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CODIMENSION ONE DISTRIBUTIONS AND STABLE RANK 2 REFLEXIVE

SHEAVES ON THREEFOLDS

O. CALVO-ANDRADE, M. CORRÊA, AND M. JARDIM

Abstract. We show that codimension one distributions with at most isolated singularities on
certain smooth projective threefolds with Picard rank one have stable tangent sheaves. The
ideas in the proof of this fact are then applied to the characterization of certain irreducible
components of the moduli space of stable rank 2 reflexive sheaves on P3, and to the construction
of stable rank 2 reflexive sheaves with prescribed Chern classes on general threefolds. We also
prove that if G is a subfoliation of a codimension one distribution F with isolated singularities,
then Sing(G ) is a curve. As a consequence, we give a criterion to decide whether G is globally
given as the intersection of F with another codimension one distribution. Turning our attention
to codimension one distributions with non isolated singularities, we determine the number of
connected components of the pure 1-dimensional component of the singular scheme.

1. Introduction

A codimension r distribution F on a smooth complex manifold X is given by an exact sequence

(1) F : 0 −→ TF

φ
−→ TX

π
−→ NF −→ 0,

where TF is a reflexive sheaf of rank s := dim(X) − r, and NF is a torsion free sheaf; these are
respectively called the tangent and the normal sheaves of F , respectively. We will use the notation
LF := det(NF ).

Taking the maximal exterior power of the dual morphism φ∨ : Ω1
X → T∨

F
we obtain a morphism

Ωs
X → det(TF )∨; its image is an ideal sheaf IZ/X of a subscheme Z ⊂ X , called the singular scheme

of F , twisted by det(TF )∨.
Finally, we say that F is integrable, that is a foliation, if TF is closed under the Lie bracket.

Clearly, every distribution of codimension dimX − 1 is integrable, being given by a single vector
field. For more details about distributions and foliations see (Araujo & Corrêa, Corrêa et al. 2015a,
Corrêa Jr et al. 2015, Esteves & Kleiman 2003).

This paper is dedicated to codimension one distributions on smooth projective threefolds. More
precisely, we consider smooth projective threefolds X with Picard group generated by an ample
line bundle OX(1). In addition, we assume that H1(OX(t)) = 0, for all t ∈ Z. We set

• cX := c1(TX) = −c1(Ω
1
X),

• ρX := min{t ∈ Z | H0(Ω1
X(t)) 6= 0}.

Examples of projective threefolds satisfying the desired conditions are smooth weighted projective
complete intersection threefolds X ; this claim follows from (Araujo et al. 2018, Lemma 5.17 and-
Corollary 5.23) and (Flenner 1981, Satz 8.11); furthermore, ρX = 2 and TX is always µ-stable.
More generally, projective manifolds with special cohomology in the sense of (Peternell & Wisniewski
1995) also satisfy the desired conditions.

Our first two main results concern distributions with only isolated singularities on such threefolds.
1
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Theorem 1. Let F be a codimension one distribution on a smooth projective threefold X with
Pic(X) = Z and H1(OX(t)) = 0, for all t ∈ Z. Assume that Sing(F ) is either empty or has
dimension equal to zero. If c1(TF ) < (≤) 2ρX , then TF is µ-(semi)-stable. Moreover, if TX is
µ-(semi)stable, then TF is µ-(semi)-stable.

Codimension one distributions F with the property assumed in the previous statement, namely
that Sing(F ) is either empty or has dimension equal to zero, are called generic, because they
can be defined by a general 1-form ω ∈ H0(Ω1

X(d)) for some d. If X is a projective variety with
cyclic Picard group, then it follows from (Brunella & Perrone 2011) that an integrable codimension
one distribution always has non isolated singular points. In particular, generic codimension one
distributions on projective threefolds with rank one Picard group cannot be integrable.

Moreover, we recall that if Sing(F ) is empty, then it is non-integrable and (X,F ) ≃ (P3,D),
where D is the contact distribution on P3, whose tangent bundle is the null correlation bundle
twisted by OP3(1), see (Ye 1984).

Next, we consider subfoliations of generic codimension one distributions. We prove that if G is
a subfoliation of a distribution F with isolated singularities, then G has non isolated singularities.
As a consequence, we give a criterion to decide when G is globally given as a complete intersection
of F with another codimension one distribution.

