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Abstract

In this paper, we adapt the differential signature construction to the equivalence problem
for complex plane algebraic curves under the actions of the projective group and its subgroups.
Given an action of a group G, a signature map assigns to a plane algebraic curve another
plane algebraic curve (a signature curve) in such a way that two generic curves have the same
signatures if and only if they are G-equivalent. We prove that for any G-action, there exists a
pair of rational differential invariants, called classifying invariants, that can be used to construct
signatures. We derive a formula for the degree of a signature curve in terms of the degree of
the original curve, the size of its symmetry group and some quantities depending on a choice
of classifying invariants. We show that all generic curves have signatures of the same degree
and this degree is the sharp upper bound. For the full projective group, as well as for its
affine, special affine and special Euclidean subgroups, we give explicit sets of rational classifying
invariants and derive a formula for the degree of the signature curve of a generic curve as a
quadratic function of the degree of the original curve.

Keywords: Algebraic curves; projective action; affine action; Euclidean action; equivalence
classes of curves; differential invariants; classifying invariants; signatures; Fermat curves.

2010 Mathematics Subject Classification: 14H50; 14Q05; 14L24; 53A55; 68W30

1 Introduction

In the most general terms the group equivalence problem can be stated as follows: given an
action of a group G on a set of objects, decide whether or not one object can be transformed to
another by a group element. An elementary geometry problem of deciding whether or not two
triangles are congruent under the action of the group of rigid motions (the Euclidean group) is an
example. Many problems in mathematics and applications can be reformulated in this manner,
and equivalence problems are closely related to many important classification problems.

The differential signature construction originated from Cartan’s method for solving equiva-
lence problems for smooth manifolds under Lie group actions [7]. Signatures and, in particular,
signatures of smooth curves gained popularity in many applications, such as image process-
ing, computer vision, and automated puzzle assembly [3, 5, 21, 14]. The differential signature
construction for curves consists of the following steps: (1) an action of a group on a plane is
prolonged to the jet space of curves of sufficiently high order; (2) on this jet space, a pair of
independent differential invariants is constructed; (3) the restriction of this pair to a given a
curve parametrizes the signature curve. Since the signature is based on invariants, two equiv-
alent curves have the same signature. The challenge lies in finding a pair of invariants so that
(most) non-equivalent curves have different signatures. In principle, such a pair of invariants
can be found either by the classical moving frame method formulated by Cartan [6] or by its
modern generalization by Fels and Olver [10], although in practice this may be challenging for
large groups. The invariants obtained by the moving frame method are, in general, only locally
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defined and are designed to solve local equivalence problems, i.e. a problem of deciding whether
or not there exist segments of two smooth curves that are G-equivalent. The challenges arising
when using these signatures for solving global equivalence problems for smooth curves, even in
the case of the well-studied Euclidean action, underscored are in works [19], [20] and [30].

In contrast with the smooth case, any two irreducible algebraic curves that are locally equiv-
alent are also globally equivalent. In addition, in the algebraic setting we can take advantage of
well-developed computational algebra algorithms to compute, compare and analyze signature
curves. In order to take the full advantage of this machinery, we need to build signature from
rational invariants, in which case the signature of an algebraic curve is again algebraic. The
differential invariants obtained by the classical Cartan moving frame method (called normalized
invariants) or their counterparts obtained Fels-Olver generalization (called replacement invari-
ants) are not rational in general. In fact, an algebraic adaptation of the Fels-Olver given in [23]
shows that local replacement invariants, in general, are algebraic over the field of global rational
invariants.

As the first main result of this paper, we prove existence of two rational differential invariants
that can be used to construct signatures with good separation properties:

Result 1. Let G ⊂ PGL(3) be any closed algebraic subgroup of the projective group of pos-
itive dimension. Then there exists a pair of rational differential invariants, called classifying
invariants, of differential order at most equal to the dimG, such that the signatures based on
these invariants characterize equivalence classes of generic algebraic curves of degree d for all d
such that

(
d+2
2

)
− 2 ≥ dimG. See Theorem 2.37.

Here and throughout the paper we formulate several results for a generic curve of degree d.
This means that there exists a nonempty Zariski-open subset Pd of the vector space C[x, y]≤d
of all polynomials of degree at most d, such that a result is valid for all curves whose defining
polynomials lie in Pd.

Given a pair of rational classifying invariants, the signature of a curve X ⊂ C2 is constructed
as follows. The restriction of classifying invariants to an algebraic curve X ⊂ C2 defines a
rational map σX : X 99K C2 called the signature map. Its image SX = σX(X) is called the
signature of X, and it is a Zariski-dense1 subset of its closure SX , called the signature curve of
X. The defining polynomial for the signature curve can be explicitly computed using elimination
algorithms, as was studied in [4]. However this computation is not always practically feasible
and it is natural to ask what properties of signature curves can be determined a priori. As the
first step in this direction, we obtain a formula for the degree of the signature curve.

Result 2. For a fixed algebraic group and a fixed set of classifying invariants, we derive a
formula for the degree of the signature curve of an algebraic curve in terms of the degree of the
original curve, the size of its symmetry group, and some quantities that depend on a choice of
classifying invariants. See Theorem 3.8. We show that signatures of generic curves all have the
same degree and this degree provides the strict upper abound. See Theorem 3.13

One consequence of Theorem 2.20 is that, over C, a classifying set of differential invariants
can be computed by an algorithm for computing generators for the field of rational invariants,
such as algorithms presented in [8] and [22]. However the running time for these algorithms can
be prohibitively large for large groups, and these algorithms may produce a redundant set of
generators from which two appropriate invariants must be chosen. For the actions of the full
projective group PGL(3) and its classical subgroups it appears more practical to build rational
classifying invariants from the classical (non-rational) differential invariants. We give explicit
formulas for the classifying pairs for the special Euclidean SE(2), the special affine SA(2), the
affine A(2) and projective PGL(3) groups. These groups are especially relevant in computer
vision and image processing. We derive formulas for the degrees of signatures of generic curves
based on these pairs of invariants and show that these degrees are sharp upper bounds.

1The density statement is not valid over R. See, for instance, [4, Example 1].
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Result 3. For the actions of the full projective group PGL(3), and its subgroups such as the
special Euclidean SE(2), the special affine SA(2), the affine A(2) and the classifying pairs of
invariants given by (21), we find an upper bound for the degree of the algebraic signature of
a plane curve of degree d. See Theorem 4.13. From Result 2 we know this bound is tight for
generic curves.

While the results are proved for complex curves under the action of complex algebraic groups,
for many practical applications solving equivalence problems over the real field is important.
For this reason, throughout the paper we often compare and contrast with the real case. In
particular, we would like to note that the pair of classifying invariants (21) can be proved to
be classifying over R (see [4]). Therefore, the signature of the real part of a complex curve X
is contained in the real part of the signature curve SX . Thus the degree results obtained in
Theorem 4.13 are also applicable in the real case.

The paper is structured as follows. In Section 2 we review known results about actions
and invariants of algebraic groups, as well as the results about the jet spaces and differential
invariants. We then prove our first main result about the existence of a pair of classifying
invariants. Additionally we establish some basic facts about the relationship of the symmetry
group of a curve and the curve’s signature map, which play an important role in the degree
formulas. In Section 3 we review some necessary definitions and theorems of algebraic geometry
and prove our second main result, which is a formula for the degree of the signature polynomial.
In Section 4 we examine the signature polynomial for some specific examples of subgroups of the
projective group and prove our third main result about the degree of signatures of the generic
curves for these groups. We also consider the family of Fermat curves, defined by polynomials
Fd(x, y) = xd + yd + 1, to show that the degree of a signature curve may be significantly lower
than the generic degree. For this family, we give explicit formulas for signatures polynomials
for all d under the actions of the projective and affine group.

Although the paper contains only few examples and computational details, the Maple code
and a large selection of examples are available on an online supplementary material page https:
//mgruddy.wixsite.com/home/dsag-supplementarymaterials.

Acknowledgements. We would like to thank Bojko Bakalov, Peter Olver, Kristian Ranes-
tad, and Dmitry Zenkov for helpful discussions and suggestions regarding this project. This
work was supported in part by the National Science Foundation grants DMS-1620014 and CCF-
1319632.

2 Differential invariants and signatures of algebraic curves

In this section, we prove our main structural results about the field of rational differential
invariants and signatures of algebraic curves. We start by reviewing, in Section 2.1, known
results about actions and invariants of algebraic groups. In Section 2.2, we consider the action
of the projective group and its subgroups on algebraic curves, give definitions of equivalence
and symmetry for algebraic curves, and prove some useful results about the symmetry groups of
curves (Propositions 2.9-2.11). In Section 2.3 we prolong the action to the jet space of curves and
define the notion of rational classifying differential invariants. We prove an important structural
result about the field of rational differential invariants (Theorem 2.17), as well the existence of a
classifying set (Theorem 2.20). In Section 2.4, we show how differential invariants are evaluated
on an algebraic curve. We define the notion of exceptional curves and show that generic curves
are non-exceptional (Theorem 2.27). Section 2.5, we define the signature map and the signature
curve of a non-exceptional algebraic curve. We show that signatures characterize the equivalence
classes of generic algebraic curves (Theorem 2.37) and prove that the signature map of a curve
X is generically n to one where n is the cardinality of the symmetry group of X (Theorem 2.38).
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2.1 Actions and invariants of algebraic groups

In this section, we review common definitions and known results about actions and invariants
of algebraic groups on algebraic varieties. The exposition follows [42], and we refer to this
publication for details, proofs, and further references.

Throughout the section the ground field is C and the terms “open” and “closed” refer to
Zariski topology. An algebraic group is an algebraic variety equipped with a group structure.

Definition 2.1. Let Y be an affine or a projective variety. A rational action of an algebraic
group G on Y is a rational map Φ: G× Y 99K Y that satisfies the following two properties:

1. Φ(e, p) = p, ∀p ∈ Y, where e is the identity in G, and

2. Φ(h,Φ(g, p)) = Φ(hg, p), for all h, g ∈ G and p ∈ Y, such that both sides are defined.

If the domain of Φ is all of G× Y then Φ is a morphism and the action is called regular.

From now on, when the word “action” is used without an adjective, a rational action is
assumed. We use the standard abbreviation Φ(g, p) = g · p and state the following known
definitions and results used in our paper.

Definition 2.2. For an action of G on a variety Y and a point p ∈ Y, the stabilizer of p is the
set

Gp = {g ∈ G | g · p = p},

while the orbit of p is the set

Gp = {q ∈ Y | ∃g ∈ G, g · p = q},

We recall some basic properties of algebraic group actions.

Proposition 2.3. Let G be an algebraic group acting on an affine (or projective) variety Y. For
any p ∈ Y, the stabilizer Gp is a closed algebraic subgroup of G. The orbit Gp is a quasi-affine
(or quasi-projective) variety and

dimGp = dimG− dimGp.

If Y is irreducible then the set of all points whose orbit dimension is less than maximal (equiv-
alently the dimension of the stabilizer group is greater than minimum) lies in a closed, proper
subset of Y. Finally, if G is irreducible, then for all p ∈ Y the closure of the orbit Gp is
irreducible.

Definition 2.4. A rational function K on Y is G-invariant if

K(g · p) = K(p), whenever both sides are defined.

The set of all rational G-invariant functions is denoted by C(Y)G. It is easy to see that it is
a subfield of the field C(Y) of all rational functions on Y.

Definition 2.5. A subset I ⊂ C(Y)G is called separating if there exists a nonempty open subset
W ⊂ Y such that for all p, q ∈W ,

q ∈ Gp ⇔ K(p) = K(q) for all K ∈ I.

The set W is called a domain of separation for I.

Due to the Noetherian property, there exists a maximal (with respect to inclusions) domain
of separation. It is not difficult to see that a maximal domain of separation is a union of orbits,
and therefore is a G-invariant set.

In the following proposition, we summarize several important and non-trivial results about
the structure of C(Y)G. See [36] or [42] for details.
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Proposition 2.6.

1. The field C(Y)G is finitely generated over C.

2. A subset I ⊂ C(Y)G is generating if and only if it is separating.2

3. The transcendental degree of C(Y)G equals to dimY −max
p∈Y

dimGp.

4. If the field C(Y) is rational3 and the transcendental degree of C(Y)G over C equals to 1
or 2, then C(Y)G is rational over C.4

Remark 2.7. It is worthwhile mentioning that the second part of the proposition is not valid
over real numbers. For example, the field of rational invariants for the action of the group R∗
(non-zero real numbers under multiplication) on R2 defined by (x, y) 7→ (λ2x, λ2y) is generated
by K = x

y , but K is not separating. Conversely, for the translation action of R on R2 defined

by (x, y) 7→ (x+ a, y), the invariant K = y3 is separating but not generating.

2.2 Equivalence classes and symmetries of algebraic curves

We now restrict our attention to regular actions of algebraic groups on the complex projective
plane CP2. Such an action induces a homomorphism from G to Aut(CP2) = PGL(3), see [18].
Thus we view an algebraic group G acting on CP2 as a closed subgroup of the projective linear
group PGL(3)5. An element g ∈ G can be represented by a 3× 3 non-singular complex matrix
Ag, which is defined up to scaling. We use homogeneous coordinates [x0 : x1 : x2] to represent
a point p ∈ CP2. Then the action of G on CP2 is defined by:

g · p = [φ0(g,p) : φ1(g,p) : φ2(g,p)], where

 φ0(g,p)
φ1(g,p)
φ2(g,p)

 = Ag

 x0
x1
x2

 . (1)

On C2, we use coordinates (x, y). For an affine point p = (x, y) ∈ C2, we use an abbreviation
[1 : p] = [1 : x : y] to denote the corresponding projective point. The action (1) induces a
rational action Φ : G× C2 99K C2 given by

g · p =

(
φ1(g, [1 : p])

φ0(g, [1 : p])
,
φ2(g, [1 : p])

φ0(g, [1 : p])

)
. (2)

We are interested in the characterization of the equivalence classes of algebraic curves under
this action. Given a curve X ⊂ C2, let g ·X denote the the image of X under g, namely Φ(g,X).
As this is a rational action, the image may not be an algebraic curve, and so we will consider
its Zariski closure g ·X.

Definition 2.8. We say that an algebraic curve X ⊂ C2 is G-equivalent to an algebraic curve
Y ⊂ C2 if there exists g ∈ G such that X = g · Y .

