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Abstract

This paper investigates the time–domain response of nabla discrete fractional order systems by exploring several useful
properties of the nabla discrete Laplace transform and the discrete Mittag–Leffler function. In particular, we establish
two fundamental properties of a nabla discrete fractional order system with nonzero initial instant: i) the existence
and uniqueness of the system time–domain response; and ii) the dynamic behavior of the zero input response. Finally,
one numerical example is provided to show the validity of the theoretical results.
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1. Introduction

Fractional calculus is a natural generalization of classical calculus and its inception can be traced back to a cor-
respondence between Leibniz and L’Hôpital in 1695 regarding the possible value of a half order derivative [1], i.e.,
d0.5 f (x)

dx0.5 . After over 300 years of development, fractional calculus has been widely used in many branches of science
and engineering, and is particularly suitable for modeling physical plants that behave anomalously such as viscoelastic
material [2] and diffusion processes [3] (see [4–6] and their references for many examples).

Despite the important success achieved by continuous fractional calculus [7–9], research on discrete fractional
calculus is still not mature. In 1974, Diaz and Osler initiated a study of discrete fractional calculus by introducing
an infinite series as the α-th difference operation which is a generalization of the m-th difference operation [10].
Unfortunately, the method in [10] requires calculation of an infinite series which is often time-consuming, or even
worse, infeasible. A more useful version of discrete fractional calculus was then proposed by Granger and Joyeux
in [11] where the infinite series was replaced by a finite one. So far, a large volume of pioneering works on discrete
fractional calculus have been reported, see, e.g., [12–16]. For a more comprehensive introduction on the most recent
advances in relevant field, the readers can refer to the monographs [17–19] and the papers cited therein for details.
Remarkably, a Z-transform based approach was proposed to analyze the solution of a class of fractional difference
equations by Cheng in [19]. However, several fundamental dynamic properties of the solution have not been discussed
yet. Moreover, the approach in [19] can only describe the solution at each sampling point. To analyze the solution
without the process of discretization, the authors in [20] proposed an N-transform approach which can be regarded as
a discrete analog of the conventional Laplace transform. Based on this N-transform, the authors in [21] presented an
explicit form of the solution to a scalar fractional difference equation with the derivative order α ∈ (0, 1), by using the
semigroup property of the discrete Mittag–Leffler function; a similar but more rigorous treatment can be found in [22].
The convergence of this solution in [21, 22] was investigated in [23], based on which the computational efficiency
of classical LMS algorithms was significantly improved. Similarly, a modified LMS algorithm was designed by
switching difference order [24]. With the help of the series representation, [8] and [25] explored the properties of the
discrete fractional calculus. [26–28] investigated the stability issue via direct Lyapunov method. Nevertheless, several
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critical issues are still yet to be addressed: i) those previous results cannot be directly used in the general case that the
difference order α ∈ (n − 1, n), n ∈ Z+, especially with nonzero initial instant; ii) several dynamic characteristics of
this solution, like convergence, monotonicity and overshoot, still need to be investigated systematically; and iii) the
fundamental properties of the nabla discrete Laplace transform and the discrete Mittag–Leffler function need to be
explored. To the authors’ best knowledge, few papers have been published on solving these problems, which directly
motivates this contribution.

The rest of this paper is structured as follows. Section 2 provides some basic facts on this work. In Section
3, we analyze the time-domain response of a class of nabla discrete fractional order systems in the framework of
N-transform. An explicit response characterized by discrete Mittag–Leffler functions is developed. In addition, the
performance analysis of the system under zero input is conducted. The numerical simulation is performed in Section
4. Finally, conclusions in Section 5 close the paper.

2. Preliminaries

In this section, some basic definitions and tools for nabla discrete fractional calculus are reformulated from [20].
The α-th nabla fractional sum of a function f : Na+1 → R is defined by

a∇
−α
k f (k) ,

∑k−a−1
j=0 (−1) j( −α

j
)
f (k − j), (1)

where α > 0, k ∈ Na+1, Na+1 , {a + 1, a + 2, a + 3, · · · },
( p

q
)
, Γ(p+1)

Γ(q+1)Γ(p−q+1) and Γ (·) is the Gamma function.
The generalized N-transform of a function f : Na+1 → R is defined by

F (s) = Na { f (k)} ,
∑+∞

k=1 (1 − s)k−1 f (k + a), s ∈ C, (2)

which is also called the nabla discrete Laplace transform. The inverse nabla Laplace transform can be obtained as
f (k) = N −1

a {F (s)} , 1
2πj

∮
c F (s) (1 − s)−k+ads, k ∈ Na+1, where c is a closed curve rotating around the point (1, j0)

clockwise and it also locates in the convergent domain of F(s).
The following nabla Caputo fractional difference is used in this work

a∇
α
k f (k) , a∇

α−n
k ∇n f (k) , (3)

where n − 1 < α < n, n ∈ Z+, f : Na−n → R and ∇n represents the normal n-th backward difference operation