We must fix some notation in order to state the result mentioned above. When the singular
scheme Z of a distribution F is 1-dimensional, we let U denote the maximal 0-dimensional subsheaf
of the structure sheaf OZ ; the quotient sheaf OZ/U is the structure sheaf of a subscheme C ⊂ X
of pure dimension 1. This scheme will be denoted by Sing1(F ), and contains all non isolated
singularities of F ; the support of the sheaf U is denoted Sing0(F ), and contains all isolated
singularities of F .

Theorem 2. Let F be a generic codimension one distribution on a threefold X, and consider
a section σ ∈ H0(TF ⊗ L ∨) whose zero locus is a curve Y in X, with L ∈ Pic(X). If G is
the sub-foliation of F induced by σ, then Y = Sing1(G ) and Sing0(G ) = ∅. If, in addition,
H1(L ⊗detΩ1

X⊗det(TF )2) = 0, then G is given by the intersection of F with another codimension
one distribution H satisfying det(NH ) = det(TF/TG ).

Tangent sheaves of generic codimension one distributions on X can alternatively be described as
quotients of Ω1

X . It turns out that this is an important class of rank 2 sheaves, providing examples
of sheaves with interesting properties in various contexts.

We provide two applications of our ideas to the construction of interesting rank 2 reflexive sheaves
on threefolds. We first focus on the case X = P3, establishing the following result. Recall that the
degree of a codimension one distribution on P3 is the integer d := 2− c1(TF ).

Theorem 3. For each d ≥ 0, d 6= 2, the moduli space of stable rank 2 reflexive sheaves on P3 with
Chern classes

(c1, c2, c3) = (2− d, d2 + 2, d3 + 2d2 + 2d)

contains a nonsingular, rational, irreducible component of dimension (d + 1)(d + 3)(d + 4)/2 − 1
whose generic point is the tangent sheaf of a generic distribution of degree d on P3.

The case d = 0 is well known, since the tangent sheaf of a generic distribution of degree 0 on
P3 is precisely N(1), where N is a null correlation bundle, and these are parametrized by an open
subset of P5. The case d = 1 was considered by (Chang 1984, Theorem 3.14), who showed that
the component described in Theorem 3 is the whole moduli space of stable rank 2 reflexive sheaves
with Chern classes (c1, c2, c3) = (−1, 3, 5); see also (Calvo-Andrade et al. 2018, Theorem 8.1).
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For general threefolds, the existence of µ-stable reflexive sheaves with prescribed Chern classes
is an open problem with particular interest to String Theory when X is a Calabi–Yau threefold; see
Section 5 for more details. In this context, we prove the following existence and uniqueness result
for rank two reflexive sheaves; set

γX := min{t ∈ Z | Ω1
X(t) is globally generated}.

Theorem 4. Let X be a smooth projective 3-fold with rank one Picard group and cX < 3ρX . Then
for every integer r ≥ γX , there exists a rank two reflexive sheaf E satisfying:

• c1(E) = c1(TX)− rc1(OX(1)),
• c2(E) = c2(TX)− rc1(OX(1)) · c1(TX) + r2c1(OX(1))2,
• c3(E) = −c3(TX(−r)).

Moreover, if TX is simple, then E is uniquely determined by its singular scheme Sing(E) when r
is sufficiently large.

Observe that in the Calabi–Yau case we will have

• c1(E) = −rc1(OX(1)),
• c2(E) = c2(TX) + r2c1(OX(1))2,
• c3(E) = −c3(TX) + rc2(TX) · c1(OX(1)) + r3c1(OX(1))3.

Finally, since foliations always have non isolated singularities, it is therefore also important to
study distributions with non isolated singularities. One relevant problem concerning non isolated
singularities was formulated by Cerveau in (Cerveau 2013): if F is a codimension one foliation on
P3, then is Sing1(F ) connected? We showed in (Calvo-Andrade et al. 2018) that this question
has a negative answer for non-integrable distributions, giving an explicit example of a codimension
one distribution on P3 with locally free tangent sheaf whose singular scheme is not connected, see
(Calvo-Andrade et al. 2018, Theorem 9.5 item 2 (b)), thus showing that the connectedness of
Sing1(F ) must somehow be tied with the integrability of F .

