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Abstract

In this article we study forms of the Segre cubic over non-algebraically

closed fields, their automorphism groups and equivariant birational rigidity.

In particular, we show that all forms of the Segre cubic are cubic hypersur-

faces and all of them have a point.

1 Introduction

The Segre cubic is a classical three-dimensional variety with many interesting prop-
erties. For example, it is a compactification of the moduli space of configurations
of six points on the projective line (see [6, §2]) and its dual variety, called the
Igusa quartic, is a compactification of the moduli space of certain abelian surfaces
(see [13, Theorem 2]). Birational geometry of the Segre cubic was extensively
studied, for example, its small resolutions were described (see [8]).

The aim of this article to study equivariant birational rigidity of forms of the
Segre cubic. Equivariant birational rigidity of the Segre cubic itself over alge-
braically closed field of characteristic zero was studied by the author in the pa-
per [1]. We show that for every field of characteristic zero there is only one form of
the Segre cubic over this field which is G-birationally rigid (see Definition 3.2), and
only for the following groups: S6, A6, S5 and A5, where S6 is the full automorphism
group and groups S5 and A5 are embedded into S6 in the standard way (see Defi-
nition 2.3). Moreover, in these cases the form of the Segre cubic is G-birationally
superrigid. These results can be useful, for example, for classification of finite sub-
groups of three-dimensional Cremona groups over fields of characteristic zero. We
wxpect that these results are valid also over fields of characteristic p > 5. Also we
prove that all forms of the Segre cubic have a point defined over the basic field,
and all of them are cubic hypersurfaces. Special attention is given to the case of
the field of real numbers.

In this article we use the following notation for groups: by Cn we denote the
cyclic group of order n; by D2n we denote the dihedral group of order 2n; by Sn

we denote the symmetric group of rank n; by An we denote the alternating group
of rank n. For an arbitrary field K by Ksep we denote its separable closure.
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2 Biregular geometry of the forms of the Segre cu-

bic

Definition 2.1. The Segre cubic over the field K of characteristic zero or p > 5
is a three-dimensional variety SK, which can be explicitely given by the following
system of equations in P5

K
:

6∑

i=1

xi =

6∑

i=1

x3
i = 0. (2.1.1)

Usually, if it doesn’t lead to misunderstanding, we will omit the index and denote
the Segre cubic by S. We will call a variety X defined over an arbitrary field K of
characteristic zero or p > 5 a form of the Segre cubic if XKsep = X ⊗K SpecKsep is
isomorphic to the Segre cubic over the field Ksep. If the field K is the field of real
numbers R, we will call the variety X a real form of the Segre cubic.

Remark 2.2. Note that equations (2.1.1) make sence over an arbitrary field, so
there is at least one form of the Segre cubic over an arbitrary field.

We will use the following well-known facts about the Segre cubic (see, for ex-
ample, [6, §2]):

• the automorphism group Aut(S) is isomorphic to S6 and acts by permuta-
tions of standard coordinates;

• the singular set of the Segre cubic S consists of 10 ordinary double points,
all of them form an Aut(S)-orbit and one of them has coordinates (1 : 1 : 1 :
−1 : −1 : −1);

• the variety S contains exactly 15 planes which form an Aut(S)-orbit, one of
them can be given by equations x1 +x2 = x3 +x4 = x5 +x6 = 0 in standard
coordinates;

• every singular point of S lies on 6 planes and every plane on S contains
exactly 4 singular points. In other words, singular points and planes form
a (106, 154)-configuration in notation of [7]. The automorphism group of
such a configuration is isomorphic to S6 and is induced by the automorphism
group Aut(S) (see, for example, [2, Lemma 2.1]).

Definition 2.3. We will say that a subgroup A5 ⊂ Aut(S) or S5 ⊂ Aut(S) is
standard if it preserves some hyperplane {xi = 0}.

In the sequel we will need the following easy facts about elements of order 2 and
certain subgroups of the group S6.

Lemma 2.4. The element (1 2) acting on the (106, 154)-configuration has exactly
4 fixed singular points and 3 invariant planes and its centralizer is isomorphic
to C2×S4. The element (1 2)(3 4) acting on the (106, 154)-configuration has exactly
2 fixed singular points and 3 invariant planes and its centralizer is isomorphic to
C2 × (C2

2 ⋊ C2) ≃ C2 ×D8. The element (1 2)(3 4)(5 6) acting on the (106, 154)-
configuration has exactly 4 fixed singular points and 7 invariant planes and its
centralizer is isomorphic to C3

2⋊S3. The stabilizer of a singular point is isomorphic
to S2

3 ⋊ C2, the stabilizer of a plane is isomorphic to S4 × C2. A non-standard
subgroup S5 acts on the set of planes with two orbits of length 5 and 10 respectively.
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Proof. Simple direct computations.

