
ar
X

iv
:1

81
2.

11
32

2v
2 

 [
m

at
h.

N
T

] 
 2

1 
M

ar
 2

01
9

On a q-deformation of modular forms

Victor J. W. Guo & Wadim Zudilin

Abstract. There are many instances known when the Fourier coefficients of
modular forms are congruent to partial sums of hypergeometric series. In our
previous work, such partial sums are related to the radial asymptotics of infinite
q-hypergeometric sums at roots of unity. Here we combine the two features to
construct a hypergeometric q-deformation of two CM modular forms of weight 3
and discuss the corresponding q-congruences.

To Bruce Berndt, with admiration and warm wishes,

on his
(q; q)6

(1− q)4(1− q3)2
birthday, as q → 1

1. Introduction

The hypergeometric identity

∞
∑

k=0

(4k + 1)
(1
2
)3k

k!3
(−1)k =

2

π
, (1.1)

due to G. Bauer [7], is more than 150 years old but still attracts a lot of mathemat-
ical interest because of its belonging to a family of the so-called Ramanujan-type
identities for 1/π (see [6, 10, 23, 26, 32] and, in particular, [3, Chap. 15] and [9,

Chap. 14]). Here (a)k =
∏k−1

j=0(a+ j) = Γ(a+ k)/Γ(a) is the Pochhammer notation,

so that (1
2
)k/k! =

(

2k
k

)

2−2k for k = 0, 1, 2, . . . . One arithmetic manifestation of a
special status of (1.1) are supercongruences

p−1
∑

k=0

(4k + 1)
(1
2
)3k

k!3
(−1)k ≡

(p−1)/2
∑

k=0

(4k + 1)
(1
2
)3k

k!3
(−1)k

≡ (−1)(p−1)/2p (mod p3) for primes p > 2, (1.2)

observed by L. Van Hamme [31, Conjecture (B.2)] and proved subsequently by
E. Mortenson [24] (see also [33]).
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A principal objective of our earlier work [21] was demonstration that the hyper-
geometric evaluations like (1.1) and congruences for truncated sums like (1.2) may
be deduced, in a uniform way, from suitable q-deformations of (1.1). Namely, the
asymptotics of such q-deformations as q tends radially to a root of unity governs the
behaviour of partial sums related to the degree of that root. Notice that the right-
hand sides a(p) = (−1)(p−1)/2p of the congruences (1.2) combine to the Dirichlet
generating function

L(s) =
∏

p>2

(1− a(p)p−s)−1 =

∞
∑

m=0

(−1)m

(2m+ 1)s−1
= L(χ−4, s− 1), (1.3)

where χ−4 =
(

−1
·

)

is the nonprincipal modulo 4 character, and the series evaluates
to π/4 at s = 2, so that (1.1) transforms into

∞
∑

k=0

(4k + 1)
(1
2
)3k

k!3
(−1)k =

8L(2)

π2
.

For some other recent progress on q-congruences, we refer the reader to [12, 13, 14,
15, 17, 18].

A theme of this note is to give examples of q-deformations of hypergeometric eval-
uations, which are linked with the coefficients of modular forms rather than Dirichlet
characters, and use these q-hypergeometric identities to establish the corresponding
(super)congruences.

2. Hypergeometric identities and congruences

A forward player of our exposition is the hypergeometric evaluation

∞
∑

k=0

(1
2
)3k

k!3
=

π

Γ(3/4)4
.

Its right-hand side happens to be a (simple multiple of the) period of the CM
modular form

f1(τ) = q

∞
∏

m=1

(1− q4m)6 =

∞
∑

n=1

a1(n)q
n, where q = exp(2πiτ), (2.1)

of weight 3:
∞
∑

k=0

(1
2
)3k

k!3
=

Γ(1/2)2

Γ(3/4)4
=

16L(f1, 2)

π2
=

8L(f1, 1)

π
(2.2)