Our last result shows how to count the number of connected components of Sing1(F ) in terms
of topological invariants of the tangent sheaf, under certain mild conditions.

Theorem 5. Let F be a codimension one distribution on a smooth projective threefold X satisfying
h1(OX) = 0. If h1(TX ⊗ L∨

F
) = h2(TX ⊗ L∨

F
) = 0 and Sing1(F ) is reduced, then Sing1(F ) has

h2(TF ⊗ L∨

F )− c3(TF ) + 1

connected components. In particular, Sing1(F ) is connected if and only if h2(TF ⊗L∨

F
) = c3(TF ).

The results listed above are subsequently proved in the five sections that follow.

2. Generic distributions on threefolds

We begin by setting up the notation and nomenclature to be used in the rest of the paper. This
section is then completed with the proof of Theorem 1.

We consider in this paper only codimension 1 distributions on a smooth projective variety X of
dimension 3, so that the exact sequence in display 1 simplifies to

(2) F : 0 → TF → TX → IZ/X ⊗ LF → 0,

where LF = det(TX) ⊗ KF , such that KF = det(TF )∨ is the canonical sheaf of F , and Z
is the singular scheme of F . A foliation is a distribution F satisfying the Frobenius condition
[TF , TF ] ⊂ TF . Furthermore, we say that a distribution F is generic if either Z = ∅ or dimZ = 0.
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In addition, we will also assume that Pic(X) = Z; let OX(1) denote its ample generator. We
can then assume that det(TF )∗ = OX(−f), where f := c1(TF ) ∈ Z. We will abuse notation by
assuming that the first Chern class of a sheaf is simply given by an integer number, indicating the
appropriate multiple of OX(1).

The slope of a torsion free sheaf E on X is given by

µL(E) :=
c1(E)

rk(E)
.

Recall that E is said to be µ-(semi)stable if every proper nontrivial subsheaf F ⊂ E satisfies
µL(F ) < (≤) µL(E). When E is reflexive, then E is µ-(semi)stable if and only if h0(E(p)) = 0 for
every p < (≤) c1(E)/2.

Note that if TX is µ-(semi)stable, then cX < (≤) 3ρX : since H0(Ω1
X(ρX)) 6= 0, there is a

nontrivial monomorphism OX(−ρX) →֒ Ω1
X , and µ-(semi)stability implies that −ρX < −cX/3.

In addition, if TX is µ-(semi)stable, then every subsheaf F →֒ TX satisfies c1(F ) < (≤) 2ρX ,
since c1(F )/2 < (≤) cX/3(≤) ρX . In other words, the inequalities in the hypotheses of Theorem 1
and Theorem 4 can be replaced by the µ-(semi)stability of the tangent bundle of X .

Proof of Theorem 1. Under our hypotheses, we rewrite the exact sequence in display (2) in the
following manner:

(3) 0 → TF −→ TX −→ IZ(κ) → 0,

where κ = c1(TX)− c1(TF ). Set f = c1(TF ). Since either Z = ∅ or dim(Z) = 0, then

Ext1(IZ(d),OX) = 0.

Therefore, dualizing the sequence in display (3) we obtain

(4) 0 → OX(−κ) −→ Ω1
X −→ (TF )∨ → 0.

Recall that (TF )∨ ≃ TF (−f) since TF is a rank 2 reflexive sheaf. Now, twisting the sequence in
display (4) by OX(p+ f) we get

0 → OX(p+ f − κ) −→ Ω1
X(p+ f) −→ TF (p) → 0.

Since H1(OX(t)) = 0 for all t ∈ Z, the induced map in cohomology

H0(X,Ω1
X(p+ f)) → H0(X,TF (p))

is surjective for every p ∈ Z. Thus, if h0(X,TF (p)) 6= 0, then p+f ≥ ρX , i.e, p ≥ ρX −f . It follows
that

p ≥
f

2
− f = −

f

2
,

thus TF is µ-semistable. If c1(TF ) = f < 2ρX , then

p > −
f

2
,

Thus TF is µ-stable. �

Remark 6. Theorem 1 generalizes (Calvo-Andrade et al. 2018, Theorem 6.1), which covered the
case X = P3.
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3. Sub-foliations of codimension one distributions

A sub-foliation of a codimension one distribution F on X is a codimension two distribution G

whose tangent sheaf TG is a subsheaf of TF . Since dimX = 3, note that TG must be a line bundle,
hence G is given by a twisted vector field φ ∈ H0(TX ⊗ T∨

G
) and is automatically integrable.