Corollary 2.5. Every real form of the Segre cubic has a singular point defined
over the base field R.

Proof. Let X be a real form of the Segre cubic. Consider an action of the complex
conjugation σ on the (106, 154)-configuration of singular points and planes on the
Segre cubic XC. Since σ acts as an element of order 2 or 1, by Lemma 2.4 we have
a σ-invariant singular point.

For an arbitrary field K we have the following assertion.

Lemma 2.6. A form X of the Segre cubic over the field K contains a K-point if
and only if the variety X is isomorphic to a cubic hypersurface in P4

K
.

Proof. Assume that the variety X has a point defined over the field K. Then
the group Pic(XKsep)Gal(Ksep/K) coincides with its subgroup Pic(X) (see, for exam-
ple, [14, Theorem 9.1]). In particular, the divisor class − 1

2KX is defined over K

and its linear system induces an embedding of X into P4
K

as a cubic hypersurface.
Due to [4, Proposition 3.2] the converse statement is also true.

As a consequence, every real form of the Segre cubic is a cubic itself. Let us
show, that analogous result is valid over an arbitrary field of characteristic zero or
p > 5. For this purpose we need the following lemma.

Lemma 2.7. (cf. [4, Lemma 2.3]) Let K be an arbitrary field of characteristic
different from 2, and let L/K be a composite of quadratic extensions of the field K.
Let X be a variety over the field K such that XL is isomorphic to a cubic in P4

L
.

Suppose that XL has an L-point. Then X has a K-point.

Proof. There is a sequence of quadratic field extensions

K = L0 ⊂ L1 ⊂ L2 ⊂ ... ⊂ Ln = L.

By the induction it is enough to consider the case when L is a quadratic extension
of K. Since the characteristic of K differs from 2, the extension K ⊂ L is a Galois
extension. We know that the cubic XL contains an L-point. This point is either
defined over K or its Gal(L/K)-orbit consists of two points. In the second case the
line l passing through these points is defined over K. If this line lies on XL then X
contains every K-point of the line l. If the line l doesn’t lie on XL then the third
intersection point of the line l and the cubic XL is defined over K.

Lemma 2.8. Let K be a field of characteristic zero or p > 5. Then every form of
the Segre cubic over the field K has a K-point and isomorphic to a cubic hypersur-
face.

Proof. Let X be a form of the Segre cubic. There is the exact sequence

0 → Pic(X) → Pic(XKsep)Gal(Ksep/K) → Br(K),

see, for example, [9, Problem 3.3.5(iii)]. If the divisor class − 1
2KX is not defined

over the field K, then the group Pic(X) is embedded into Pic(XKsep)Gal(Ksep/K)

as a subgroup of index 2, so we define canonically an element of order 2 in the
Brauer group Br(K). Since this element has a representation as a tensor product of
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quaternion algebras over the field K (see [12, Theorem 11.5]), there is a composite
L of quadratic extensions of the field K such that our algebra splits over this
extension. Thus the corresponding embedding

Pic(XL) → Pic(XKsep)Gal(Ksep/L)

is an isomorphism. The linear system | − 1
2KXL

| induces an embedding of XL

into P4
L

as a cubic hypersurface. By Lemma 2.6 there is an L-point on XL. By
Lemma 2.7 there is a K-point on X . In particular, by Lemma 2.6, the variety X
is isomorphic to a cubic hypersurface in P4

K
.

Now we return to the field of real numbers.

Proposition 2.9. There are exactly 4 real forms of the Segre cubic S up to iso-
morphism. All of them are three-dimensional cubic hypersurfaces and rational over
the field R.

Proof. It is well-known (see, for example, [15, Chapter III, §1]) that there is a one-
to-one correspondence between the forms of a real variety X and the elements of
H1(Gal(C/R),Aut(XC)). The latter set, in turn, is in one-to-one correspondence
with the set of all homomorphisms

Gal(C/R) ≃ C2 → S6 ≃ Aut(XC)

up to conjugation. Such homomorphisms are defined by conjugacy classes of el-
ements of order 2 or 1 in the group S6. There are exactly four such classes: the
trivial permutation and conjugacy classes of the transposition (1 2), the product of
two transpositions (1 2)(3 4) and the product of three transpositions (1 2)(3 4)(5 6).

Let X be a real form of the Segre cubic S. By Corollary 2.5 the variety X
contains an R-point. By Lemma 2.6 the variety X is isomorphic to a cubic in P4

R
.

This cubic contains a singular point defined over the field R and the projection
from such a point gives us a birational map from the variety X to P3

R
.

We say that a real form X of the Segre cubic is of type I (resp., II, III or IV)
if the image of the complex conjugation in the group Aut(S) ≃ S6 is the trivial
permutation (resp., is conjugate to the transposition (1 2), is conjugate to the
permutation (1 2)(3 4) or is conjugate to the permutation (1 2)(3 4)(5 6)).

