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Abstract

In this paper we provide novel results on the infinite level normal form and or-
bital normal form classifications of nonlinear Eulerian and rotational vector fields
with two pairs of non-resonant imaginary modes. We use the method of multiple Lie
brackets and its extension along with time rescaling for orbital normal form classifica-
tion. Furthermore, we apply two reduction techniques. The first is to use the radical
Lie ideal of rotational vector fields and its corresponding quotient Lie algebra. The
second technique is to employ a Schur complement block matrix type in Gaussian
elimination and analysis of block matrices. The infinite level parametric normal form
classification are also presented. The latter is also viewed as a normal form result for
multiple-input controlled systems with non-resonant double Hopf singularity. We also
discuss nonlinear symmetry transformations associated with the nonlinear symmetry
group of the simplest normal forms. Symbolic normal form transformation generators
are derived for computer algebra implementation. Further, the results are efficiently
implemented and verified using MAPLE for all three types of normal form compu-
tations up to arbitrary degree, where they can also include both small bifurcation
parameters and arbitrary symbolic constant coefficients.
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1 Introduction

In this paper we are concerned with normal forms of Eulerian and rotational vector fields
with a non-resonant double Hopf singularity. Hence, we consider

v(x) :==v + Ef + O, + 6’ (1.1)
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where vy i= w08+ ws03, wiwn £ 0, & ¢ Q, g1(0) = ga(0) = £(0) =0,

— ol 2 i .. D b
Ey = fEO,O> Eoo = Eo,o + E07(]a E(Z],o = Tigy, + Yigy,
P ] i . e} e}

O, = 9i(x)040, O = ~Yigy, T Tigy,

for any g1, 92, f € R[[x]], x := (21,y1,%2,92), g # 0, and i = 1,2. We refer to E; as an
Eulerian, E} = fEj, as a radial vector field while ©! stands for a rotating vector field.
The vector field () is associated with the differential system 4% = —wyy; — y;f; + i9,

dt
% = w;x; + x; fi + y;9 for 1 = 1,2. We refer to

w = UO‘I‘EF“_@él +@2G2 (12)

as a multiple-parametric perturbation of v(x), a parametric vector field or a multiple input-
system when F,G; € F[[x, u]], p € RY, F(z,0) = f(x), Gi(z,0) = gi(x), i = 1,2.

The conventional approach is to exclude the input parameters of an input system by
setting them to zero and then, obtain the normal form of the system without inputs. Then,
one derives a parametric model (called universal unfolding) by adding parametric terms to
the normal form system so that the dynamics of the universal unfolding would represent
the local dynamics of any possible small perturbations of the normal form system. Next,
the bifurcation analysis of the universal unfolding concludes any possible bifurcation sce-
narios of the original input system. However, this does not describe the actual quantitative
dynamical experience in terms of the original parameters. Hence, the only useful normal
form for the actual bifurcation analysis and control of a real life problem is the controlled
and parametric normal forms. These have recently been obtained for only a few cases;
see [11],[15, 16, 20-22,[42] while we here treat the families (ILT) and (I2]). The controlled
and parametric normal forms are derived in a way to play the role universal unfolding of
the original plant. Thus, the controller designs based on these will be robust against small
unavoidable errors and perturbations; see [I5[16]. Furthermore, the truncated classical nor-
mal forms may destroy the Eulerian structural symmetry of the vector field (IL1). Hence,
the truncated normal form system may represent a qualitative dynamics inconsistent with
the original Eulerian dynamics. Therefore, the second goal here is to classify normal forms
of the plant (ILT]) and controlled system (L2]) so that their Eulerian structure are preserved
in all normalization steps. This is possible when the set of normalizing transformations pre-
serve the structural symmetry. These facilitate our third objective for a symbolic normal
form computer algebra implementation.

In the last two decades, there have been numerous contributions on hypernormalization
and classification of two dimensional state space systems; e.g., see [4}[7, 111, 20-22] 30} 36,
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38,39,[4T] and the references therein. As the state dimension of the singularities increase,
the complexity of hyper-normal form classifications significantly amplifies. For the three-
dimensional cases, there are only a few results for Hopf-zero and triple zero singularities;
see [1L18, 9] 12] 14} 15, 81,3243, [44]. Contributions on normal form classification of three
dimensional singularities use specific structural symmetries. They use and preserve the
structure in their normal form results and/or use it for a normal form decomposition.
However, there does not yet exist results on normal form classification with regards to
non-resonant double Hopf singularity.

Sections 2 3] and M treat normal forms of all generic and degenerate cases of vector
field types ([LI]) by preserving their structural symmetry. However, in order to simplify the
following formulas presented in the introduction, we assume that

50,1252,0 — bo,1b1,0b1,1 + 50,251,02 #0, (1.3)

and by o # 0 when b, j-s are the first level normal form coefficients. Then, the infinite level
normal form of (L)) reads

Z = Z?MZO C§-7k|21|2j\22|2k2i + Zkzg Cé,k‘z2|2kziu Wy =% = ZTi, w; =%, 1=1,2,

where C;‘,k = ijg + ICL;JQ, 6073 = CLQO = aim = 0,6070 = O,afw = Wy, [2 = —1, (ZZ',’UJZ'>
denotes the complex coordinates and the over-line stands for the complex conjugate. The

infinite level coefficients are uniquely determined by equation (II)). When b ¢ := —3:1{; (0)+
1
02f

T (0) # 0, the infinite level orbital normal form is
1

2 = Tw;z; + Z;:o il P 2+ boglzaltz + 30 sp ab |z P 2, =20 = 1,2,

where aj; = 0 for j > 2. Since byy # 0, the input vector field (L2) can be uniquely
transformed into

7= bo,2|z2|421+22:o Z?:o (bn—jvj(:u)_‘_a?l@fj,j(:u)l) BN E R
B =m0 Sogo (g (i) + a2 (1) |21 2D | 2] ¥ 25 + b o 22| 20+ 30505 03 (1) 1] 2] ¥ 2

and w; = Z; for i = 1,2. Here, by (1) = brg, bo,o(0) = 0, af 4(0) = wy and af (1) = wy.
The rest of this paper is organized as follows. Complete normal form classification
of vector fields (L)) are derived in Section [2} where we only use the changes of state
variables. Proofs include deriving the transformation generator formulas for practical im-
plementations in a computer algebra system. Near-identity time rescaling are also used
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for the orbital normal form classification in Section Bl Section M treats the parametric
normal form classification for multiple-input vector fields (L.2)). An efficient algorithm is
proposed in Section [A] for the normal form computation using computer algebra systems.
Some normal form formulas are also derived for practical applications.

2 Infinite level normal forms
For [,k € Z, and i = 1, 2, let
Ek—l,l = (1'12 + y12)k7l (CL’QQ + ygz)l EO,O and @Zfz,z = ($12+y12)k7l ($22+y22)l @6,0(21)

Define % = Rug + {3370 10 @rEr11 + 2oy —05—0 Uik Oh—1s | aun, by € R}. Any non-
resonant double Hopf singularity can be transformed into a first level normal form given
by a vector field v(!) € .Z. Hence, we call .Z as the space of all (first level) normal
form vector fields. Assume that S € £ has no linear term in its power series expansion.
Then, S generates a near-identity changes of state variables, that is, the time-one map flow
associated with S. Therefore, we call S a transformation generator. A Lie bracket is defined
by [u, w] := uw —wu, where v and w are considered as differential operators; see [30,32,34].
This provides a natural Lie algebra structure for .Z.

