M(P2,H2)
+
−→
0

in MDMeff , where i, j are the natural closed immersions and p is the natural projection E → Speck.

Proof. Since Bcl has a projection to Ecl which is a cube bundle, i is an isomorphism. Additionally j is
also an isomorphism since (P2,H2) is contractible [KS19, Lemma 10]. �

4.3. Proof of Theorem 4.2.

Theorem 4.4. There is a distinguish triangle.

M(E
({0})
(A1,∅),cl

)→M({0}) ⊕M(B
({0})
(A1,∅),cl

)→M((A1, ∅) ⊗�)
+
−→ .

A log version of the argument below appeared independently in Binda-Park-Østvær (see [BPØ20,
Proposition 7.2.5]).

Proof. We set T to be the blow up of P2 at H0 ∩H2, let f be the exceptional divisor, and hi be the strict
transforms of the Hi. We set T ′ to be the blow up of T at h0 ∩ h1, let e be the exceptional divisor, and

the h̃i be strict transforms of the hi and f̃ be the strict transform of f . In particular, T ′ is same as the

blow up of B at H̃0 ∩ H̃2. The fans of these toric varieties are as follows:

B : H̃0 T ′ : h̃0 f̃ T : h0 f

E •

⑦⑦
⑦⑦
⑦⑦
⑦⑦

H̃2 e •

�
�
��

�
��

�
�

�
�
�
�
�
�
�
�

h̃2 •

��
��
��
��
�

�
�
��

�
��

�
�

h2

H̃1 h̃1 h1

The following triangle is isomorphic to it in Proposition 4.3, since this is obtained by blowing up inside
the modulus.

(4.2) M(Ecl)→M(Spec k)⊕M(T ′, h̃2 + h̃0 + f̃)→M(T, h2 + f)
+
−→
0

Notice that there is a canonical isomorphism of toric surfaces T \h2 ∼= A1×P1 inducing an isomorphism
of modulus pairs (T \ h2, f \ (f ∩ h2)) ∼= (A1, ∅)⊗�. Furthermore, pulling back the square that give rise
to (4.2) along A1 ×P1 → T produces the triangle in the statement.

Since {T \h2 → T, T \h0 → T} is a Zariski covering, by Mayer-Vietoris, to show that the triangle in the
statement is distinguished, it suffices to show that the triangle associated to T, T \h0, and T \ (h0 ∪h2) is
distinguished, cf. Lem. 2.4. We have just seen that the triangle associated to T is isomorphic distinguish
triangle (4.2). On the other hand, since the centre of the blowup is contained in h0, the triangle coming
from T \ h0 and T \ (h0 ∪ h2) is trivially distinguished. �

Theorem 4.5. For any modulus pair (Y , Y∞) ∈MCor such that Y is smooth and Y∞ is a strict normal
crossings divisor, there is a distinguish triangle:

M(E
(Y⊗{0})
Y⊗(A1,∅),∗

)→M(Y ⊗ {0}) ⊕M(B
(Y⊗{0})
Y⊗(A1,∅),∗

)→M(Y ⊗ (A1, ∅)⊗�)
+
−→ .



8 KEIHO MATSUMOTO

Proof. Since

B
(Y⊗{0})
Y⊗(A1,∅),cl

= Y ⊗B
({0})
(A1,∅),cl

,

the triangle in the statement is the triangle from Theorem 4.4 tensored by (Y , Y ∞). �

Situation 4.6. Let f : (N,N∞) → (M,M∞) be an étale morphism (i.e., f is induced by an étale
morphism f : N →M and is minimal) such that f induces an isomorphism f−1Z → Z.