Remark 2.10. The form of the Segre cubic of type I can be obtained in the
following way: blow up five R-points of P3

R
in general position and contract 10

proper transforms of lines passing through pairs of points. The obtained variety
is the required form of the Segre cubic. It also can be defined explicitely by the
equations (2.1.1). Note that in this case there is an action of the group S5 on
P3 with five marked points and the construction is S5-equivariant. The forms of
type IV and III can be constructed in a similar way, but we need to blow up P3

R

in 3 real points and one pair of conjugated points or one real point and two pairs
of conjugated points in general position respectively. One can easily see that we
obtain exactly forms of type IV and III by calculation of numbers of singular R-
points and planes defined over R in both cases. The form of type II has no such
a transformation into P3

R
, but by Proposition 2.9 a transformation of other type

exists.

In the following proposition we describe automorphism groups of all forms of
the Segre cubic.
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Proposition 2.11. The automorphism group of a form of the Segre cubic over
an arbitrary field K of characteristic zero or p > 5 coincides with the centralizer
of the image of the Galois group Gal(Ksep/K) in the automorphism group of the
(106, 154)-configuration of singular points and planes on S. The automorphism
group of the form of the Segre cubic of type I (resp., II, III or IV) is isomorphic
to S6 (resp., C2 × S4, C2 ×D8 or C3

2 ⋊ S3).

Proof. Let X be a form of the Segre cubic over K. There is a canonical embedding
of the automorphism group of X into the automorphism group of the (106, 154)-
configuration of singular points and planes on XKsep ≃ S and the canonical map
from the Galois group Gal(Ksep/K) into the same group S6. Since all automor-
phisms defined over the base field commute with the action of the Galois group,
the image of such embedding is contained in the centralizer of the image of the
Galois group Gal(Ksep/K).

Let g ∈ S6 be an element of the automorphism group of the (106, 154)-configura-
tion which commutes with the image of some element σ ∈ Gal(Ksep/K). Let g̃ be
the corresponding automorphism of the variety XKsep . Then g̃−1 ◦ σ−1 ◦ g̃ ◦ σ is a
linear transformation of P4

Ksep which fixes all singular points of the variety XKsep .
Since there are 10 singular points and they are in general enough position this
linear map is trivial. Thus σ−1 ◦ g̃ ◦ σ = g̃. If g commutes with all elements of the
image of Gal(Ksep/K) then g̃ is defined over the base field K. As a consequence,
the embedding of the group Aut(X) into the centralizer of the image of the Galois
group is an isomorphism.

The second assertion is a consequense of Lemma 2.4.

3 Birational geometry of the forms of the Segre

cubic

For the classification of finite subgroups in Cremona groups it is important to study
G-birational rigidity of Fano varieties.

Definition 3.1. Let X and Y be a varieties with an action of a finite group
G. We call a rational map f : X 99K Y a G-equivariant map if there exist an
automorphism τ of the group G such that the following diagram commutes for
every g ∈ G:

X
f

//❴❴❴

g

��

Y

τ(g)

��

X
f

//❴❴❴ Y

We denote the group of G-equivariant automorphisms of a G-varietyX by AutG(X)
and the group of G-equivariant birational selfmaps of a G-variety X by BirG(X).

Definition 3.2. Let G be a finite subgroup of the automorphism group of a Fano
variety X with terminal singularities, and suppose that X is a GQ-factorial variety
and rkPic(X)G = 1. The variety X is called G-birationally rigid if there is no
birational map from X to another G-Mori fibration. If one also has BirG(X) =
AutG(X) then X is called G-birationally superrigid.

There is the following theorem:
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Theorem 3.3. (see [1, Proposition 4.1, Theorem 4.8]) Let G ⊂ Aut(S) be a
subgroup of the automorphism group of the Segre cubic over an algebraically closed
field of characteristic zero. Then the variety S is G-birationally rigid if and only
if G containts a standard subgroup A5 ⊂ Aut(S). Moreover, in this case S is
G-birationally superrigid.

The next theorem is an analog of the previous statement over an arbitrary field
of characteristic zero.

Theorem 3.4. Let X be a form of the Segre cubic over some field K of characteris-
tic zero, and let G ⊂ Aut(X) be a subgroup. Assume that rkPic(X)G = 1 and that
the variety X is GQ-factorial and G-birationally rigid. Then the variety X can be
explicitely given by equations (2.1.1) and G contains a standard subgroup A5 ⊂ S6.
Conversely, the variety given by the equations (2.1.1) is A5-birationally superrigid
with respect to a standard subgroup A5 ⊂ Aut(X).