Moreover, the morphism TG →֒ TF can be regarded as a section σ ∈ H0(TF ⊗ T∨

G
). Conversely,

any section σ ∈ H0(TF ⊗ L ∨) for L ∈ Pic(X) vanishing in codimension 2 induces a subfoliation
G of F such that TG = L .

The quotient NF/G := TF/TG is called the relative normal sheaf ; it satisfies the following short
exact sequence

0 → NF/G → NG → NF → 0;

in particular, NF/G is a torsion free sheaf of rank 1. In the case at hand, NF/G is the ideal sheaf of
the (possibly empty) 1-dimensional scheme Y := (σ)0, the vanishing locus of the section σ, twisted
by the line bundle LF/G := T∨

G
⊗ det(TF ). Rewritting the previous exact sequence, we observe

that the normal sheaf of G can be described as an extension of twisted ideal sheaves:

(5) 0 → IY ⊗ LF/G → NG → IZ ⊗ LF → 0

The goal of this section is to describe the relations between Z := Sing(F ), W := Sing(G ) and
the curve Y .

The dualization of the exact sequence in display (5) yields a (possibly trivial) morphism

ξ : L∨

F/G
→ Ext1(IZ ⊗ LF ,OX) ≃ ωC ⊗ det(TF ),

which can be regarded as a section ξ ∈ H0(ωC ⊗ det(TF )⊗LF/G ). The kernel of ξ can be written
as ID ⊗ L∨

F/G
, the twisted ideal sheaf of a curve D ⊂ X , so that im ξ = OD ⊗ L∨

F/G
; define also

V := coker ξ. We therefore obtain the following 4 short exact sequences:

0 → L∨

F → N∨

G → ID ⊗ L∨

F/G
→ 0(6)

0 → OD ⊗ L∨

F/G
→ ωC ⊗ det(TF ) → V → 0(7)

0 → V → OW ⊗ T∨

G → S → 0(8)

0 → S → ωY ⊗ det(TX)⊗ L∨

F/G
→ Ext2(IZ ,OX) → 0.(9)

Here, we also used the following isomorphisms:

Ext1(IY ⊗ LF/G ,OX) ≃ ωY ⊗ det(TX)⊗ L∨

F/G
and Ext1(NG ,OX) ≃ OW ⊗ T∨

G .

With these sequences in mind, we establish the following result.

Proposition 7. Let F be a codimension one distribution of on a threefold X, and let σ ∈ H0(TF ⊗
L ∨) be a section such that Y := (σ)0 is a (possibly empty) curve in X, with L ∈ Pic(X). If G

is the sub-foliation of F induced by σ, then Y ⊆ Sing1(G ), with equality holding if and only
if dim coker ξ = 0. In particular, if Sing1(F ) is nonempty, irreducible and reduced, then either
Y = Sing1(G ) or Sing(G ) = Y ∪ Sing1(F ).

Proof. Since dim Ext2(IZ ,OX) = 0, the sequence in display (9) implies that the support of the
sheaf S is precisely Y , hence Y ⊂ W = Sing(G ) by the sequence in display (9). This sequence also
tells us that Y coincides with the 1-dimensional component of W if and only if dim V = 0.

If Sing1(F ) is is nonempty and irreducible, then the sequence in display (7) implies that either
D = C (if ξ 6= 0) or D = ∅ (if ξ = 0). In the first case, dimV = 0, and we conclude that
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Y = Sing1(G ); in the second case, we have that V ≃ ωC ⊗ det(TF ), and the sequence in display
(8) tells us that W = C ∪ Y . �

Remark 8. Now assume that C is nonempty, connected and reduced. If ωC ⊗ det(TF )⊗ LF/G ≃
OC , then ξ ∈ H0(OC) is either zero or nowhere vanishing. In the first case, we again have that
D = ∅, thus Sing1(G ) = Y ∪ Sing1(F ). If the second possibility occurs, then V = 0 and again we
conclude that Y = Sing1(G ).

