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Effective birational rigidity of

Fano double hypersurfaces

Thomas Eckl and Aleksandr Pukhlikov

We prove birational superrigidity of Fano double hypersur-

faces of index one with quadratic and multi-quadratic sin-

gularities, satisfying certain regularity conditions, and give

an effective explicit lower bound for the codimension of the

set of non-rigid varieties in the natural parameter space of

the family. The lower bound is quadratic in the dimension

of the variety. The proof is based on the techniques of hy-

pertangent divisors combined with the recently discovered

4n2-inequality for complete intersection singularities.
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Introduction

0.1. Statement of the main result. Fix the integers M > 10, m > 2 and l > 2,
satisfying the equality

m+ l = M + 1.

Let P = PM+1 be the complex projective space. By the symbol Pk,M+2 we denote
the space of homogeneous polynomials of degree k ∈ Z+ in M + 2 homogeneous
coordinates on P, that is, the linear space H0(P,OP(k)). Let

(g, h) ∈ Pm,M+2 × P2l,M+2 = F

be a pair of irreducible polynomials.

Consider the double cover

σ : V
2:1
−→ G ⊂ P,

where G = {g = 0} ⊂ P is an irreducible hypersurface of degree m and σ is
branched over the divisor W = {h|G = 0} ⊂ G, which is cut out on G by the
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hypersurfaceWP = {h = 0}. The variety V can be realized as a complete intersection
of codimension 2 in the weighted projective space

P(1, . . . , 1︸ ︷︷ ︸
M+2

, l) = P(1M+2, l)

with the homogeneous coordinates x0, . . . , xM+1 of weight 1 and the new homoge-
neous coordinate u of weight l:

V = {g = 0, u2 = h}.

If the variety V is factorial and its singularities are terminal, then V is a primitive
Fano variety:

Pic V = ZH, KV = −H,

where H is the class of “hyperplane section”, corresponding to σ∗OP(1)|G. It makes
sense now to test V for being birationally (super)rigid. In [4] it was shown that a
Zariski general non-singular variety V is birationally superrigid. The aim of this
paper is to generalize and strengthen that result in the following way.

Let us define the integer-valued function

ξ : Z>10 = {M ∈ Z |M > 10} → Z+,

setting ξ(M) = (M−9)(M−8)
2

+ 12.
For simplicity of notations, we identify a pair of irreducible polynomials (g, h) ∈

F with the corresponding Fano double cover V and write V ∈ F ; this can not lead
to any confusion. Now we can state the main result of the paper.

Theorem 1. There exists a Zariski open subset Freg ⊂ F such that the following
claims are true.

(i) Every variety V ∈ Freg is factorial and has at most terminal singularities.

(ii) The complement F \ Freg is of codimension at least ξ(M) in F .

(iii) Every variety V ∈ Freg is birationally superrigid.

Corollary 1. For every variety V ∈ Freg the following claims are true.

(i) Every birational map V 99K V ′ to a Fano variety with Q-factorial terminal
singularities and Picard number 1 is a biregular isomorphism.

(ii) There are no rational dominant maps V 99K S onto a positive-dimensional
variety S, the general fibre of which is rationally connected (or has negative Kodaira
dimension). In particular, there are no structures of a Mori fibre space over a
positive-dimensional base on V .

(iii) The variety V is non-rational and its groups of birational and biregular
automorphisms are the same: BirV = Aut V .

Proof of the corollary. The claims (i)-(iii) are all the standard implications
of the property of being birationally superrigid, see, for instance, [5, Chapter 2].
Q.E.D.
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0.2. The regularity conditions. The open subset Freg ⊂ F is defined by a
number of explicit local conditions, to be satisfied at every point, which we now list.
Let o ∈ V be a point, p = σ(o) ∈ G its image on P. We assume, therefore, that
g(p) = 0. Let z1, . . . , zM+1 be a system of affine coordinates on P with the origin at
p and

g = q1 + q2 + · · ·+ qm, h = w0 + w1 + w2 + · · ·+ w2l

the decomposition of g, h (dehomogenized but for simplicity of notations denoted
by the same symbols) into components, homogeneous in z∗. We may assume that
zi = xi/x0 are coordinates on the affine chart {x0 6= 0} on P. Adding the new affine
coordinate y = u/xl

0, we extend that chart to

AM+2
z∗,y

⊂ P(1M+2, l),

where the variety V is a complete intersection, given by the system of two equations:

q1 + q2 + · · ·+ qm = 0,
−y2 + w0 + w1 + w2 + · · ·+ w2l = 0.