Proposition 2.1 (Structure constants). The space £ is a Lie algebra and its structure
constants are given by
&

m,n’

07, =0, [0, Eri] =2(m+n)0% p iy [Emn, Brg] = 2(m+n—k—1)Ep . (2.2)
Proof. The proof is a straightforward computation. O

The normal form formulations here are presented using the method of multiple Lie
brackets and matrix representations; e.g., see [4,[7,[8,80-32,141]. We provide recursive
relations for the normal form transformation generators transforming the updating vector
field into a higher level normal form. Following [I1L[16,20], we simultaneously recall the
theory of our infinite level hypernormalization steps for this section and the next three
sections. Let B be either .Z or its parametric extension, B = Y7 /By be a Zx¢-Lie graded
structure for B, i.e., [By, B;] C By for all [, k € Zsg, and for v, € By, v =Y ,- v, € B be
an updating (i.e., being normalized) non-resonant double Hopf singular vector field. Denote
the graded linear space A = >"7 | Ay, for the normalizing transformation generators and
x for its graded action on B, i.e., Ay x B; C Bgy; for all I > 0 and k£ > 1. The space A
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and action * are different in Sections 2l B, and 4 and they will be defined in these sections
accordingly. Define

dkl A, — IBk, by dk’l(Xk) = X * g for X, € A,. (23)

Assume that Z%! := im(d*!) and C*! denotes for its complement space that is uniquely
determined via a normal form style. Then, Z%! @ C*! = B;, and by [20, Lemma 4.2], there
exists a sequence of near identity transformations sending v into the first level extended par-

tial (orbital or parametric depending on the space A) normal form v(!) := vél) +3 0, v,ﬁl),

where v,(fl) € Ck! and vy = U((]l); also see [35]. The idea is to use the transformations gen-
erated by Ay, to eliminate all terms living in #%! from the normalizing vector field. Since
the space ker(d*') does not contribute to the simplification of terms in grade k, we shall
use them in normalizing higher graded terms. A systematic derivation of hypernormaliza-
tion steps to infinity is required for derivation and computer algebra implementation of the
infinite level normal forms, i.e., no further normalization is possible. In each normalization
step, one needs to simultaneously track the effects of the normalizing transformations to
the normalizing vector field and also derive the available normalizing transformations for
higher level hypernormalization steps. This is naturally reflected to the computational bur-
den for the normal form classification as the state-dimension of the singularity increases.

Thereby, we inductively denote
d™" : ker(d" VN x Ay — By, (for any r < k), (2.4)
given by d*" (Xy_ps1, .-, Xpo1, Xi) = Yoo Xps vi(r_l), where
(Xp—rit, Xpypao, -+ Xp_1) € ker(d"~ 11 (2.5)

for the r-th level map; also see the differential of bi-degree (r,1 — r) defined on [20] page
1015]. For any r > k, let d*" := d"*. Let #%" := im(d*") and C*" be its complement
subspace with respect to a formal basis style, i.e., 25" ®C*" = B;,. The complement space
associated with formal basis styles are generated by Fulerian terms and rotational terms;
see [20] for more details on formal basis style. The space of all rotational vector fields
constitutes the radical Lie ideal of Lie algebra £ and provides a reduction technique for
normal form computations; see [I8] for a proof of our claim. In particular,

C" = a2 (CP") ®II(CH +1ad ) and  Maaz(C") = C* Nrad 2.

Let im d*" +rad .Z be a linear subspace of quotient Lie algebra %. Since the formal

basis style gives the priority of elimination to Eulerian terms than rotational terms of
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the same grade, the complement space for %" is the same as the complement space for
(im d*" N rad &Z) + II(im d*" + rad &), i.e.,

e The linear space II(im d*" + rad .#) determines all the normalizing Eulerian terms in
the r-th level.

e The normalizing rotational terms in the r-th level normalization step are determined
by im d*" N rad &Z.

These explain the proofs in the following sections, where we present recursive formulas for
transformation generators and their impact on the normalizing vector field. Hence,

(im d*" Nrad?) @ (C*" Nrad?)=rad¥ N % and (imd*"+rad.¥) @ (C*" +rad¥) = j’;;f;j. (2.6)

Equations (2.6]) suggest two reductional techniques for the computation of complement
spaces in %

1. Possible restriction of the homological differential maps d*" on the radical Lie ideal.

2. Introduction of a reduced map d*+1 based on the factor algebra —Z_; see equation

rad.Z’
B.1).

When all k-grade-homogenous parts vy, of a vector field v belongs to C*" = (C*" Nrad £) @
II(C*"+rad .£), the vector field is called a r-th level extended partial (orbital or parametric)
normal form. The vector field v is called the infinite level (orbital or parametric) normal
form, when v, € C** for all natural numbers k. The coefficients of the infinite level normal
forms are uniquely determined by the original vector field.

Theorem 2.2. [20, Theorem j.4] Consider a formal basis normal form style, a Lie graded
structure for B and a grading-module structure for B over the transformation (generator)
space A. Then for any vector field v € B, there is a sequence of near-identity transfor-
mations so that they transform v into its r-th level extended partial (orbital or parametric
depending on the transformation space A ) normal form v") and infinite level normal form

(%),

Denote € := (0,0,---,1,---,0) € R for the i-th element of the standard basis in
R7. The index for a bold zero denotes the dimension of a zero vector, i.e., 0, € RF. We,
however, skip the indices when it does not lead to a confusion. We use double, triple,
etc, indices for summations (or linear subspace spans), when we deal with double or triple

sums; e.g., we denote Zf:u:% aj for Y70 opa; + Zle a;. The rest of this section deals
with normalization of vector fields (II]) by only using changes of state variables.
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Lemma 2.3. There exists a sequence of near-identity changes of state variables that they
transform any vector field given by (1) into

Zz 1Zm+n =0 mn mn+2m+n 1 mn mneg (27)

where al,, ., b, € R, m,n € Ny := NU{0}, and af, = w;.

m,n?’ “m,n

Proof. Since the space of vector field types (1) defined by
¥ :=span{E;, 0, | f,g; € F[[x]],i = 1,2}

is a Lie algebra, transformation generators from ¥ transform the vector field (L)) into a
vector field in #. Using formulas (22)), the linear part of the vector field vy = w1©f, +
W2@3,0> and the assumption wiwy # 0, z—; ¢ Q, the first level normal form vector field

D holds a two-torus symmetry and has an invariant algebra generated by the two-torus
invariants ;2 := x;2 + ;2 for i = 1,2, i.e., v € Z. O

The Eulerian and rotating structure of the vector field types (1) are preserved in
further hypernormalization steps as long as the normalizing transformations are derived
from .Z. Thus, normal form classifications in this paper deal with vector fields from B := .Z
with linear part vy := w10f y + w205 o. The space of permissible transformation generators

Ais [Z, 7). Let
s:=min{m > 1|3i <m, b,_;; #0} and p:=min{i|bs_;; # 0}. (2.8)
Then, s < oo and p < s. Define a grading function ¢ by
§(Epp) =m+n, 60, ,)=s+m+n, for i=12 and m,n € Zx.
Lemma 2.4. Let s < co. Then, the s + 1-st level normal form of vV is given by