∇n f (k) ,
∑n

j=0 (−1) j ( n
j
)
f (k − j). (4)

By using the definition (3), one obtains that the fractional difference of a constant equals to zero, which coincides
with the traditional integer difference case (α = 1). More importantly, with this definition, the N-transform of a
fractional difference has several integer order differences as its initial conditions, which makes N-transform more
convenient to calculate. These are the two main reasons why (3) is usually used to define a nabla fractional difference.
In this work, this definition is adopted again.

3. Main Results

This section explores several useful properties of the nabla Laplace transform and the discrete Mittag–Leffler
function. By using these properties, the time–domain response of a class of discrete fractional order systems is then
analyzed.

3.1. Some useful properties

The following theorem is the initial value and final value theorem of the nabla discrete Laplace transform, corre-
sponding to those of classical Z-transform [19].

Theorem 1. Let f : Na+1 → R be a bounded function and suppose f (+∞) exist. Then the following equalities hold:
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i) f (a + 1) = lim
s→1

F (s); and

ii) f (a +∞) = lim
s→0

sF (s),

where F(s) is defined in (2).

Proof. i) A direct mathematical derivation on (2) yields

F (s) = f (a + 1) + (1 − s) f (a + 2) + (1 − s)2 f (a + 3) + · · · . (5)

Considering the boundedness of f (n), i.e., there exists a constant M satisfying | f (n)| ≤ M for any n ∈ N, it follows

|F (s) − f (a + 1) | = |(1 − s) f (a + 2) + (1 − s)2 f (a + 3) + · · · |

≤ |(1 − s) f (a + 2) | + |(1 − s)2 f (a + 3) | + · · ·
≤ M

(
|1 − s| + |1 − s|2 + · · ·

)
≤ M |1−s|

1−|1−s| .

(6)

The statement i) can be obtained letting s→ 1 on the right-hand side of (6).
ii) With the help of

Na
{
∇n f (k)

}
= snNa { f (k)} −

∑n−1
j=0 sn− j−1∇ j f (a), n ∈ N+, (7)

one has
Na

{
∇1 f (k)

}
=

∑+∞
k=1 (1 − s)k−1∇1 f (k + a)

= sF (s) − f (a) .
(8)

Hence,
lim
s→0

∑+∞
k=1 (1 − s)k−1∇1 f (k + a) = lim

s→0

[
sF (s) − f (a)

]
=

∑+∞
k=1 lim

s→0
(1 − s)k−1∇1 f (k + a)

=
∑+∞

k=1 ∇
1 f (k + a)

= lim
k→+∞

[
f (k + a) − f (a)

]
,

(9)

from which statement ii) can be concluded immediately.

Along this way, a general case follows

f (a + κ) = lim
s→1

F(s)−
∑κ−1

k=1 (1−s)k−1 f (a+k)
(1−s)κ−1 , κ ∈ Z+. (10)

Theorem 2. Let f : Na+1 → R and F(s) = Na{ f (k)}. f (k) is convergent with respect to k if and only if all the main
poles of F(s) satisfy |s − 1| > 1 (see Fig. 1).

Proof. Defining g (k) = f (k + 1), 1 − s = z−1 and recording G(z) = Za {g (k)}, F(s) = Na { f (k)}, one has

G (z) =
∑+∞

k=0 z−kg (k + a)
=

∑+∞
k=0 z−k f (k + a + 1)

=
∑+∞

k=1 z−k+1 f (k + a)
=

∑+∞
k=1 (1 − s)k−1 f (k + a)

= F (s) ,

(11)

where the Z-transform is defined by Za {g (k)} ,
∑+∞

k=0 z−kg (k + a).
Due to the existence and uniqueness of Z-transform, one can claim that the property of g(k) can be summarized

by G(z). More specially, g(k) is convergent if and only if all the main poles of G(z) satisfy |z| < 1. Therefore, the
sufficient and necessary condition for the convergence of f (k) is that all the main poles of F(s) satisfy |1 − s|−1 < 1
(or |s− 1| > 1). Similarly, the main poles of F(s) reflect the convergence of f (k). All of these complete the proof.
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Fig. 1. The schematic diagram of stable region in s domain.

By referring to the Z-transform theory, one has the following remark.