Note that p ∈ W if and only if w0 = 0.

We assume that the hypersurface G ⊂ P has at most quadratic singularities: if
q1 ≡ 0, then q2 6≡ 0. Furthermore, we assume that G is regular in the standard sense
at very point p ∈ G:

(R0.1) If q1 6≡ 0, then the sequence

q1, q2, . . . , qm

is regular in Op,P.

(R0.2) If q1 ≡ 0, then the sequence

q2, . . . , qm

is regular in Op,P.

We will need also some additional regularity conditions for the polynomials g, h
at the point p, which depend on whether p ∈ W or p 6∈ W and on the type of
singularity o ∈ V that we allow.

We start with the non-singular case.

(R1.1) If w0 6= 0, then we have no additional conditions (only (R0.1) is needed).

(R1.2) If w0 = 0, then
q2|{q1=w1=0} 6≡ 0.

Note that in the second case as the point o ∈ V is assumed to be non-singular, the
linear forms q1 and w1 must be linearly independent.

Now let us consider the quadratic case.

Here we have three possible ways of getting a singular point and, accordingly,
three types of regularity conditions.
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(R2.1) Out side the ramification divisor: if w0 6= 0, then q1 ≡ 0 and

rk q2 > 7.

(R2.2) On the ramification divisor with G non-singular: w0 = 0, q1 6≡ 0, w1 ≡ 0
and

rkw2|{q1=0} > 6.

(R2.3) On the ramification divisor with G singular: w0 = 0, q1 ≡ 0, w1 6≡ 0 and

rk q2|{w1=0} > 7.

Apart from non-singular points and quadratic singularities, we allow more com-
plicated points which we call bi-quadratic. Assume that w0 = 0 and q1 ≡ w1 ≡ 0.

(R22) For a general 11−dimensional linear subspace P ⊂ CM+2
z∗,y

the closed alge-
braic set

QP =
{
q2|P = (y2 − w2)|P = 0

}
⊂ P(P ) ∼= P10

is a non-singular complete intersection of codimension 2.

We say that a pair (g, h) ∈ F is regular if the hypersurface G = {g = 0} ⊂ P is
regular at every point in the sense of the conditions (R0.1) and (R0.2) (whichever
applies at the given point), and the relevant regularity condition from the list above
is satisfied at every point o ∈ {g = (u2 − h = 0}.

Note that (g, h) ∈ F being regular implies that the closed set

V = {g = u2 − h = 0} ⊂ P(1M+2, l)

is an irreducible complete intersection of codimension 2, the singular points of which
are either quadratic singularities of rank > 7 or bi-quadratic singularities satisfying
the condition (R22). In any case, the singularities of V are complete intersection
singularities and the singular locus Sing V has codimension at least 7 in V , so
the Grothendieck theorem on parafactoriality [6] applies and V turns out to be a
factorial variety. Furthermore, it is easy to check that the property of having at
most quadratic singularities of rank > r is stable with respect to blowing up non-
singular subvarieties (see [7, Section 3.1] for a detailed proof and discussion, and
the same arguments apply to bi-quadratic singularities satisfying (R22)), so that, in
particular, the singularities of V are terminal.

Now setting Freg ⊂ F to be the open subset of regular pairs (g, h) (or, abusing
the notations, regular varieties V = V (g, h)), we get the claim (i) of Theorem 1.

Therefore, Theorem 1 is implied by the following two claims.

Theorem 2. The complement F \ Freg is of codimension at least ξ(M) in F .

Theorem 3. A regular variety V ∈ Freg is birationally superrigid.

0.3. The structure of the paper. We prove Theorem 3 in Section 1 and
Theorem 2 in Section 2. The arguments are independent of each other.
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In order to prove Theorem 3, we assume the converse: V is not birationally
superrigid. This implies, in a standard way [5, Chapter 2, Section 1] that there
is a mobile linear system Σ ⊂ |nH| with a maximal singularity. The centre of
the maximal singularity is an irreducible subvariety B ⊂ V .There are a number of
options forB: it can have a small (6 4) codimension or a higher (> 5) codimension in
V , be contained or not contained in the singular locus Sing V (and more specifically,
in the locus of bi-quadratic points), be contained or not contained in the ramification
divisor. For each of these options, we exclude the maximal singularity, that is, we
show that its existence leads to a contradiction. After that, we conclude that the
initial assumption was incorrect and V is birationally superrigid.