(s4+1) — s - - 2s . . 00,2,p—1,l+s
v —UO+Zj:p bs—J,JEs—J,J"‘Z' bos—j,j Eras— JJ+Zl 1,i=1,j=0,j=l+p+1 al—i—s ]]@H-s —j.j
[es) p—1,l+s i
+Zl:1,l7$s Zj:O,j:l—l—p—i—l bits— JJEl+s =33 +Zl+g 1,i=1 ,j®l,j‘
Proof. Let
s . Itk I+k—s g
Stk = 2o 0Cth—j i Bk ]7J+Zz 12520 di . -5 hjsy € L for 0 < k <5, (2.9)

where dj,;_,_; =0 for | + k < s, denote the available transformation generator of grade [
for the s+ 1-level hypernormalization step, i.e., (S5, S5 1, -+, Sfy,_1) € ker d*71*_ Hence,

im d'+*5t = span’_ {d'""** T (E_; 5, 0,)} @ ad,, (rad £ N .4_,).
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I+
Let vj1s = Z obirs—jiEivs—jj + ZZ L= o di_ “@l ;i € Ziys. Since by, # 0, We propose

Co = bits—p.p
0= 20=8)bs—pyp’
o Doyt = 0] Cibsopric i ;
¢j = (R — for 1 <j<s-—p, (2.10)
—p—1
and Cr — bl+sfp7jyp+j_Z;:g Ci—s+p+50j,5—j
7o —2(l=8)bs—p,p

for s = p+1 < j < [I. These choices for ¢;_;; eliminate all bjys_; jEj4s—j -terms when
j=mp,--,p+1land s #1 > 1. However, bys_; jFss_; j-terms for all j < 2s may appear
in the s + 1-level normalization step. We remark that the choices in (2.10) does not exist
when | < s — p. By restricting the differential map d'*2***! on the radical Lie ideal and a
similar argument, all @f_j’j-terms for p < j <Il+pandi=12can be eliminated in the
s+ 1-level normalization step when { > s+1. Due to the rank condition rank d"++1 = [+1
when 1 <[ < s —1, rankd?**t! = 0, and rankd"+***! = 3] — 2s + 3 if | > s + 1, further

normalization in the (s + 1)-th level is not possible. O
Now let
r:=min{m > s| 35 <m,b,_;; # 0}, ¢ :=min{j|b,_;; # 0}, and ¢ <, (2.11)
and update the grading function 6 by
§(Epp) =m+n, 60, ,)=r+m+n, for i=1,2, and m,n € Zso.

This update in the grading structure is compatible with our normal form algorithm. Now
we assume that s < r < oo and treat the cases for (s < co,7 = 00) and (r = s = 00) in
Theorem 2.10L

Theorem 2.5. Assume that r,s < oo for r,s in equations (2.8) and 2II). When q < p,
there exists u € NU{0} such that the (r 4 1)-th level normal form vV of v in equation

(I is given by

i q—1,r+s
UO+Z] =pYs—i,t 5 ZZ+ZH—] 2Sb7]E7]+Zl+] 1= 1al] l,j+Zj:O,j:p—i—r—i—uS—i-lbT""‘S—j,jE?“‘f‘S—jvj

00,2,p—1,l+s p—1,1+r
+Zl 1,i=1,j=0,j=I+p+1 a’l—i—s —3,J l+s ],]_I_Z ijo,j:p—i-r—s-i-l bH—T’—j,jEl‘f‘T’—j,]"

Here, k = 0 forr # 2s while k = 1 forr = 2s. When p < ¢, we have im d*""+! = im d"+"5+!
for 1 # s, and im d™5" ! = im d"T  span{Foy,jlp+7r+1 <7 <p+r+ugh
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Proof. Due to the properties of r and s,

I+r—1,r _ ms Cas—l+l l+r—s+k,s—1  ar—st+k+1 1-1,k,2 i r—l+k+1
kerd =0, REs € +®jsop=0  REitr—sth—jj€r +Oh=g,j=0i=1RO}_; ;€7 )

when 0 < s—1[<7r—s—1, and otherwise

l+r—1,r __ s—1,l+r—s+k 2,5—1,l—s+k 1
ker @7 = spany_q ;—o {00 stk Bir—sik—jjs Os—k—1)} + ®Spani:1,k:07j:0{(07 O stk—jj» 0)}
Hence, we only discuss [ = s. Consider an ordered vector basis %" T*"+! for ker d"+5=1" x
%1 s given by

r+s,r+l . s el s,r+k,2 Caktr—s+l i k4r—s+1
Z T Uj=p {ES—MerJrl} UkzO,j:O,z’:l {Er+k—J,Jer+1 » Fh—j,i€r41 )

where the ordering < is uniquely determined by the following rules: (1) The basis terms of
lower grades precede higher grade basis terms, (2) Rotational terms succeed Eulerian terms
of the same grade, (3) ©'-terms precede ©2-terms of the same grade, (4) Ex_; j€ < Ej_mme
and ©)_; e < ©;_,, e when j <m fori= 1,2, k > m and the corresponding standard
basis vector e. A ordered basis for %, is given by

%T’-i-s = {Er+s,0> Er—i—s—l,la T aEO,r—i-s}a Er—i—s—i,i < E?“—i—s—j,j when i < ]

Then, the matrix representation of d"**"! with respect to (Z"+*"1 <) and (%,,,, <) is

given by

[dr-l-s,r-l-l} _ 2(8 - T>M7s“ Q(T B S)Mg 0 (212)

Brrsrtl B T 0 0 0
The first two columns of block matrices in equation (2.12]) are associated with E-term
transformation generators of grade r and s, respectively. Similarly, the third and fourth
columns of block-matrices correspond to O-terms of grade r and s. Now assume that ¢ < p.
Then,
M(im d" 5" + rad &) Nspan{E,,_;; |0 < j < ¢ — 1} = {0}.

Since b,_q,4 # 0, terms of the form b,y jE,s_;; for ¢ < 7 < p —1 can be simplified

through
r+4s,r+1 p—gq—1 _ p—1
d (Zj:o Cs—jiEs—j s 0r+s) == i g brs—iiBrrs—j;
by . . .
where ¢, = %Tsiibfiq’ and c,_;; for 1 < j <p —q — 1 follows the recursive equations

j—1
o br-+sfq7j,j_zg:0 Cs—iibr—q—jtiqti—i (2 ]_3)

Cs—j,j = 2(r—s)br—q.,q
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Now omit all zero-block sub-matrices along with the first p rows and the first p — ¢ columns
of matrix representation d"**"*! to obtain

{é g} (2.14)

where A, B, C, D are matrices of sizes (r+1) X (s —p+q+1), (r+1) x (r+1), (s —p) x
(s—p+q+1), and (s —p) x (r+1), respectively. The matrix B is a lower triangular matrix
where the entries on the main diagonal are constant and equal to bs_,,,. Since bs_,, # 0,
B is invertible and

B~ 1 0(T+1)><(S—P):| |iA B:| _ |i B_IIA I(T+1)X(T’+l)
DB~ Is-pyx(s-p)] |C D —DB7A+C O pyx(r+1)

Let
u, = rank(C — DB™'A). (2.15)

The matrix C'— DB~!A plays a similar role to the Schur complement of a block in Gaussian
elimination of a block matrix. The index s stands for consistency with u; in equation (3.I0).
Given the matrix representation for d"**"+1 d 4 r + 1-terms associated with the first rows
of the matrix ([2.14]) are simplified, i.e.,

{EBrvejilp<ji<p+r+ul Climd > +rad ¥).