Notation 4.7. In Situation 4.6, we pullback everything from Notation 4.1 along f . That is, we set

N, f−1Z,B
(f−1Z)
N , πN , B

∞
N ,WN , B

(f−1Z)
N,cl , UN , UN , E

(f−1Z)
N , E

(f−1Z)
N,cl

to be the pullbacks of

M,Z,B
(Z)
M , πM , B

∞
M ,WM , B

(Z)
M,op, B

(Z)
M,cl, UM , UM , E

(Z)
M , E

(,Z)
M,op, E

(Z)
M,cl

along f : N →M . Explicitly,

N := (N,N∞),

f−1Z := (f−1Z, f−1Z ·N N∞)

B
(f−1Z)
N

πN−−→ N × P1 : the blow up of N × P1 along f−1Z × {0},

B∞
N := π∗N (N∞ × P1 +N × {∞})

WN : the strict transform of f−1Z × P1 w.r.t. BN → N × P1,

B
(f−1Z)
N,cl := (BN , B

∞
N +WN ),

UN := N × P1 \ f−1Z × P1,

UN := (UN , UN ∩ (N∞ × P1 +N × {∞}))

E
(f−1Z)
N : the exceptional divisor of πN ,

E
(f−1Z)
N,cl := (EN , EN ∩B

∞
N + (WN ∩ EN )).

Proposition 4.8. In Situation 4.6 and Notation 4.7,

UN
//

��

UM

��

B
(f−1Z)
N,cl

// B
(Z)
M,cl

is elementary Nisnevich square.

Proof. All morphisms in the square are minimal. By definitions, (B
(Z)
M,cl \ UM ) = (WM∪EM ), (B

(f−1Z)
N,cl \ UN ) =

(WN ∪ EN ). �

Corollary 4.9. In Situation 4.6 and Notation 4.7, the image under the functor M of the square

B
(f−1Z)
N,cl

//

��

B
(Z)
M,cl

��

N ⊗� // M ⊗�

is a homotopy Cartesian in MDMeff .

Notation 4.10. In Notation 4.1 Consider the following “weighted” blowup formulas.

(WBU)clZ→M : the object M
(
E

(Z)
M,cl→Z ⊕B

(Z)
M,cl→M ⊗�

)
is isomorphic to zero in MDMeff .
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Proposition 4.11. In Situation 4.6, (WBU)∗Z→M is true if and only if (WBU)∗f−1Z→N is true.

Proof. The following diagram commutes in MCor.

Ztr(E
(Z)
M,cl)(≃ Ztr(E

(f−1Z)
N,cl )) //

��

Ztr(Z)(≃ Ztr(f
−1Z))

��

Ztr(B
(f−1Z)
N,cl ) //

��

Ztr(N ⊗�)

��

Ztr(B
(Z)
M,cl)

// Ztr(M ⊗�)

By Corollary 4.9 we know the lower square is a homotopy Cartesian in MDMeff , so the outer square is
a homotopy Cartesian iff the upper square is. �

The following lemma is proved in [KS19].

Lemma 4.12 ([KS19, Lemma 8]). In Situation 1.1, up to replacing M,Z,M∞ by V , V ∩Z, V ∩M∞ for
some open neighborhood x ∈ V , there exists an étale morphism q : M → Am such that Z = q−1(Am−1 ×

{0}) and M∞ = q−1({T d1
1 ...T ds

s = 0}) where Ti are the coordinates of Am.

Now we have enough pieces to prove Theorem 4.2.

Proof of Theorem 4.2. For any open covering {U i →M}i, by the Mayer-Vietoris sequence we obtain that
(WBU)∗Z→M is true if (WBU)∗

Z∩U→(U,U∩M∞)
is true for all open sub schemes U ⊂ U i for all i. By

Proposition 4.11 and Lemma 4.12 we can reduce the claim to the case (WBU)∗Z⊗{0}→Z⊗(A1,∅), but this

was proved in Theorem 4.5. �

5. Construction of the Tame Gysin map

5.1. Notation. We continue with M = (M,M∞) and Z = (Z,Z∞) satisfying the hypotheses of Situa-
tion 1.1. We furthermore drop all the indexes ”M” from the notation of Notation 4.1. So

B : is the blow-up of M × P1 along Z × {0}, and

E : is the exceptional divisor of q,

so we have a Cartesian square

E //

π
��

B

q
��

Z × {0} // M × P1.

We put

B := (B, q∗(M∞ × P1 +M × {∞})),

BZ,cl := (B, q∗(M∞ × P1 +M × {∞}) + ˜(Z × P1))

EZ,cl := (P(NZM ⊕O), π
∗Z∞ + P(0⊕O)).