Theorem 2 is shown by different and very explicit arguments. We fix a point o ∈
P(1M+2, l) and consider varieties V ∋ o. For each type of the point o (from the list
given in Subsection 0.2) and each regularity condition we estimate the codimension
of the closed set of pairs (g, h) ∈ F such that o ∈ {g = u2 − h = 0} and the
condition under consideration is violated. Taking the minimum of our estimates, we
prove Theorem 2.

The decisive point of this paper is applying the generalized 4n2-inequality [8] to
excluding the maximal singularities, the centre of which is contained in the quadratic
or bi-quadratic locus: without it, the task would have been too hard. The regularity
conditions make sure that the generalized 4n2-inequality applies. Given the new
essential ingredient, excluding the maximal singularity becomes straightforward.

0.4. Historical remarks. We say that a theorem stating birational (su-
per)rigidity is effective, if it contains an effective bound for the codimension of the
set of non-rigid varieties (in the natural parameter space of the family under consid-
eration). The first effective result was obtained in [9]. For complete intersections see
[10, 11]. The importance of effective results is explained by the problem of birational
rigidity of Fano-Mori fibre spaces, see [7], generalizing the famous Sarkisov theorem
[13] to fibre spaces with higher-dimensional fibres.

Birational rigidity of certain mildly singular Fano double covers was shown in
[14, 15]. The result of [15] was effective in our sense. Iterated double covers and
cyclic covers of degree > 3 were considered in [16] and [17], respectively (only non-
singular varieties were treated in these papers). Triple covers with singularities were
shown to be birationally superrigid in [18]. For a study of the question, how many
families of higher-dimensional non-singular Fano complete intersections are there in
the weighted complete intersections, see [19].

0.5. Acknowledgements. The second author is grateful to the Leverhulme
Trust for the financial support (Research Project Grant RPG-2016-279).

1 Proof of birational superrigidity

In this section we prove Theorem 3. First, we remind the definition and some basic
facts about maximal singularities, classifying them and excluding the cases of low
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codimension of the centre (Subsection 1.1). Then we exclude the maximal singulari-
ties, the centre of which is not contained in the singular locus of V (Subsection 1.2).
Finally, we exclude the cases when the centre of a maximal singularity is contained
in the singular locus (Subsection 1.3). The last group of cases, which traditionally
was among the hardest to deal with, now becomes the easiest due to the generalized
4n2-inequality shown in [8].

1.1. Maximal singularities.Assume that a fixed regular double hypersurface
V ∈ Freg is not birationally superrigid. It is well known (see, for instance, [5,
Chapter 2, Section 1]), that this assumption implies that there is a mobile linear

system Σ ⊂ |nH|, a birational morphism ϕ : Ṽ → V and a ϕ-exceptional prime

divisor E ⊂ Ṽ , satisfying the Noether-Fano inequality

ordE ϕ∗Σ > n · a(E).

Here Ṽ is assumed to be non-singular projective, ϕ a composition of blow ups with
non-singular centres, a(E) = a(E, V ) is the discrepancy of E with respect to V .
The prime divisor E (or the discrete valuation of the field of rational functions

C(Ṽ ) ∼= C(V )) is called a maximal singularity of the system Σ. Equivalently, for
any divisor D ∈ Sigma the pair (V, 1

n
D) is not canonical with E a non-canonical

singularity of the pair. Set B = ϕ(E) ⊂ V to be its centre on V and B = σ(B) ⊂ G
its projection on P. We have the following options:

(1) codim(B ⊂ V ) = 2,

(2) codim(B ⊂ V ) = 3 or 4,

(3) codim(B ⊂ V ) > 5 and B 6⊂ W , B 6⊂ Sing V ,

(4) codim(B ⊂ V ) > 5 and B ⊂ W , B 6⊂ Sing V ,

(5) B is contained in the (closure of the) locus of quadratic singularities, but not
in the locus of bi-quadratic singularities,

(6) B is contained in the locus of bi-quadratic singularities.

We have to show that none of these cases take place. Note that the inequality

multB Σ > n (1)

holds. Let Z = (D1 ◦ D2) be the algebraic cycle of scheme-theoretic intersection
of general divisors D1, D2 ∈ Σ, the self-intersection of the system Σ. Note that
Z ∼ n2H2.