(see [28, Theorem 5]), where L(f1, s) denotes the Dirichlet L-function of (2.1).
This relationship between the hypergeometric series and modular form is somewhat
deeper because of the chain of related congruences

p−1
∑

k=0

(1
2
)3k

k!3
≡ a1(p) (mod p2) for primes p > 2 (2.3)
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(see [25, 30]), which link corresponding partial sums with the Fourier coefficients of
(2.1). The latter can be given explicitly via

a1(p) =

{

2(a2 − b2) if p = a2 + b2, a odd,

0 if p ≡ 3 (mod 4),
(2.4)

and, in turn, satisfy

a1(p) ≡
Γp(1/2)

2

Γp(3/4)4
(mod p2) for p > 2

(see [31, Sect. 1 and Conjecture (A.2)]). This visually makes the series in (2.1) a
plausible generating function of the truncations in (2.3). Furthermore, we remark
that [30]

a1(p) ≡
(1
2
)2m

m!2
(mod p2) if m = (p− 1)/4 ∈ Z.

We should stress that not every formal q-analogue of a hypergeometric summation,
|q| < 1, may suit for application of the general machinery from our earlier work [21].
An example of q-deforming (2.2) is given by

∞
∑

k=0

(1 + q4k+1)
(q2; q4)3k
(q4; q4)3k

qk =
(q2; q4)2∞(q3; q4)2∞
(q; q4)2∞(q4; q4)2∞

(2.5)

(apply [21, eq. (52)] with a = b = c = 1), where the q-notation (a; q)k stands for
∏k−1

j=0(1− aqj) for k = 0, 1, 2, . . . ,∞. Identity (2.5) originates however from

∞
∑

k=0

1− q4k+1

1− q

(q2; q4)3k
(q4; q4)3k

(−q)k =
(q2; q4)2∞(−q3; q4)2∞

(1− q) (−q; q4)2∞(q4; q4)2∞

=
(q5; q4)4∞(q6; q8)4∞
(q; q2)2∞(q4; q4)2∞

(2.6)

(replace q with −q), which makes it a q-analogue of Bauer’s formula (1.1). This
‘true’ origin (1.1) makes the asymptotics of (2.5) at roots of unity q related to the
truncated sums of (1.1) rather than (2.2).

In this note, we give a q-extension of (2.2) that accommodates the related con-
gruences (2.3) and, by these means, implicitly provides a q-generalisation of the
generating function (2.1). We also provide a similar q-extension of the formula

3F2

(

1
2
, 1

2
, 1

2
1, 1

∣

∣

∣

∣

−1

)

=
Γ(1/2)2√

2Γ(5/8)2Γ(7/8)2
=

12
√
2L(f2, 2)

π2
=

12L(f2, 1)

π
(2.7)

(see [28, Theorem 5]), which underlies (1.1) and is attached to the weight 3 CM
modular form

f2(τ) =
∞
∑

n=1

a2(n)q
n = q

∞
∏

m=1

(1− qm)2(1− q2m)(1− q4m)(1− q8m)2.
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In this case, we have [25]

a2(p) =

{

2(a2 − 2b2) if p = a2 + 2b2,

0 if p ≡ 5, 7 (mod 8),

as well as

(−1)(p−1)/2

p−1
∑

k=0

(1
2
)3k

k!3
(−1)k ≡ Γp(1/2)

2

Γp(5/8)2Γp(7/8)2
≡ a2(p) (mod p2) (2.8)

for primes p > 2 and

a2(p) ≡
(1
4
)2m

m!2
×

{

1 if m = (p− 1)/8 ∈ Z

−1
2

if m = (3p− 1)/8 ∈ Z
(mod p2).

3. A q-Clausen identity

F.H. Jackson’s generalisation of Clausen’s identity [22] (see also [29, eq. (3.2)])
implies

2φ1

[

qa, q/a
q4

; q4, z

]

2φ1

[

qa, q/a
q4

; q4, q2z

]

=

∞
∑

k=0

(aq; q2)k(q/a; q
2)k(q

2; q4)k
(q2; q2)2k(q

4; q4)k
zk, (3.1)

where the basic hypergeometric series is defined as

r+1φr

[

a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]

=
∞
∑

k=0

(a1; q)k(a2; q)k · · · (ar+1; q)kz
k

(q; q)k(b1; q)k(b2; q)k · · · (br; q)k
.