Theorem 5.1. There is a distinguished triangle in MDMeff

M(EZ,cl)→M(BZ,cl)⊕M(Z)→M(M⊗�)
+
−→

and isomorphism

Th(NZM, cl) = Cone(M(EZ,cl)→M(E)) ≃ Cone(M(BZ,cl)→M(B)).
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Proof. The first claim is Theorem 4.2, the second claim follows from the first and the blow up formula

M(E)→M(B)⊕M(Z)→M(M⊗�)
+
−→

proved in [KS19, Theorem, page 1]. �

5.2. Geometrical study. We write i1 for the natural embedding of schemes M × {1} to B. The em-
bedding i1 defines i : M → B and ĩ : MZ,cl → BZ,cl in MCor.

MZ,cl
ĩ

//

��

BZ,cl

��

M
i

// B

The diagram gives us the morphism Ztr(M/MZ,cl)→ Ztr(B/BZ,cl) in PSh(MCor) where we write

Ztr(M/MZ,cl) := coker

(
Ztr(MZ,cl)→ Ztr(M)

)

etc., in PSh(MCor). Note that since MZ,cl → M are monomorphisms, the image of Ztr(M/MZ,cl) in

MDMeff is the cone of the image of Ztr(MZ,cl)→ Ztr(M). Composing with the isomorphism

Ztr(B/BZ,cl)
∼
← Ztr(E/EZ,cl) = Th(NZM, cl)

from Theorem 5.1, one gets a morphism:

β(M/Z, cl) : M(M/MZ,cl)→ Ztr(B/BZ,cl)→ Th(NZM, cl).

We call this morphism the closed Gysin map associated with M and Z.

Lemma 5.2. We have the following.

(0) β
(
(A1, ∅)/{0}, cl

)
: M((A1, ∅)/(A1, {0})) → Th(N{0}(A

1, ∅), cl) is an isomorphism.

(1) For any étale morphism e : M′ = (M
′
, e∗M∞)→M, set Z′ = (e−1Z, e∗Z∞). Then the diagram

M(M′/M′
Z′,cl)

β(M′/Z′,cl)
//

��

Th(NZ′M ′, cl)

��

M(M/MZ,cl)
β(M/Z,cl)

// Th(NZM, cl)

commutes.
(2) For any modulus pair Y = (Y , Y∞) with Y smooth and Y∞ a strict normal crossings divisor, we

have

β(M ⊗Y/Z ⊗Y, cl) = β(M/Z, cl) ⊗ IdM(Y).

Proof. Part 1. We take

B
′
: blow-up of M

′
× P1 with along e−1Z × {0},

and

B′ =
(
B

′
, q′

∗
(e∗M∞ × P1) + q′

∗
(M

′
× {∞})

)
,

B′
Z′,cl =

(
B

′
, q′

∗
(e∗M∞ × P1) + q′

∗
(M

′
× {∞}) +

˜
(Z

′
× P1)

)
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Since the morphism e is étale, e−1Z is also smooth. Now there is a natural map B′ → B, and we have
the following commutative diagram in MCor.

M′
Z′

//

��

��⑧⑧
⑧⑧

M′

��

��⑧⑧
⑧⑧

MZ

��

// M

��

B′
Z′

//

��⑧⑧
⑧⑧

B′

��⑧⑧
⑧⑧

BZ
// B

The diagram gives us the commutative diagram in PSh(MCor).

Ztr(M
′/M′

Z′,cl)
//

��

Ztr(M/MZ,cl)

��

Ztr(B
′/B′

Z′,cl)
// Ztr(B/BZ,cl)

The same argument shows that the square

Ztr(E
′/E′

Z′,cl)
//

��

Ztr(E/EZ,cl)

��

Ztr(B
′/B′

Z′,cl)
// Ztr(B/BZ.cl)

is commutative.
Part 2. The blow-up ofM×Y ×P1 along Z×Y ×{0} is isomorphic to B×Y , so the proof is completed.
Part 0. Set ηop resp. ηcl to be the composition of the 1-section A1×{1} →֒ B{0} resp. (A

1\{0})×{1} →֒

B{0}, and the retraction B{0} → E{0} (see the diagrams below on the left). Note that these are open
immersions. Let η0,cl, η1 be the induced morphisms on modulus pairs (see the square below on the right).