Remark 1. Let f : Na+1 → R and F(s) = Na{ f (k)}. When some of the main poles of F(s) satisfy |s − 1| < 1, f (k) is
divergent with respect to k. When all the main poles of F(s) satisfy |s−1| = 1, f (k) is constant, oscillating or divergent
with respect to k.

If we denote pq =
Γ(p+q)

Γ(p) with p ∈ N, q ∈ R, the discrete Mittag–Leffler function can be rewritten as

Fα,β (λ, k, a) ,
∑+∞

j=0
λ j

Γ( jα+β) (k − a) jα+β−1, (12)

which plays the same role in discrete fractional order systems as the continuous Mittag–Leffler function does in
continuous fractional order systems [29–31]. The following properties of Fα,β (λ, k, a) (see Theorem 4) will be useful
in our analysis later.

Theorem 3. If n − 1 < α < n, n ∈ Z+, β > 0, m ∈ N, m < β, γ > 0, κ ∈ N, κ < n and k ∈ Na, then

i) Na
{
Fα,β (λ, k, a)

}
= sα−β

sα−λ , when |λ| < |s|α;

ii) ∇mFα,β (λ, k, a) = Fα,β−m (λ, k, a);

iii) a∇
−γ
k Fα,β (λ, k, a) = Fα,β+γ (λ, k, a); and

iv) a∇
α
kFα,κ+1 (λ, k, a) = λFα,κ+1 (λ, k, a).

4



Proof. i) Applying the N-transform to (12) yields

Na
{
Fα,β (λ, k, a)

}
=

∑+∞
j=0

λ j

Γ( jα+β)Na
{
(k − a) jα+β−1 }

=
∑+∞

j=0
λ j

Γ( jα+β)
∑+∞

k=1 (1 − s)k−1(k − a + a) jα+β−1

=
∑+∞

j=0 λ
j ∑+∞

k=1 (1 − s)k−1 k jα+β−1

Γ( jα+β)

=
∑+∞

j=0 λ
j ∑+∞

k=1 (1 − s)k−1 Γ(k+ jα+β−1)
Γ( jα+β)Γ(k)

=
∑+∞

j=0 λ
j ∑+∞

k=0 (1 − s)k Γ(k+ jα+β)
Γ( jα+β)Γ(k+1)

=
∑+∞

j=0 λ
j ∑+∞

k=0 (s − 1)k Γ(1− jα−β)
Γ(1− jα−β−k)Γ(k+1)

=
∑+∞

j=0 λ
j ∑+∞

k=0 (s − 1)k( − jα−β
k

)
=

∑+∞
j=0 λ

j(1 + s − 1)− jα−β

=
∑+∞

j=0
λ j

s jα+β

= 1
sβ

1
1− λ

sα

= sα−β
sα−λ ,

(13)

where |λ| < |s|α is adopted.
ii) Applying the backward difference operation (4) to the discrete Mittag–Leffler function (12) yields

∇mFα,β (λ, k, a) =
∑+∞

j=0 λ
j∇m (k−a) jα+β−1

Γ( jα+β)

=
∑+∞

j=0 λ
j ∑m

i=0 (−1)i( m
i
) (k−a−i) jα+β−1

Γ( jα+β)
=

∑+∞
j=0 λ

j ∑m
i=0 (−1)i( m

i
)( k−a−i+ jα+β−2

k−a−i−1
)

=
∑+∞

j=0 λ
j ∑m

i=0
(
−m+i

i
)( k−a−i+ jα+β−2

k−a−i−1
)

=
∑+∞

j=0 λ
j( k−a+ jα+β−m−2

k−a−1
)

=
∑+∞

j=0
λ j

Γ( jα+β−m) (k − a) jα+β−m−1

= ∇mFα,β−m (λ, k, a) .

(14)

iii) With the help of (1), one has

a∇
−γ
k Fα,β (λ, k, a) =

∑+∞
j=0 λ

j
a∇
−γ
k

(k−a) jα+β−1

Γ( jα+β)

=
∑+∞

j=0 λ
j ∑n−a−1

i=0 (−1)i( −γ
i
) (k−i−a) jα+β−1

Γ( jα+β)

=
∑+∞

j=0 λ
j ∑n−a−1

i=0 (−1)i( −γ
i
) Γ(k−i−a+ jα+β−1)

Γ( jα+β)Γ(k−i−a)

=
∑+∞

j=0 λ
j ∑n−a−1

i=0 (−1)k−a−1( −γ
i
) Γ(− jα−β+1)

Γ(−k+i+a− jα−β+2)Γ(k−i−a)
=

∑+∞
j=0 λ

j(−1)k−a−1 ∑k−a−1
i=0

( −γ
i
)( − jα−β

k−i−a−1
)

=
∑+∞

j=0 λ
j(−1)k−a−1( − jα−β−γ

k−a−1
)

=
∑+∞

j=0 λ
j (k−a) jα+β+γ−1

Γ( jα+β+γ)
= Fα,β+γ (λ, k, a) .