Clearly, if one takes a = 1 and z = q2 in (3.1), then the first series on the left is
q-Gauss-summable,

2φ1

[

q, q
q4

; q4, q2
]

=
(q3, q3; q4)∞
(q2, q4; q4)∞

,

so that this leads to a ‘natural’ reduction of the series on the right and makes no
surprise from divisibility of the result by some cyclotomic polynomials

Φn(q) =
n
∏

j=1
gcd(j,n)=1

(q − e2πij/n).

Theorem 1. For any positive integer n, we have

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

q2k ≡







(q3; q4)(n−1)/4

(q4; q4)(n−1)/4

(mod Φn(q)) if n ≡ 1 (mod 4),

0 (mod Φn(q)) if n ≡ 3 (mod 4).

(3.2)

Proof. From the proof of [18, Theorem 4.1] we know that

(q; q4)2k ≡ (q1−3n; q4)k(q
1+3n; q4)k (mod Φn(q)

2).
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Therefore, for n ≡ 3 (mod 4) we have, modulo Φn(q)
2,

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

q2k ≡
(3n−1)/4
∑

k=0

(q1−3n; q4)k(q
1+3n; q4)k

(q4; q4)2k
q2k =

(q3−3n; q4)(3n−1)/4

(q4; q4)(3n−1)/4

by the q-Chu–Vandermonde summation formula [11, Appendix (II.7)]:

2φ1

[

a, q−n

c
; q,

cqn

a

]

=
(c/a; q)n
(c; q)n

. (3.3)

The proof then follows from the fact that (q3−3n; q4)(3n−1)/4 contains the factor
1− q−2n.

Similarly, for n ≡ 1 (mod 4), the result follows from

(q; q4)2k ≡ (q1−n; q4)k(q
1+n; q4)k (mod Φn(q)

2). �

Making the substitution q → q−1 in (3.2), we obtain

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

q4k ≡







q(n
2−1)/4

(q3; q4)(n−1)/4

(q4; q4)(n−1)/4
(mod Φn(q)) if n ≡ 1 (mod 4),

0 (mod Φn(q)) if n ≡ 3 (mod 4).

Remarkably, the truncations

n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k

of the series on the right-hand side in (3.1) when a = 1 and z = q2 are divisible by
more cyclotomic polynomials, always squared, than the corresponding sums in (3.2)
for all n ≥ 2; the congruence

n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡ 0 (mod Φn(q)
2)

for n ≡ 3 (mod 4), not necessarily prime, discussed in [19, Corollary 1.2] is a par-
ticular instance of this high divisibility. We numerically observe that

n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡











q(n−1)/2
(q2; q2)2(n−1)/2

(q4; q4)4(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

is true not just modulo Φn(q)
2 but also modulo

∏

ℓ≡3 (mod 4), ℓ|nΦℓ(q)
2 for n ≡ 1

(mod 4) and even modulo
∏

ℓ≡3 (mod 4), ℓ<nΦℓ(q)
2 if n ≡ 3 (mod 4).

Theorem 2. Modulo Φn(q)
2,

n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡











q(n−1)/2
(q2; q4)2(n−1)/4

(q4; q4)2(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

(3.4)
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Proof. Although the method of proving [19, Corollary 1.2] can also be used to es-
tablish (3.4), here we give a somewhat different argument. We shall demonstrate a
parametric generalisation of (3.4), namely, that

n−1
∑

k=0

(aq; q2)k(q/a; q
2)k(q

2; q4)k
(q2; q2)2k(q

4; q4)k
q2k ≡











q(n−1)/2
(q2; q4)2(n−1)/4

(q4; q4)2(n−1)/4

if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4),

(3.5)

holds true modulo (1 − aqn)(a − qn). For a = q−n or a = qn, the left-hand side of
(3.5) is equal to

(n−1)/2
∑

k=0

(q1−n; q2)k(q
1+n; q2)k(q

2; q4)k
(q2; q2)2k(q

4; q4)k
q2k = 4φ3

[

q1−n, qn+1, q, −q
q2, −q2, q2

; q2, q2
]

. (3.6)

By Andrews’ terminating q-analogue of Watson’s formula (see [2] or [11, Appendix
(II.17)]),