E{0},cl

�� %%▲
▲▲

▲▲
▲▲

▲▲
▲

A1 i
//

$$■
■■

■■
■■

■■
■ B{0},cl

//

��

E{0},cl M(A1, {0}) //

η1.cl

��

M(A1, ∅)

η0

��

(A1, ∅) ⊗� M(E{0},cl) // M(E)

Since both of right side squares satisfy the condition of Proposition 3.1, these squares are homotopy
Cartesian in MDMeff . �

6. Proof of main theorems

In this section, we use the notation of Section 5.1, and we prove that the Gysin maps defined in Section
5.2

β(M/Z, cl) : M(M/MZ,cl)→ Th(NZM, cl),

are isomorphisms.

Lemma 6.1. The Gysin maps β(M/Z, ∗) is an isomorphism if there is an open Zariski cover {V i →
M}li=1 such that for all i, the Gysin maps β((V , V ∩ M∞)/(V ∩ Z, V ∩ M∞ ∩ Z)) associated to the

intersections V = ∩j∈JV j are isomorphisms for all nonempty J ⊆ I.
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Proof. By induction on l it suffices to consider the l = 2 case. We take an open covering V 1 ∪ V 2 = M .
Now we set

Vi = (V i, V i ∩M
∞), VZ,i,cl = (V i, V i ∩M

∞ + V i ∩ Z),

V 12 = V 1 ∩ V 2, V12 = (V 12, V 12 ∩M
∞),

VZ,12,cl = (V 12, V 12 ∩M
∞ + V 12 ∩ Z).

We have the following diagram in PSh(MCor),

0

��

0

��

0

��

Ztr(VZ,12,∗) //

i∗
12

��

Ztr(VZ,1,∗)⊕ Ztr(VZ,2,∗)

i∗
1
⊕i∗

2

��

// Ztr(MZ,∗)

iM

��

Ztr(V12) //

��

Ztr(V1)⊕ Ztr(V2)

��

// Ztr(M)

��

Coker(i∗12)
//

��

Coker(i∗1)⊕ Coker(i∗2)
//

��

Coker(i∗
M
)

��
0 0 0

where the compositions of all columns and the two top rows are zero, and the bottom row maps are
uniquely determined by the middle row maps.

By Lemma 2.4 we get the following distinguish triangle in MDMeff

M(VZ,12,∗/VZ,12,∗)→M(VZ,1,∗/VZ,1,∗)⊕M(VZ,2,∗/VZ,2,∗)→M(MZ/MZ)
+
−→ .

Same argument can be applied for Thom space, so we obtain the following distinguish triangle in
MDMeff

Th(NZ12
V12, ∗)→ Th(NZ1

V1, ∗)⊕ Th(NZ2
V2, ∗)→ Th(NZM, ∗)

+
−→ .

By Lemma 5.2, we know that Gysin maps are compatible with open immersions, so the proof follows
from the triangulated category axioms. �

Lemma 6.2. In the situation Theorem 3.2, β((N,N∞)/(f−1Z,Z ′∞), cl) is an isomorphism if and only
if β((M,M∞)/(Z,Z∞), cl) is isomorphism.

Proof. by Lemma 3.2. (1), we have the following commutative diagram

M(N/Nf−1Z,cl) //

��

Th(Nf−1ZN, cl)

��

M(M/MZ,cl) // Th(NZM, cl)

where the vertical maps are isomorphisms by Theorem 3.2 and Corollary 3.3. So if one of the horizon
maps is an isomorphism then the other is also an isomorphism. �

Now we have a proof of the main theorem.