(15)

iv) By using (3) and (12), it obtains

a∇
α
kFα,κ+1 (λ, k, a) = a∇

α−n
k ∇nFα,κ+1 (λ, k, a)

=
∑+∞

j=0 λ
j
a∇

α−n
k ∇n (k−a) jα+κ

Γ( jα+κ+1) .
(16)

Since κ ∈ N and κ < n, one has
∇n (k−a)κ

Γ(κ+1) = ∇n−κ∇κ
(k−a)κ

Γ(κ+1)
= ∇n−κ1 = 0.

(17)

Furthermore, it follows that

a∇
α
kFα,κ (λ, k, a) =

∑+∞
j=1 λ

j
a∇

α−n
k

(k−a) jα−n+κ

Γ( jα−n+κ+1)

=
∑+∞

j=1 λ
j (k−a) jα−α+κ

Γ( jα−α+κ+1)

= λ
∑+∞

j=0 λ
j (k−a) jα+κ

Γ( jα+κ+1)
= λFα,κ (λ, k, a) ,

(18)
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which is exactly the statement iv).

3.2. Time-domain response analysis

In this subsection, we will use the properties obtained in Section 3.1 to analyze the time-domain response of a
nabla discrete fractional order system. To be specific, we first present an explicit form equipped by discrete Mittag-
Leffler functions of this response (see Theorem 3). Then we analyze the time-domain response under zero input
condition systematically and rigorously (see Theorem 4).

Theorem 4. If n − 1 < α < n, n ∈ Z+, then time–domain response of the discrete fractional order system

a∇
α
k y (k) = λy (k) + u (k) , λ , 1, (19)

with y(k) ∈ R, u(k) ∈ R, and initial conditions

∇κy (k)|k=a = bκ, κ = 0, 1, · · · , n − 1, (20)

is unique and is given by

y (k) =
∑n−1
κ=0 bκFα,κ+1 (λ, k, a) +

∑k
τ=a+1 Fα,α (λ, τ, a) u (k − τ + a + 1). (21)

Proof. Reformulating (19) gives an equivalent fractional order sum equation as

a∇
−α
k a∇

α
k y (k) = y (k) −

∑n−1
κ=0

bκ
Γ(κ+1) (k − a)κ

= λa∇
−α
k y (k) +a∇

−α
k u (k) .

(22)

Define y0 (k) =
∑n−1
κ=0

bκ
Γ(κ+1) (k − a)κ and introduce a series of functions yp (k) , p ∈ Z+ by the following relationship

yp (k) = y0 (k) + λa∇
−α
k yp−1 (k) +a∇

−α
k u (k) . (23)

Following formulas (22) and (23), one obtains

yp (k) =
∑p

j=0 λ
j
a∇
− jα
k y0 (k) +

∑p−1
j=0 λ

j
a∇
−( j+1)α
k u (k). (24)

Taking the limit of (24) and recalling the definition of the fractional order sum (1), yields

y (k) = lim
p→+∞

yp (k)

=
∑+∞

j=0 λ
j
a∇
− jα
k y0 (k) +

∑+∞
j=0 λ

j
a∇
−( j+1)α
k u (k)

=
∑+∞

j=0 λ
j ∑n−1

κ=0
bκ

Γ( jα+κ+1) (k − a) jα+κ +
∑+∞

j=0 λ
j ∑k−a−1

τ=0
(τ+1) jα+α−1

Γ( jα+α) u (k − τ)

=
∑n−1
κ=0 bκ

∑+∞
j=0

λ j

Γ( jα+κ+1) (k − a) jα+κ +
∑k
τ=a+1 u (k − τ + a + 1)

∑+∞
j=0

λ j

Γ( jα+α) (τ − a) jα+α−1

=
∑n−1
κ=0 bκFα,κ+1 (λ, k, a) +

∑k
τ=a+1 Fα,α (λ, τ, a) u (k − τ + a + 1).