Clearly G-equivalence satisfies all properties of an equivalence relation, and we use the no-
tation X ∼=

G
Y to denote the G-equivalence of curves X and Y . Elements g ∈ G defining

self-equivalences of X are called symmetries of X in G. It is not difficult to show that the set
of all symmetries

Sym(X,G) = {g ∈ G | X = g ·X}

form a closed algebraic subgroup of G, called the symmetry group of X with respect to G.

2In [42], this result is attributed to Rosenlicht.
3i.e. isomorphic to a field of rational functions of a finite number of independent variables.
4In [42], this result is attributed to Lüroth and Castelnuovo.
5From now on we will refer to PGL(3) as the projective group.
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Note that the symmetries of X that fix every point of the curve form a normal subgroup of
Sym(X,G), called the stabilizer group of X with respect to G:

Stab(X,G) =
⋂
p∈X

Gp.

We show that for a natural class of curves, Stab(X,G) only consists of the identity element.

Proposition 2.9. For an irreducible curve X ⊂ C2 of degree greater than one, the stabilizer
group Stab(X,G) consists of only the identity.

Proof. For g ∈ G and let Ag ∈ GL(3) be any of its representatives. Then a point p ∈ C2 is
fixed by g if and only if (1, p) is an eigenvector of Ag. Therefore, the set C2

g of points fixed
by g is the intersection of the affine plane {x0 = 1} with the union of the eigenspaces of the
matrix Ag. There are three possibilities: (1) Ag has three linearly independent eigenvectors,
then C2

g consists of at most6 three distinct points, (2) Ag has an eigenspace of dimension 2 and
an eigenspace of dimension 1, then C2

g consists of at most a line and a point, (3) Ag has an
eigenspace of dimension 3, then C2

g = C2.
If g ∈ Stab(X,G), then X ⊂ C2

g. Since X is irreducible of degree > 1, it follows that
C2
g = C2. This implies that Ag is a scalar multiple of the identity matrix and g is the identity

element of PGL(3).

We finish this section by proving two useful propositions concerning the orbits of Sym(X,G).

Proposition 2.10. If X is irreducible of degree greater than one, then |Sym(X,G)| is infinite
if and only if there exists a point p ∈ X whose orbit under Sym(X,G) is dense in X.

Proof. Let H = Sym(X,G). This is an algebraic group acting on X.
(⇒) Assume |H| is infinite. Then since H is algebraic, dimH > 0. Let H0 denote the

connected component of H containing e. By [40, Prop. 2.2.1], this is a closed normal subgroup
of H of finite index and so dimH0 > 0. By Proposition 2.3, for any p ∈ X the orbit H0p is an
irreducible quasi-affine subvariety of X. Since dimX = 1, the dimension of H0p is either zero
or one. If for all p ∈ X, dimH0p = 0, then H0p = {p} for all p ∈ X. In this case, Stab(X,G)
contains H0, contradicting the statement of Proposition 2.9. Therefore, there exists p ∈ X such
that dimH0p = 1. Since X is irreducible of dimension 1, this implies H0p = X.

(⇐) Assume there exists a point p ∈ X whose orbit under H is dense in X. Then dimHp = 1.
By Proposition 2.3, dimHp ≤ dimH. Therefore dimH > 0 and so |H| is infinite.

Proposition 2.11. If X is irreducible of degree greater than one and |Sym(X,G)| = n < ∞,
then for all but finitely many points p ∈ X the orbit under Sym(X,G) consists of exactly n
distinct points.

Proof. Let H = Sym(X,G). For g ∈ H, define Xg = {p ∈ X | g · p = p}. From the proof of
Proposition 2.9 it follows that if g 6= e, then Xg is either empty or finite. Consider the set
Eg = {p ∈ X | g · p is undefined}, which is also empty or finite. Since |H| is finite, the set
∆ = ∪g∈H(Eg ∪Xg) is empty or finite. For all p ∈ X\∆, g · p is defined for all g ∈ H and the
stabilizer Hp = {e}. Then |Hp| = |H|/|Hp| = n.

It is important to note that under the action G ⊂ PGL(3) described by (2) the degree and
the irreducibility property are preserved. From now on and throughout the paper we will make
the following assumptions:

Assumption 2.12.

1. A group G is a closed subgroup of PGL(3) with dimG > 0.

2. The rational action of G on C2 is defined by (1) and (2).

3. X ⊂ C2 is an irreducible algebraic curve of degree greater than one.

6“At most” because an eigenspace may be parallel to the {x0 = 1} plane.
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2.3 Classifying differential invariants

To define differential invariants, we prolong the action of G to the jet space Jn of planar
curves. For our purposes, we can ignore the points where the curve has vertical tangent and
identify Jn with Cn+2. The coordinate functions on Jn are denoted by (x, y, y(1), . . . , y(n)).
Although formally, y(k) is viewed as an independent coordinate function, we define the prolon-
gation formulas keeping in mind that y(k) is the “place holder” for the k-th derivative of y with
respect to x.

Definition 2.13. Let G act on C2. For g ∈ G, let (x, y) = g · (x, y). The prolongation of the
G-action from C2 to Jn is a rational action defined by

g · (x, y, y(1), . . . , y(n)) = (x, y, y(1), . . . , y(n))

where

y(1) =
d
dx [y(g, x, y)]
d
dx [x(g, x, y)]

and y(k+1) =
d
dx

[
y(k)(g, x, y, y(1), . . . , y(k))

]
d
dx [x(g, x, y)]

for k = 1, . . . , n− 1.

The operator d
dx is the total derivative operator. This is the unique C-linear operator mapping

C(Jn) → C(Jn+1) for n ≥ 0 satisfying the product rule, d
dx (x) = 1, and d

dx (y(k)) = y(k+1) for

k ≥ 0. Here we use the convention that y = y(0) and coordinate functions of g are considered
to be constant with respect to x.

Definition 2.14. A rational function K(x, y, y(1), . . . , y(n)) on Jn is called a rational differential
function. The differential order of K is the maximal k, such that K explicitly depends on y(k):

ord(K) = max
i

{
i
∣∣∣ ∂K
∂y(i)

6= 0

}
.

If K is invariant under the prolonged action it is called a rational differential invariant.

Note that if ord(K) = k, then K ∈ C(Jn) for all n ≥ k. In Theorem 2.17, we show that the
field C(Jr)G of rational invariants of the order at most r = dimG has a very simple structure.
We start by formulating (in our context) an important result originally due to Ovsiannikov [34]
(see also [31, Theorem 5.11]).7

Proposition 2.15. Let a group G of dimension r act on C2. Then there is k ≥ 0 such that,
for all n ≥ k, the maximal orbit dimension of the prolonged action on Jn is r.

We need the following lemma that immediately follows from [31, Prop. 5.15] and the fact
that two rational functions are algebraically independent if and only if at a generic point their
gradients are linearly independent. This fact is not difficult to prove and for polynomial functions
is known as the Jacobian criterion of independence. We leave its proof to the reader.

Lemma 2.16. Assume K1 and K2 are two algebraically independent rational differential in-
variants, such that max {ord(K1), ord(K2)} = k. Then

dK2

dK1
:=

dK2

dx
dK1

dx

is a rational differential invariant of order k + 1.

The proof of the next theorem invokes the line of the argument in the proof of Theorem 5.24
in [31] in combination with Proposition 2.6 stated above.

7We stated this result under Assumptions 2.12 given at the beginning of the section. For general actions of
algebraic groups on algebraic varieties one needs to assume local effectiveness of the action (the set of elements in G
with a trivial action is finite). The theorem was originally stated for Lie groups acting on smooth (non-algebraic) real
manifolds, and in this setting, as was shown in [33], a stronger assumption of local effectiveness on all open subsets
is required. The proof remains valid over C.
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Theorem 2.17. Let dimG = r, then the field of C(Jr)G of rational invariants on Jr is a
rational field of transcendental degree two. In other words, there exists two rational invariants
K1 and K2 such that

C(Jr)G = C(K1,K2). (3)

Moreover K1 and K2 can be chosen so that K1 is of differential order k, strictly less than r,
and K2 is of differential order r. In addition, the field C(Jk)G of rational invariants on Jk is a
rational field of transcendental degree one and

C(Jk)G = C(K1). (4)

Proof. The dimension of an orbit can not exceed the dimension of the group. Therefore, since
dim Jr−1 = r + 1, the transcendental degree of C(Jr−1)G is at least 1 by Part 3. of Proposi-
tion 2.6. Thus there exists a rational invariant K1 such that ord(K1) = k1 < r. We may assume
that the order k1 of K1 is minimal among all such invariants. Similarly, since dimJr = r+2, the
transcendental degree of C(Jr−1)G is at least 2, and there exists a rational invariant K2, alge-
braically independent from K1, such that ord(K2) = k2 ≤ r. By the minimality assumption on
k1, we have k1 ≤ k2. Assume that k2 < r. By Proposition 2.16, invariant H1 = dK2

dK1
is of order

k2 + 1. For i > 1, we define invariants Hi = dHi−1

dK1
. The n+ 2 invariants K1,K2, H1, H2, . . . ,Hn

are of orders k1, k2, k2 + 1, . . . k2 + n, respectively. Since K1 and K2 are independent, and each
subsequent invariant contains a new jet variable, the gradients of these invariants as functions
on Jk2+n are independent, and hence the invariants are independent. Therefore the maximal
orbit dimension on Jk2+n does not exceed dim Jk2+n − (n+ 2) = k2. Since n can be arbitrary
large, it follows from Proposition 2.15 that k2 = r. In summary, we proved so far

k1 < k2 = r

and that there are no differential invariants of orders strictly less than k1, or strictly between
k1 and r.

Assume that there is an invariant K3 of order r, independent of K1 and K2. Then by similar
argument as in the above paragraph, the n+ 3 invariants K1,K2,K3, H1, H2, . . . ,Hn of orders
k1, r, r, r+ 1, . . . r+ n, respectively, are independent for all n. It follows that the maximal orbit
dimension on Jr+n does not exceed dim Jr+n − (n + 3) = r − 1 for all n. This contradicts
Proposition 2.15.

We conclude that the transcendental degree of C(Jk)G is 1 and the transcendental degree of
C(Jr)G is 2. Then (3) and (4) follow from Part 4 of Proposition 2.6.

Remark 2.18. In fact, from Theorem 5.24 in [31] and Sophus Lie’s classification of all infinites-
imal group actions on the plane (see Table 5 in [31]) it follows that there are only three possi-
bilities for the differential order k of the lower order classifying invariant K1, namely k = r− 1,
k = r − 2 and k = 0. For most of the actions (and all actions considered in Section 4 of
this paper) k = r − 1. The case k = 0 occurs if and only if the action G is intransitive on
C2. An example of such action is the action of a 2-dimensional subgroup of PGL(3), given by
(x, y) → (λx + a, y), where λ ∈ C∗ is non-zero and a ∈ C. Among subgroups of PGL(3), the
third possibility, k = r − 2 6= 0, occurs only for two actions: (1) a three-dimensional subgroup
acting by (x, y) → (λx + a, λy + b), where λ ∈ C∗ and a, b ∈ C and (2) a four-dimensional
subgroup acting by (x, y)→ (λx+ a, cx+ λ2y + b), where λ ∈ C∗ and a, b, c ∈ C

We can use the same definition of the classifying invariants as was given in [4, Definition 7]
in the real case.

Definition 2.19. Let an r-dimensional algebraic group G act on C2. Let K1 and K2 be
rational differential invariants of orders k < r and r, respectively. The set I = {K1,K2} is
called classifying if K1 separates orbits on a nonempty Zariski-open subset W k ⊆ J and I
separates orbits on a nonempty Zariski-open subset W r ⊆ Jr.

Over C we can prove existence of a classifying set of invariants of any group action:
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Theorem 2.20. For any action of G ⊂ PGL(3) on C2 there exists a classifying set I = {K1,K2}
of differential invariants. Moreover the set I is classifying if and only if I generates the field
C(Jr)G of rational differential invariants of order at most r = dimG and K1 generates the field
C(Jr−1)G of rational invariants of order at most r − 1 .

Proof. This result follows immediately from Theorem 2.17 and Part 2 of Proposition 2.6.

Remark 2.7 underscores that over R the above proof of Theorem 2.20 is not valid. It is an in-
teresting question, whether or not the statement of this theorem (or possibly some modification)
is valid over R. In Section 2.5 we show that signatures based on classifying invariants charac-
terize the equivalence classes of generic algebraic curves. In Section 4.1 we list classifying sets
of invariants for the full projective group and several of its classical subgroups. The following
propositions asserts a simple relationship between any two classifying sets of invariants.

Proposition 2.21. Let I = {K1,K2} be a classifying sets of differential invariants for the
action of G on C2. Let Ĩ = {K̃1, K̃2} be another pair of differential invariants. Then Ĩ is a
classifying set if and only if there exist constants a, b, c, d ∈ C, such that ad−bc 6= 0 and rational
functions α, β, γ, δ ∈ C(κ), such that αδ − γβ 6= 0 such that

K̃1 =
aK1 + b

cK1 + d
and K̃2 =

α(K1)K2 + β(K1)

γ(K1)K2 + δ(K1)
. (5)

Proof. By Theorems 2.17 and 2.20, we know that C(Jk)G = C(K1) and C(Jr)G = C(K1,K2)
are rational fields of transcendental degrees 1 and 2 respectively for r = dimG and some integer
k < r. Moreover, from the proof of Theorem 2.17, we know that there are no differential
invariants of order strictly greater than k and strictly less than r.

Assume first that Ĩ is a classifying set. Then for r = dimG and some integer k < r, we have
ord(K̃2) = r and ord(K̃1) = k and C(Jk)G = C(K̃1) and C(Jr)G = C(K̃1, K̃2). Now we have
two sets of generators for each of the fields C(Jk)G and C(Jr)G and so there exist invertible
rational functions Φ ∈ C(κ1) and Ψ ∈ C(κ1, κ2) such that K̃1 = Φ(K1) and K̃2 = Ψ(K1,K2).
The function Φ induces an automorphism of C(Jk)G fixing C. It is known (see, for instance, [24,
Exercise 6, Sec. V.2]) that the only automorphisms of a rational field K(z) fixing the ground
field K are given by linear fractional maps over K. The first formula in (5) follows with K = C.
Similarly Ψ induces an automorphism of C(Jr)G = C(Jk)G(K2) fixing C(Jk)G = C(K1). By
the same argument, with K = C(K1), the second formula in (5) follows.

Now assume that K̃1 and K̃2 are given by (5). Then since these formulas are invertible,
ord(K̃1) = k, ord(K̃2) = r, and C(Jk)G = C(K̃1), while C(Jr)G = C(K̃1, K̃2). By Theo-
rem 2.20, Ĩ = {K̃1, K̃2} is a classifying set.