Our first observation is that the case (1) does not realize. Indeed, let P be
a general 7-dimensional plane in P. Then VP = V ∩ σ−1(P ) is a non-singular 6-
dimensional variety. By the Lefschetz theorem,

Pic VP = ZHP and A2VP = ZH2
P ,

whereHP is the hyperplane section andA2 the numerical Chow group of codimension
2 cycles. The restriction ZP = (Z ◦ VP ) ∼ n2HP is an effective cycle. If codim(B ⊂
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V ) = 2, then Z contains B as a component with multiplicity at least (multB Σ)2;
therefore, ZP contains BP = (B◦VP ) = B∩VP with multiplicity at least (multB Σ)2.
However, BP ∼ bH2

P for some b > 1 and the inequality (1) can not be true. So we
may assume that codim(B ⊂ V ) > 3.

Proposition 1.1. The case (2) does not realize.

Proof. Assume the converse: codim(B ⊂ V ) ∈ {3, 4}. Then B 6⊂ Sing V and so
the standard 4n2-inequality holds:

multB Z > 4n2,

see [5, Chapter 2]. Again, take a general 7-dimensional plane P ⊂ P and let VP ,
ZP , HP and BP mean the same as above. We can find an irreducible subvariety
Y ∼ dH2

P of codimension 2 in VP such that

multBP
Y > 4d.

Set GP = G ∩ P : it is a non-singular hypersurface of degree m in P ∼= P7. Writing
HG for the class of its hyperplane section, we get

PicGP = ZHG and A2GP = ZH2
G.

Let Y = σ(Y ) ⊂ GP and BP = σ(BP ) be the images of Y and BP , respectively.
Then

Y ∼ d∗H2
G

with d∗ = d or 1
2
d, and the inequality

multBP
Y > 2d∗

holds. But dimBP ∈ {2, 3}, so we get a contradiction with [20, Proposition 5] (see
also “Pukhlikov’s Lemma” in [21]). Q.E.D. for Proposition 1.1.

From now on, we assume that codim(B ⊂ V ) > 5.

In order to exclude the cases (3-6), we will need the regularity conditions (R0.1,2),
or rather, the facts that are summarized in the proposition below.

Proposition 1.2 Let S ⊂ G be an irreducible subvariety of codimension a ∈
{2, 3} and p ∈ S a point.

(i) Assume that G is non-singular at p. Then

multp S 6
a+ 1

m
deg S.

(ii) Assume that G is singular at p. Then

multp S 6
a+ 2

m
deg S.
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Proof. The claims are the standard implications of the regularity conditions
(R0.1,2). see, for instance, [5, Chapter 3] for the standard arguments delivering the
estimates for the multiplicity in terms of degree. Q.E.D.

1.2. The non-singular case. Let us exclude the options (3) and (4). Here
B 6∈ SingG and in any case B 6∈ SingW .

Proposition 1.3. The case (4) does not realize.

Proof. Here we can argue in word for word the same way as in [4, Subsection
3.3, Case 2]: take a general point o ∈ B, so that p = σ(o) ∈ W is a non-singular
point on W . The tangent hyperplanes

TpG and TpWP

are distinct and their σ-preimages on V are singular. Therefore,

∆ = σ−1 (TpG ∩ TpWP ∩G)

is an irreducible subvariety of codimension 2 on V , satisfying the relations

∆ ∼ H2 and multo ∆ = 4,

the second equality is guaranteed by the regularity condition (R1.2).

On the other hand, from the (standard) 4n2-inequality we get that there is an
irreducible subvariety Y ⊂ V such that

Y ∼ dH2 and multo Y > 4d

for some d ∈ Z+. Therefore, Y 6= ∆, which means that Y is not contained in at
least one of the two divisors

σ−1(TpG) and σ−1(TpWP).

Taking the scheme-theoretic intersection of Y with that divisor and selecting a
suitable irreducible component, we obtain an irreducible subvariety Y ∗ ⊂ V of
codimension 3 such that

multo Y
∗ >

4

m
degH Y ∗.

The image S = σ(Y ∗) ⊂ G is an irreducible subvariety of codimension 3, satisfying
the inequality

multp S >
4

m
deg S.

We get a contradiction with the claim (i) of Proposition 1.2. Q.E.D.

Proposition 1.4. The case (3) does not realize.

Proof. Assume the converse. Let o ∈ B be a general point, so that p = σ(o) 6∈ W
and p 6∈ Sing V . Note that σ∗ : ToV → TpG is an isomorphism of vector spaces. Let
λ : V + → V be the blow up of the point o and λG : G+ → G the blow up of the
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point p, with the exceptional divisors E+ and E+
G , respectively. We have the natural

isomorphism
E+ σ

−→ E+
G
∼= PM−1.