Thus, we can simplify F,,_; ;-terms for r+p+1 < j <7+ p+u, in the r + 1-level. Since
there are s — p-rows in the matrix C, we have u; < s—p. For u; < s —p, all terms E,,_;;
for r +p+us; < j <r+s can still appear the r 4 1-level normal form. When u;, = s — p,
E,;s_j -terms for p < j < r+s do not appear in the (r+ 1)-level hypernormalization step.

Let ¢ > p. The case ¢ = p occurs only when r = 2s. Since b;_,, # 0, forp < j <g-—1
we can directly simplify F,,,_;;-terms in the r + 1-level using the first ¢ rows of the
representation matrix. However, note that the first p-rows are zero row vectors. Hence,
we eliminate the first ¢ rows of block matrix [2(s — r)M?  2(r — s)M?] and the first ¢ — p
columns of sub-block matrix 2(r — s) M’ in the r + 1-level map. Then, we obtain a blocked
matrix of type (2I4) where A, B,C, D are matrices of sizes (r —q¢+p+ 1) x (s + 1),
(r—q+p+1)x(r—q+p+1),(s—p)x(s+1),and (s—p) x (r—g+p+1). The matrix B is
a lower triangular matrix and the entries on its diagonal are the constant bs_, ,. Therefore,
B is invertible and

B! 0(r—q+p+1)><(s—p)} |:A B} _ |: B7'A [(r—q+p+1)><(r—q+p+1)
—DB™' lapyxsp) | |C D] [=DBTA+C Opyxir-gip+)



M. Gazor and A. Shoghi Normal forms of Eulerian double-Hopf singularities 11

Given ug defined by equation (ZIH), terms of the form E, ,_;; for p < j <r+p+d are
simplified while E, s ;-terms for 0 < j <p—1landr+p+d+1<j <r+s may appear
in the r + 1-th level normal form. When uy; = s — p, all Ey,,_j ;-terms for p < j < s+r
are simplified in the (r + 1)-level. O

Example 2.6. The map d"t*"*! does not always have a full rank. For instance, let
v® = Vo + ag0bh0 + a1 B+ agaFos + aroF o+ agsbos + -,

where s =2, r =3, p =0, aso and ag,; are simplified in the third level normalization step.

ThU.S, we have 2.0 % 0 and (CLLQ,CL&()) §£ (0,0) Let Qg0 = Q1,1 = 4&072 = Qo3 = alT’z = 1,

and ¢ = 2. Thereby after removing the zero blocks, [d*"] 454 . is given by

[a0 0 0 0 0 0O

0
a9 o 0 a9 0 0
ai1 Qg 0 0 0 0 0 CL7 a I CL7 a 0
1,1 @20 0,3 d1,2
Qp2 A1l Aa20 0 a2 0 0 A B —la a | 0 a a
) = 0,2 Q1,1 0,3 d12] ,
0 Qo2 A11 G20 Qo3 Q12 0 ¢ D - - | . - -
0 0 Qo2 a1 0 ap3 a12 0 0 0
Qg2 | Qo,3
0 0 0 Qg2 0 0 Qo,3

C — DB™'A = [0 0], u, = 0, and rank [d®*] 4. 45 = 5. When ags # 0 and a5 =
0, A = [ago a11 ap2]’, B = ag3lsxs (a three by three diagonal matrix), ¢ = 3 and
rank |:d574:|egg5,4"@5 - 6

Proposition 2.7. Assume that the rank condition (2ZI5) and the hypothesis of Theorem
hold. When either p < q or r # 2s holds, r + 2 < rankd"**™! < r 4+ s + 1 while
25 + 1 < rank d®$?5t! < 3s + 1. Furthermore, ¢ > p+1r — s when r # 2s and q > p.

Theorem 2.8. Consider equations (2.8) and (211]). Assume that rank [dHS’TH]@Su%,%H =
r+4 s+ 1. Then, (r + 1)-th level normal form of vV is given by

(r+1) _ s - - R 5,2 i Qi
v = v+ Zj:p bs—iiEs—ii + Zi+j:2s bijEij+ Zl+j=1,i=1 al,j@l,j

00,2,p—1l—1,s i i o) p—Il—1,r
_'_ Zl:lvizlvj:_lyj:p+1 as—j,j-‘rl@S—jJ-‘rl + Zl;ﬁéég—r Z j=—l,j=p+r—s+1 bT—j,]+lET—j,]+l

r+1)

Furthermore, v constitutes the infinite level normal form of vV, There does not ex-

ist any nontrivial nonlinear symmetry transformation generator within £ associated with

r+1)

%) = g(r+1),

ol
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Proof. By Proposition 2.7, we obtain an invertible matrix by removing the s+ 1-th column
of the matrix representation [d" "], %,,,- Hence, we remove the last column of M7

and denote it by /\;lﬁ. Then, we introduce the transformation coefficients by

. ~1
t._ 1 t
(Cs,Oa Cs—1,15" " ,C1,5-1,Cr 0, " ,Com) = 30—9) [—Mi M;‘] (br-l—s,Oa T >b0,r+s) .
Therefore,
r+s,r+1 s . . r .. . - _ r+s . .
d <Zj:0 Cs—j,iFs—j;, 0, ijo Cr—jiEr—j 0) = ijo brts—j i Erts—ij,

and all B, ,_; j-terms for 0 < j < r+s are simplified in the (r+41)-level hyper normalization

step.
Let 0D = 0y 4+ v + v, + vgs + h.o.t., v; € Z,. We show that for [ > 1,
dl+r+l,l+r+1(5«) — dl+r+1,r+1(5«l+1’ Sl+2a . >Sl+7’+1) (2.16)
where S := (51,59, , Siir41). However, for s <1,
ker dl-i—?“,l—i—?“ - R(07 Vs, 07 Ury Upg1y* 00 5 Vigr—s, 08) + @Z;%)le—’_zr(]_kREl-i-T’—k—j,je%i:_k
s—1,2,l—k 3 r+k
+ @igiii1 -0 ROL_y_j €01 - (2.17)
Since (S1, S, -+, Siyr) € ker dHHHT @HTHLIETHL(G) for | > s is given by

[Sl—i-r—s-‘rb 'Us] + a ['Usa 'Ul-i—r—s—i-l] + « Zﬁ:;lr ['Uk, 'Ul-i—r—k—i-l] - [Sl—}—r—s-‘rb 'Us] — [Ul-i-T’—s-i-la Us] .