Theorem 2 can now be obtained by taking F to be a generic codimension one distribution, so
that C = ∅. It follows that the sequence in display (6) simplifies to

(10) 0 → L∨

F → N∨

G → L∨

F/G
→ 0;

In particular, the conormal sheaf N∨

G
is locally free, so Sing0(G ) = ∅. Morever, we have that V = 0,

thus S ≃ OW ⊗ L ∨. Since dim Ext2(IZ ,OX) = 0, the sequence in display (9) implies W = Y .
Note that if H1(LF/G ⊗ L∨

F
) = 0, then the sequence above must be a trivial extension, thus

N∨

G = L∨

F ⊕ L∨

F/G
.

In other words, the subfoliation is given by the intersection of the distribution F with other
distribution H whose det(NH ) = LF/G .

We have therefore completed the proof of Theorem 2.

Remark 9. Proposition 7 above generalizes (Calvo-Andrade et al. 2018, Lemma 3.6), in which we
implicitly used the irreducibility and reducedness of Sing1(F ).

4. Moduli spaces of rank 2 reflexive sheaves on P3

In this section we focus on the case X = P3. Given a generic distribution F , we set d :=
2− c1(TF ) ≥ 0, which is called the degree of F .

Theorem 1 implies that TF is a stable rank 2 reflexive sheaf for every d ≥ 0; its second and third
Chern classes in terms of the degree d are given by

c2(TF ) = d2 + 2, and

c3(TF ) = d3 + 2d2 + 2d = h0(OZ),

see (Calvo-Andrade et al. 2018, equations (18) and (19)).
Our goal is to show that the moduli space space of stable rank 2 reflexive sheaves on P3 with

Chern classes given by

(c1, c2, c3) = (2− d, d2 + 2, d3 + 2d2 + 2d),

that is, equal to those of the tangent sheaf of a generic distribution, contains a nonsingular irre-
ducible component of dimension h0(Ω1

P3(d+ 2))− 1 whose points are sheaves F given by an exact
sequence of the form

(11) 0 → OP3(−2d)
σ
→ Ω1

P3(2− d) → F → 0.

We will denote such irreducible component simply by R(d). Note that the exact sequence in display
(11) is exactly the same as the one in display (4) rewritten in terms of the degree d; dualizing (11)
yields precisely the sequence in display (2) up to a twist by OP3(2 − d), with Z being the singular
locus of the sheaf F , that is OZ = Ext1(F,OP3).
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The strategy for the proof of Theorem 3 is as follows. The family of sheaves of given by the
exact sequence in display (11) has dimension h0(Ω1

P3(d+2))−1, since each F is defined by a section
σ ∈ H0(Ω1

P3(d+ 2)) up to a scalar multiple, so we must argue that

dimR(d) = dimExt1(F, F ) = h0(Ω1
P3(d+ 2))− 1.

Invoking (Hartshorne 1980, Proposition 3.4), we have that

dimExt1(F, F ) − dimExt2(F, F ) = 8c2(F )− 2c1(F )2 − 3 = 6d2 + 8d+ 5,

since F is stable, see (Hartshorne 1980, Remark 3.4.1). We must therefore compute the dimension
of Ext2(F, F ), showing that

(12) dimExt2(F, F ) = h0(Ω1
P3(d+ 2))− 6d2 − 8d− 6 =

1

2
d(d− 1)(d− 3).

We will show that the previous equality holds whenever d 6= 2.
The first step is the following lemma, whose proof of a straight forward calculation using the

exact sequence in cohomology derived from the exact sequence (11).

Lemma 10. If a sheaf F satisfies the exact sequence in display (11), then:

(1) h0(F (p)) = 0 for p ≤ d− 1;
(2) h1(F (p)) = 0 for p 6= d− 2, and h1(F (d− 2)) = 1;
(3) h2(F (p)) = h0(OP3(2d− p− 4)) for p ≥ d− 4; in particular, h2(F (p)) = 0 for p ≥ 2d− 3;
(4) h3(F (p)) = 0 for p ≥ d− 4.

Applying the functor Hom(·, F ) to the exact sequence in display (11), we obtain

(13) Ext2(F, F ) ≃ Ext2(Ω1
P3(2− d), F ) = H2(F ⊗ TP3(d− 2)),

since H1(F (2d)) = H2(F (2d)) = 0 by Lemma 10.
Next, we twist the exact sequence in display (11) by TP3(d−2) and pass to cohomology, obtaining

the isomorphism

(14) H1(F ⊗ TP3(d− 2)) ≃ H2(TP3(−d− 2))

since H1(Ω1
P3 ⊗ TP3) = H2(Ω1

P3 ⊗ TP3) = 0. It follows that h1(F ⊗ TP3(d − 2)) = 0 when d 6= 2,
and h1(F ⊗ TP3(−4)) = 1.