(25)

By taking fractional difference to y(k) in (25), one has

a∇
α
k y (k) = a∇

α
k
[∑+∞

j=0 λ
j
a∇
− jα
k y0 (k) +

∑+∞
j=0 λ

j
a∇
−( j+1)α
k u (k)

]
=

∑+∞
j=0 λ

j
a∇
− jα+α
k y0 (k) +

∑+∞
j=0 λ

j
a∇
− jα
k u (k)

= λ
∑+∞

j=−1 λ
j
a∇
− jα
k y0 (k) + λ

∑+∞
j=−1 λ

j
a∇
−( j+1)α
k u (k)

= λ
[∑+∞

j=0 λ
j
a∇
− jα
k y0 (k) +

∑+∞
j=0 λ

j
a∇
−( j+1)α
k u (k)

]
+ a∇

α
k y0 (k) + a∇

0
ku (k)

= λy (k) + u (k) ,

(26)

which is equal to equation (19).
Now we prove the uniqueness of the response in (21). Suppose that ȳ(k) is another response of the system (19)

under the same initial conditions (20). Defining the function ε(k) = y(k) − ȳ(k), one has that a∇
α
k ε (k) = λε (k) with

6



initial conditions ∇κε (k)|k=a = 0, κ = 0, 1, · · · , n − 1. Performing the fractional order sum operation, an equivalent
fractional order sum equation follows

ε (k) = λa∇
−α
k ε (k)

= λ
Γ(α)

∑k−a−1
j=0

Γ( j+α)
Γ( j+1) ε (k − j) . (27)

When k = a + 1, (27) becomes ε (a + 1) = λε (a + 1). Recalling the condition λ , 1, one has that ε (a + 1) = 0.
When k = a + 2, one has that ε (a + 2) = λε (a + 2), which implies ε (a + 2) = 0. As an analogy, one can conclude that
ε (a + j) ≡ 0, j = 1, 2, · · · . The uniqueness of a non-zero solution is thus proved.

With the obtained Theorem 4, we are ready to analyze the zero input response of the discrete fractional order
system in formula (19).

Theorem 5. If n − 1 < α < n, n ∈ Z+, then the response to the fractional order system (19) with u(k) ≡ 0 has the
following properties:

i) For the case of λ > 0 and λ , 1, if λ < 2α, y(k) is divergent; and if λ > 2α, y(k) is convergent.

ii) For the case of λ = 0, y (k) =
∑n−1
κ=0

bκ
κ! (k − a)κ and therefore y(k) might be divergent or constant.

iii) For the case of λ < 0, if 0 < α ≤ 1, y(k) is monotonically convergent; If 1 < α ≤ 2, y(k) is convergent with
a possible overshoot; If α > 2, three situations will be divided. More specially, when |λ| < 2α cosα

( π
α

)
, y(k) is

divergent; and when |λ| > 2α cosα
( π
α

)
, y(k) is convergent.

Proof. With the initial conditions in (20), the N-transform of y(k) can be obtained as

Y (s) =
∑n−1
κ=0

sα−κ−1

sα−λ bκ, (28)

whose pole is λ
1
α .

i) When λ > 0 and λ , 0, one has λ
1
α > 0 for any positive α. If λ < 2α, it follows λ

1
α < 2 and then |λ

1
α − 1| < 1.

By applying Remark 1, the divergence of y(k) can be obtained. Similarly, if λ > 2α, the convergence of y(k) can be
achieved from Theorem 2.

ii) When λ = 0 and u(k) ≡ 0, the response y(k) in (21) becomes

y (k) =
∑n−1
κ=0

bκ
κ! (k − a)κ, (29)

from which the statement ii) can be directly concluded, since (k−a)κ is positive and divergent for any κ = 1, 2, · · · , n−1
and (k − a)0 = 1. In other words, if 0 < α < 1, y(k) is constant. If α > 1 and bκ = 0, κ > 1, y(k) is also constant. If
α > 1 and not all of bκ are zero, y(k) will be divergent.

iii) Letting λ < 0, one has
λ

1
α = |λ|

1
α e−j πα , (30)

whose magnitude is |λ|
1
α and phase is − π

α
. When 0 < α ≤ 2, λ

1
α lies in the left half plane and the formula |λ

1
α − 1| > 1

holds. As a result, y(k) is convergent in this case. When α > 2, it is difficult to determine whether |λ
1
α − 1| is larger

than 1. Thus, more details will be provided.

• The case of 0 < α ≤ 1

From the previous discussion, it is known that when λ < 0 and 0 < α ≤ 1, y(k) will converge to 0 as k increases.
Next, the monotonicity of y(k) will be analyzed. In this case, κ = 0, i.e., y(k) = b0Fα,1 (λ, k, a). On one hand, when
α = 1 and λ < 0, one has

F1,1 (λ, k, a) =
∑+∞

j=0 λ
j Γ( j+k−a)
Γ( j+1)Γ(k−a)

=
∑+∞

j=0 (−λ) j Γ(1−k+a)
Γ( j+1)Γ(1− j−k+a)

=
∑+∞

j=0 (−λ) j( −k
j
)

= (1 − λ)−k+a,

(31)

7



which is monotonically convergent as k increases.
On the other hand, it has been shown in [19] that for any 0 < α < 1, λ < 0 and k ∈ Na,

Fα,1 (λ, k, a) ≥ F1,1 (λ, k, a). (32)

Then from the statement iii) of Theorem 3, one has

a∇
α
kFα,1 (λ, k, a) = λFα,1 (λ, k, a) < 0, (33)

which implies that ∇1Fα,1 (λ, k, a) < 0 based on Theorem 3.126 of [17]. Thus, Fα,1 (λ, k, a) is monotonically decreas-
ing when 0 < α < 1.