The latter belongs to im d'*"*15+1 The equality here is followed from

1
S [V V] = 3 S ([0, Vi r—kg1] + [Vier—ps1, vi]) = 0.
For s > [+ 1, d"F 5 H1(8) =[Sy, 11, vs] € imd T +hst When s =1 + 1,
dTrT T S) =[S, vy 4 [Ss, v,] € im @ T

For sufficiently large values of [, we merely consider equation (2.17). Thereby, ker d'+7+"
has three subspaces. On the one hand, the subspaces @Z;é”giro_kREl+T_k_j7je§I:_k and
@Qi’é;il7j:0R®f_k_j7je{:f converge to zero in filtration topology when [ approaches to in-
finity. On the other hand, the limit of the space R(0,vs,0,v,, V11, , Vj1r—s, 05) in the
filtration topology generates the vector field v(°) —vj. Since v(>) —uj is the trivial nonlinear

symmetry transformation generator for v(>), the proof is complete. O
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Corollary 2.9. Assume that 60712()2,0 — boabiobi1 + b0,2b1,02 % 0 hold for the first level
normal form coefficients in equation ([2.1). When by # 0, the infinite level normal form
of v is given by

() = UO+ZZ 1,j= Oal—Jj(_)Zl ]]+ZZ+] 1bZ]EZ]+2J>2(aO]@Oj+a0]®0]+b0]+2E0]+2) (218)
For b1y =0, bpax # 0, the infinite level normal form is given by
’U(Oo)—v —I—ZZ 1,j= Oal j]61 ]J+b0 1E0 1+Z]>2( ]0610+a]06]0+b]+20E]+20) (219)

The infinite level normal form coefficients b; ; for i + 7 < 2 are the same as in equation
@1). Furthermore, v does not have any nontrivial nonlinear symmetry transformation
generator within £ .

Proof. Assume that b; g # 0. Then s = 1 and p = 0. Since bo7l2b2,0—bo7lbl7obl7l+bo,gbl,02 #0
and Fy_; j-terms for 0 < j < 2 cannot be normalized by the second level normal form, we
have (s,r) = (1,2). Now by Theorem 24 im d"* = span{F;_;;, 0! . |0 < j <1 — 1} for
[ > 2, and

l]J

v® = U0+Zz 1,j= 003,00 “+Zz+] i B+ 0 , (a ag 194, +ag,j®g,j+b07j+1E07j+1)'

Now by Proposition X7, 3 < rankd®® < 4. Due to the condition by 1%byo — bo.1b1.0b1,1 +
boobio® # 0, the three column vectors (0, by, b11,bo2)", (0,610, b0.1,0) and (0,0,by0,bo1)"
are linearly independent. Hence, each column of the matrix M3} is linearly independent
with column space of M3?. Therefore, rank d*? = 4 and Theorem 2.5 implies that

imd"? =imd"? + span{F3_, ;|0 < j <3} for [ >3.

Theorem 2.8 concludes that the third level normal form (2.18) is an infinite level normal
form.

Now consider the case by g = 0, by # 0. Then p = 1. Similar to the above argument
and by Theorem 2.4 imd"? = span{F,_; j, @f_jj|1 < j <1} for I > 3 and v® follows

UO"‘ZZ 1= _0@i_;,;01_ jj_'_Z'H-] 1bJEJ+Z]>2( aj O+ a; @j0+bj+10EJ+10)

By Proposition 2.7 and the fact that each column of the matrix M3 is linearly independent
with column space of M3, we have rank d*? = 4. Next, Theorem concludes that Es_; ;-
terms for 0 < j < 3 are simplified in the third level normal form and the third level normal
form v® is given by equation (ZI9). Finally by Theorem 2.8, v(® is an infinite level normal
form. O
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Theorem 2.10 (Normal form classification when r = 00). Consider equations (2.8) and
@I0). Then, the following holds.

1. When r =00 and s < oo, the s + 1-level normal form vV is given by
+b B “_'_2002;) 1,l+s +Z 7 (2 20)
Vo1 Os—p,plis—j,; 1=0,i=1,j=0,j=l+p+1 al+s —jj l+s —jj I4j=1,i=1 al] 1 (4

When, $22°0% =0, the equation [2.20) is infinite level normal form. The

i=1,k=1,j= Oak -4,
time-one map flows associated with vector fields from span{E;_;;|0 < j < s} are

nonlinear symmetry transformations in the symmetry group of v(>.

2. For r = s = oo, there exist s;,p; so that the infinite level normal form is given by

either vy,
p1—1,l+s1 2
Vo + aSl —Pp1,P1 81 P1,P1 + Zl 0,7=0,j=l4+p1+1 al+81 ]J®l+81 =37 + Zz—i—] 1 a”@ (221)
for s1 < o0, or
(s2+1) _ p2—1,0+s2
v UO_I—aSz —p2,p2 82 —p2,p2 +Zl =0,7=0,j=Il4+p2+1 al+$2 J,J@l+82 =337 (2'22)

when s1 = 00 and sy < 00. The time-one map flows associated with vector fields from
rad .Z constitute nonlinear symmetry transformations in the symmetry group of v(>).

Proof. Ttem 1. Theorem 2.4 results the s + 1-th level normal form follows equation (2.20).
Let aj,_; ; = 0 for all indices. When [ < s,

ker @5thstl = Zzltk] oR(0,04 1, Ergjj, 04 p) + S0 0j=0 R(05-1, 0%, 0} _; 5, 011).
Ifl > s,

ker ds+l st = ZZ l—iik; =0 (Ol7 Ok 1 El+k—j,j7 Os—k:) + 2;20 R(OS—17 Es—j,jv Ol—87 05)
S,l— s+k i
Zk 1,j=0 (01, 0r-1, ®l—s+k—j7j7 Os—k) (2-23)

By choosing (0;, S5\, -+, S5,) € ker & for | < s and ¢4q-j; =0 for all 0 < j <
[+ 1 in equation (2.9), we have

s+1+1,5+1+1 s s _ l—s+1,2 5 s o o : s+1+1,5+1
d (00, SFirs 3 Siyer) = [Z] 0,i= 1dl 8+1—j]®l s+1—j172j:paS—J,JE5—J:J] €imd .
For the case | > s

s+14+1,54+14+1 s s ... Qs _ l=s+1,2 4 i s . .
d (08—17 SS y Ol—sa Sl+17 ) Sl+5+1) - |:Z] =0,i=1 dl s+1—7, ]@l—s+1—j,j7 Zj:p aS—]JES—Ja] .
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The latter belongs to im d***15*1 The argument for nonlinear transformation generators
for the symmetry group of v(>) is similar to the proof in Theorem 28 The filtration
topology-limit of the space ker d****=1 given by equation (Z.23) equals

Z;:O R(Os_l, Es—j,j7 Ol)

Then, the time-one map flow associated with E,_;; commutes with that of v(®). This

concludes the proof.
Item 2. For i = 1,2, define

si=min{m >1/3j < m, afn_j’j #0}, p; :=min {j| aii_m #0}. (2.24)
Hence,

im d I = spang o {[ B, 255, O6, 5,40} (2.25)

Therefore, the s; + 1-th level normal form of v(!) is expressed by equation (2.2I)) where

O] -terms for p; < 7 <[+ p; are simplified. Now we have

l4+s1+1—73,7

s1+1,s1+1 s1,l+k PRAY l+s1,k 1
ker d —Zk:O,j:OREHkﬂuesﬁl+Zk 1= OR@k —4,J

lLk—s e’ k
el+b1 +Zk 1 jl OR@i —7,7 li:l (226)
and this gives rise to

e Ls AT Spatly< < is 1 { [El+1—j,j7 Z o oL ”} } — im oL

Hence, no further terms can be normalized in the s; + [-level. By the equation (2.26]), the
limit of the space ker d51+*1*! in filtration topology equals to the linear space spanned by
all nonlinear rotational vector fields. Therefore, the time-one map flows associated with
the transformation generators from the radical ideal of . commutes with the flow of the
simplest normal form.