Proof that the Gysin triangles are distinguished in MDMeff . It suffices to show the Gysin morphisms are
isomorphisms. By Lemma 6.1, Lemma 6.2, and Lemma 4.12, we can assume that there is an étale map
f :M → Am such that M∞ = f

∗
E and Z = f

∗
(Am−1 × {0}) where

(A1, d1{0}) ⊗ (A1, d2{0}) ⊗ · · · ⊗ (A1, ∅) = (Am, E),

and we write E0 = E ×Am (Am−1 × {0}) so

(A1, d1{0}) ⊗ (A1, d2{0}) ⊗ · · · ⊗ {0} = (Am−1×{0}, E0).
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Now we have a Cartesian cubic diagram

Z∞ //

��

||②②
②②
②②
②②
②

Z

fZ

��

yyss
ss
ss
ss
ss
s

M∞

��

// M

f

��

E0
//

||②②
②②
②②
②②
②

Am−1 × {0}

yyss
ss
ss
ss
ss

E // Am

By the above diagram, we know fZ : (Z,Z∞) → (Am−1 × {0}, E0) is a minimal étale map. Now we
consider the fibre product,

X := M ×Am (Z ×Spec k A
1)

and

X∞ := π∗M∞,

where π is a canonical morphism X → M . Now by [SV00, Theorem 4.10], we have a diagram (Ω) in
Sm(k),

Z

�

//

∆
Z/Am−1

��

X
′

p2

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

i

��

p1

��

(Ω)

Z ×
Am−1 Z //

�

��

X

π

��

p
//

�

Z × A1

fZ×id
A1

��
Z // M // // Am

where i : X
′
→ X is an open immersion, and p−1

2 (Z × {0}) = Z. By Lemma 6.2, β(M/MZ, cl) is an

isomorphism if and only if βcl : (M
(
(Z,Z∞)⊗ (A1, ∅)

)
/M

(
(Z,Z∞)⊗ (A1, {0})

)
)→ Th(NZA1

Z , cl) is an

isomorphism. By Lemma 5.2 (2) this βcl is the image of M((A1, ∅)/(A1, {0})) → Th(N{0}A
1, cl) under

(Z,Z∞)⊗−. But this is an isomorphism by Lemma 5.2(0). �

7. Application

Heuristically, the motive with modulus M(X,X∞) is a place holder which represents the cohomology
of X◦ = X \ X∞ whose ramification along the support of X∞ is bounded by the multiplicities of X∞.
In particular, the case when X∞ is reduced corresponds to tamely ramified cohomology classes. On the
other hand, there are concrete connections between tame class field theory and Voevodsky’s DMeff , cf.,
the relationship between the tame fundamental group and Suslin homology demonstrated by Geisser,
Schmidt, and Speiß. In this section we show that these two points of view are compatible.

Theorem 7.1. Let X be a smooth variety over k which has a compactification X such that X is smooth
and |X\X| is a strict normal crossings divisor on X. Then the unit

M(X, |X\X|red)→ ωeff(M(X))

of the adjunction ωeff : MDMeff
⇄ DMeff : ωeff is an isomorphism.

Lemma 7.2. The functor ωeff sends the tame Gysin map gZM to Gysin map gZ◦M◦ of [Voe00c, Thm.3.5.4].

Proof of Lemma 7.2. By using excision [Voe00a, Proposition 5.18], Voevodsky’s construction of the Gysin
map [Voe00b] can be restated in terms of the deformation space obtained by blowing up Z◦ × {0} in
X◦×P1. The definition of the tame Gysin map is given only by geometrical morphisms, our construction
corresponds to Voevodsky’s construction under the functor ωeff . �



14 KEIHO MATSUMOTO

Proof of Theorem 7.1. Take

|X\X|red = Σn
i=1Vi

where each Vi is an smooth effective Cartier divisor. We prove the claim by induction on n.
Let us suppose n = 1, and write V for |X\X|red = V1. We have the Gysin triangle in DMeff for the

closed immersion V →֒ X,

M(X\V )→M(X)
gVX
−−−→M(V )(1)[2]

+
−→M(X\V )[1].

Since the unit Id→ ωeffωeff is a natural transformation, we get a morphism of distinguished triangles

M(X,V ) //

1
��

M(X, ∅) //

2
��

M(V, ∅)(1)[2] //

3
��

M(X,V )[1]

��

ωeffM(X\V ) // ωeffM(X) // ωeffM(V )(1)[2] // ωeffM(X\V )[1]

where the vertical arrows are the unit morphisms. Since X and V are proper smooth over k, (2) and (3)
are isomorphisms. Cf. [KMSY20, Theorem6.3.1] . So (1) is also an isomorphism.