It is well known (the “8n2-inequality”, see, for instance, [5, Chapter 2]), that there
is a linear subspace Λ ⊂ E+ of codimension 2 such that

multoZ +multΛ Z
+ > 8n2,

where Z+ is the strict transform of the self-intersection Z on V +. Let P ⊂ P be a
general hyperplane such that

σ−1(G ∩ P )+ ⊃ Λ.

Set GP = G ∩ P ; obviously, for a general P none of the irreducible components of
Z is contained in σ−1(GP ). Therefore, the effective cycle

ZP = (Z ◦GP )

of codimension 3 on V satisfies the inequality

multo ZP > 8n2.

Taking a suitable irreducible component Y of ZP and its image S = σ(Y ), we obtain
an irreducible subvariety S ⊂ G of codimension 3, satisfying at the non-singular
point p ∈ G the inequality

multp S >
4

m
deg S.

This contradicts the claim (i) of Proposition 1.2. Q.E.D.

1.3. The singular case. It remains to exclude the options (5) and (6), where
B ⊂ Sing V . It is here that we use the generalized 4n2-inequality shown in [8].

Proposition 1.5. The cases (5) and (6) do not realize.

Proof. Assume that the case (5) takes place. Let o ∈ B be a point of general
position. The singularity o ∈ V is a quadratic singularity, satisfying the requirements
of the main theorem of [8]. Therefore,

multo Z > 4n2 ·multo V = 8n2.

Taking a suitable irreducible component Y of Z and its image S = σ(Y ), we obtain
an irreducible subvariety S ⊂ G of codimension 2, satisfying at the quadratic point
p ∈ G the inequality

multp S >
4

m
deg S,

which contradicts the claim (ii) of Proposition 1.2.

The case (6) is excluded in a similar way, just for Z we get the inequality

multo Z > 4n2 ·multo V = 16n2.
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and for S the inequality

multp S >
8

m
deg S,

which can not be satisfied at a quadratic point p ∈ G by Proposition 1.2. Q.E.D.

Proof of Theorem 3 is now complete.

2 Estimates for the codimension

In this section we prove Theorem 3. To this purpose, for each M > 10 we construct
an algebraic subset Z ⊂ F of codimension > ξ(M), such that F −Z ⊂ Freg.

As a first step we reduce the construction to double hypersurfaces containing a
fixed point o ∈ P(1M+2, l): The point [(0 : · · · : 0) :l 1] ∈ P(1M+2, l) is contained in
no such double hypersurface, by its construction. For all other points o = [o′ :l u] ∈
P(1M+2, l) the subset F o ⊂ F of pairs (g, h) ∈ F such that o is contained in

V = {g = 0, u2 = h} ⊂ P(1M+2, l),

the double cover of G = {g = 0} associated to (g, h), is equal to Po
m,M+2 ×Po

2l,M+2,
with

Po
m,M+2 = {g ∈ Pm,M+2 : g(o

′) = 0} and Po
2l,M+2 = {h ∈ P2l,M+2 : u

2 = h(o′)}

affine hyperplanes of Pm,M+2 resp. P2l,M+2.
Now choose a point o1 = [o′1 :l u1] ∈ P(1M+2, l) \ {[0 : · · · : 0 :l 1]} with u1 6= 0

and a point o2 = [o′2 :l 0] ∈ P(1M+2, l).

Proposition 2.1. For i = 1, 2 let Zoi ⊂ F oi be algebraic subsets such that
F oi \Zi ⊂ F oi

reg. Then there exists an algebraic subset Z ⊂ F such that F \Z ⊂ Freg

and
codimFZ > min(codimFo1Zo1 −M, codimFo2Zo2 −M + 1).

Proof. PGL(M + 2) acts on P(1M+2, l) by transforming the first M + 2 ho-
mogeneous coordinates in the standard way. This action has the three orbits
{[0 : · · · : 0 :l 1]}, {[o′ :l u] ∈ P(1M+2, l) : u 6= 0} \ {[0 : · · · : 0 :l 1]} and
{[o′ :l u] ∈ P(1M+2, l) : u = 0}. Thus, for each point o1 ∈ {u 6= 0} \ {[0 : · · · : 0 :l 1]}
resp. o2 ∈ {u = 0} we can find isomorphic algebraic subset Zo1 resp. Zo2 such that
F o1 \ Zo1 ⊂ F o1

reg resp. F o2 \ Zo2 ⊂ F o2
reg.