Let s; = oo and sy < 0o and define the grading function §(0;, ) = 0(Epn) = m + n.
This proves equation (2.22). Now the relation im @*2T+hs2H+1 — jy @s2ti+Ls2+1 for all [ > 1
holds due to

1,52+1 s2,l+k I+s2,2,k i
ker d#2+s2t = Ek 1,7=0 (0l+k—1aEl+k—j,j’Osz—k)+2k:1,i:1,j:oR(Ok—b@Z_j,j>01+sz—k)-

This concludes that equation (2.22) is an infinite level normal form. The argument for the
nonlinear symmetry group of this case is similar to the case s; < oco. O
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3 Orbital normal form classification

We define a module structure for time rescaling calculations. The integral domain of formal
power series generated by

L = (x12 + y12)m (x22 + y22)n for m,n >0

is denoted by # and correspond with the near-identity time rescaling generators. Hence,
Z acts on .Z by

me@il’j = O}

i+m,j4+n>

va"@ij = O?

i+m,j+n>

Zm,nEi,j = Ez'—i—m,j—i—na (31)
and .Z is a torsion free Z-module. Recall equations (2.3)-(2.4)-(2.5) by introducing
B:=¢% A:=(%%Y]), and (T,5)*xv:=Tv+[S,v] for TeX,Se|L L)

We reorder time and state transformation generators in equation (2.5 so that time rescaling
generators appear consecutively. Recall s as in equation (2.8) and update the grading
function ¢ by

§(Epn) =m+n, 6(65,,)=s+m+n, for i=12. (3.2)

Lemma 3.1. There exist a sequences of permissible time scaling and changes of state
variables that they transform the vector field v in equation (1)) into the (s + 1)-th level
extended partial orbital normal form

(s+1) ._ 1 ol 5 2 02 s L
v =00+ Dy GOy D1 400+ D, b B

+ sz;:l’ol;iwpﬂ Orys—jgjBvs—jg + Zloi7ﬁ]_'=17é;il+p+l a’l2+s—j,j@l2+s—j,j‘
Proof. For [ > 1, we have
ker d"H~ 1 =spang o7 { (06, 21 11,5:0): (O Erir,5,0) ) +spamy 650 o0 (0.0 s j5:0) -
Thereby, {d"*t5*T(T,0)|(T,0) € ker d**~1*} 4+ rad £ is given by
{d"*+5t1(0, 5,0)[(0,S) € ker d*+5=15} + rad & for 1 +#s,
and

span{O}_j [k = 0, -1} C {d">1(T,0)|(T,0) € ker d**~1*} Nrad &
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For the case [ # s, we use the latter inclusion to simplify all ©'-terms except those of grade
2s5. When [ = s, {d**%1(0,5,0)](0,5) € ker d**~1*} = {0}. Therefore, we instead use the

inclusion
span{ Fas g1k = p, -+ ,p+ s} CI({d***}(T,0)|(T,0) € ker d**"*} + rad &)

to simplify Fy, jx-terms for k = p,--- p + s. Since dimension of imd'*** + rad & is
[+ 1 as a subspace of ét}, i.e., im dl+s *+rad.Z C ﬁi}, hypernormalization of Ej,_; ;-
terms beyond what are snnphﬁed in the non-orbital normal form process is not possible

when [ # s. Given s-number of real values bys;; € R (p < j < p+s) for [ = s, we

. _ . X _ —bon_ _ boe . - .+ZQ:157..b77, ) o
. ?2°? — 2s—p,p L e— 225—p—j,ptJ i=0 ¢s—%,i9s—p—j+i,ptj—1
introduce ¢;_; ; in equation (?7) as ¢, 1= “BL Gy = = —
for 1 <j<s—p,and
_ b2s—p—jptit Db Cos—jop—ij—stptibis—i 4
Cojji= — when s—p+1<j<s. (3.3)
2s,5+1 _ p—i—s
Then, d (§ =0 Cs— i Ls— ”,OQSH) = — bgs jiE2s—jj, t.e., terms bos_; jEos_; ; for

j=mp,---,p+ s are simplified from the vector ﬁeld v+ When [ # s, let

Gjji=—gap,; for 0<j<I 1>1,

while ¢;_;; and d}_; ; are taken as in s + 1-th level non-orbital hypernormalization. Hence,
all ©]_, ;
form. However, @l_jvj—terms are not simplified more than what is done in the non-orbital

-terms for all [ # s, 0 < j <[ can be simplified in s 4+ 1-th level orbital normal

normal form case. H
Theorem 3.2. 1. Let r = 00 and s < oo. Then, the infinite level orbital normal form
s given by

(s+1) 1 00,p—1,l+s 2
v *UO+21+3 sa1]9 +Z7,+] 1azg +Z] =pVs—j,j Es- J]+Zl 1,j=0,j=l+p+1%U+s— “@Hs G

2. Whenr = s = 0o and s3 < 00, the sy + 1-th level (and the infinite level) orbital
normal form of v") is given by equation (Z.22).

Proof. Ttem 1. In this case, the prime goal for normalization is to eliminate ©-terms while
we prevent the creation of Eulerian terms. Since any further use of time rescaling beyond
the first level is not possible, the proof follows the arguments in the (s + [)-th level non-
orbital normal form case.
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Item 2. Since r = s = oo, all Eulerian terms are simplified in the first level normal
form. The centralizer of RO5, + ROF, in & is given by .2 = Cgey  1rez (). Hence,
only time rescaling terms can be used for further simplification in the first level. Hence all
©,_; ;-terms for | > 1 and 0 < j < [ are simplified in the first level and the first level orbital
normal form of v(Y is represented by v(V) := vy + oo =1 @ ]@ Now update the grading
function 6(0%,,) = (Emy) = m +n for i = 1,2. Define s;,p; as in (224). Here this is,
of course, defined for the first level orbital normal form. The linear space ker d'*52= 12 ig
given by

so—1,0—s+k
k=0,j=0 {R sa+ks E sa+k—73,55 082 k— 1) + Zz 1 R( sa+k> l sat+k—74,57 082—k—1)} ’
: l+sa+1,s94+1 __ o
and  imd Z] —o R | Eijj, Z 03,- H] + ijo RZi4s,—jiv0-  (3.4)
Since our priority of elimination is with ©!-terms than ©%-terms, no time rescaling can be

used for further elimination. Thereby, equation (2.22)) represents (sg+ 1)-level normal form
of v, Now we have

l+s2,l+s2 _ s,l+k ~2l+satk I+s2,k I+s0+k
ker d = Zk:l,j:ORElJrk—wezlJrzsz + D ke 1,j= o RO_ ]]e2l+232‘

Thus, im d‘Fs2tbitsatl — jy gi+s2tls2 1 Hence, ([Z22) is the infinite level orbital normal

form. O

The following lemma plays a central role in the infinite level derivation of orbital normal
forms.