Now we take

U = X\
n−1⋃

i=1

Vi,

and

W = Vn \(
n−1⋃

i=1

Vn ∩ Vi).

It is easy to see that U \W = X \
⋃n

i=1 Vi. Now the divisor Σn
i=1Vi is a strict normal crossings divisor, so

Vn ·X Vi = |Vn ∩ Vi|red. So we get

M(X,Σn
i=1Vi)

//

4
��

M(X,Σn−1
i=1 Vi)

//

5
��

M(Vn,Σ
n−1
i=1 |Vn ∩ Vi|red)(1)[2]

//

6
��

ωeffM(X \
⋃n

i=1 Vi)
// ωeffM(U) // ωeffM(W )(1)[2] //

By induction, (5) and (6) are isomorphisms. So the claim is proved. �

8. The case of Z[1/p]-coefficients

In this section, we suppose that the base field has characteristic p. The main objective of this section
is to show that the non-Voevodsky part of MDMeff is all p∞-torsion in the sense that the kernel of
ωeff : MDMeff → DMeff is contained in the kernel of MDMeff →MDMeff [1/p].

For a natural number l ∈ N and an integer n ∈ Z≥0, we define a presheaf Z[1/p]tr(�
(l/pn)

) ∈
PSh(MCor,Z[1/p]) as

Z[1/p]tr(�
(l/pn)

) : (M,M∞) 7→MCor
(
(M,pnM∞), (P1, l{∞})

)
⊗Z[1/p].

Let us define morphisms

V (n) : Z[1/p]tr(�
(l/pn)

)→ Z[1/p]tr(�
(l/pn+1)

),

F (n) : Z[1/p]tr(�
(l/pn+1)

)→ Z[1/p]tr(�
(l/pn)

),

satisfying V (n) ◦ F (n) = p · id, F (n) ◦ V (n) = p · id.

We use the morphism of modulus pairs π̃ : (P1, lp{∞}) → (P1, l{∞}) defined by k[x] ← k[x];xp ← [ x.
Note, this is a minimal morphism which is finite flat on the total space, and therefore has a well defined
transpose π̃t : (P1, l{∞})→ (P1, lp{∞}) as follows.
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Lemma 8.1. For a minimal finite flat morphism g : (X,X∞)→ (Y , Y ∞), we denote by g◦ the morphism
X\X∞ → Y \Y∞ given arise to g. Then the transpose correspondence g◦t ∈ Cor(Y \Y∞,X\X∞) lies in
the subgroup MCor

(
(Y , Y ∞), (X,X∞)

)
.

We write gt for g◦t considered as a morphism of modulus pairs.

Proof. It’s left proper because g is finite, and admissible because g is minimal. �

Definition 8.2. For a modulus pair (M,M∞), we define V (n)(M,M∞) as the morphism given by

MCor
(
(M,pnM∞), (P1, l{∞})

)
= MCor

(
(M,pn+1M∞), (P1, lp{∞})

)

π̃◦−
−−→ MCor

(
(M,pn+1M∞), (P1, l{∞})

)

and F (n)(M,M∞) as the morphism given by

MCor
(
(M,pn+1M∞), (P1, l{∞})

) π̃t◦−
−−−→ MCor

(
(M,pn+1M∞), (P1, lp{∞})

)

= MCor
(
(M,pnM∞), (P1, l{∞})

)

Lemma 8.3. V (n) ◦ F (n) = p · id and F (n) ◦ V (n) = p · id.

Proof. We write π for the morphism A1 → A1 given by the morphism of k-algebras k[x] ← k[x];xp ← [ x.
To prove the claim, it is enough to prove that π◦πt = p·id ∈ Cor(A1,A1) and πt◦π = p·id ∈ Cor(A1,A1).
Since π is a flat, finite, surjective morphism with degree p, it follows that π ◦ πt = p · id ∈ Cor(A1,A1) is
true. So the problem is the other equality.