2.4 Restriction to algebraic curves

To evaluate differential functions on an affine curve, we lift the curve into the jet space as
follows. Let F (x, y) ∈ C[x, y] be irreducible andX = V (F ) ⊂ C2. For any point p = (p1, p2) ∈ X
with Fy(p) 6= 0 the curve X agrees in some neighborhood of p with the graph of an analytic

function y = f(x). Then for a positive integer n, we can define y
(n)
X (p) = f (n)(p1) to be the n-th

derivative of f(x) at x = p1. One can show that for each n ∈ Z+, y
(n)
X is a rational function

on X that, using the implicit differentiation, can be written as a rational function of partial
derivatives of F . For example,

y
(1)
X =

−Fx
Fy

and y
(2)
X =

−FxxF 2
y + 2FxyFxFy − FyyF 2

x

F 3
y

. (6)

It follows that, y
(n)
X is a rational function on X.
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Definition 2.22. The n-th jet of a curve X ⊂ C2, denoted X(n), is the algebraic closure of the
image of X under the rational map jnX : X 99K Jn, where for p ∈ X,

jnX(p) = (x(p), y(p), y
(1)
X (p), . . . , y

(n)
X (p)).

Note that the prolongation of the action of G to Jn (Definition 2.13) is defined so that the
following fundamental property holds:

jng·X(g · p) = g · jnX(p) for all g ∈ G and p ∈ X where g · p is defined. (7)

In particular, the n-th jet of the image of X under the action of g ∈ G coincides with the image
of the n-th jet of X under the prolonged action of g:

g ·X(n) = (g ·X)(n). (8)

Definition 2.23. For a curve X, the restriction of a differential function K to X is denoted
K|X and defined by the composition, K|X = K ◦ jnX .

If K is a rational differential function on Jn, then K|X is a rational function on X, and we
can obtain the explicit formula for K|X as a rational function of x and y by substituting the

expressions y
(1)
X , . . . , y

(n)
X in (6) for coordinates y(1), . . . , y(n).

Definition 2.24. Let I = {K1,K2} be a classifying set of rational differential invariants for a
group G of dimension r. Let ord(K1) = k and let W1 ⊂ Jk be a maximal domain of separation
for {K1} and W2 ⊂ Jr be a maximal domain of separation for I. Then, for X ⊂ C2, a point
p ∈ X is called I-regular if

(a) jrX(p) is defined;

(b) jkX(p) ∈W1 and jrX(p) ∈W2;

(c) ∂K1

∂yk
|jkX(p) 6= 0 if K1 is constant on X, and ∂K2

∂y(r)
|jrX(p) 6= 0 otherwise.

The condition that jrX(p) is defined can equivalently be stated as Fy(p) 6= 0 where F (x, y)
is the polynomial whose zero set equals X. Thus singular points of X are not I-regular.

Definition 2.25. A complex algebraic curve X ⊂ C2 is called non-exceptional with respect to
a classifying set of differential invariants, I, if all but a finite number of its points are I-regular.

We will need the following lemma to show that generic curves are non-exceptional.

Lemma 2.26. Let d, n be positive integers satisfying n ≤
(
d+2
2

)
− 2. For a generic point

a = (a0, . . . , an) ∈ Cn+1, there exists an algebraic curveX ⊂ C2 of degree d for which (0, a0) ∈ X
and j

(n)
X (0, a0) = (0, a0, . . . , an).

Proof. Consider the subset Y of P(C[x, y]≤d)× Cn+1 consisting of pairs ([F ], a) for which F is

irreducible of degree d, F (0, a0) = 0, Fy(0, a0) 6= 0, and j
(n)
V (F )(0, a0) = (0, a0, . . . , an). Since

j
(n)
V (F ) is a rational function of both the points of V (F ) and the coefficients of F , as seen in

(6), this is a quasi-projective variety. The conditions F (0, a0) = 0 and ak = y
(k)
X (0, a0) are

algebraically independent, since each involves a new variable, ak. From this, it follows that Y
has codimension n+ 1 in P(C[x, y]≤d)×Cn+1 and thus dimension

(
d+2
2

)
− 1. The projection of

Y onto Cn+1 is therefore a quasi-affine variety. It either contains a nonempty Zariski-open set
or is contained in a hypersurface in Cn+1. We need to rule out the latter when n ≤

(
d+2
2

)
− 2.

Suppose for the sake of contradiction that for some n ≤
(
d+2
2

)
− 2, there is a polynomial

relation P (y, y(1), . . . , y(n)) = 0 that holds for every point on the image of X ∩ V (x) under j
(n)
X

for every irreducible curve X of degree d. Without loss of generality, we can assume that n is
the minimal integer for which this holds and that the polynomial P is irreducible. Then, by
Bertini’s theorem, for generic a0, . . . , an−1 ∈ C, P (a0, . . . , an−1, y

(n)) is a non-zero polynomial
in y(n) with simple roots, around which y(n) is an analytic function of a0, . . . , an−1. Due to
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the uniqueness theorem for the solutions of complex ODEs [25], for any such a0, . . . , an−1 and
an with P (a0, . . . , an) = 0, there exists a unique solution y = f(x) to the differential equation
P (y, y(1), . . . , y(n)) = 0 satisfying the initial conditions x = 0, f(0) = a0, and f (k)(0) = ak for
k = 1, . . . , n.

If there exists an irreducible polynomial F ∈ C[x, y] of degree d for which F (x, f(x)) is
identically zero, then F is unique up to scaling. This means that every point in the projection
of Y onto Cn+1 has at most one preimage. Since the projection has dimension ≤ n, this implies
that the dimension of Y is also at most n, which contradicts the calculation that dim(Y) equals(
d+2
2

)
− 1 > n. Therefore the projection of Y onto Cn+1 must be Zariski-dense.

Theorem 2.27. Let I be a G-classifying set of rational differential invariants for the action
of a group G. Then for d ∈ Z+ with

(
d+2
2

)
− 2 ≥ dimG, a generic plane curve of degree d is

non-exceptional with respect to I.

Proof. For an irreducible curve X, the I-regular points form a Zariski-open subset of X, as
seen in Definition 2.24. Either this is all but finitely-many points of X, in which case X is
non-exceptional, or empty, meaning that no points of X are I-regular. In particular, if all
intersection points of X with V (x) are I-regular, then X is non-exceptional.

Indeed, the condition that a point p is I-regular on X is equivalent to the jet j
(r)
X (p) belonging

to a Zariski-open subset U of Jr ∼= Cr+2, where r = dim(G). Consider the quasi-projective
variety Y defined in the proof of Lemma 2.26 with n = r. Its intersection with P(C[x, y]≤d)×U
is an open subset of Y, which is nonempty by Lemma 2.26.

Furthermore, the projection of Y onto P(C[x, y]≤d) is dominant (i.e. the image in Zariski-
dense). Specifically, consider the open dense set of irreducible polynomials F ∈ C[x, y]≤d
for which F (0, y) has a simple root y = a0 at which Fy(0, a0) is nonzero. For any such F ,

([F ], a) belongs to Y, where j
(r)
V (F )(0, a0) = (0, a). It follows that the projection of the set

Y ∩ (P(C[x, y]≤d)× U) onto P(C[x, y]≤d) is also dominant. Therefore, for a generic plane curve
of degree d, the points X ∩ V (x) are I-regular in X, and thus X is non-exceptional.

We will also make use of the G-invariance of the set of non-exceptional curves.

Lemma 2.28. If X is non-exceptional then so is Y = g ·X for all g ∈ G.

Proof. We check that if conditions (a) – (c) in Definition 2.24 are satisfied by all but finitely
many points on X, then the same is true for Y .

(a) Assume that there are at most finitely many points p ∈ X, such that jrX(p) is undefined
(equivalently Fy(p) = 0, where F is a defining polynomial of X). This is, in fact, true for any
irreducible curve of degree greater than 1. Since the action of G preserves these properties,
there are at most finitely many points p ∈ Y , such that jrY (p) is undefined.

(b) Assume that there are at most finitely many points p ∈ X, such that jkX(p) /∈ W1

and jrX(p) /∈ W2. From the G-invariance of W1 and W2 and (7), combined with the fact that
Y \(g ·X) is a finite set, it follows that there are at most finitely many points p ∈ Y such that
jkY (p) /∈W1 and jrY (p) /∈W2.

(c) We start by showing that if K is a differential invariant of order n, then the set of points
p(n) ∈ Jn where ∂K

∂y(n) (p(n)) 6= 0 is G-invariant. Since K is invariant, K(p(n)) = K(g · p(n)),
whenever both sides are defined, and the differentiation with respect y(n)using the chain rule
yields:

∂K

∂y(n)

(
p(n)

)
=
∂K

∂x

(
g · p(n)

) ∂x

∂y(n)

(
p(n)

)
+
∂K

∂y

(
g · p(n)

) ∂y

∂y(n)

(
p(n)

)
+ . . .+

∂K

∂y(n)

(
g · p(n)

) ∂y(n)
∂y(n)

(
p(n)

)
=

∂K

∂y(n)

(
g · p(n)

) ∂y(n)
∂y(n)

(
p(n)

)
.
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The last equality follows from the fact that the functions x, y, and y(i), given in Definition 2.13,
do not depend on y(n) for i = 1, . . . , n − 1. Thus if ∂K

∂y(n) (p(n)) 6= 0, so does every point in the

orbit of p(n).
Condition (c) states that, if K1 is constant on X, then for all but finitely many p ∈ X,

∂K1

∂yk
|jkX(p) 6= 0, otherwise for all but finitely many p ∈ X, ∂K2

∂yr |jrX(p) 6= 0, where k = ord(K1) and

r = ord(K2). Due to (7), and G-invariance property showed above, the same is true for Y .

2.5 Differential signatures of algebraic curves

In this section, we define the signature map and signature curve and show that signatures
characterize the equivalence classes of generic algebraic curves. Throughout this section, we
assume G is an algebraic group with dim(G) = r and that {K1,K2} are a classifying set of
differential invariants with ord(K1) = k < r = ord(K2), as described above.

Definition 2.29. Let I = {K1,K2} be a classifying set of rational differential invariants with
respect to the action G, and let X ⊂ C2 be a non-exceptional curve. Then the rational map
σX : X 99K C2 with coordinates (K1|X ,K2|X) is called the signature map. The image of
SX = σX(X) is called the signature of X.

Note that sinceX is irreducible, then the closure SX is also an irreducible variety of dimension
0 or 1. If dim(SX) = 0, then it is a single point and, therefore, σX is a constant map. If
dim(SX) = 1, then it is an irreducible planar curve, which we call the signature curve of X. An
irreducible polynomial vanishing on SX is called a signature polynomial and is denoted by SX
and it is unique up to scaling by a non-zero constant.

Proposition 2.30. Assume that X,Y ⊂ C2 are G-equivalent and non-exceptional with respect
to a classifying set of rational differential invariants I = {K1,K2}. Then SX = SY .

Proof. If X and Y are G-equivalent, then there exists g ∈ G such that Y = g ·X. Due to
the fundamental property of prolongation (7), we have jrY (q) = g · jrX(p), for any p ∈ X where
q = g · p is defined. Since K1 and K2 are invariant, we have

K1(jrX(p)) = K1(jrY (q)) and K2(jrX(p)) = K2(jrY (q)).

This implies σX(p) = σY (q). Since g ·p is defined for all but finitely many points in X and g ·X
is dense in Y , this implies that SX = SY .

We will gradually work towards proving the converse of the above statement, and thus
showing that the signature polynomials characterize the equivalence classes of curves. We will
also show the relationship between the cardinality of the preimage of a generic point under a
signature map and the cardinality of the symmetry group. For both of these results we need
several lemmas.

Lemma 2.31. Let I = {K1,K2} be a classifying set of rational differential invariants with
respect to the action G, and let X,Z ⊂ C2 be two non-exceptional curves, such that the
restrictions of K1 to both curves equal to the same constant function:

K1|X = K1|Z = c.

If there exists p ∈ X ∩ Z such that

1. jkX(p) = jkZ(p), where k = ord(K1),

2. p is not exceptional for X,

then X = Z.
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Proof. Since p is non-singular for both X and Z, in some neighborhood of p, curves X and
Z coincide with the graphs of analytic functions y = f(x) and y = g(x), respectively. Both
y = f(x) and y = g(x) are solutions of the differential equation

K1(x, y, y(1), . . . , y(k)) = c, (9)

with the same initial condition described by the point jkX(p) = jkZ(p). Since p is non-exceptional,
∂K1

∂yk
|jkX(p) 6= 0, and so using the implicit function theorem, (9) can be rewritten as y(k) =

H(x, y, y(1), . . . , y(k−1)) in a neighborhood of jkX(p), where H is an analytic function of the jet
coordinates. We can now invoke the uniqueness theorem for the solutions of complex ODEs [25]
to conclude that f(x) = g(x). Therefore X and Z coincide on a positive dimensional subset.
Since they are irreducible X = Z.

Lemma 2.32. Let I = {K1,K2} be a classifying set of rational differential invariants with
respect to the action G, and let X,Z ⊂ C2 be two non-exceptional curves with the same
signature curves, SX = SZ . If there exists p ∈ X ∩ Z such that

1. jrX(p) = jrZ(p),

2. p is not exceptional for X

3. if dimSX > 0 and SX(κ1, κ2) is a signature polynomial, then ∂S
∂κ2
|σX(p) 6= 0,

then X = Z.

Proof. If σX (and, therefore, σZ) is a constant map, then there exists c ∈ C, such that K1|X = c
and K1|Z = c. Then we are in the situation of Lemma 2.31 and the conclusion follows. Other-
wise, σX and, σZ define the same signature polynomial SX(κ1, κ2) = SZ(κ1, κ2) := S(κ1, κ2).
Since p is non-singular for both X and Z, in some neighborhood of p, curves X and Z coincide
with the graphs of analytic functions y = f(x) and y = g(x), respectively. Both y = f(x) and
y = g(x) are solutions of the differential equation

S
(
K1(x, y, y(1), . . . , y(k)),K2(x, y, y(1), . . . , y(r))

)
= 0 (10)

with the same initial condition described by the point jrX(p) = jrZ(p). By assumption, ∂S
∂κ2
|σX(p)

and ∂K2

∂y(r)
|jrX(p) are both nonzero. Then using the implicit function theorem, (10) can be rewritten

as y(r) = H(x, y, y(1), . . . , y(r−1)) in a neighborhood of jrX(p), where H is an analytic function
of the jet coordinates. As in the previous lemma, we invoke the uniqueness theorem for the
solutions of ODEs, to conclude X = Z.