Thus one can conclude that for any 0 < α ≤ 1, y(k) is monotonically convergent as k increases.

• The case of 1 < α ≤ 2

In this case, y(k) = b0Fα,1 (λ, k, a) + b1Fα,2 (λ, k, a), which is convergent from the aforementioned facts. Next,
the overshoot phenomenon of y(k) will be discussed. Firstly, let us discuss the property of Fα,1 (λ, k, a). By using the
N-transform, we have

Na

{
a∇
−σ
k Fα,1 (λ, k, a)

}
= sNa

{
Fα,2+σ (λ, k, a)

}
= sα−σ−1

sα−λ ,
(34)

for any 0 < σ < α − 1.
Theorem 3 indicates that

a∇
−σ
k Fα,1 (λ, a + 1, a) = lim

s→1
sα−σ−1

sα−λ = 1
1−λ > 0, (35)

Fα,2+σ (λ, a +∞, a) = lim
s→0

sα−σ−1

sα−λ = 0. (36)

A further calculation on (34) leads to

lim
s→0

Na

{
a∇
−σ
k Fα,1 (λ, k, a)

}
= lim

s→0

∑+∞
k=1 (1 − s)k−1

a∇
−σ
k Fα,1 (λ, k + a, a)

=
∑+∞

k=1 lim
s→0

(1 − s)k−1
a∇
−σ
k Fα,1 (λ, k + a, a)

=
∑+∞

k=1 a∇
−σ
k Fα,1 (λ, k + a, a)

= 0,

(37)

which implies that a∇
−σ
k Fα,1 (λ, k, a) cannot be always positive. Therefore, one can conclude that Fα,1 (λ, k, a) should

change its sign as n increases based on the hypothesis method. In fact, suppose that Fa,1(λ, k, a) > 0 holds for all
k ∈ Na, then a∇

−σ
k Fα,1 (λ, k, a) > 0 holds for all k ∈ Na and vice versa, which leads to a contradiction.

Secondly, let us consider Fα,2 (λ, k, a). When |λ| < |s|α, the statement i) of Theorem 3 indicates that

Na
{
Fα,2 (λ, k, a)

}
= sα−2

sα−λ . (38)

Based on Theorem 1, one has
Fα,2 (λ, a + 1, a) = lim

s→1
sα−2

sα−λ = 1
1−λ , (39)

Fα,2 (λ, a + 2, a) = lim
s→1

sα−2
sα−λ−

1−s
1−λ

1−s = 1−α
1−λ , (40)

Fα,2 (λ, a +∞, a) = lim
s→0

s sα−2

sα−λ = 0. (41)

Moreover, according to the property of Gamma function, one has

Fα,2 (λ, a, a) =
∑+∞

j=0 λ
j Γ( jα+1)
Γ( jα+2)Γ(0)

=
∑+∞

j=0
λ j

( jα+1)Γ(0)
= 0.

(42)

From (39)-(42), an overshoot can be observed as Fα,2 (λ, k, a) converges to zero.
In summary, if one of b0 and b1 equals to zero, y(k) will be convergent with an overshoot. Otherwise, y(k) is

convergent while the overshoot may disappear for some special values of variables b0 and b1.
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• The case of α > 2

According to (30), it can be found that λ
1
α locates in the right half plane when α > 2 and λ < 0. Then one only

needs to judge whether the point λ
1
α is in the unstable circle. Supposing that point B is on the circle and ∠AOB = π

α

shown as Fig. 2, because A is the center of a unit circle, O is a point on the circle, then one has

|OB| = 2 |OA| cos (∠AOB)
= 2 cos

( π
α

)
,

(43)

stable region

unstable region

B

AO


  Re s

 Im s

stable region

unstable region

 Re s

 Im s

 1,0

Fig. 2. The case of λ
1
α lying on the circle.