We need the following lemma.

Lemma 8.4. The flat pull back (id× π)∗ : Z1(A1 × A1)→ Z1(A1 × A1) sends Γπ to p · id. Where Γπ is
the graph of π, i.e., Γπ : A1 → A1 ×A1; a 7→ (a, ap).

Proof of Lemma 8.4. The ideal of k[x]⊗k k[y] corresponding to Γπ is (xp−y). Now id×π comes from the
k-morphism k[x]⊗kk[y]→ k[x]⊗kk[y];x 7→ x, y 7→ yp. So the pullback of the ideal sheaf (id×π)∗((xp−y))
is the ideal sheaf (xp − yp), But ch(k) = p, so this is equal to (x − y)p. The ideal (x− y) is corresponds
to the diagonal morphism ∆A1 , i.e., the identity morphism in in Cor(A1,A1). �

Now we recall π and πt in Cor(A1,A1). The map π is the graph map Γπ : A1 → A1 ×A1; a 7→ (a, ap),
and πt is the map ψ : A1 → A1 × A1; b→ (bp, b). We recall the composition πt ◦ π, it is

πt ◦ π = p13∗((Γπ × A1) ·A1×A1×A1 (A1 × ψ)).

Now Γπ × A1 and A1 × ψ are effective Cartier divisors, and they are intersect properly, so

(Γπ × A1)×A1×A1×A1 (A1 × ψ) = (Γπ × A1) ·A1×A1×A1 (A1 × ψ).

Now this is denoted by V . Then we have following diagram

V

�

� � /
� _

�

A1 × A1

))❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙

� _

A
1×ψ

�

A1 × A1 �
� Γπ×A

1

/

�

��

A1 × A1 × A1

p12

��

p13
// A1 × A1

A1

Γπ

// A1 × A1

By definition, we get

(8.1) p13 ◦ (A
1 × ψ) = idA1×A1

and

(8.2) p12 ◦ (A
1 × ψ) = idA1 × π.
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The equality (8.2) claims that V is the flat pull back (idA1 × π)∗(Γπ), by Lemma 8.4 and [Ful98, Propos-
tion 7.1] we get

V = p · id.

By (8.1) we get that πt ◦ π = p13∗(V ) = V . Therefore πt ◦ π = p · id in Cor(A1,A1). �

We consider two colimits lim−→n
(Z[1/p]tr(�

(l/pn)
), V (n)) and lim−→n

(ω∗Z[1/p]tr(A1), ω∗π) in the category

PSh(MCor) where the transition maps are V (n) : Z[1/p]tr(�
(l/pn)

) → Z[1/p]tr(�
(l/pn+1)

) and ω∗π :
ω∗Z[1/p]tr(A1)→ ω∗Z[1/p]tr(A1), and the morphism

I : lim−→
n

(Z[1/p]tr(�
(l/pn)

), V (n))→ lim−→
n

(ω∗Z[1/p]tr(A
1), ω∗π)

given by the natural immersions Z[1/p]tr(�
(l/pn)

)→ ω∗Z[1/p]tr(A1).

Lemma 8.5. There are the following isomorphisms in PSh(MCor).

Z[1/p]tr(�
(l)
) ≃ lim

−→
n

(Z[1/p]tr(�
(l/pn)

), V (n))

ω∗Z[1/p]tr(A
1) ≃ lim

−→
n

(ω∗Z[1/p]tr(A
1), ω∗π)

Proof. The prime p is invertible in Z[1/p] so by Lemma 8.3, morphisms V (n) are isomorphisms. Similarly
the morphism π : Z[1/p]tr(A1)→ Z[1/p]tr(A1) is an isomorphism. So the claim follows. �

Lemma 8.6. I is an isomorphism.

Proof. The problem is surjectivity. By [KMSY19a, Lemma 1.1.3]

Cor(M\M∞,A1) =
⋃

n

MCor((M,pnM∞), (P1, l{∞})).

Hence, for any elementary correspondence W ∈ Cor(M\M∞,A1), there is an integer n such that W ∈
MCor((M,pnM∞), (P1, l{∞})). �

This lemma implies the following theorem which only holds in positive characteristic.