Finally, we twist the Euler sequence by F (d− 2), obtaining the exact sequence in cohomology

0 → H1(F ⊗ TP3(d− 2)) → H2(F (d− 2)) → H2(F (d − 1)⊕4) → H2(F ⊗ TP3(d− 2)) → 0,

since h1(F (d − 1)) = h3(F (d − 2)) = 0 by Lemma 10. Using item (3) of Lemma 10, and the
isomorphisms (13) and (14), we obtain the formula

dimExt2(F, F ) =

{
0, for d ≤ 2
4 · h0(OP3(d− 3))− h0(OP3(d− 2)), for d ≥ 3.

A simple calculation shows that

4 · h0(OP3(d− 3))− h0(OP3(d− 2)) =
1

2
d(d− 1)(d− 3),

thus establishing the equality in display (12) when d 6= 2.
The rationality of R(d) is simply the fact that it contains an open subset which is isomorphic to

an open subset of PH0(Ω1
P3(d+ 2)). We have therefore completed the proof of Theorem 3.
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We conclude this section pointing out two interesting facts regarding the tangent sheaves of
generic codimension one distributions on P3. The first one is described in the following result.

Lemma 11. Let F be the tangent sheaf of a generic codimension one distribution of degree d ≥ 1
on P3. Then F (d) is globally generated, and satisfies the exact sequence

0 → TP3(−2)⊕OP3(−d) → O⊕6

P3 → F (d) → 0.

Again, the case d = 0 is well-known; as we mentioned in the Introduction, F = N(1) for a null
correlation bundle N , and it satisfies the well-known exact sequence

0 → TP3(−2) → O⊕5

P3 → F → 0.

In addition, the case d = 1 is also considered by Chang, see the proof of Theorem 3.14 in [].

Proof. Our starting point is the exact sequence

0 → TP3(−2) → O⊕6

P3 → Ω1
P3(2) → 0.

Composing the epimorphisms O⊕6

P3 ։ Ω1
P3(2) and Ω1

P3(2) ։ F (d), we obtain the epimorphism

ϕ : O⊕6

P3 ։ F (d), showing that F (d) is globally generated. Notice that h0(F (d)) = h0(Ω1
P3(2)) = 6.

Moreover, a diagram chase shows that kerϕ is an extension of OP3(−d) by TP3(−2); however,

Ext1(OP3(−d),TP3(−2)) = H1(TP3(d− 2)) = 0

for every d ≥ 0, thus kerϕ = TP3(−2)⊕OP3(−d), as desired. �

Remark 12. When d = 2, we can still conclude that the sheaves F given by

0 → OP3(−4) → Ω1
P3 → F → 0

are smooth points of the moduli space of stable rank 2 reflexive sheaves with Chern classes
(c1, c2, c3) = (0, 6, 20) within an irreducible component of dimension 45, since Ext2(F, F ) = 0.
However, these sheaves only form a family of dimension 44 within this irreducible component. �

The next result show us that for each generic distributions there exist a family of smooth con-
nected curves passing through all its singular points.

Proposition 13. For each generic codimension one distribution F of degree d ≥ 1 on P3, there is
a family of smooth connected curves of degree d2+2d+2 and arithmetic genus (d−1)(d2+2d+2)+1
passing through the d · (d2 + 2d+ 2) singular points of F .

Proof. Let F be the tangent sheaf of a generic codimension one distribution degree d ≥ 1 on P3.
Since h0(F (d− 1)) = 0, the zero locus of an arbitrary section σ ∈ H0(F (d)) is a curve C of degree
c2(F (d)) = d2+2d+2 containing the singular points of F , which coincides with the singular points
of the distributions. On the one hand, we have that

(15) c3(F (d)) = c3(F ) = d(d2 + 2d+ 2)

On the other hand, from (Hartshorne 1980, Theorem 4.1) we obtain

(16) c3(F (d)) = 2pa(C) − 2 + c2(F (d))(4 − c1(F (d))) = 2pa(C) − 2 + (d2 + 2d+ 2)(2− d).