If |λ|
1
α is larger than |OB|, λ

1
α is outside the circle. Similarly, if |λ|

1
α is less than |OB|, λ

1
α is in the circle. If |λ|

1
α is

equal to |OB|, λ
1
α is on the circle. From the property of the exponential function, it can be concluded in a brief form.

a) if |λ| > 2α cosα
( π
α

)
, λ

1
α is outside the circle; b) if |λ| < 2α cosα

( π
α

)
, λ

1
α is in the circle; c) if |λ| = 2α cosα

( π
α

)
, λ

1
α is

on the circle. Based on the stable theory in Theorem 2 and Remark 1, the statement iii) in Theorem 5 can be derived
immediately.

One interesting proposition under critical conditions is proposed here.

Proposition 1. For y (k) =
∑n−1
κ=0 bκFα,κ+1 (λ, k, a) with n−1 < α < n, n ∈ Z+, the following conclusions can be drawn.

i) When λ > 0 and λ = 2α, if α ≤ 1, y(k) is oscillating and if α > 1, y(k) is convergent.

ii) When λ < 0 and |λ| = 2α cosα
( π
α

)
, y(k) is oscillating.

Remark 2. It is worth pointing out that this paper establishes a connection of discrete fractional order systems in
time domain and those in frequency domain, based on which some original properties of the N-transform and the
discrete Mittag–Leffler function are explored. It is believed that the results derived in this note can be conveniently
applied to response calculation, stability analysis and controller design for discrete fractional order systems.
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4. Simulation Study

In this section, without loss of generality, let us set a = 1.the zero input time–domain response of system (19) in
the following four cases: 

case 1 : b0 = 1, λ = −0.20, α ∈ {0.1, 0.2, · · · , 1.0},
case 2 : b0 = 1, λ = −0.20, α ∈ {1.0, 1.1, · · · , 2.0},
case 3 : b1 = 1, λ = −0.20, α ∈ {1.1, 1.2, · · · , 2.0},
case 4 : b0 = 1, λ ∈ {−0.04,−0.08, · · · ,−0.4}, α = 1.5,

are shown in Fig. 3 - Fig. 6, respectively.
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Fig. 3. Response y(k) for different α ∈ (0, 1].

One can observe from Fig. 3 that, the convergence speed becomes faster as α increases, when α ∈ (0, 1]. In
particular, the system output y(k) converges to 0 at a very low speed, which coincides with that of the continuous-time
case [29]. It is shown in Fig. 4 that the rising time and overshoot both increase gradually as α increases within the
interval [1, 2]. Fig. 5 shows that the number of oscillation increases and the overshoot appears as α increases. In Fig.
6, one can observe that the increase of |λ| could speed up the convergence and meanwhile reduce the overshoot. These
observations confirm our conclusions in Theorem 4.

Besides, a number of simulations have been conducted setting b0 , 0, b1 , 0 and 1 < α ≤ 2. It is found that when
α ∈ (1, 1.7), the trajectory of y(k) has no overshoot if b0 and b1 are chosen such that b1/b0 ∈ [1, 9]. Several questions
then arise. Does there exist a constant αc such that when α < αc, the trajectory of y(k) could have no overshoot by
choosing b0 and b1 appropriately? How to choose b0 and b1, if such a constant αc exists? To rigorously answer these
questions will be the subjects of our on–going research.

5. Conclusions

The time–domain response of nabla discrete fractional order systems has been studied in this paper. Several
useful properties of the nabla discrete Laplace transform and the discrete Mittag–Leffler function are explored, based
on which an explicit solution to the system dynamic equation is presented and the time–domain response under zero
input condition is comprehensively analyzed.
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Fig. 4. Response y(k) for different α ∈ [1, 2] with b1 = 0.
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Fig. 5. Response y(k) for different α ∈ (1, 2] with b0 = 0.
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Fig. 6. Response y(k) for different λ < 0 with b1 = 0.

Acknowledgements

The work described in this paper was supported by the National Natural Science Foundation of China (61601431,
61573332), the Anhui Provincial Natural Science Foundation (1708085QF141), the Fundamental Research Funds
for the Central Universities (WK2100100028) and the General Financial Grant from the China Postdoctoral Science
Foundation (2016M602032).

References

References

[1] Oldham, K., Spanier, J.. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. San Diego:
Academic Press; 1974.

[2] Bagley, R.L., Torvik, P.. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology 1983;27(3):201–
210.