Proof. As were noticed earlier, there is a canonical embedding G ⊂ S6 where S6

is the automorphism group of the (106, 154)-configuration. Denote by H ⊂ S6 the
image of the Galois group Gal(K/K) in S6. By Proposition 2.11 the group G is
contained in the centralizer of the group H . Let F ⊂ S6 be a subgroup generated
by G and H .

If F does not contain a standard subgroup A5 ⊂ S6 then it is not hard to check
directly with computer that the group F lies in one of the following subgroups:
non-standard subgroup S5 ⊂ S6, S2

3 ⋊ C2 (which is the stabilizer of a point),
S4 ×C2 (which is the stabilizer of a plane on S) or S4 ×C2 (which is conjugate to
the following group: S4 acts by permutations of coordinates x1, x2, x3, x4 while C2

permutes x5 and x6 in standard coordinates). Consider an action of a non-standard
subgroup S5 ⊂ S6 on the set of planes on S. By Lemma 2.4 it has two orbits of
length 5 and 10 respectively. The sum of all planes in the first orbit is not a Q-
Cartier divisor since the group Pic(X) is a primitive sublattice in the group Cl(X)
and is generated by the class of hyperplane section while the sum of 5 planes is not
a integer multiple of a hyperplane section in Cl(X). Thus in this case the G-variety
is not GQ-factorial. In the second case the projection from a singular point which
is invariant with respect to F gives us an equivariant birational map to P3

K
. In

the third case an F -invariant plane is a Weil divisor which is not Q-Cartier by the
same reason as in the first case. But this is impossible since we assume that the
variety X is GQ-factorial.

Let us consider the forth case. Let the group S4×C2 act on P4
K

as was described
above. Then there is an S4 × C2-orbit that consists of the following planes on S:

x1 + x2 = x3 + x4 = x5 + x6 = 0,

x1 + x3 = x2 + x4 = x5 + x6 = 0,

x1 + x4 = x2 + x3 = x5 + x6 = 0.

They form a hyperplane section of S given by the equation x5 + x6 = 0. The
only common point of these three planes p = (0 : 0 : 0 : 0 : 1 : −1) is defined
over K and is G-invariant. Since the action of the group G on the hyperplane
is a projectivisation of a four-dimensional representation of the group G and the
invariant point p correspondes to a one-dimensional subrepresentation, we can find
a three-dimensional subrepresentation of G as well. The corresponding G-invariant
plane is defined over the base field. The projection from such a plane gives us a
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structure of G-equivariant cubic fibration. Now we can apply a G-equivariant
resolution of singularities and relative G-equivariant minimal model program and
obtain a G-birational transformation into a G-Mori fibration with the base of
positive dimension.

So the group F contains a standard subgroup A5 ⊂ S6, hence it is isomorphic
to one one the following groups: A5, S5, A6 or S6. The groups G and H are
normal subgroups of F , all elements of G commute with all elements of H and
they generate the whole group F . Obviously, it is possible only in the following
case: one of the groups G and F coincides with F while the other one is trivial.
If the group G is trivial then the projection from any plane in P4 which is defined
over the base field gives us a structure of fibration by cubic surfaces. If the group H
is trivial then the variety X can be given by the equations (2.1.1) and the group G
contains a standard subgroup A5 ⊂ S6.

Conversely, assume that the form X of the Segre cubic is given by the equa-
tions (2.1.1) and the group G contains a standard subgroup A5 ⊂ S6 ≃ Aut(X).
Then by [1, Lemma 4.6, Lemma 4.7] the pair (X, 1

µM) is canonical for every µ

and every movable G-invariant linear subsystem M ⊂ | − µKX |. Hence by the
Noether–Fano inequalities (see, for example, [5, Theorem 2.4] and [3, Theorem
3.2.6] in a G-equivariant situation) the variety X is G-birationally superrigid.

Corollary 3.5. Among all real forms of the Segre cubic only the form of type I can
be G-birationally rigid and only if the group G contains a standard subgroup A5.
In this case it is G-birationally superrigid.

Remark 3.6. It looks like the analogous statement (at least in one direction)
should be valid also for fields of characteristic p > 5. We have a minimal model pro-
gram for threefolds over algebraically closed field of characteristic p > 5 (see [10])
and it should work also in relative situation with a group action over arbitrary
perfect field, but it is not known to the author if it is written down -nywhere. To
prove the converse statement we need an analog of the Noether–Fano inequalities
in positive characteristic and the existence of such analog is also unknown to the
author.

Remark 3.7. It is still an open question: does the birational (super)rigidity of the
variety Xk = X⊗Speck Spec k over the field k implies the birational (super)rigidity
of the variety X over the field k and is the same assertion true for varieties with the
group action (see discussion in [11] and especially [11, Question 4]). Such a result
is valid for algebraically closed field k of characteristic zero and its algebraically
closed extension K, see [11, Theorem 2, Theorem 6].
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