4φ3

[

q−m, a2qm+1, b, −b
aq, −aq, b2

; q, q

]

=







bm(q, a2q2/b2; q2)m/2

(a2q2, b2q; q2)m/2

if m is even,

0 if m is odd,

we conclude that the right-hand side of (3.6) is just that of (3.5). Finally, letting
a → 1 in (3.5), we are led to (3.4). �

Remark. The n ≡ 3 (mod 4) case can also be deduced from [15, Theorem 1.1]. For
n ≡ 1 (mod 4), we can also prove (3.4) without using Andrews’ formula as follows.
By (3.1) and (3.3), we have, modulo Φn(q)

2,

n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
∑

k=0

(q1−n; q2)k(q
1+n; q2)k(q

2; q4)k
(q2; q2)2k(q

4; q4)k
q2k

=
n−1
∑

k=0

(q1−n; q4)k(q
1+n; q4)k

(q4; q4)2k
q2k

×
n−1
∑

k=0

(q1−n; q4)k(q
1+n; q4)k

(q4; q4)2k
q4k

= q(n
2−1)/4

(q3−n; q4)2(n−1)/4

(q4; q4)2(n−1)/4

,

which is in fact the same as (3.4).

The consideration above corresponds to a q-deformation of (2.3); our q-analogue
of (2.8) is somewhat similar but weaker.

We first prove the following result.
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Theorem 3. For any positive odd integer n, we have, modulo Φn(q),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)3k ≡



























(q5, q7; q8)(n−1)/8

(q4; q4)(n−1)/4

if n ≡ 1 (mod 8),

(q5, q7; q8)(3n−1)/8

(q4; q4)(3n−1)/4

if n ≡ 3 (mod 8),

0, if n ≡ 5, 7 (mod 8).

(3.7)

Proof. We use the q-Kummer (Bailey–Daum) summation formula [11, Appendix
(II.9)]:

2φ1

[

a, b
aq/b

; q,
−q

b

]

=
(−q; q)∞(aq; q2)∞(aq2/b2; q2)∞

(−q/b; q)∞(aq/b; q)∞
. (3.8)

For n ≡ 1 (mod 8), by (3.8) we obtain

2φ1

[

q1−n, q
q4−n ; q4, −q3

]

=
(−q4; q4)∞(q5−n; q8)∞(q7−n; q8)∞

(−q3; q4)∞(q4−n; q4)∞

=
(q5−n; q8)(n−1)/8(q

7−n; q8)(n−1)/8

(q4−n; q4)(n−1)/4

. (3.9)

Similarly, for n ≡ 3 (mod 8), we have

2φ1

[

q1−3n, q
q4−3n ; q4, −q3

]

=
(q5−3n; q8)(3n−1)/8(q

7−3n; q8)(3n−1)/8

(q4−3n; q4)(3n−1)/4
. (3.10)

Furthermore,

n−1
∑

k=0

(q1−n; q4)k(q; q
4)k

(q4; q4)k(q4−n; q4)k
(−q)3k = 0 for n ≡ 5 (mod 8), (3.11)

n−1
∑

k=0

(q1−3n; q4)k(q; q
4)k

(q4; q4)k(q4−3n; q4)k
(−q)3k = 0 for n ≡ 7 (mod 8). (3.12)

Since q3n ≡ qn ≡ 1 (mod Φn(q)), we deduce the desired q-congruences (3.7) from
(3.9)–(3.12). �

We complement Theorem 3 with the following related result.
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Theorem 4. For any positive odd integer n, we have, modulo Φn(q),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)k

≡



















































(q, q2,−q3,−q4; q4)(n−1)/8

(q4; q4)(n−1)/4

q(1−n2)/8 if n ≡ 1 (mod 8),

(q, q2,−q3,−q4; q4)(3n−1)/8

(q4; q4)(3n−1)/4

q(1−n2)/8 if n ≡ 3 (mod 8),

−(1− q2)(−q3,−q4, q5, q6; q4)(n−5)/8

(q4; q4)(n−5)/4

q(9−n2)/8 if n ≡ 5 (mod 8),

−(1− q2)(−q3,−q4, q5, q6; q4)(3n−5)/8

(q4; q4)(3n−5)/4

q(9−n2)/8 if n ≡ 7 (mod 8).