Lemma 2.33. Let I = {K1,K2} be a classifying set of rational differential invariants with
respect to the action G, and let X be a non-exceptional curve. Let p, q ∈ X be two non-
exceptional points, such that

1. σX(p) = σX(q)

2. if dimSX > 0 and SX(κ1, κ2) is the signature polynomial, then ∂S
∂κ2
|σX(p) 6= 0.

Then there exists g ∈ Sym(X,G), such that q = gp.

Proof. Since, σX(p) = σX(q) we have

K1(jrX(p)) = K1(jrX(q)) and K2(jrX(p)) = K2(jrX(q)).

Since I is a separating set, and p and q are non-exceptional, there exists g ∈ G, such that
jrX(p) = g ·jrX(q). Consider a curve Z = g ·X. By Lemma 2.28, Z is non-exceptional. Condition
SX = SZ holds due to Proposition 2.30. Due to the fundamental property of prolongation (7)
we have jrZ(p) = g · jrX(q). This implies p = g ·q ∈ Z and jrZ(p) = jrX(p). We verified that X and
Z satisfy all conditions of Lemma 2.32. Then X = Z = g ·X and, therefore g ∈ Sym(X,G).
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Lemma 2.34. Suppose that X is a non-exceptional curve with respect to a classifying set of
rational differential invariants I = {K1,K2}. Then the following are equivalent:

(1) K1|X is a constant function on X,

(2) H = Sym(X,G) is infinite,

(3) the signature SX consists of a single point.

Proof. (1) ⇒ (2) Assume K1|X = c is a constant function on X. Fix a non-exceptional point
p. We will show that any non-exceptional point on X belongs to the orbit Hp. Since non-
exceptional points are dense in X, the conclusion would follow from Proposition 2.10.

Let q be a non-exceptional point on X. Then K1(jkX(p)) = K1(jkX(q)) = c where k equals
ord(K1). Since K1 is separating on Jk, there exists g ∈ G, such that jkX(p) = g · jkX(q).
Consider a curve Z = g ·X. By Lemma 2.28, Z is non-exceptional. Condition SX = SZ holds
due to Proposition 2.30. Therefore K1|Z is the same constant function as K1|X . Due to the
fundamental property of prolongation (7) we have jrZ(p) = g · jrX(q). This implies p = g · q ∈ Z
and jrZ(p) = jrX(p). We verified that X and Z satisfy all conditions of Lemma 2.31. Then
X = Z = g ·X and, therefore g ∈ H and so q ∈ Hp.

(2) ⇒ (3) Let p be a non-exceptional point. For any q ∈ Hp, there exists g ∈ H, such that
p = g · q and X = g ·X. If q is non-exceptional, it follows from (7) that jkX(p) = g · jkX(q). Since
K1 is a differential invariant, K1|X(g · jkX(q)) = K1|X(jkX(q)). Then

K1|X(jkX(p)) = K1|X(jkX(q)) for all non-exceptional q ∈ Hp.

Since H is infinite, from Proposition 2.10, it follows the orbit Hp is dense in X. The set of
non-exceptional points is also dense in X. Thus K1|X is a constant rational function on a dense
subset of X and, therefore, is constant on X.

(3)⇒ (1) Obvious from the definition of SX .

We are now ready to prove the converse of the Proposition 2.30.

Proposition 2.35. If algebraic curves X,Y ⊂ C2 are non-exceptional with respect to a classi-
fying set of rational differential invariants I = {K1,K2} under an action of G on C2 and their
signature curves are equal, SX = SY , then X and Y are G-equivalent.

Proof. Then S := SX = SY is an irreducible curve, and let S(κ1, κ2) be its defining polynomial.
If ∂S

∂κ2
were identically zero, then K1|X would be constant and Lemma 2.34 would imply that S

is a single point. Therefore ∂S
∂κ2
|s is nonzero for all but finitely many points s ∈ S. Moreover,

since X and Y are non-exceptional, for all but finitely many such points s ∈ S, none of the
points in the preimage σ−1X (s) are exceptional in X and none of the points in the preimage
σ−1Y (s) are exceptional in Y . By Chevalley’s Theorem (see e.g. [17, Thm. 3.16]), the images
SX and SY are constructible sets and thus all but at most finitely many points of their Zariski
closure S. We fix a point s ∈ S with these desired properties, a point p ∈ σ−1X (s) and a point
q ∈ σ−1Y (s). Otherwise SX (and, therefore, SY ) is a single point, and we let p and q be any
non-exceptional points on X and Y , respectively.

In both cases, σX(p) = σY (q), meaning that

K1(jrX(p)) = K1(jrY (q)) and K2(jrX(p)) = K2(jrY (q)).

Since I is separating and p and q are non-exceptional, there exists a group element g ∈ G for
which jrX(p) equals g · jrY (q).

Consider a curve Z = g · Y . By Lemma 2.28, Z is non-exceptional. Condition SX = SZ
holds due to Proposition 2.30. Due to the fundamental property of prolongation (7), we have
jrZ(p) = g · jrX(q). Therefore, p = g · q ∈ Z and jrZ(p) = jrX(p). We verified that X and Z satisfy
all conditions of Lemma 2.32. Then X = Z = g · Y .

Combining Lemma 2.34 with Propositions 2.30 and 2.35 we get the following corollary.
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Corollary 2.36. If X and Y have a finite symmetry group, then X and Y are G-equivalent if
and only if their signature polynomials SX , SY are equal up to a non-zero constant factor.

We are finally ready to state the first main result of the paper about the existence of a pair
of classifying invariants characterizing the equivalence classes of generic irreducible algebraic
curves:

Theorem 2.37. Let r-dimensional group G ⊂ PGL(3) act on C2. Then there exists a pair of
differential invariants I = {K1,K2} of differential order at most r, such that for all integers d,
where

(
d+2
2

)
− 2 ≥ r, there exists a Zariski open subset Pd ⊂ C[x, y]≤d such that any curves

X,Y whose defining polynomials lie in Pd satisfy:

X ∼=
G
Y ⇐⇒ SX = SY , (11)

where SX and SY are signatures of X and Y based on invariants I, as given by Definition 2.29.

Proof. From Theorem 2.20 we know that there exists a classifying set I of rational differential
invariants of order at most r. By Propositions 2.30 and 2.35, the statement (11) is valid for all
I-non-exceptional curves. By Theorem 2.27, for any d, such that

(
d+2
2

)
− 2 ≥ r, there exists a

Zariski open subset Pd ⊂ C[x, y]≤d, such that all curves whose defining polynomials lie in Pd
are non-exceptional.

The next theorem establishes an important relationship between the size of the symmetry
group of an algebraic curve and some properties of its signature map. This result plays a crucial
role in our degree formula derived in the next sections.

Theorem 2.38. Suppose that X is a non-exceptional curve with respect to a classifying set of
rational differential invariants I = {K1,K2} for action G. Then |Sym(X,G)| = n if and only if
the map σX is generically n : 1.

Proof. (⇒) We need to show that there exists a dense subset S0 ⊂ SX , such that |σ−1X (s)| = n
for all s ∈ S0. Denote H := Sym(X,G). Since H is finite, from Lemma 2.34, it follows that
SX is an irreducible curve and its defining polynomial S(κ1, κ2) depends non-trivially on κ2.

Therefore the set S1 =
{
s ∈ SX

∣∣∣ ∂S
∂κ2

∣∣∣
s
6= 0
}

is dense in SX . Due to Proposition 2.11 for all but

maybe finitely many points p ∈ X, the orbit Hp consists of exactly n distinct points. Moreover,
since X has only finitely many exceptional points, the set of points

X0 = {p ∈ X |Hp consists of exactly n non-exceptional points}

is dense in X. Then its image S2 = σX(X0) is dense in SX . It follows that the intersection
S0 := S1 ∩ S2 is dense in SX . For any s ∈ S0, let p ∈ σ−1X (s). By Lemma 2.33, σ−1X (s) = Hp
and so |σ−1X (s)| = n.

(⇐) Suppose that the map σX is generically n : 1. Then, by Lemma 2.34, Sym(X,G) is
finite. By the forward implication, n = Sym(X,G).

Example 2.39. Consider the special Euclidean group SE(2) of complex translations and rota-
tions of C2. The set ISE = {K1,K2}, where K1 = κ2, the square of Euclidean curvature, and
K2 = κs its derivative with respect to Euclidean arc-length, explicitly given in (20) is classifying.
Indeed, one can check directly that ISE separates orbits on the SE-invariant open subset

W2 =

{(
x, y, y(1), y(2), y(3)

)
|
(
y(1)

)2
+ 1 6= 0

}
and K1 separates orbits on an open set W1 = π(W2) ⊂ J2 under the standard projection
π : J3 → J2. Thus the conditions of Definition (2.19) are satisfied. According to Theorem 2.20
we conclude that

C(J3)SE(2) = C(K1,K2) and C(J2)SE(2) = C(K1).
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By Theorem 2.27, a generic curve of degree ≥ 2 is non-exceptional with respect to ISE .
In fact, a careful consideration of the conditions in Definition 2.24 shows that there are no
irreducible curves of degree greater than one that are ISE -exceptional.

We will now compute the signature polynomial for the ellipse X defined by the zero set of

F (x, y) = x2 + y2 + xy − 1.

The signature map σX = (K1|X ,K2|X) : X → C2 is explicitly defined by

K1|X(x, y) = 36
(x2 + xy + y2)2

(5x2 + 8xy + 5y2)3
and K2|X(x, y) = 54

(y4 − x4 + xy3 − x3y)

(5x2 + xy + y2)3
.

Under the SE(2)-action the ellipse has a symmetry group of cardinality two generated by
the 180◦-degree rotation. We observe that in agreement with Theorem 2.38, σX is generically
a 2: 1 map on X. One can use a Gröbner basis elimination algorithm to compute a signature
polynomial of X, that is an irreducible polynomial vanishing on the image of rational map σX :

SX(κ1, κ2) = 2916κ61 + 972κ41κ
2
2 + 108κ21κ

4
2 + 4κ62 − 13608κ51 + 1944κ31κ

2
2 + 2187κ41.

Any curve SE(2)-equivalent to X will have the same signature polynomial. For most degree
three algebraic curves, it takes much longer to compute their signature polynomials under SE(2)
actions, and for higher degree curves it is rarely possible in practice. For this reason, it is of
interest to determine properties, such as the degree, of signature polynomials for curves without
their explicit computation.

3 The degree of the signature of algebraic curves

This section is devoted to the degree formula for the signature polynomial. In Section 3.1
we give the necessary algebraic geometry background. In Section 3.2 we give a formula for
the degree of the signature polynomial for a non-exceptional curve with finite symmetry group.
(Theorem 3.8) and some easily computable bounds for this degree (Corollary 3.9).

3.1 Multiplicity, plane curves, and rational maps

Here we review and establish some fundamental properties of plane curves, their intersections,
and their images under rational maps. See, for example, [12] or [38] for more background.

Definition 3.1. Given a point p ∈ C2, the local ring of C2 at p, denoted Op, is the ring of
rational functions in C(x, y) that are defined at p. A polynomial ideal I ⊂ C[x, y] defines an
ideal I · Op of the local ring, and the multiplicity of I at p is defined to be the dimension (as a
C-vector space) of the quotient:

mp(I) = dimC (Op/I · Op)

In particular, mp(I) is positive if and only if p belongs to the variety V (I). For a homogeneous
ideal J ⊂ C[x0, x1, x2] and a point p = [p0 : p1 : p2] ∈ CP2 with pi 6= 0, we define the multiplicity
of J at p, denoted mp(J), to be mp(I), where p ∈ C2 and I are obtained from p and J by
restricting pi and xi to equal 1, respectively. On can check that this definition is independent
of the choice of non-zero coordinate pi.

In an important special case when the ideal I is generated by two polynomials, I = 〈F,G〉,
we call mp(I) = mp(F,G) the intersection multiplicity of F,G at p. In this case, mp(F,G) = 1
if and only if p ∈ V (F,G) and ∇pF and ∇pG are linearly independent.

An equivalent definition of multiplicity uses power series. After a change of coordinates, we
can take p = (0, 0). Then mp(I) equals the dimension as a C-vector space of the quotient of the
power series ring C[[x, y]] by the image of I in this ring:

mp(I) = dimC (C[[x, y]]/I · C[[x, y]]) .
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To precisely compute intersection multiplicities at a non-singular point p, one can parametrize
a neighborhood of p in V (F ) using Laurent series, C((t)). The ring of Laurent series consists
of formal sums

∑∞
j=k ajt

j for some integer k ∈ Z. The series we consider will converge for
t ∈ C∗ of sufficiently small modulus. We define the valuation, denoted val(a), of a Laurent
series a =

∑∞
j=k ajt

j to be the smallest power of t with nonzero coefficient. Since p is non-

singular, ∂F
∂x (p) 6= 0 or ∂F

∂y (p) 6= 0. Assume ∂F
∂y (p) 6= 0, then in a neighborhood of p, V (F ) can

be parametrized by α(t) = (p1+t, a(t)), otherwise it can be parametrized by α(t) = (a(t), p2+t),
where in both cases a(t) is some Maclaurin series. Then according to [11, §8.4]:

mp(F,G) = val(G(α)). (12)

We now establish some basic facts and notation about rational maps on CP2. A vector
φ = [φ0,φ1,φ2], whose entries φ0,φ1,φ2 ∈ C[x0, x1, x2] are homogeneous polynomials of the
same degree d, defines a rational map φ : CP2 99K CP2 (denoted by the same symbol). For any
non-zero homogeneous polynomial h ∈ C[x0, x1, x2], a polynomial vector hφ = [hφ0, hφ1, hφ2]
defines an equivalent rational map, i.e. the values of the maps φ and hφ are equal, whenever
both are defined. In what follows we do not assume that gcd(φ0,φ1,φ2) = 1 and the following
definition clearly depends on the choice of a polynomial vector.

Definition 3.2. A vector φ = [φ0,φ1,φ2] whose entries φ0,φ1,φ2 ∈ C[x0, x1, x2] are homo-
geneous polynomials of the same degree d, is called a homogeneous vector of degree d and the
notation deg(φ) = d is used. The base locus of φ is the set of points at which all its components
are zero

Bl(φ) = V (φ0,φ1,φ2).

We say that φ is defined on an algebraic curve X if X is not contained in Bl(φ). We say that
φ is non-constant on an algebraic curve X, if the corresponding rational map φ : CP2 99K CP2

is non-constant when restricted to X.