The closure Z1 of the union of all the Zo1 has dimension 6 dimZo1 + M + 2,
whereas the closure Z2 of the union of all the Zo2 has dimension 6 dimZ2+M +1.
Since codimFF

o = 2 this implies the bound on the codimension of Z = Z1 ∪ Z2.
Q.E.D.

Note that a point o ∈ {u 6= 0} can only lie outside the ramification locus of a
Fano double cover V , whereas a point o ∈ {u = 0} must lie on the ramification
locus.
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2.1. Codimension estimates for points outside the ramification locus.

Choose a point o ∈ {u 6= 0} \ {[0 : · · · : 0 :l 1]}. We first treat the cases when the
regularity conditions on the hypersurface G = {g = 0} ⊂ P fail.

Using the notation in the Introduction assume that q1 6≡ 0. The set SR0.1 of
pairs (g, h) in F o such that q1, . . . , qm is not a regular sequence in Op,P is a closed
algebraic subset of the Zariski-open subset {q1 6≡ 0} ⊂ F o. It is stratified according
to the position where q1, . . . , qm is not any longer regular: Since q1 6≡ 0 this can only
happen from q2 on, so SR0.1 = S2

R0.1 ∪ . . . ∪ Sm
R0.1 with

Sd
R0.1 = {(q1, . . . , qm; h) : q2, . . . , qd−1 is regular, but not q2, . . . , qd} ⊂ F o.

for d = 2, . . . , m. The set Sd
R0.1 is closed algebraic in SR0.1 \

⋃d−1
i=2 S

i
R0.1, thus the

codimension of its Zariski closure in F o is > to the codimension of its intersection
with the fiber in F o over a fixed regular sequence q1, . . . , qd−1 in this fiber, under
the natural projection. By the methods in [3] this codimension is >

(
M+1
d

)
for

2 ≤ d ≤ m. Since m+ 2l 6 M + 1 this implies:

codimFoSR0.1 >

(
M + 1

2

)
. (2)

If q1 ≡ 0 and SR0.2 denotes the set of pairs (g, h) in F o such that q2, . . . , qm is
not a regular sequence in Op,P, we find as before a lower bound for the codimension
of the closed algebraic subset SR0.2 in F o:

codimFoSR0.2 > M + 1 +

(
M + 1

2

)
=

(
M + 2

2

)
. (3)

Here, the summand M + 1 counts the codimensions given by the vanishing of q1.
Next, we study the case when the point o is too singular on the double cover V ,

that is when condition (R2.1) fails. This happens when q1 ≡ 0 and rk q2 6 6, and
we denote the closed algebraic subset of pairs (g, h) in F o satisfying these conditions
by SR2.1.

Quadratic forms in M +1 variables correspond to symmetric (M +1)× (M +1)
matrices parametrised by a

(
M+2
2

)
-dimensional affine space SymM+1, and the rank

of a quadratic form q2 equals the rank of the corresponding symmetric matrix A.
But rkA 6 r if and only if there exists an (M + 1− r)-dimensional vector subspace
Λ ⊂ CM+1 spanned by 0-eigenvectors of A. Such matrices A ∈ SymM+1,6r = {A ∈
SymM+1 : rkA 6 r} lie in the image of the incidence variety

Φ = {(A,Λ) : A · v = 0 for all v ∈ Λ} ⊂ SymM+1 ×Gr(M + 1− r,M + 1)

under the projection to SymM+1. This projection has 0-dimensional general fibers,
for matrices of rank r, so codimSymM+1

SymM+1,6r = dimSymM+1 − dimΦ. On the
other hand, the projection of Φ onto the Grassmannian Gr(M + 1 − r,M + 1) has
fibers of dimension

(
r+1
2

)
, so dimΦ =

(
r+1
2

)
+ r(M + 1− r) and

codimSymM+1
SymM+1,6r =

(
M + 2

2

)
−

(
r + 1

2

)
−r(M+1−r) =

(M + 2− r)(M + 1− r)

2
.
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Setting r = 6 and adding the M + 1 codimensions given by q1 ≡ 0 we obtain

codimFoSR2.1 = M + 1 +
(M − 4)(M − 5)

2
=

(M − 4)(M − 3)

2
+ 5. (4)

2.2. Codimension estimates for points on the ramification locus. Choose
a point o ∈ {u = 0}. Using the notation in the Introduction o will lie on a double
cover given by a pair (g, h) ∈ F o only if w0 = 0.