[3] Metzler, R., Klafter, J.. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics reports 2000;339(1):1–77.
[4] Chen, Y., Gao, Q., Wei, Y., Wang, Y.. Study on fractional order gradient methods. Applied Mathematics and Computation 2017;314:310–

321.
[5] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.. A new collection of real world applications of fractional calculus in science and

engineering. Communications in Nonlinear Science and Numerical Simulation 2018;64:213–231.
[6] West, B.J.. Fractional Calculus View of Complexity: Tomorrow’s Science. Boca Raton: CRC Press; 2016.
[7] Liu, L., Pan, F., Xue, D.. Variable-order fuzzy fractional PID controller. ISA Transactions 2015;55:227–233.
[8] Wei, Y., Chen, Y., Cheng, S., Wang, Y.. Completeness on the stability criterion of fractional order LTI systems. Fractional Calculus and

Applied Analysis 2017;20(1):159–172.
[9] Sheng, D., Wei, Y., Cheng, S., Wang, Y.. Observer-based adaptive backstepping control for fractional order systems with input saturation.

ISA Transactions 2018;82:18–29.
[10] Diaz, J.B., Osler, T.J.. Differences of fractional order. Mathematics of Computation 1974;28(125):185–202.
[11] Gray, H.L., Zhang, N.F.. On a new definition of the fractional difference. Mathematics of Computation 1988;50(182):513–529.
[12] Anastassiou, G.A.. Nabla discrete fractional calculus and nabla inequalities. Mathematical and Computer Modelling 2010;51(5-6):562–571.
[13] Yucra, E.A., Yuz, J.I., Goodwin, G.C.. Sampling zeros of discrete models for fractional order systems. IEEE Transactions on Automatic

Control 2013;58(9):2383–2388.
[14] Tseng, C.C., Lee, S.L.. Designs of discrete-time generalized fractional order differentiator, integrator and Hilbert transformer. IEEE

Transactions on Circuits and Systems I: Regular Papers 2015;62(6):1582–1590.
[15] Cui, R., Wei, Y., Cheng, S., Wang, Y.. An innovative parameter estimation for fractional order systems with impulse noise. ISA Transactions

2018;82:120–129.

12



[16] Liu, T., Cheng, S., Wei, Y., Li, A., Wang, Y.. Fractional central difference Kalman filter with unknown prior information. Signal Processing
2019;154:294–303.

[17] Goodrich, C., Peterson, A.C.. Discrete Fractional Calculus. Cham: Springer; 2015.
[18] Ostalczyk, P.. Discrete Fractional Calculus: Applications in Control and Image Processing. Berlin: World Scientific; 2015.
[19] Cheng, J.. Theory of Fractional Difference Equations. Xiamen: Xiamen University Press; 2011.
[20] Atıcı, F.M., Eloe, P.W.. Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential

Equations 2009;2009(3):1–12.
[21] Abdeljawad, T., Jarad, F., Baleanu, D.. A semigroup-like property for discrete Mittag-Leffler functions. Advances in Difference Equations

2012;Doi: 10.1186/1687-1847-2012-72.
[22] Mohan, J.J., Deekshitulu, G.. Solutions of nabla fractional difference equations using N-transforms. Communications in Mathematics and

Statistics 2014;2(1):1–16.
[23] Tan, Y., He, Z., Tian, B.. A novel generalization of modified LMS algorithm to fractional order. IEEE Signal Processing Letters

2015;22(9):1244–1248.
[24] Cheng, S., Wei, Y., Chen, Y., Liang, S., Wang, Y.. A universal modified LMS algorithm with iteration order hybrid switching. ISA

Transactions 2017;67:67–75.
[25] Wei, Y., Gao, Q., Liu, D.Y., Wang, Y.. On the series representation of nabla discrete fractional calculus. Communications in Nonlinear

Science and Numerical Simulation 2019;69:198–218.
[26] Baleanu, D., Wu, G., Bai, Y., Chen, F.. Stability analysis of Caputo–like discrete fractional systems. Communications in Nonlinear Science

and Numerical Simulation 2017;48:520–530.
[27] Wu, G., Baleanu, D., Luo, W.. Lyapunov functions for Riemann–Liouville-like fractional difference equations. Applied Mathematics and

Computation 2017;314:228–236.
[28] Wei, Y., Chen, Y., Liu, T., Wang, Y.. Lyapunov functions for nabla discrete fractional order systems. ISA Transactions 2018;Doi:

10.1016/j.isatra.2018.12.016.
[29] Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.. Mittag-Leffler Functions, Related Topics and Applications. Berlin: Springer;

2014.
[30] Li, A., Wei, Y., Li, Z., Wang, J., Wang, Y.. The numerical implementation of discrete Mittag–Leffler functions. SSRN 2018;Id: 3281678.
[31] Zhang, S., Yu, Y., Wang, H.. Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Analysis: Hybrid Systems

2015;16:104–121.

13


	Time–domain response of nabla discrete  fractional order systems
	1 Introduction
	2 Preliminaries
	3 Main Results
	3.1 Some useful properties
	3.2 Time-domain response analysis

	4 Simulation Study
	5 Conclusions
	References