Proposition 3.3. Let F ∈ C[x0, x1, x2] be irreducible and homogeneous, and let φ = [φ0,φ1,φ2]
be a homogeneous vector that is both defined and non-constant on V (F). For a = [a0, a1, a2] ∈
CP2, consider an equivalence class (up to scaling by a constant) of a linear form La = a0y0 +
a1y1 + a2y2 ∈ C[y0, y1, y2] and its pullback φ∗La = a0φ0 + a1φ1 + a2φ2 ∈ C[x0, x1, x2]. Then
for all a ∈ CP2:

(a) V (φ∗La) = φ−1(V (La)) ∪Bl(φ).

In addition, if a ∈ CP2 is generic:

(b) F and φ∗La have no common factors,

(c) if p ∈ V (F) ∩ V (φ∗La) with p 6∈ Bl(φ), then mp(F,φ∗La) = 1.

Proof. (a) If p 6∈ Bl(φ), then φ is defined at p. Then φ(p) belongs to V (La) if and only if p
belongs to V (φ∗La). If p belongs to Bl(φ), then it clearly also belongs to V (φ∗La).

(b) Since F is irreducible, φ∗La and F have a common factor if and only if F divides φ∗La,
if and only if φ∗La is identically zero on V (F). Consider a map Ψ: CP2 × V (F) → C, defined
by Ψ(a,p) = a0φ0(p) + a1φ1(p) + a2φ2(p). Since φ is defined on V (F), there exists â ∈ CP2

such that â0φ0 + â1φ1 + â2φ2 is not identically zero on V (F) (otherwise with an appropriate
choice of a’s we can show that φj ≡ 0 on V (F) for j = 0, 1, 2). Then Ψ(â, p̂) 6= 0 for some
p̂ ∈ V (F). By continuity, Ψ(a,p) 6= 0 in some open neighborhood of (â, p̂) in Ψ: CP2. Thus
φ∗La is non-zero l on V (F) for all a in some open subset of CP2.

(c) It is sufficient to show that ∇F|p and ∇xφ∗La|(p,a) are linearly dependent, for a generic
a ∈ C3 and p ∈ V (F) such that p 6∈ Bl(φ), where, for a moment, we consider V (F), Bl(φ) to
be varieties in C3. Consider

Y =
{

(p,a) ∈ C6 |p ∈ V (F,φ∗La), p 6∈ Bl(φ) ∪ V (F)sing
}
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where V (F)sing denotes the variety V ( ∂F∂x0
, ∂F∂x1

, ∂F∂x2
). Let π : Y → C3 denote the regular map

defined by projection π(p,a) = a. Note that restricting to p 6∈ Bl(φ) ∪ V (F)sing makes Y
nonsingular.

Bertini’s generic smoothness theorem [38, Ch. 2, Sec. 6, Thm 2.27]8 then guarantees the
existences of a nonempty Zariski-open set U ⊂ C3 so that for all a ∈ U and all preimages
(p,a) ∈ π−1(a), the induced map on tangent spaces d(p,a)π : TY,(p,a) → TC3,a is surjective.

For (p,a) ∈ Y,

TY,(p,a) = ker

[
∇F|p 0 0 0

∇xφ∗La|(p,a) φ0(p) φ1(p) φ2(p)

]
.

The map d(p,a) maps (u0, u1, u2, w0, w1, w2)T ∈ TY,(p,a) to (w0, w1, w2)T ∈ TC3,a = C3. If
∇F|p and ∇xφ∗La|(p,a) are linearly dependent as vectors in C3, then (u0, u1, u2, w0, w1, w2)T

belongs to TY,(p,a) if and only if (u0, u1, u3)T ∈ ker∇F|p and a0w0 + a1w1 + a2w2 = 0. The
latter gives a non-trivial linear condition on the vectors in the image of d(p,a)π and, therefore,
if ∇F|p and ∇xφ∗La|(p,a) are linearly dependent, d(p,a)π is not surjective.

Combining the results of the previous two paragraphs, we conclude that for a ∈ U and
p ∈ V (F) ∩ V (φ∗La), such that p 6∈ Bl(φ) ∪ V (F)sing, ∇F|p and ∇xφ∗La|(p,a) are linearly
independent. Observing that for a generic a, V (φ∗La) ∩ V (F)sing = ∅, we finish the proof.

Lemma 3.4. Let F ∈ C[x0, x1, x2] be homogeneous and irreducible, and let φ be a homogeneous
vector. For p ∈ V (F) ∩Bl(φ), the minimum of mp(F, a0φ0 + a1φ1 + a2φ2) over all a ∈ CP2 is
achieved generically.

Proof. If p is a non-singular point of V (F), then for any j ∈ Z≥0 the collection of G for which
mp(F,G) ≥ j is linear subspace of C[x0, x1, x2]D, where D = deg(G) (This claim easily follows
from (12). See also [12, Prob. 3.20]). It follows that mp(F, a0φ0 + a1φ1 + a2φ2) ≥ j is a linear
condition on a ∈ CP2.

Now suppose p is a singular point of X = V (F) and consider a non-singular model Y of this
curve with birational morphism f : Y → X (see [12, Ch. 7]). This induces an embedding of the
fields of rational functions f∗ : C(X) ↪→ C(Y). Choose some linear form ` ∈ C[x0, x1, x2]1 with
`(p) 6= 0. Let G′ = G/`deg(G) in C(X). Using [12, Ch. 7, Prop. 2]:

mp(F,G) =
∑

q∈f−1(p)

mq(Y,G′),

where mq(Y,G′) is the order of vanishing of G′ at the smooth point q ∈ Y.
This reduces to the non-singular case.

The minimum multiplicity in Lemma 3.4 will reappear frequently and we denote it by

multp(F,φ) = min
a∈CP2

mp(F, a0φ0 + a1φ1 + a2φ2). (13)

The following bounds can be useful for computing this multiplicity:

Proposition 3.5. Let F ∈ C[x0, x1, x2] be an irreducible homogeneous polynomial and φ be a
homogeneous vector defined on V (F). For p ∈ Bl(φ) and for any a = [a0 : a1 : a2] ∈ CP2,

mp(〈F,φ0,φ1,φ2〉) ≤ multp(F,φ) ≤ mp(F, a0φ0 + a1φ1 + a2φ2),

where the right inequality is tight for generic a ∈ CP2.

8 Bertini’s generic smoothness theorem is an algebraic analogue of Sard’s theorem in differential geometry.
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Proof. For the first inequality, note that for any a ∈ CP2, φ∗La = a0φ0 + a1φ1 + a2φ2 belongs
to the ideal 〈φ0,φ1,φ2〉. It follows immediately from Definition 3.1 that for any pair of nested
homogeneous ideals I ⊂ J ⊂ C[x0, x1, x2] and any point p ∈ CP2, we have that mp(I) ≥ mp(J).
Therefore, for every point p ∈ CP2, mp(F,φ∗L) ≥ mp(〈F,φ0,φ1,φ2〉). The inequality then
follows from a generic choice of a ∈ CP2 and equation (14).

The second inequality follows directly from the definition of multp(F,φ), and tightness
follows from Lemma 3.4.

Theorem 3.6. Let F ∈ C[x0, x1, x2] be irreducible and homogeneous and φ be a homogeneous
vector, such that the rational map φ : CP2 99K CP2 is defined and generically n : 1 on V (F).
Let P ∈ C[y0, y1, y2] denote the minimal polynomial vanishing on the image φ(V (F)). Then

n · deg(P) = deg(F) · deg(φ)−
∑

p∈Bl(φ)

multp(F,φ) (14)

Proof. For a linear form La = a0y0 + a1y1 + a2y2 ∈ C[y0, y1, y2], by Bezout’s Theorem ([12,
§5.3]) and Proposition 3.3(a) give that

deg(F) · deg(φ∗La) =
∑
p

mp(F,φ∗La) =
∑

p∈φ−1(V (La))

mp(F,φ∗La) +
∑

p∈Bl(φ)

mp(F,φ∗La).

By Lemma 3.4, mp(F,φ∗La) = multp(F,φ) for a generic a ∈ CP2 and every p. Also, for
a generic a, φ∗La is nonzero and its degree equals deg(φ). By Proposition 3.3(c), for each
point p ∈ V (F)∩φ−1(V (La)), the intersection multiplicity mp(F,φ∗La) equals one. Since φ is
generically n : 1, there are at most finitely many points p ∈ V (F) for which |φ−1(φ(p))∩V (F)| 6=
n, implying that foe a generic a, the line V (La) does not contain the image φ(p) of any of these
points. Therefore, for every point p ∈ φ−1(La) ∩ V (F), there are exactly n points of V (F) in
the set φ−1(φ(p)). Putting this all together gives that∑

p∈φ−1(V (La))

mp(F,φ∗La) = |V (F) ∩ φ−1(V (La))| = n · |φ(V (F)) ∩ V (La)|.

By Chevalley’s Theorem (see e.g. [17, Thm. 3.16]), the image φ(V (F)) is all but finitely many
points of its Zariski closure V (P). For a generic a, every point in V (La) ∩ V (P) belongs to
V (La) ∩ φ(V (F)) and that the number of these points equals to deg(P). This proves equality
in (14).

3.2 The degree of the signature polynomial

Definition 3.7. Let X ⊂ C2 be an algebraic plane curve and let ψ : X 99K C2 be a rational
map. We say that a rational map φ : CP2 99K CP2 is a projective extension of ψ if

ψ(p) =

(
φ1(1, p)

φ0(1, p)
,
φ2(1, p)

φ0(1, p)

)
for a Zariski-dense set of points p ∈ X at which ψ is defined and φ0(1, p) 6= 0.

Recall from Section 2.5, that a classifying set of rational differential invariants of the action
of a group G on C2 define a signature map σX on a non-exceptional, irreducible curve X ⊂ C2.
As in Definition 2.29, we fix a classifying set of rational differential invariants I with respect
to the action G and suppose that the signature map σX : X 99K C2 is non-constant on X. We
will consider a projective extension σ : CP2 99K CP2. Note that while we will drop X from the
notation, the map σ still heavily depends on the original curve X.
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Theorem 3.8. Let X ⊂ C2 be a non-exceptional algebraic curve defined by an irreducible
polynomial F , and let n = |Sym(X,G)|. Then for any homogeneous vector σ, defining a
projective extension σ : CP2 99K CP2 of the signature map σX , the degree of the signature
polynomial SX satisfies

n · deg(SX) = deg(F) · deg(σ)−
∑

p∈Bl(σ)

multp(F,σ). (15)

Here F ∈ C[x0, x1, x2] denotes the homogenization of F .

Proof. From Theorem 2.38 we know that σX : X 99K C2 is generically n : 1 map. Then σ
is defined and generically n : 1 on V (F), which is the Zariski-closure of X in CP2. Since F ,
and thus F, are irreducible, the minimal polynomial P vanishing on the image σ(V (F)) is also
irreducible. Its dehomogenezation is exactly the signature polynomial SX . The result then
follows from Theorem 3.6.

At first glance the last term in the degree formula (15) appears to be difficult to obtain as we
recall from (13), multp(F,φ) is defined as the minimal multiplicity over a ∈ CP2. The following
corollary shows that a generic choice of a ∈ CP2 gives the desired minimal multiplicity, and thus
the degree of the signature can be computed by randomized algorithms. It also establishes the
degree bounds, that can also help in determining the degree of a signature curve.

Corollary 3.9. Under the hypotheses of Theorem 3.8, for any a ∈ CP2, we have

n · deg(SX) ≥ deg(F) · deg(σ)−
∑

p∈Bl(σ)

mp(F, a0σ0 + a1σ1 + a2σ2), (16)

with equality holding for a generic a. In addition:

n · deg(SX) ≤ deg(F) · deg(σ)−
∑

p∈Bl(σ)

mp(F,σ0,σ1,σ2), (17)

Proof. This is a direct corollary of Proposition 3.5 and Theorem 3.8.

In the following example we show how one can use the bounds in Corollary 3.9 to predict
the degree of the signature polynomial and what problems can arise.

Example 3.10. We will illustrate Theorem 3.8 and Corollary 3.9 by studying the signature of
the curve X defined by the zero set of the irreducible cubic

F (x, y) = x2y + y2 + y +
64

121

for the action of the affine group A(2) consisting of linear transformations and translations on
C2. We will use classifying invariants (21) introduced in Section 4.1 below. If we restrict these
invariants to X and cancel common factors, then we can construct a projective extension σ of
σX where deg(σ) = 26.

In Figure 1 in red, on the left, the real affine points of X are shown, while on the right, the
real affine points of its signature curve SX . In blue, on the right, is the line V (La) defined by
a = [5 : 1 : 1] and on the left its pullback V (σ∗La). Under the action of the affine group of
transformations on the plane, X has a symmetry group of size two. Then by Theorem 2.38, the
map σ is generically 2 : 1 on X.

A direct computation of the rightmost terms in (16) and (17) give that∑
p∈Bl(σ)

mp(F, 5σ0 + σ1 + σ2) =
∑

p∈Bl(σ)

mp(F,σ0,σ1,σ2) = 30

This allows us to conclude that
∑

p∈Bl(σ) multp(F,σ) = 30. Thus by Theorem 3.8 the degree

of the signature curve equals deg(SX) = (3 · 26− 30)/2 = 24.
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Figure 1: X and SX intersected with V (σ∗La) and V (La) respectively.

We now show that a line Lã defined by ã = [1 : −6 : 1] does not provide us with ex-
act degree count (the corresponding pictures are given by Figure 2). For this choice of line,∑

p∈Bl(σ)mp(F,σ0 − 6σ1 + σ2) = 32 and Corollary 3.9 tells us only that 23 ≤ deg(SX) ≤ 24

and that ã is non-generic. Indeed, V (Lã) intersects SX at the point [0 : 6 : 1] which is not in
SX , a property that must be avoided by generic lines.

Figure 2: X and SX intersected with with V (σ∗Lã) and V (Lã) respectively.