As for points outside the ramification locus we obtain the following two codimen-
sion bounds for subsets SR0.1 ⊂ F o and SR0.2 ⊂ F o where the regularity conditions
on the hypersurface G = {g = 0} ⊂ P fail:

codimFoSR0.1 >

(
M + 1

2

)
(5)

and

codimFoSR0.2 >

(
M + 2

2

)
. (6)

Next, we study the set SR1.2 ⊂ F o of pairs (g, h) such that o is non-singular
on the associated double cover but condition (R1.2) fails. That is the case when
q1 6≡ 0, w1 6≡ λq1 for all λ ∈ C and q2|{q1=w1=0} ≡ 0. The last identity is equivalent
to q2 ≡ q1 · q

′
1 +w1 ·w

′
1 for two linear forms q′1, w

′
1. Since the first two conditions are

open in F o it is enough to determine the codimension of the set of q2 in the space of
all quadratic forms in M+1 variables that are of the above form for given q1, w1: By
a change of coordinates q1 and w1 may be identified with two of the M+1 variables,
thus the requested codimension equals the dimension of quadratic forms in M − 1
variables. So we have

codimFoSR1.2 >

(
M

2

)
. (7)

Pairs (g, h) for which o is a singular point on the associated double cover mapped
to a non-singular point on the hypersurface G ⊂ P fail condition (R2.2) if and only
if q1 6≡ 0, w1 = λq1 for some λ ∈ C and rk(w2 − λq2|{q1=0}) 6 5. The codimension
of the set SR2.2 ⊂ F o of such pairs equals the sum of M (from w1 ≡ λq1) and the
codimension of quadratic forms of rank 6 5 when restricted to a given linear form,
in the space of all quadratic forms in M +1 variables. Since by a coordinate change
we can assume that q1 is one of the M + 1 variables it is enough to calculate the
codimension of quadratic forms of rank 6 5 in the space of all quadratic forms in
M variables. Imitating the calculations in Section 2.1 we obtain a lower bound for
this codimension as (M−4)(M−5)

2
. Adding up this leads to

codimFoSR2.2 > M +
(M − 4)(M − 5)

2
=

(M − 4)(M − 3)

2
+ 4. (8)

Pairs (g, h) for which o is a singular point on the associated double cover mapped
to a singular point on the hypersurface G ⊂ P fail condition (R2.3) if and only if

12



q1 ≡ 0, w1 6≡ 0 and rk(q2|{w1=0}) 6 6. As before we obtain a lower bound for the
codimension of the set SR2.3 ⊂ F o of such pairs as

codimFoSR2.3 > (M + 1) +
(M − 5)(M − 6)

2
=

(M − 5)(M − 4)

2
+ 6. (9)

Finally, we need to look at the set SR2.22 ⊂ F o of pairs (g, h) where o is a
biquadratic singular point on the associated double cover failing condition R2.22.
This is the case if and only if q1 ≡ 0, w1 ≡ 0 and {q2|P = y2−w2|P = 0} ⊂ P(P ) ∼= P10

is not a non-singular 8-dimensional complete intersection for a general 11-plane
P ⊂ CM+2. To obtain a lower bound for the codimension of SR2.22 in F o we follow
the strategy in [10, Sec.2.2&2.3]; our situation is much simpler but requires some
adjustments.

Proposition 2.2. If Q = {q2 = y2 − w2 = 0} ⊂ PM+1 is an irreducible and
reduced complete intersction with codimQSing(Q) > 9 then Q∩P(P ) is non-singular
for a general 11-dimenional hyperplane P ⊂ CM+2.

Proof. This follows from a version of Bertini’s Theorem implying that Sing(Q∩
P(P )) ⊂ Sing(Q) for a general hyperplane P ⊂ CM+2 (see [12, II.Thm.8.18]), and
the fact that a general 10-dimensional hyperplane P(P ) will not intersect the > 11-
codimensional algebraic subset Sing(Q) ⊂ PM+1. Q.E.D.

The proposition shows that is enough to find lower bounds for the codimension
of the set of pairs (g, h) ∈ F o such that q1 ≡ 0, w1 ≡ 0 and Q = {q2 = y2 − w2 =
0} ⊂ PM+1 is reducible or non-reduced, and the (Zariski closure of the) set of pairs
(g, h) such that q1 ≡ 0, w1 ≡ 0 and codimQSing(Q) 6 8. In both cases we have
codimPM+1Q = 2 as long as q2 6≡ 0 since then q2 cannot have a factor in common
with y2 − w2.