Proof. Letting q → q4, b = q and c = −q2−4N in Jackson’s terminating q-analogue
of Dixon’s sum (see [11, Appendix (II.15)]),

3φ2

[

q−2N , b, c
q1−2N/b, q1−2N/c

; q,
q2−N

bc

]

=
(b, c; q)N(q, bc; q)2N
(q, bc; q)N(b, c; q)2N

, (3.13)

we obtain

2φ1

[

q−8N , q
q3−8N ; q4, −q5

]

=
(q,−q2−4N ; q4)N(q

4,−q3−4N ; q4)2N
(q4,−q3−4N ; q4)N(q,−q2−4N ; q)2N

.

Taking q → q−1 in the above identity, we are led to

2φ1

[

q−8N , q
q3−8N ; q4, −q

]

=
(q,−q2−4N ; q4)N(q

4,−q3−4N ; q4)2N q−4N

(q4,−q3−4N ; q4)N(q,−q2−4N ; q)2N
.

It follows that, for n ≡ 1 (mod 8),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)k ≡
(n−1)/4
∑

k=0

(q1−n; q4)k(q; q
4)k

(q4; q4)k(q4−n; q4)k
(−q)k

=
(q,−q(5−n)/2; q4)(n−1)/8(q

4,−q(7−n)/2; q4)(n−1)/4q
(1−n)/2

(q4,−q(7−n)/2; q4)(n−1)/4q(1−n)/8(q,−q(5−n)/2; q4)(n−1)/4

=
(q, q2,−q3,−q4; q4)(n−1)/8

(q4−n; q4)(n−1)/4

q(1−n2)/8.
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Since qn ≡ 1 (mod Φn(q)), we complete the proof of the theorem for the first case.
The other three cases follow in a similar way: modulo Φn(q),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)k ≡
(3n−1)/4
∑

k=0

(q1−3n; q4)k(q; q
4)k

(q4; q4)k(q4−3n; q4)k
(−q)k for n ≡ 3 (mod 8),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)k ≡
(n−1)/4
∑

k=0

(q1−n; q4)k(q; q
4)k

(q4; q4)k(q4−n; q4)k
(−q)k for n ≡ 5 (mod 8),

n−1
∑

k=0

(q; q4)2k
(q4; q4)2k

(−q)k ≡
(3n−1)/4
∑

k=0

(q1−3n; q4)k(q; q
4)k

(q4; q4)k(q4−3n; q4)k
(−q)k for n ≡ 7 (mod 8),

and for the last two instances, we use the ‘odd version’ of Jackson’s q-analogue of
Dixon’s sum (which follows from [5, eq. (2.3)]),

3φ2

[

q1−2N , b, c
q2−2N/b, q1−2N/c

; q,
q2−N

bc

]

=
(b, c; q)N(q, bc; q)2N−1

(q; q)N−1(bc; q)N(b; q)2N−1(c; q)2N
,

instead of (3.13). �

Theorem 5. For any positive integer n ≡ 1 (mod 4), modulo Φn(q), we have

(n−1)/2
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

(−q)k

≡











(q, q2; q4)2(n−1)/8(−q; q)(n−1)/2

(q4; q4)2(n−1)/4

q−(1−n)2/4 if n ≡ 1 (mod 8),

0 if n ≡ 5 (mod 8).

Proof. For n ≡ 1 (mod 8), in Jackson’s q-Clausen identity (3.1) we take a = q−n

and z = −q to obtain

(n−1)/2
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

(−q)k

≡
n−1
∑

k=0

(q1−n; q2)k(q
1+n; q2)k(q

2; q4)k
(q2; q2)2k(q

4; q4)k
(−q)k

=
n−1
∑

k=0

(q1−n; q4)k(q
1+n; q4)k

(q4; q4)2k
(−q)k

×
n−1
∑

k=0

(q1−n; q4)k(q
1+n; q4)k

(q4; q4)2k
(−q)3k (mod Φn(q)