Theorem 8.7. For any l ∈ Z≥1, M((P1, {∞})/(P1, l{∞})) ⊗ Z[1/p] = 0.

Proof. Since Z[1/p] is a flat Z-module, it is enough to show that the natural morphism Z[1/p]tr(P1, l{∞})→
Z[1/p]tr(P1, {∞}) is an isomorphism. There is a commutative diagram

Z[1/p]tr(�
(l)
)

≃
//

��

lim
−→n

(Z[1/p]tr(�
(l/pn)

), V (n))

I

��

ω∗Z[1/p]tr(A1)
≃

// lim−→n
(ω∗Z[1/p]tr(A1), ω∗π)

in PSh(MCor), where vertical maps are natural inclusions and horizontal maps are isomophisms given by

Lemma 8.5. By Lemma 8.6 we know that I is an isomorphism. So the natural inclusion Z[1/p]tr(�
(l)
)→

ω∗Z[1/p]tr(A1) is also an isomophism for all l ≥ 1. The result now follows from the sequence of inclusions

Z[1/p]tr(�
(l)
) →֒ Z[1/p]tr(�) →֒ ω∗Z[1/p]tr(A1). �

Corollary 8.8. For any modulus pair (M,M∞) such thatM is smooth andM∞
red is strict normal crossing,

M(M,M∞)⊗ Z[1/p] ≃M(M,M∞
red)⊗ Z[1/p].

Proof. Set M∞ = Σn
k=1nkVk where Vk are smooth Cartier divisor. We take M∞

i := n1V1 + · · ·niVi +
Σn
k=i+1Vk, it is enough to prove M(M,M∞

i ) ⊗ Z[1/p] ≃ M(M,M∞
i−1) ⊗ Z[1/p]. By Mayer-Vietoris

sequence, we can replace M(M,M∞
i ) ⊗ Z[1/p] by M(U,U ∩M∞

i ) ⊗ Z[1/p] where U has a local chart

q : U → Am such that U ∩ Vi = q−1(Am−1 × {0}) and U ∩ (M∞
i − niVi) = q−1({T d1

1 .....T ds
j = 0}) where
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Tl are the coordinates of Am. Replace M(M,M∞
i ) ⊗ Z[1/p] by M(U,U ∩M∞

i ) ⊗ Z[1/p]. In this case
we have a diagram (Ω) used in the proof of the tame Gysin triangle. By Proposition 3.1 the cone of

the natural morphisms M(M,M∞
i ) ⊗ Z[1/p] → M(M,M∞

i−1) ⊗ Z[1/p] is isomorphic to M
(
(Vi, V

∞
i ) ⊗

(A1, {0})
)
/M

(
(Vi, V

∞
i ) ⊗ (A1, ni{0})

)
⊗ Z[1/p] where V∞

i = Vi ·M (n1V1 + · · ·ni−1Vi−1 + Σn
k=i+1Vk),

Proposition 3.1 and Theorem 8.7 claims (A1, {0})/(A1, ni{0})⊗ Z[1/p] = 0 we win. �

By this corollary and Theorem 7.1, we get the following theorem.

Theorem 8.9 (Corollary 1.6). If the base field k has characteristic p and admits log resolution of singu-
larities, then there is an equivalence

ωeff [1/p] : MDMeff [1/p]
∼=
−→ DMeff [1/p].

Proof. We omit [1/p]. Since we assume the base field k admits log resolution of singularities, any modulus
pair is isomorphic to a modulus pair which has a smooth total space and strictly normal crossing divisor
modulus. Now MDMeff is compactly generated by the M(M,M∞), [KMSY19b, Theorem 1(2)], and
both ωeff and ωeff commute with all sums (the latter because ωeff sends compact generators to compact
objects), so it suffices to know that M(M,M∞) → ωeffω

effM(M,M∞) is an isomorphism when M is
smooth and proper and M∞ is a strict normal crossings divisor. If M∞ is reduced, Theorem 7.1 implies
the claim. By Corollary 8.8 its also true when M∞ is not reduced. �
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