We split up the first set into pairs where the quadric Q2 = {q2 = 0} ⊂ PM+1 is
reducible or non-reduced, and pairs where Q2 is irreducible and reduced and Q not.
Q2 is reducible or non-reduced if and only if q2 is a product of two linear forms. The
set of such quadrics has codimension

(
M+2
2

)
−2(M+1) in P2,M+1, so the codimension

of this component of the first set in F o is

2(M + 1) +

(
M + 2

2

)
− 2(M + 1) =

(
M + 2

2

)
. (10)

Next we assume that Q2 is irreducible and reduced. By Grothendiecks Parafac-
toriality Theorem [6] and the Lefschetz Theorem for Picard groups [2, Ex.3.1.35]
classes of Weil divisors on Q2 are classes of restrictions of hypersurfaces in PM+1.
Furthermore,

H0(PM+1,OPM+1(a)) → H0(Q2,OQ2
(a))

is surjective for all integers a ≥ 0, bijective for a 6= 2 and has kernel C · q2 for a = 2.
Thus, Q is reducible or non-reduced if and only if y2−w2+λq2 is a product of linear
forms, for some λ ∈ C. But this is only possible if w2 − λq2 is a square of a linear
form. For fixed q2 such w2 form a set of codimension

(
M+2
2

)
− (M +1)−1 in P2,M+1,
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so the codimension of this component of the first set in F o is

2(M + 1) +

(
M + 2

2

)
− (M + 1)− 1 =

(M + 4)(M + 1)

2
− 1. (11)

Now assume that Q is an irreducible and reduced complete intersection of dimen-
sion M−1 and codimQSing(Q) 6 8. A point p ∈ Q is a singularity of Q if and only if
the tangent space to Q2 in p is contained in the tangent space to W2 = {y2−w2 = 0}
in p, or vice versa. In both cases there exists a λ = (λ1 : λ2) ∈ P1 such that
W (λ) = λ1q2 + λ2(y

2 − w2) has a singularity in p. Thus

Sing(Q) ⊂
⋃

λ∈P1

Sing(W (λ)),

and since dimSing(Q) > M − 9 we have maxλ∈P1 dimSing(W (λ)) > M − 10. Since
W (λ) is the vanishing locus of a quadric in M + 2 variables, dimSing(W (λ)) =
M + 1− rk(W (λ)), and this implies minλ∈P1 rk(W (λ)) 6 11.

We distinguish two cases: If rk(q2) ≤ 11 the inequality above is satisfied for
λ = (1 : 0). The codimension of this component of the second set in F o where q2
satisfies this condition is > to

2(M + 1) +
(M − 9)(M − 10)

2
=

(M − 9)(M − 6)

2
+ 20. (12)

If rk(q2) > 11 we must find a µ ∈ C such that rk(y2−w2+µq2) 6 11. This is the
case if and only if rk(w2−µq2) 6 10, so for fixed q2 the quadratic polynomial w2 lies
in the cone in P2,M+1 spanned by the vertex q2 and all the quadratic polynomials of

rank 6 10 in M +1 variables. This cone has codimension (M−8)(M−9)
2

− 1 in P2,M+1,
so the Zariski closure of the set of all pairs (g, h) in F o where q2 and w2 satisfy the
above conditions has codimension > to

2(M + 1) +
(M − 8)(M − 9)

2
− 1 =

(M − 8)(M − 5)

2
+ 17 (13)

2.3. Proof of Theorem 2. Using the estimates (2) – (13) Proposition 2.1 tells
us that we will obtain a lower bound for the codimension of the regular locus Freg

in F by subtracting M from the minimum of
(
M + 1

2

)
,

(
M + 2

2

)
,
(M − 4)(M − 3)

2
+ 5,

subtracting M − 1 from the minimum of
(
M + 1

2

)
,

(
M + 2

2

)
,

(
M

2

)
,
(M − 4)(M − 3)

2
+ 4,

(M − 5)(M − 4)

2
+ 6,

(
M + 2

2

)
,

(M + 4)(M + 1)

2
− 1,

(M − 9)(M − 6)

2
+ 20,

(M − 8)(M − 5)

2
+ 17

and taking the smaller of the two numbers. For each M > 10 an elementary calcu-
lation yields the lower bound ξ(M) as defined in the Introduction.
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