2). (3.14)
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By (3.7), we see that the second sum is congruent to

(q5, q7; q8)(n−1)/8

(q4; q4)(n−1)/4

≡ (q5−n, q7−n; q8)(n−1)/8

(q4; q4)(n−1)/4

=
(q2, q4; q8)(n−1)/8q

−(n−1)(n−3)/8

(q4; q4)(n−1)/4
(mod Φn(q)),

while by Theorem 4 the first sum is congruent to

2φ1

[

q1−n, q
q4−n ; q4, −q

]

≡ (q, q2,−q3,−q4; q4)(n−1)/8

(q4; q4)(n−1)/4

q(1−n2)/8 (mod Φn(q)).

This establishes the n ≡ 1 (mod 8) case of the theorem after some simplifications.
For n ≡ 5 (mod 8), we again have (3.14). Since qn ≡ 1 (mod Φn(q)), we know

that the second sum on the right-hand side of (3.14) is congruent to 0 modulo Φn(q)
by Theorem 3, and so is the right-hand side of (3.14). This proves the theorem for
n ≡ 5 (mod 8). �

We leave the related cases when n ≡ 3 (mod 4) of Theorem 5 as an open problem
to the reader.

Problem 1. For any positive integer n ≡ 7 (mod 8), show that

(n−1)/2
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

(−q)k ≡ 0 (mod Φn(q)).

Give a related q-congruence for n ≡ 3 (mod 8).

4. Conclusion and open questions

We have the following generalisation of Theorem 2 for n ≡ 3 (mod 4), which
(partly) forms the grounds of the arithmetic observations preceding the statement
of the theorem.

Conjecture 1. For n ≡ 3 (mod 4) and any positive integer r, we have

rn−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡ 0 (mod Φn(q)
2),

rn+(n−1)/2
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡ 0 (mod Φn(q)
2).

We also give a related generalisation of [21, Conjecture 4.13].

Conjecture 2. For n ≡ 3 (mod 4) and any positive integer r, we have

rn−1
∑

k=0

(1 + q4k+1)(q2; q4)3k
(1 + q) (q4; q4)3k

qk ≡ 0 (mod Φn(q)
2),

rn+(n−1)/2
∑

k=0

(1 + q4k+1)(q2; q4)3k
(1 + q) (q4; q4)3k

qk ≡ 0 (mod Φn(q)
2).
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Note that, although similar congruences with a parameter a modulo (1− aqn)×
(a− qn) can be deduced, we cannot take the limit as a → 1 to accomplish the proof
of Conjectures 1 and 2 this time. Using the q-Lucas theorem, we can show that
all the congruences in Conjectures 1 and 2 are true modulo Φn(q). Moreover, the
following similar congruence in [21, Theorem 4.14],

(n−1)/2
∑

k=0

(q; q2)2k
(q2; q2)k(q4; q4)k

q2k ≡ 0 (mod Φn(q)
2) for n ≡ 3 (mod 4),

does not have such a generalisation. For this reason, we believe that Conjectures 1
and 2 are not easy to prove.

The q-extension (2.6) of Bauer’s formula (1.1) is not unique. In [16, 20] we mention
a ‘more classical’ version

∞
∑

k=0

1− q4k+1

1− q

(q; q2)3k
(q2; q2)3k

(−q)k
2

=
(q; q2)∞(q3; q2)∞

(q; q2)2∞
. (4.1)

In spite of (4.1) (in fact, its parametric modification) being suitable for proving
the congruences (1.2) on the basis of our method from [21], dropping off the factor
(1 − q4k+1)/(1 − q) here does not lead to a ‘suitable’ q-analogue of (2.7). Namely,
a numerical check suggests no congruences for the truncated sums of the resulting
series.

Finally, we notice that the sequence a1(p) in (2.4) is ultimately linked with a re-
markable classics, the two-square theorem due to Fermat and Gauss (see [1, Chap. 4],
[8] and also the unpublished portion of Ramanujan’s paper [27], reproduced in [4,
Chap. 10] and relating the two-square generating function to the Dirichlet L-function
in (1.3)). However, no reasonable q-analogues of this result have been recorded yet.
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