By using (15) and (16) we conclude that

pa(C) = (d− 1)(d2 + 2d+ 2) + 1.

Since d ≥ 1, it follows from the exact sequence

0 → OP3(−d) → Ω1
P3(2) → F (d) → 0
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that H0(F (d)) ≃ H0(Ω1
P3(2)). Thus a generic section σ ∈ H0(F (d)) lifts to a morphism

OP3 → Ω1
P3(2)

whose cokernel is N(1), a twisted null correlation bundle. Furthermore, we also obtain the exact
sequence

0 → OP3(−d) → N(1) → IC(d+ 2) → 0,

thus C is also the zero locus of a generic section of N(d+ 1). Since the latter is globally generated
and H1(N(1 + d)∨) = H1(N(−d− 1)) = 0 for d ≥ 1, we can invoke (Hartshorne 1978, Proposition
1.4) to conclude that C is smooth and connected, as desired. Moreover, observe that by construction
these curves corresponds to a family of dimension equal to h0(F (d))− 1 = h0(Ω1

P3(2))− 1 = 5. �

5. Existence of Rank 2 reflexive sheaves threefolds

This section is dedicated to the study of the existence of rank two reflexive sheaves on threefolds
with prescribed Chern classes, closing with the proof of Theorem 4.

To be precise, fix a smooth projective variety X of dimension 3, and consider the following set:

(17) S̃r(X) :=

{
(C,D, S) ∈

3⊕

i=1

H2i(X,Z)

∣∣∣∣
there is a µ-stable reflexive sheaf of rank r
with (c1(F ), c2(F ), c3(F )) = (C,D, S)

}
.

The Picard group of X acts on S̃r(X) in the following way:

Pic(X)× S̃r(X) → S̃r(X)

L · (R,D, S) 7→ (R + c1(L), D + c1(L) · R+ c1(L)
2, S),

and we defined the quotient set Sr(X) := S̃r(X)/Pic(X), which we call the rank r stable spectrum
of X .

Determining the stable spectrum of a given threefold is not an easy task, and only the case
X = P3 with r = 2 is completely understood, see (Miró-Roig 1985). Some progress was made by
the third named author when X is a hypersurface in P4, see (Jardim 2007).

More recently, this issue became of considerable interest within the context of String Theory for
the case when X is a Calabi–Yau manifold, see for instance the articles (Andreas & Curio 2011,
Gao et al 2015, Wu & Yau 2014). For instance, it follows from (Wu & Yau 2014, Theorem 2) that
(0,mH2, 2mH3) ∈ Sk(X) for m ≥ k, for some very ample divisor H . In addition, a conjecture by
Douglas, Reinbacher and Yau provides an upper bound for the third Chern class of stable bundle
on simply connected Calabi–Yau threefolds, see (Douglas 2006, Conjecture 1.1). Letting X be
a smooth projective threefold satisfying the hypotheses of Theorem 1, our third theorem can be
regarded as providing some information on the rank 2 stable spectrum of X . To be precise, Theorem
4 implies that

(
c1(TX)− rH, c2(TX)− rc1(TX) ·H + r2H2,−c3(TX(−r))

)
∈ S̃r(X)

for each r ≥ γX , where H = c1(OX(1)).

Proof of Theorem 4. For each r ≥ γX , we can apply Ottaviani’s Bertini type Theorem
(Ottaviani 1995, Theorem 2.8) to conclude that the degeneration locus of a generic morphism
ω ∈ Hom(TX,OX(r)) is either empty or 0-dimensional. Defining F := ker(ω), we have the exact
sequence

0 → F → TX → IZ(r) → 0,
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where Z denotes the degeneration locus of ω. In other words, F is the tangent sheaf of a generic
distribution on X .

Observe that c1(TX)− c1(F ) = r ≥ γX ≥ ρX . By hypothesis −c1(TX) > −3ρX , thus we have
that

−c1(F ) ≥ ρX − r − c1(F ) = −c1(TX) + ρX > −2ρX .