Lemma 3.3. Let rank [MS M| = a, s, 7 be similarly defined as in equations (2.8))-(2.11),
and [ > 0. Then,

204r—s+2 for 0<I<a-—-r-—2,

(3.5)
a+l—s when l>a—1—2.

rank [./\/li Mi”_s] = {

The case | = 0 is useful for the results in Section [4)

Now we update the grading function 6 by

§(Emp) =m+n, 6(6,,)=r+s+m+n, i=1,2.
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Theorem 3.4. Let p > q. There exist sequences of non-negative integers u;, permissible
state transformations and time scalings so that they transform equation (L1 into the r+1-
th level orbital normal form

“0+br—q7qEr—qvq+Z?7:Sil,l:1,j=1af—j,j i—j,j+Zj’=pbs—iviE8—ivi+sz;‘:l’olﬁwlalis—j,j911+s—j,j
D DITPIILNCLIEE) Srie e A NTNIPE (RS §) ) TR SRS B S0l S A TPR SR 30 ) TINY
where b,_; ; =0 for j=0,...,¢g—1 and v, < min{s — p,max{l —p+¢+1,0}}.
Proof. We have
ker d+ 1 = spany_ ¢ (0, Zi - iy 0), (Oktr—s, Brr—sikjs On—ss1) }
+ GBZ;B?Z’ZOM R(0,2(s =l — k) Zi14k-j,0, Ejyk—j,0) + EB?Sfiizlaij)kR(Ov @f—zsﬂc—j,ja 0).

We refer to 2(s—1—k) Zipx—j €55, + B €5 tar ! as a coupled term, that is a time term
coupled with a state term. For an arbitrary (T, S):= (71,41, - ,Ti4r—1,51, +  ,S14r—1) Eker dH7=17,

dl—l—r,r—i—l(T’ ﬂ-ﬁ-?“? 57 SH—T’) = E,UT’ _I' ﬂ—l—r—svs + [Sb ,UT’] _I' [Sl+r—s> 'US] )

k 2,k—r— ; ]
Sk =250 Ch—gi Br—gig T 22501 =0 hr—smj jOhorajjy (3.6)
Crrh—jj = 2(s—1—k)epp—jjfor 0 <k <r—s—landdj,, , , ;;:=0for0 <k <r—s—1.
Hence,
. _ 2 1-2s i ; '
im dT O (L Nrad L) = {20 2000 di s 1090050 Vs) | di_os—;; € RY

i.e., ©-terms cannot be simplified more than what was simplified in the (s + 1)-th level
orbital normal form. Hence we apply a reduction approach using the factor Lie algebra

B = < A= (2, (£, —£]), and by inductively defining

CZH—T,T—FI : ker(CZl—l-r—l,T) % Al—l—r — El+r (3-7)

as a projection of the map d'*™"*! on the factor Lie algebra. More precisely, we replace
(A, By, 1) with (A, By, d™+1) in @3)-@4)-25) in order to only discus further
simplification of Eulerian terms in the factor Lie algebra B. Given the above argument,
im d+r ! = im Hod "+ 4 im '™+, Similarly terms Eppk—mmeoioF +rad & precede
El+k_j7je12ﬁ2_rs+k +rad .Z terms and term Zz+k_m,me§;;12r precedes Zl+k_j7je§;§r12r, when m <

j. Then, the matrix representation for d++! is

[2(s —r)ML M= 2(1 +r — 25) ML) (3.8)
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Since the second and third blocks are linearly dependent, we omit the third block matrix
by assigning ¢;4,—s—;; := 0 in the transformation generators for all l and 0 < j < [+47r —s.
Let [ < p — q. Since the first g-rows and p-rows of the matrices M’ and M =% are zero,
Eiy,_j;-terms for 0 < j < ¢ — 1 cannot be normalized. On the other hand, terms of the
form Eji,_;; for ¢ < j < g+ are simplified via

l JlAr 41 ol altrt2 q+l . .
ijo v;d (2(3 —0Z1—j €5 9, + Ei—j ey o, ) + Zj:q bir—j, i Eirr—j 5,

that belongs to .7 RE.,_;; +rad.Z. Here,

Jj=q+I+1
b pp L bl+'r7p7i,p+i_2§:1 Yi—j0s—p—j.pti .
Yo 1= L, Vi = D E T for 1 <i<l, (3.9)

and real numbers b, _; ; stand for the coefficients of the normalizing vector field. Here note
that the transformation generated by Z;ZO Vi(2(s = 1) Z1_j ;€4 0, + Ei_jj€bi737) changes
the coefficients associated with terms in the radical ideal and by4,—; jFj4,—; j-terms for
g+1+1<j7<I+r Sincel < p—qg— 1, the column spaces associated with matrices
ML and M7= are linearly independent and dim d*"+! = 20 + 7 — s + 2. We omit the
first p-rows and last s — p-rows of [2(s — r)M!  MY7"=*] to obtain matrices 4; and B,
respectively. Hence, Ej.,_; -terms for p < j < p+ 1+ r — s (via equation (??)) and
0 <j <q—1 (via equation (3.9)) are simplified while Ej ,_; j-terms for ¢ < j < p—1
cannot be normalized in the r + 1-th level normalization step.

When [+ 1 > p — g, we use the recursive relations (3.9) to eliminate Ej,,_; ;-terms for
g < j < p-—11in the r + 1-th level. Remove the first p-rows and the first p — ¢-columns
of [2(s — r)ML  ML7=5] to obtain a matrix blocked by A;, By, Cy, Dy, where Bj is lower
triangular with b,_,, # 0 on its diagonal entries. Let

w :=rank(C; — D;B;'4;) forl+1>p—¢q, and y=0forl+1<p—gq. (3.10)

Next by Lemma [3.3] we have

(3.11)

l+1—p+q when p—qg—1<I<a—r—2,
uw =
: a—r—1—p+q for Il>a—1r—2,

where a := rank [M? M’]. Hence, rank d*"" ! = u,+ 1 +r — s+ 1+ p— ¢ and all terms
Epyr_j;forp<j<p+1l+r—s+u are simplified and

I(im @™ + rad.?) = (im a7 + span?f;]l-i;:jﬂl_s{El+r_j,j} +rad.%),

fork=q+Ilwhenl<p—q,and k=p—1whenl>p—q. O
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Remark 3.5. For p < ¢, we have imd™" ! = imd"*™** + span{F,,_;;|p < j <
kp+l+r—s<j<p+l+r—s+w},y=0and k:=p+Il+r—sforl+r—s+p<gq.
Whenl+7r—s>q¢—p,uy <min{s —p, [+ 1} and k:=q— 1.

Proposition 3.6. When rankd™ ™" = r + s+ 1 and p > q, the infinite level orbital
normal form is

(r+1) _ 1 Dpo—1,l+s

v _U0+bTOETO+ZZ+J 1a”@’]—l—Z] =p boiiBsiitd 12 1,j=0,j= l+p+1al+s JJGH'S —jsj
2 p—1,p—1,l+r ) ) s—2,l+r ) )

+Zz+] salj(—) Zl =0,j=l4+1,p+l+r—s+1 bl+7’_ijEl+7"_j7]+Zl:p,j:2l+r—s+2 bl-i—r—j,]EH—r—],j-