3.3 Super signature and the generic degree

Let Fc =
∑

0≤i,j≤d

cijx
iyj be a polynomial of degree ≤ d with unspecialized coefficients cij ∈ C,

where 0 ≤ i, j ≤ d and c = (c00 : c10 : . . . : c0d). It is natural to ask if we could compute a
signature polynomial Sc(κ1, κ2) for a curve defined by a polynomial with unspecified coefficients
c and what information it encodes. In theory, such super-signature polynomial can be defined
in the same way as signature polynomials for specific curves were defined in Section 2.5 and
computed by elimination. In practice, the explicit computation seemed to only be feasible for
small groups and small d, such as, for instance, quadratics under the special Euclidean action.
We also know that specialization does not always commute with elimination and, therefore, we
can not expect that substitution of a specific value c = c0 into the super-signature polynomial
will produce a signature of an algebraic curve Xc0

defined by Fc0
even if Xc0

happens to be an
irreducible non-exceptional curve. However, we can show that this is the case generically.
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To give a rigorous definition of the super-signature polynomial, we view

F (c, x, y) =
∑

0≤i,j≤d

cijx
iyj

as a polynomial of degree d + 1 in C[c, x, y], while Fc ∈ C[x, y]≤d denotes its specialization.

Then Y = V (F ) is a variety in CN × C2, where N =

(
d+ 2

2

)
.

Y = {(c, x, y) | c ∈ CN , (x, y) ∈ V (Fc)}. (18)

Let jn(F ) : Y 99K Cn+2 be the rational map defined by the rational functions of the partials of
Fc(x, y) as in (6), with c treated as parameters. For a differential function K, let

K|F = K ◦ jn : Y 99K C.

For a classifying pair of invariants I = {K1,K2}, consider the rational map σ : Y 99K CN × C2

defined by
σ(c, x, y) = (c,K1|P (λ, x, y),K2(c, x, y)) . (19)

Denote the minimal polynomial vanishing on the image σ(Y) as S(c, κ1, κ2) ∈ C[c, κ1, κ2] and
let S = V (S) ⊂ CN × C2 be its variety. We call S a super-signature polynomial and S the
super-signature variety.

The following theorem asserts that for a generic curve X = V (F ) of degree fixed d, one can
substitute the coefficients of F into the super signature polynomial S to obtain SX of X.

Theorem 3.11. Let S(c, κ1, κ2) be the super-signature polynomial for polynomials of a degree
d, sufficiently large so that non-exceptional curves are generic9, under the action of a group G
with a chosen set of classifying invariants I = {K1,K2}. For c ∈ CN , let Xc = V (Fc) be the
corresponding algebraic curve in C2. The set of points{

c ∈ CN |S(c, κ1, κ2) = SXc(κ1, κ2)
}

is Zariski dense in CN , where SXc is a signature polynomial of the curve Xc
10.

Proof. The variety Y defined by (18) is irreducible and so is its image σ(Y) under the rational
map (19). Thus the super-signature polynomial S(c, κ1, κ2) ∈ C[x, y, c], which is a minimal
polynomial vanishing on σ(Y) is irreducible. By Chevalley’s Theorem, the image σ(Y) is an
open dense subset of the super-signature variety S = V (S). Therefore, since dimS = N + 1,
there exists a variety H ⊂ S such that dimH ≤ N and σ(Y) ⊃ S\H.

Consider a regular map π : S→ CN given by π(c, κ1, κ2) = c. From the definition of S, it
is clear that π is surjective. We claim that, for a generic c ∈ CN , the set π−1(c) ∩ H is either
empty or finite. Indeed, if π(H) 6= CN , then for a generic c lying in the Zariski open non-empty
subset CN\π(H), the set π−1(c) ∩ H is empty. If π(H) = CN , then, for a generic choice of c,
the dimension of π−1(c) ∩ H is given by dimH − N = 0 [38, Ch. 1, Sec. 5, Theorem 1.25],
implying that π−1(c) ∩H is either empty or finite.

By our assumption on d, for a generic point c ∈ CN , the curve Xc is irreducible and non-
exceptional (reducible curves have codimension d−1). Let us fix such generic c0 that also satisfies
the generic condition in the previous paragraph. As before, let σXc0

: Xc 99K C2 denote the
signature map of Xc0 , as given in Definition 2.29. Let Y|c=c0 be the slice of the variety Y, S|c=c0

the slice of the super signature variety and S|c=c0
(κ1, κ2) = S(c0, κ1, κ2) be the specialization

of the super-signature polynomial. Then S|c=c0
= {(c0, κ1, κ2) | (κ1, κ2) ⊂ V (S|c=c0

)}. Let

Z0 = {(c0, κ1, κ2) | (κ1, κ2) ⊂ V (SXc0
(κ1, κ2))}.

9Theorem 2.27 guarantees that for a sufficiently large d a generic curve is non-exceptional.
10Recall that for an irreducible curve the signature polynomial is uniquely defined up to multiplication by a non-zero

constant.
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Then
σ(Y|c=c0

) ⊂ Z0 ⊂ S|c=c0
and S|c=c0

\Z0 ⊂
(
π−1(c0) ∩H

)
.

Since π−1(c0)∩H is at most finite by our assumption on c0, it follows that Z0 is dense in S|c=c0

and, therefore, V (SXc0
(κ1, κ2)) = V (S|c=c0

).

An immediate corollary of the above theorem is that the signature polynomials of generic
curves of fixed degree d share the same monomial support in κ1, κ2, and hence have the same
degree. Since signature polynomials (up to overall scaling) characterize equivalence classes of
generic curves of degree d, it follows that if we consider the super-signature polynomial as
an element of C(c)[κ1, κ2] and divide it by one of its non-zero coefficients h(c) ∈ C[c], the
coefficients of the resulting polynomial generate the ring of rational invariants for the action of
G on the space of polynomials C[x, y]≤d.

Since explicit computation of such generating sets is known to be a very challenging problem,
it is not surprising that computing super-signature polynomials is also very challenging. Conics
under SE(2) is one of the few examples where the super-signature polynomial can be computed
explicitely.

Example 3.12. Consider an arbitrary quadratic curve

Fc = c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2.

Let Υ1 = c02+c20, Υ2 = 4c20c02−c211, and Υ3 = 4 c00c01c20−c00c112−c012c20+c01c10c11−c01c102.
These are known polynomial invariants for conics under the SE(2)-action. For the action of
the special Euclidean group SE(2), using the classifying pair of invariants (21) introduced in
Section 4.1, the super-signature for conics computed by an elimination algorithm is:

S(c, κ1, κ2) = 2916 (Υ3)
2
κ61 + 2916

(
Υ3Υ1

(
4 (Υ1)

2 − 3Υ2

))
κ51 + 972 (Υ3)

2
κ41κ

2
2

+ 729 (Υ2)
3
κ41 − 972 (Υ3Υ2Υ1)κ31κ

2
2 + 108 (Υ3)

2
κ21κ

4
2 + 4 (Υ3)

2
κ62.

Dividing through by (Υ3)2 produces three distinct non-constant coefficients listed below with
constant multiples omitted:

A1 =
Υ1

(
4 (Υ1)

2 − 3Υ2

)
Υ3

, A2 =
(Υ2)

3

(Υ3)2
, A3 =

Υ1 Υ2

Υ3
.

This is a generating set for the field of rational invariants for the action of SE(2) on the space

of quadratic polynomials, but it is not a minimal generating set because A1 = 4 (A3)
3

A2
− 3A3.

Although computing a super-signature is very challenging, we can use super-signatures to
establish theoretical results. Below we use Theorem 3.11 to show that the generic degree is the
sharp upper bound for the degrees of signature polynomial. Discussion and further implications
of the above theorem are explored in [35].

Theorem 3.13. Under the assumptions of Theorem 3.11, for a generic curve of degree d,
the degree of its signature polynomial equals to the (κ1, κ2)-degree D of the super-signature
polynomial. Moreover, for any non-exceptional curve X of degree less or equal than d, the
degree of its signature polynomial is less or equal than D.

Proof. The set of values of c0 ∈ CN , such that degS|c=c0
= D is Zariski dense, and so its

intersection with the set of c0 ∈ CN in the proof Theorem 3.11 for which S|c=c0
is the signature

polynomial for the curve Xc0
is also Zariski dense. Thus for a generic curve the degree of its

signature polynomial equals to D.
To show that D is an upper bound, let X be a non-exceptional curve with defining polynomial

F , which might not satisfy the generic conditions of the previous paragraph, and let Y be a
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non-exceptional curve with defining polynomial H, whose coefficients do satisfy these generic
conditions. Let c0 and c1 ∈ CN denote the vectors of coefficients of polynomials F and H,
respectively. By our assumptions, the signature polynomial SY (κ1, κ2) = S(c1, κ1, κ2) and
degSY = D, but these conditions may not hold for X and c0.

Consider a pencil of polynomials Pλ(x, y) = (1 − λ)F (x, y) + λH(x, y) parametrized by
λ ∈ C, let cλ ∈ CN be the corresponding coefficients vector and Xλ ⊂ C2 be the corresponding
algebraic curve. By Theorem 3.11, there is a Zariski dense neighborhood of c1 satisfying the
generic conditions of the first paragraph of the proof, and therefore, SXλ(κ1, κ2) = S(cλ, κ1, κ2)
and the degree of S|c=cλ(κ1, κ2) = S(cλ, κ1, κ2) is D for all but finitely many values of λ, where
SXλ is the signature polynomial of Xλ.

Since F and H are irreducible, one can easily show that P (λ, x, y) = (1−λ)F (x, y)+λH(x, y)
is irreducible as a polynomial in C[λ, x, y]. Let Z = V (P ) ⊂ C × C2 be the irreducible variety
it defines. It is easy to verify that

Z = {(λ, x, y) |λ ∈ C, (x, y) ∈ V (Pλ)}.

Let jn(P ) : Z 99K Cn+2 be the rational map defined by the rational functions of the partials
of Pλ(x, y) as in (6), with λ treated as a parameter. For a differential function K, define
K|P = K ◦ jn : Z 99K C

Similarly to the way we introduced super-signatures in the paragraph preceding Theo-
rem 3.11, for a classifying pair of invariants I = {K1,K2}, we define a rational map τ : Z 99K
C× C2 by

τ(λ, x, y) = (λ,K1|P (λ, x, y),K2|P (λ, x, y)) .

Denote the minimal polynomial vanishing on the image τ(Z) as Q(λ, κ1, κ2) ∈ C[λ, κ1, κ2]. Since
τ(Z) is the image of an irreducible variety under a rational map, Q(λ, κ1, κ2) is irreducible. Since
V (Q) is an irreducible variety of dimension 2 and it is not equal to the (κ1, κ2)-plane in C×C2,
for all λ0 ∈ C, Q|λ=λ0

(κ1, κ2) = Q(λ0, κ1, κ2) is a non zero polynomial in C[κ1, κ2].
For all λ0, such that X|λ0

is non-exceptional, since specialization of coefficients commutes
with differentiation and algebraic operation we have

σXλ0 (Xλ0
) = {(κ1, κ2)|(λ0, κ1, κ2) ∈ τ(Z|λ=λ0

)}.

The irreducible signature polynomial SXλ0 and the specialization Q|λ=λ0
are both zero on this

set. Hence SXλ0 divides the non-zero polynomial Q|λ=λ0
. In particular, for λ0 = 0, we have SX

divides Q|λ=0.
Using the same argument as in the second paragraph of the proof of Theorem 3.11, one can

show that the set {λ ∈ C |SXλ = Q(λ, κ1, κ2)} is dense in C. From the third paragraph of the
current proof, we know that the set of {λ ∈ C | degSXλ = D} is dense in C. Combining these two
facts, we conclude that the (κ1, κ2)-degree of Q(λ, κ1, κ2) equals to D. Then deg(Q|λ=0) ≤ D,
and since SX divides Q|λ=0, we conclude that degSX ≤ D.

4 Classical subgroups of the projective groups

In this section, we apply our general results to the actions of the full projective group and its
affine, special affine, and special Euclidean subgroups. In Section 4.1 we explicitly list classifying
pairs and exceptional curves for each of these groups. In Section 4.2, we derive the degree formula
for signatures of generic curves under these actions as a function of the degree of the original
curve (Theorem 4.13), observe that this dependence is quadratic and show that these generic
degrees are sharp upper bounds. Finally, in Section 4.3, we use Fermat curves to illustrate that
non-generic curves, in particular curves with a large symmetry group, may have much lower
degree than generic curves. For arbitrary degree curves in this family, we give formulas of their
projective and affine signature polynomials and observe that the degrees of these signatures do
not depend on the degrees of the original curves.
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4.1 Classifying invariants

Here we introduce rational classifying pairs of invariants for the actions of PGL(3) and some
of its of well-known subgroups: the affine group A(2), the special affine group SA(2), and the
special Euclidean group SE(2). For the treatment of the full Euclidean and the similarity groups
see [35].

As we discussed at the beginning of Section 2.2, PGL(3) is the group of automorphisms of
CP2 and is isomorphic to the quotient group GL(3)\{λI}, where GL(3) denotes the group of
3 × 3 non-singular matrices, λ ∈ C is non-zero and I is the identity matrix. The actions of
PGL(3) and its subgroups on CP2 and C2 are given by (1) and (2).

Definition 4.1. The affine group, denoted A(2), is the subgroup of PGL(3) that fixes the line
of points [x0 : x1 : x2] with x0 = 0.

The affine group is isomorphic to a subgroup of GL(3) of matrices with the first row equal
to [1, 0, 0]. It is a group of linear transformations and translations on C2.

Definition 4.2. The special affine group, denoted SA(2), is the subgroup of A(2) that preserves
area under the action (2).

The special affine group is isomorphic to a subgroup of GL(3) of matrices with the first row
equal to [1, 0, 0] and the determinant equal to 1.

Definition 4.3. The special Euclidean group, denoted SE(2), is the subgroup of PGL(3) iso-
morphic to the group of matrices1 0 0

a c s
b −s c

 , with c2 + s2 = 1.

The real subset of SE(2) is the well-known special Euclidean group of rotations and trans-
lations on R2.

In [4], the authors used classical non-rational differential invariants to build two lowest order
rational invariants for the projective and affine groups and directly proved that they satisfy the
Definition 2.19 of classifying invariants over R (see Theorem 4 in [4]). Using the same line of
argument, we can show that these invariants are classifying over C, and also produce classifying
pairs for the actions of the special affine and the special Euclidean groups over C. The following
inductive expressions [9, 27] for classical differential invariants are useful for expressing these
pairs in a concise manner. We start with the classical Euclidean curvature and arc-length:

κ =
y(2)

(1 + [y(1)]2)3/2
, ds =

√
1 + [y(1)]2dx (20)

and express the special affine curvature and arc-length in terms of them:

µ =
3κ(κss + 3κ3)− 5κ2s

9κ8/3
, dα = κ1/3ds,

where κs = dκ
ds = 1√

1+[y(1)]2
dκ
dx . In a similar manner, the projective curvature and arc-length are

η =
6µαααµα − 7µ2

αα − 9µ2
αµ

6µ
8/3
α

, dρ = µ1/3
α dα.