Theorem 1 then implies that F is stable; its Chern classes are

• c1(F ) = c1(TX)− rc1(OX(1)),
• c2(F ) = c2(TX)− rc1(OX(1)) · c1(TX) + r2c1(OX(1))2,
• c3(F ) = c3(Ω

1
X(r)) = −c3(TX(−r)),

see (Cavalcante et al. 2020, Theorem 5.6).
Finally, suppose that TX is simple. We can take m0 such that Hi(X,Ω1

X ⊗∧i+1TX(−ir)) = 0,
for i = 1, 2. Follows from (Araujo & Corrêa 2013, Theorem 1.1) that if

Sing(F ′) = {ω′ = 0} ⊂ Sing(F ) = {ω = 0},

then there is λ ∈ C ≃ H0(X,End(TX)) such that ω′ = λω. In particular, F = ker(ω) = ker(ω′) =
F ′.

6. Connectedness of non isolated singularities

We now shift our attention to codimension one distributions on threefolds containing non isolated
singularities. As we mentioned at the Introduction, we have the following short exact sequence

(18) 0 → U → OZ → OC → 0,

where U is the maximal 0-dimensional subsheaf of OZ and C = Sing1(F ). Our next result, in
which we do not assume that Pic(X) = Z, describes the number of connected components of C.

Proposition 14. Let F be a codimension one distribution on a smooth projective threefold X
satisfying h1(OX) = 0; let C := Sing1(F ). If h1(TX ⊗ L∨

F
) = h2(TX ⊗ L∨

F
) = 0, then

h0(OC) = h2(TF ⊗ L∨

F )− c3(TF ) + 1.

In particular, if C is reduced, then h0(OC) is precisely the number of connected components C
has, and the statement of Theorem 5 follows easily.

Proof. The sequence in display (18) implies that h0(OC) = h0(OZ)− h0(U ); we analyze the terms
in the right hand side of this last equality separately.

The standard exact sequence

0 → IZ → OX → OZ → 0

implies that h1(IZ) = h0(OZ)− h0(OX) = h0(OZ)− 1, since h1(OX) = 0 by hypothesis. Twisting
the sequence in display (2) by LK∨

F
, we obtain that

H1(IZ) ≃ H2(TF ⊗ L∨

F ),

since we assumed that h1(TX ⊗ L∨

F
) = h2(TX ⊗ L∨

F
) = 0. It follows that

h0(OZ) = h2(TF ⊗ L∨

F ) + 1.

Dualizing the sequences in display (2) and (18), we conclude that

Ext1(TF ,OX) ≃ Ext2(IZ ⊗ LF ,OX) ≃ Ext3(U ,OX).
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Note that

H0(Ext3(U ,OX)) ≃ Ext3(U ,OX) ≃ H0(U ⊗ ωX)∗;

the first isomorphism follows from the spectral sequence for local to global ext’s (since dimU = 0),
while the second isomorphism is given by Serre duality. It follows that

h0(U ) = h0(Ext3(U ,OX)) = h0(Ext1(TF ,OX)).

However, the last dimension coincides with c3(TF ) ( Hartshorne 1980, Proposition 2.6) for the proof
of this fact when X = P3, the general case being similar.

Gathering all the terms, we obtain the formula in the statement of the proposition. As for the
second claim, just note that if C is reduced, then h0(OC) is precisely the number of connected
components of C. �

Specializing to the case X = P3, we obtain the following claim, which generalizes ( Calvo-Andrade
et al. 2018, Theorem 3.8).

Corollary 15. Let F be a codimension one distribution on P3 of degree d, and let C = Sing1(F ).
Then

h2(TF (−d− 2))− c3(TF ) ≤ h0(OC) ≤ h2(TF (−d− 2))− c3(TF ) + 1.

If d 6= 2, then h0(OC) = h2(TF (−d − 2)) − c3(TF ) + 1. In particular, if C is reduced, then C is
connected if and only if h2(TF (−d− 2)) = c3(TF ).

Proof. For d 6= 2, the claim follows from considering X = P3 in Proposition 14. When d = 2,
we have that h2(TX ⊗ L∨

F
) = H2(TP3(−4)) = 1, so one cannot apply Proposition 14 directly.

However, the cohomology sequence associated to the sequence in display (3) (κ = 4 in this case) is

0 → H1(IZ) → H2(TF (−4)) → H2(TP3(−4)) → · · ·

thus either h1(IZ) = h2(TF (−4)) or h1(IZ ) = h2(TF (−4))− 1. �
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