Theorem 4.4. The following are pairs of classifying invariants for the actions of SE(2), SA(2),
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Θ1 = u21 + 1 Θ2 = u2 Θ3 = u3Θ1 − 3u1Θ2
2

Θ4 = 3u4u2 − 5u23 Θ5 = 9u5u
2
2 − 45u4u3u2 + 40u33

Θ6 = 9u6u
3
2 − 63u5u3u

2
2 − 45u24u

2
2 + 255u4u

2
3u2 − 160u43

Θ7 = (9/2)
[
18u7u

4
2(Θ5)− 189u26u

6
2 + 126u6u

4
2(9u5u3u2 + 15u24u2 − 25u4u

2
3)

− 189u25u
4
2(4u23 + 15u2u4) + 210u5u3u

2
2(63u24u

2
2 − 60u4u

2
3u2 + 32u43)

−525u4u2(9u34u
3
2 + 15u24u

2
3u

2
2 − 60u4u

4
3u2 + 64u63) + 11200u83

]
Θ8 = (243/2)(u42)

[
2u8u2(Θ5)2 − 8u7(Θ5)(9u6u

3
2 − 36u5u3u

2
2 − 45u24u

2
2

+ 120u4u
2
3u2 − 40u43) + 504u36u

5
2 − 504u26u

3
2(9u5u3u2 + 15u24u2 − 25u4u

2
3)

+ 28u6(432u25u
2
3u

3
2 + 243u25u4u

4
2 − 1800u5u4u

3
3u

2
2 − 240u5u

5
3u2 + 540u5u

2
4u3u

3
2

+ 6600u24u
4
3u2 − 2000u4u

6
3 − 5175u34u

2
3u

2
2 + 1350u44u

3
2)− 2835u45u

4
2

+ 252u35u3u
2
2(9u4u2 − 136u23)− 35840u25u

6
3 − 630u25u4u2(69u24u

2
2 − 160u43 − 153u4u

2
3u2)

+2100u5u
2
4u3(72u43 + 63u24u

2
2 − 193u4u

2
3u2)− 7875u44(8u24u

2
2 − 22u4u

2
3u2 + 9u43)

]
Table 1: Differential functions used in (21). Here uk denotes y(k).

A(2), and PGL(3) on C2:

Group SE(2) SA(2) A(2) PGL(3)

K1 κ2 =
(Θ2)2

(Θ1)3
µ3 =

(Θ4)3

(Θ2)8
µ2
α

µ3
=

(Θ5)2

(Θ4)3
η3 =

(Θ7)3

(Θ5)8

K2 κs =
Θ3

(Θ1)3
µα =

Θ5

(Θ2)4
µαα
µ2

=
Θ6

(Θ4)2
ηρ =

Θ8

(Θ5)4

(21)

The explicit formulas for Θ’s in terms of jet coordinates are given in Table 1.

We use ISE , ISA, IA, and IP to denote the respective pairs of classifying invariants in (21).

Proof. In [4, Theorem 4], IA, and IP are shown to be classifying in the real case. The proof
for the complex case follows similarly and an analogous argument can be applied to ISE and
ISA. See [28] for details.

Proposition 4.5. The exceptional curves with respect to IP , IA, and ISA are lines and conics.
The ISE -exceptional curves are lines. In particular, if X = V (F ) is a curve exceptional with
respect to the classifying invariants in (21) then F has degree at most two.

Proof. Propositions 2 and 3 from Section 4.3 in [4] show that IA- and IP -exceptional curves
are lines and conics and an analogous argument shows that this is the case for ISA-exceptional
curves as well. A curve X = V (F ) being ISE -exceptional is equivalent to the curve satisfying
either Fy ≡ 0, Θ1 ≡ 0, or Θ2 ≡ 0, all of which imply X is degree one or two.

4.2 The generic signature degree

We derive formulas for the degrees of signatures of generic11 curves for the four actions
discussed in Section 4.1 with signature maps based on the classifying sets ISE , ISA, IA, IP

11As stated in the introduction, we say that a property holds for a generic curve of degree d, if there exists a
nonempty Zariski-open subset Pd of C[x, y]≤d, such that for all F ∈ Pd the property holds for V (F ).
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given in (21). To do so we analyze each term in the degree formula (15) of Theorem 3.8. We
start by taking a closer look at the rational functions defining invariants (21).

Lemma 4.6. For a generic polynomial F ∈ C[x, y] of degree d ≥ 3, the restrictions of the differ-
ential functions Θi to the curve V (F ) are equal to rational functions of the form Ti(x, y)/(Fy)di

with deg(Ti) ≤ τi where τi, di are given as follows:

i 1 2 3 4 5 6 7 8
τi 2d− 2 3d− 4 6d− 8 8d− 12 12d− 18 16d− 24 32d− 48 48d− 72
di 2 3 6 8 12 16 32 48

Proof. One can check that each derivative function restricted to X = V (F ) can be written

y(n)|X =
Pn(x, y)

(Fy)
2n−1 where Pn ∈ Q

[
∂i+jF

∂xi∂yj
: i+ j ≤ n

]
and Pn(x, y) is a polynomial of degree (2n − 1)d − (3n − 2). One can evaluate the formulas
for Θ1, . . . ,Θ8 given in Table 1. For example, plugging in the rational expressions for y(n)|X
to the differential formula for Θ4 gives Θ4 =

(
3P4P2 − 5(P3)2

)
/F 10

y . See [28] for explicit
computations. The numerator has degree 10d − 14, but it is also divisible by F 2

y . This gives
an expression Θ4 = T4(x, y)/(Fy)8 where Ti has degree less than or equal to 8d − 12. The
arguments for the other differential functions follow similarly.

Explicit formulas for the polynomials Ti are quite long. A code to compute them can be
found in [28]. Note that for each of the classifying invariants, the partial derivative function Fy
cancels out and leaves each invariant as a rational function of the polynomials T1, . . . , T8. In
the following lemma, we use homogenizations of T1, . . . , T8 to write down projective extensions
σ of the signature maps for each pair of invariants (21).

Lemma 4.7. Fix an irreducible polynomial F ∈ C[x, y] of degree d ≥ 3 and let X = V (F ). For
G = SE ,SA,A,P, let σGX denote the signature map given by the invariants IG in (21). Then

σSE = [T 3
1 : x20T

2
2 : x20T3], σSA = [T 8

2 : x40T
3
4 : x20T

4
2 T5],

σA = [T 3
4 : T 2

5 : T4T6], and σP = [T 8
5 : T 3

7 : T8T
4
5 ] (22)

are projective extensions of the maps σSEX , σSAX , σAX , and σPX , respectively, where for each i, Ti

equals the homogenization, xτi0 Ti(
x1

x0
, x2

x0
) ∈ C[x0, x1, x2], of the polynomial Ti from Lemma 4.6.

Moreover,

deg(σSE) = 6d− 6, deg(σSA) = 24d− 32, deg(σA) = 24d− 36, and deg(σP) = 96d− 144.

Proof. First, we note that by Lemma 4.6, the coordinates of σG are homogeneous of the stated
degrees and that by Proposition 4.5, X is non-exceptional with respect to each of the classifying
sets of invariants in (21). Moreover, with G = A, for a point p ∈ X we see that,

σAX(p) =

(
Θ5(p)2

Θ4(p)3
,

Θ6(p)

Θ4(p)2

)
=

(
T5(p)2

T4(p)3
,
T6(p)

T4(p)2

)
=

(
σA1 (1, p)

σA0 (1, p)
,
σA2 (1, p)

σA0 (1, p)

)
.

Here the middle equality follows from the fact that the factors of Fy given by the degrees di
in Lemma 4.6 all cancel out in the above expressions. If σA(p) is not defined then Θ4(p) = 0,
meaning p is not I-regular. Thus σA(p) is defined at all but finitely many points ofX. Analogous
arguments show that σSE , σSA, and σP are projective extensions of σSEX , σSAX , and σPX .

We are now ready to analyze the last term in the degree formula (15) where the sum of
multiplicities is taken over the base locus of a projective extension σ of the signature map. We
first show that, for our choices of projective extensions, all base locus points belonging to a
generic curve are “at infinity.”
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Lemma 4.8. For a generic polynomial F ∈ C[x, y]≤d, d ≥ 4, the base locii of the maps σSE ,
σSA, σA and σP in (22) contain no points of the form [1 : p] ∈ CP2 where F (p) = 0.

Proof. We will provide a detailed proof for the affine group and then show how this argument
can be adapted to other groups. For any point p ∈ C2, consider the set

VAp =
{
F ∈ C[x, y]≤d |F (p) = 0 and [1 : p] belongs to the base locus of σA

}
.

Our goal is to show that the set

VA =
⋃
p∈C2

VAp

has codimension at least 1 in the linear space of polynomials C[x, y]≤d.
For a polynomial F ∈ C[x, y]≤d, a point [1 : p] belongs to the base locus of the map

σA if and only if T4(p) = T5(p) = 0. Polynomials Ti were introduced in Lemma 4.6, and
they can be expressed as polynomials function of the partial derivatives of F . Therefore, for
F (x, y) =

∑
i+j≤d cijx

iyj with undetermined coefficients and a fixed point p, expressions T4(p)

and T5(p) can be viewed as polynomials in the coefficients cij . This allows us to express VAp as
the variety of three polynomial expressions F (p), T4(p), and T5(p) in the coefficients cij where
i+ j ≤ d.

For p = (0, 0), we can use computational algebra techniques to find the codimension of this
set. The condition F (0, 0) = 0 is equivalent to c0,0 = 0. The highest order partial derivative
appearing in the expressions for T4 and T5 is 5. Therefore T4(0, 0) and T5(0, 0) can be written as
polynomials of cij where i+ j ≤ 5. Moreover, for d ≥ 5, these polynomials are independent of d.
For d = 4, all monomials involving cij , i+j = 5 will disappear. For d ≥ 4, one can check (see [28])
that three polynomials c0,0, T4(0, 0) and T5(0, 0) impose algebraically independent conditions,
implying that VA(0,0) has codimension 3 in C[x, y]≤d (the case d = 4 has to be checked separately).

Now we claim that for any point p ∈ C2, a polynomial F belongs to VAp if and only if its image

under translation F (x, y) = F (x+p1, y+p2) belongs to VA(0,0). Note that the partial derivatives

of F are invariant under translations: ∂i+jF
∂xiyj (x, y) = ∂i+jF

∂xiyj (x+ p1, y+ p2) for all i, j. Let T 4, T5

denote the polynomials obtained from Lemma 4.6 from F . Since these are functions of the partial
derivatives of F , they are also invariant under translations: T i(x, y) = Ti(x+p1, y+p2). Then F
belongs to VAp if and only if F (p) = F (0, 0) = 0, T4(p) = T4(0, 0) = 0, and T5(p) = T5(0, 0) = 0,

which occurs if and only if F ∈ VA(0,0). This shows that the set of polynomials not satisfying the
condition in the statement of Lemma 4.8 can be written as

VA =
{
F ∈ C[x, y]≤d |F (x+ p1, y + p2) ∈ VA(0,0)

}
.

Then the dimension of VA is at most dim(VA(0,0)) + 2. Since VA(0,0) has codimension 3 in the

space of polynomials C[x, y]≤d, this means that VA has codimension ≥ 1.
A similar argument, based on translation of an affine point p to the origin, goes through for

other groups, and the proof of the lemma boils down to showing that

VG(0,0) =
{
F ∈ C[x, y]≤d |F (p) = 0 and [1 : p] belongs to the base locus of σG

}
,

where σG is the projective extension of the signature map for an appropriate group G, has a
codimension of at least 3 in C[x, y]≤d.

In the SE(2) case and d ≥ 2, the variety VSE(0,0) is defined by four polynomials c0,0, T1(0, 0) =

(c01)2 + (c10)2, T2(0, 0) = −2c20(c01)2 + 2c11c10c01− 2(c10)2c02 and T3(0, 0) in C[cij : i+ j ≤ 3].
Clearly, T1(0, 0), T2(0, 0) and c00 impose algebraically independent conditions on C[x, y]≤d.
Thus, by the above argument, VSE(0,0) must be of codimension at least 3 in C[x, y]≤d for all d ≥ 2.

In the SA(2) case, the variety VSA(0,0) is defined by three polynomials c0,0, T2(0, 0) and T4(0, 0)

in C[cij : i + j ≤ 4], where for d ≥ 4, T2(0, 0) and T4(0, 0) are independent of d. Algebraic
independence of these polynomials is checked in [28]. Finally, for the full projective group
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PGL(3), the variety VSA(0,0) is defined by three polynomials c0,0, T5(0, 0) and T7(0, 0) in C[cij :

i+j ≤ 7], where T5(0, 0) and T7(0, 0) are independent of d for d ≥ 7. The algebraic independence
of these three polynomials is checked in [28]. When d = 4, 5, or 6 some monomials disappear
and so algebraic independence has to be checked separately.

As a side remark, we point out that under the SE(2)-action, a generic curves does not have
any base locus points (even at infinity) as shown in Lemma 4.12 below.

Lemma 4.9. Let F ∈ C[x0, x1, x2]d be a generic homogeneous polynomial of degree d satisfying
two generic conditions:

(i) F(0, 0, 1) 6= 0,

(ii) the discriminant of the univariate polynomial F (0, 1, x2) is nonzero.

Then neighborhood of any point p = [0 : p1 : p2] in V (F) can be parametrized by t 7→ [α(t)]
where

α(t) =

t, 1, ∞∑
j=0

ajt
j

 ∈ C[[t]]3. (23)

Moreover, for any homogeneous polynomial G ∈ C[x0, x1, x2], the intersection multiplicity of F
and G at p is given by val(G(α)).

Proof. Consider a point p = [0 : p1 : p2] in V (F). From the first assumption it follows that
p1 6= 0 and thus we can take p1 = 1. From the second assumption it follows the restriction
H = F(v, 1, w) ∈ C[v, w] satisfies Hw(0, p2) = ∂F

∂x2
(p) 6= 0. Therefore, in some neighborhood of

(0, p2), the curve V (H) ⊂ C2 agrees with the graph w = f(v) of an analytic function f . We

obtain α as a power series expansion of this function with aj = f(j)(0)
j! . For the claim that the

intersection multiplicity of F and G is given by val(G(α)), see [11, §8.4].

Lemma 4.10. For d ≥ 3, a generic point (a0, . . . , a8) ∈ C9 can be extended to the coefficients
of the parametrization (23) for some F ∈ C[x0, x1, x2]d satisfying conditions of Lemma 4.9.

Proof. Note that n = 8 and d ≥ 3 satisfy the assumptions of Lemma 2.26, implying that for a
generic point a ∈ C9, there exists an irreducible algebraic curve X ⊂ C2 of degree d, such that

(0, a0) ∈ X and j
(8)
X (0, a0) = (0, a0, 1! a1 . . . , 8! a8). Let F (x, y) ∈ C[x, y] be an irreducible

polynomial of degree d whose variety is X. It is easy to check that for the homogenization

F(x0, x1, x2) = xd1F
(
x0

x1
, x2

x1

)
, the projective curve V (F) has the desired parametrization (23)

in a neighborhood of [0 : 1 : a0].

Lemma 4.11. Let F ∈ C[x, y]≤d be a generic polynomial with degree d ≥ 3 and let α =
(α0, α1, α2) denote the parametrization given by Lemma 4.9 for its homogenization F. For
sufficiently small t ∈ C∗, the Laurent series

β(t) = t−1(α1(t), α2(t)) =

t−1, ∞∑
j=−1

aj+1t
j


parametrizes the curve V (F ). The differential functions Θi along this parametrization satisfy:

i 1 2 3 4 5 6 7 8
val(Θi(β)) 0 3 4 8 15 19 40 60
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Proof. First let us calculate the image of β in the jet space. For (x(t), y(t)) = (t−1, tj) with
j ≥ 1, the derivative of y with respect to x equals −jtj+1. Repeated applications of ∂

∂x then

yields that y(k)(x) equals (−1)ktj+k
∏k−1
i=0 (i+ j). Then for (x(t), y(t)) = β(t) and k ≥ 2,

y(k)(x) = (−1)k ·
∞∑
j=1

aj+1t
j+k ·

k−1∏
i=0

(i+ j).

We can then evaluate the differential functions Θ1, . . . ,Θ8 on truncations of these formulas,
where aj are indeterminates. (See [28].) For example, evaluating Θ4 and Θ5 give

Θ4(β) = −36 · a2 · t8 + higher order terms, and

Θ5(β) = −4320 · (2a33 − 3a2a3a4 + a22a5) · t15 + higher order terms.

In each case, the leading coefficients are polynomials of a0, . . . , a8. Therefore, by Lemma 4.10
and the genericity of F , we may assume that these leading coefficients do not vanish.

Lemma 4.12. For a generic homogeneous polynomial F ∈ C[x0, x1, x2]d with d ≥ 3 and a point
p = [0 : p1 : p2] in V (F), we have

multp(F,σSE) = 0, multp(F,σSA) = 16, multp(F,σA) = 12, and multp(F,σP) = 72,

where σSE , σSA, σA and σP are the polynomial vectors given by Lemma 4.7 for F = F(1, x, y)
and the corresponding multiplicities are defined by (13).

Proof. Let α ∈ C[[t]]3 be the local parametrization of V (F) guaranteed by Lemma 4.9. For each
index i = 1, . . . , 8, let vi denote the valuation of Ti(α). By the same lemma and the formulas
in Lemma 4.7, the desired multiplicities are

multp(F,σSE) = min{3v1, 2 + 2v2, 2 + v3}, multp(F,σSA) = min{8v2, 4 + 3v4, 2 + 4v2 + v5},
multp(F,σA) = min{3v4, 2v5, v4 + v6}, and multp(F,σP) = min{8v5, 3v7, 4v5 + v8}. (24)

Let β ∈ C((t))2 be the tuple of Laurent series given by Lemma 4.11. Since Ti is homogeneous
of degree τi and α = t · (1, β), we see that

Ti(α) = Ti(t, tβ) = tτiTi(1, β) = tτiTi(β).

By genericity, the coefficient of xd−1 in Fy is nonzero, meaning that the valuation of Fy(β) is
−(d− 1). This and the formulas Ti = Θi · (Fy)di from Lemma 4.6 give that

vi = val(Ti(α)) = τi + val(Ti(β)) = τi + val(Θi(β)) + di val(Fy(β))

= τi + val(Θi(β))− di(d− 1).

Then combining the data from Lemmas 4.6 and 4.11 gives that

v1 = 0, v2 = 2, v3 = 2, v4 = 4, v5 = 9, v6 = 11, v7 = 24, and v8 = 36.

Substitution of this value in (24) finishes the proof.

Theorem 4.13. Fix an irreducible polynomial F ∈ C[x, y]≤d of degree d ≥ 4 and let X = V (F ).
Let SSEX , SAX , SSAX , and SPX denote the signature polynomials defined by the invariants in (21).
Then, when the symmetry group of X is finite,

deg(SSEX ) ≤ 6d2 − 6d, deg(SSAX ),deg(SAX) ≤ 24d2 − 48d, and deg(SPX) ≤ 96d2 − 216d.

Furthermore, these bounds are tight for generic F ∈ C[x, y]≤d.
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Proof. First we show that the bounds above are achieved for generic F ∈ C[x, y]≤d. By Proposi-
tion 4.5, the curveX is non-exceptional for ISE , IA, ISA, and IP and we can apply Theorem 3.8.
Since X is a general curve of degree ≥ 4, its symmetry group is trivial and so n = 1 [39]. Let
F ∈ C[x0, x1, x2] denote the homogenization of F and X = V (F) ∈ CP2. Then by Theorem 3.8,
for a projective extension of a signature map σ,

deg(SX) = deg(F) · deg(σ)−
∑

p∈Bl(σ)

multp(F,σ).

For a generic F, the variety V (F) contains exactly d points with x0 = 0. The multiplicities at
each of these points is given by Lemma 4.12 for every group under consideration. By Lemma 4.8,
these are the only points of V (F) in the base locii of the projective extensions σSE , σA, σSA,
and σP . All together, this gives

deg(SSEX ) = d · (6d− 6)− d · (0) = 6d2 − 6d,

deg(SSAX ) = d · (24d− 32)− d · (16) = 24d2 − 48d,

deg(SAX) = d · (24d− 36)− d · (12) = 24d2 − 48d, and

deg(SPX) = d · (96d− 144)− d · (72) = 96d2 − 216d.

From Theorem 3.13, these degrees are upper bounds.

We note that for all groups we consider, for generic curves, the degree of the signature curve
has a quadratic dependence on the degree of the original curve. The symmetry group of a
generic curve is trivial, but many interesting and important curves have non-trivial symmetry
groups. In accordance with the degree formula (15), these curves have lower degree signature.
The next subsection is devoted to the Fermat curves family. For this family, in the case of the
projective and affine action, the growth of the signature curve degree is completely suppressed
by the increase in the symmetry group size.

4.3 The Fermat curves

The d-th degree Fermat curve, denoted in this section by Xd, is the zero set over C2 of the
polynomial Fd(x, y) = xd + yd + 1, whose homogenization is Fd(x0, x1, x2) = xd0 + xd1 + xd2.

Theorem 4.14. The symmetry group of the d-th degree Fermat curve with respect to full
projective, affine and special Euclidean groups are:

• Sym(Xd,PGL(3)) = S3 o (Zd × Zd) of cardinality 6d2,

• Sym(Xd,A(2)) = S2 o (Zd × Zd) of cardinality 2d2, and

• Sym(Xd,SE(2)) =

{
Z1 of cardinality 1, when d is odd

Z2 × Z2 of cardinality 4, when d is even.

Here Sk is the permutation group over k-elements and Zk is the cyclic groups of k-elements.

Proof. In [41] it has been shown that Sym(Xd,PGL(3)) consists of compositions of permutations
of the homogeneous coordinates [x0 : x1 : x2] and transformations scaling the coordinates by
d-th roots of unity, i.e. [x0 : x1 : x2] → [x0 : ω1x1 : ω2x2], where ω1 and ω2 are d-th roots of
1. This shows the first result. Since Sym(Xd,A(2)) is the subgroup of Sym(Xd,PGL(3)) that
fixes the homogenous coordinate x0, in the second result S3 must be replaced with S2. Finally,
in the case of the special Euclidean group for odd d there are no non-trivial symmetries, while
for even d the symmetry group is generated by two independent elements, each of order two,
namely [x0 : x1 : x2]→ [x0 : −x2 : x1] and [x0 : x1 : x2]→ [x0 : −x1 : −x2].
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For the projective and for the affine groups, the cardinality of the symmetry groups depend
quadratically on d. At the same time Theorem 4.13 shows that the degrees of generic signature
curves depend quadratically on d. In fact, these quadratic dependencies cancel, and the degrees
of signatures of the Fermat curves for these actions are independent of d.

Theorem 4.15. The signature of the Fermat curve V (xd + yd + 1) ⊂ C2 has

• degree four for all d ≥ 3 for the PGL(3)-action.

• degree two for d = 3 and degree three for all d ≥ 4 for the A(2)-action.

We remind the reader that the signatures of lines and conics are undefined under the pro-
jective and affine actions. The above result can be proven by computing all quantities involved
in (15) (see [28] for details) or by explicit computation of signature polynomials. We present
here the explicit formulas for signatures polynomials and observe that their coefficients (but not
their degrees) depend on d. For the projective group the signature polynomial of the Fermat
curve of degree d > 2 is:

SPXd(κ1, κ2) = 49392(d− 2)4d3(d+ 1)4(2d− 1)4κ4
2 + 602112(d− 2)4d3(d+ 1)4(2d− 1)4κ1κ

2
2

+ 10584(d− 2)3d2(d+ 1)3(2d− 1)3
(
10d2 − 3d+ 3

) (
34d2 − 27d+ 27

)
κ3
2

+ 1835008(d− 2)4d3(d+ 1)4(2d− 1)4κ2
1 − 9289728(d− 2)3d2(d+ 1)3(2d− 1)3

(
d2 − d+ 1

)2
κ1κ2

+ 61236(d− 2)2d(d+ 1)2(2d− 1)2
(
d2 − d+ 1

) (
10d2 − 3d+ 3

)2 (
16d2 − 9d+ 9

)
κ2
2

− 23328(d− 2)2d(d+ 1)2(2d− 1)2
(
11792d8 − 17376d7 + 28152d6 − 24424d5 + 19473d4 − 8940d3

+3358d2 − 324d+ 81
)
κ1 + 118098(d− 2)(d+ 1)(2d− 1)

(
d2 − d+ 1

)2 (
10d2 − 3d+ 3

)4
κ2

+ 531441d
(
d2 − d+ 1

)3 (
10d2 − 3d+ 3

)4
.

The signature polynomial of the Fermat curve of degree d > 2 under the affine action is:

SAXd(κ1, κ2) = (d− 3)2(d− 2)d2(d+ 1)(2d− 1)3κ3
2 − (d− 5)3d(2d− 1)2κ2

1

+ 3(d− 5)(d− 2)d(d+ 1)(2d− 1)2(5d− 11)κ1κ2 + 6(d− 2)2d(d+ 1)2(2d− 1)2
(
d2 − 4d+ 6

)
κ2
2

+ 2(d− 2)2(d+ 1)2(2d− 1)
(
15d2 − 10d+ 18

)
κ1 + 12(d− 2)3(d+ 1)3(2d− 1)

(
d2 − 2d+ 3

)
κ2

+ 8(d− 2)4d(d+ 1)4.

For d = 3, the coefficient of κ32 vanishes and the degree of the signature polynomial drops to
two.

5 Discussion and future directions

The problem of equivalence and symmetry of algebraic curves under the action of the pro-
jective group and its subgroups is intimately related to the problem of the equivalence and sym-
metries of ternary forms under the action of the general linear group and its subgroups. Such
problems and their generalizations were at the heart of classical 19th century invariant theory.
Linear changes of variables induce linear transformations of the coefficients of polynomials. The
latter serve as coordinates on the

(
d+2
2

)
-dimensional vector space C[x0, x1, x2]d. The classical

problem was to find generators of the rings of polynomial invariants and generators of the fields
of rational invariants under such actions. Actions on the product space C[x0, x1, x2]d×C3 were
also considered, and the invariants with respect to these actions were called covariants in the
classical literature. An overview of the classical methods for constructing invariants and covari-
ants as well their application to the classification of polynomials can be found in [13], [16], [32].
Due to Hilbert’s finite basis theorem, the generating sets for such actions are finite [1], but their
cardinality and the complexity of the invariants grow dramatically with the degree. In fact, the
complete set of the generators remains unknown except for the ternary forms of low degrees.

Applications of differential invariants to the problems in classical invariant theory was first
proposed by Sophus Lie [29]. One of the main advantages of using differential invariants in com-
parison with classical algebraic invariants and covariants is that the same set of invariants can
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be used for all ternary forms independently of their degrees. Differential signature constructions
for homogeneous polynomials in two variables (binary forms) was first introduced by Olver [32]
and applied to their symmetry groups computation in [2]. For the case of ternary forms, a fun-
damentals set of differential invariants was first computed in [26] and it has been shown in [15]
that the differential algebra of invariants can be generated by a single differential invariant and
two invariant differential operators. In his thesis, Wears [43], considered differential signatures
of polynomials in an arbitrary number of variables. In the above literature, one extends the ac-
tion to the jets of the graphs of homogeneous polynomials u = F(x0, x1, x2) or in-homogeneous
polynomials u = F (x, y), computes the set of fundamental invariants of a sufficiently high order,
and uses these invariants to construct signatures. In contrast to the signatures developed in this
paper, the signatures of these graphs are surfaces rather than curves.

Gaining an understanding of the relationship between signatures surfaces of the defining poly-
nomials, considered in the above literature, and signatures curves of their zero sets, considered
in this paper, is an interesting problem for future research. In particular, signature surfaces of
the graphs of the Fermat polynomials with respect to the projective groups computed in [26]
can be compared with the signatures of Fermat curves obtained here.

Proposition 2.21, provides a simple relationship between pairs of classifying invariants for a
given group. The signatures curves and their degrees depend on a choice of classifying invariants,
but a careful study of this dependence is outside of the scope of the current paper.

Since explicit computation of signature polynomials is challenging, it is helpful to identify
their properties that can be computed a priori. In this paper we derived the degree formula of
signature polynomials. One natural step is to determine their Newton polytope, which gives a
more detailed information about the monomials of the signature polynomial.

It is immediate that the signatures curves of rational curves are rational. However, the
signatures of non-rational curves may be also rational, as happens for instance in the case of
all Fermat curves under the affine and the projective actions. It is an interesting problem to
identify classes of curves with rational signatures and, more generally, to understand if we can
predict the genus of a signature curve.
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généralisés, vol. 5 of Exposés de Géométrie, Hermann, Paris, 1935.
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