Proof. By Proposition (7)), rank [M? M| =r+ s+ 1 and p > ¢ imply that ¢ = 0. By
Lemma 3.3, Theorem 3.4, m = s — 1,

and u;, =0 for [ <p—1. (3.12)

l4+1—p when p—-1<I[i<s—1,
u =
: s—p for [ >s—1,

For 1 <[ < p — 1, Theorem [3.4] implies that Ej,_; ;-terms for 0 < j7 < [ and p <
J < p+1l+1r—s are normalized. However, Fj,,_; ;-terms for [ +1 < j < p —1 and
p+l+r—s+1<j <[+ r cannot be simplified. In the cases of [ > s — 1, all Eulerian
terms of grade [ 4+ r are normalized. Now we show that

dl+r+17l+r+1(T7 S) = dl+r+1’r+1(ﬂ+17 ﬂ+27 U 7ﬂ+r+17 Sl+17 Sl+27 Ty Sl+7“+1) (313)

for all [ > 1, where T' = (11,15, ,Tj1r+1) and S := (51,59, -+, Siiry1). Assume that
1 <1< s—2 Since all terms Fjq,_;; for | > s —1 and 0 < j < [+ r are simplified in
r + 1-th level, ker d*+"*" is given by

Zr sl+k 2(s—1— k)ZHk ]]e2[+27~+El+k “egfi’;:” s,l+r—s+k 21 I+k+r—s

2l+k+2r—s
k=1,j= oR 2 tspan;_ 5, {Eitr—s+k—j,i€1 97 s Zitr—s+k—j,i€ 1o, -

By Lemma B3] for [ > s — 1, ker d"*" L4+ ig described as
s l—r+s+k 5,l—2s+k 2l+k+2r—s
span;_; ;— {00, Z1 14 515—55:0),(0, Ej_pisii—ys 0) } D 0 1,j=0 R@z 2s+k—7,7€21+2r :

Hence for 1 <1 <s—2,

l 1,1 1 _ : I 1,r+1
AT YT T 4.8, ke ) = T e + s Vs + [Si41,05) 4 [Sipr—si1,0s) €im d T+

where T4, Si4i are defined by equations ([B.6)), ¢ 5—;,;=2(s—1—Fk)ciyg—jjfor 1 <k <r—s,
and dl+k ”—Ofor 1<k<s0<j<Il+k,i=1,2. Similarly for [ > s — 1, we have

l+r+1,04+r+1 _ : I4+r+1,s+1 : l+r+1,r+1
d (T, Tir11, S5 Sirs1) = [Star—st1,0s] € imd Cimd

where ¢j4y_s11-5; = 0 for all 0 < j <1 +r —s+ 1. This completes the proof. O
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Theorem 3.7. When by =0 and by 1b29 # 0 in equation [27), the second level extended
partial orbital normal form of vV is given by

v® =0+, (@f’@},ﬁai?)eij - bi,jEi,j> + L WA E 0+ Y00 al0 0, (3.14)
and bé?()) = by. Further, the infinite level orbital normal form of v s
v =30, <ag,(j2)@zl,j +ay 2, + bivjEid> +b20E20 + 355400} 5. (3.15)

Proof. We have

d*? <_bo’2 Zo1 + Nt 210, 0) = —boaly2 —bi1Er
bo.1 bo,1
for any by 2,011 € R. Hence, terms of Ejy» and E; ; are simplified in the second level orbital
normal form while the normal form coefficient b% = by remain unchanged. On the other
hand, Theorem (B.I]) implies that E;(-terms (2 < j) are the only possible remaining terms
in the second level orbital normal form. Thus, equation (B.14)) is the second level extended
partial orbital normal form. Since bé?()) =byo#0, (s,7) =(1,2), ¢ =0, and p > ¢q. We may
use dl+2’3(b2llf%(—2(l —1)Z,0,0,E;0,0)) = —biy20Ei420 to simplify E;o-terms for j > 3.
These give rise to the normalization of all Eulerian terms of grade [ 4+ 2. Thus, equation
(BI5) represents the third level orbital normal form of v according to Theorem 3.4l The
block matrices A;, B;, C; and D; are obtained by removing the first column and row of
[—2M, MU, Hence, rank[M2Z M3] = 4 by Proposition 271 Next, the third level
orbital normal form v is the infinite level orbital normal form according to Proposition
0.0l U

4 Multiple-input parametric normal forms

We consider a multiple-parametric system given by equation (L.2]). Using the primary
shifts of coordinates [34, page 373|, we can eliminate the nonzero parameter-dependent
constants from the system. Hence, we can assume that F(0, ) = G(0,u) = H(0, ) = 0.
By formulas (2.1]) for the case vy, we obtain a parametric version of Lemma 23] i.e., the
first level extended partial parametric normal form of (LZ) is given by

w® = + Zjﬂ'zo a},k(u)@},k + Zj+kzo a?,k(:u)@?,k + Zj+kzo bjr()Ejr,  (4.1)
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where p := (u1, -+, py) stands for the inputs, m := (my, mo, - -+ ,mpy), f™ == ™ ... uy"~,
and for i = 1,2,
a;‘,k(“) = Zﬁqzo O‘;,k,mﬂma bjr(p) == E\Oﬁl\:o Bjenp™, m| :=my + -+ + my,
and af 4(0) = bop(0) = 0. Now we assume that
s:=min{m > 1|35 > 0,b,,—;;(0) # 0}, p:=min{i|b,_;;(0) #0}, p<s. (4.2)

Theorem 4.1. Given the vector field (A1) and conditions (A2), there exist time rescaling
and changes of state variables transforming wV) into the (s + 1)-th level extended partial
parametric normal form

weH) = vy + 3750 (a25(1)02, + b (1) Eiy) + St s bis (1) Eresejy (4.3)
0, I+s
+Zi+j28 i7j( ) ,J Zl 1pj 10; p+I+1 alJrs j]( )®l2+sfj,j7
where bs_p (1) = bs—pp(0) # 0, b; ;(0) = 0 for i +j <s, and af,(0) =0 fori=1,2.
Proof. We use a structure constant extension to include
(B, ©l] =0, [Eoo, Exy] = 2(k +1)Ery, [Eop, ©4,] = —2(k+1)05,

for all k,1 > 0, 4 = 1,2. Thus, the parametric terms E,_, ,u™ for any nonzero m € Z%,

is simplified in the s + 1-th level parametric normal form. We simplify parametric terms
a4 ,0.mOp,01™ from the system by time rescaling via

ao 0.m 70 0 0,m%2 2 um 1 1, m
w—lz phog = TG — ap,0,mO0,04™

By parametric version of the formulas given in the proof of Lemma [B.Il the proof is

complete. O
Let
r:=min{m > s| 37, b,—;;(0) #0}, ¢:=min{j|b_;;(0)#0}, ¢<r. (4.4)

Theorem 4.2. Consider s, r < 0o, p, q defined by equations [A2) and (L4)). Let q > p.
Then, there exist a sequence of natural numbers w; and invertible transformations (time
scaling and changes of state variables) transforming w™ in [@I) into the (r + 1)-th level
extended partial parametric normal form

p—Litr
wr D = =g + Zz+y 1 ( u( )@2 +b; ( ) i,j) + Z?ilp,jzo,j;l+p+rfs+ul+l bl+77j,j(:u)El+r7j,j
1,4-1 —s,p—1,5+
e b () B+ Y o s s (1) Brs—j 5

1,1+
+ Zi+j:.§ a"},j(u)gg,j + Z?Olpj 0j sl+p+1 a‘12+s jj( )@l2+s —J3J°
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Here, bis—j;j(0) =0 when0 < j<p—1landp+Il+1<j<Il+s for1<I<r—s—1
Furthermore, bs_p, ,(1t) = bs—p»(0) # 0 and b,_q (1) = br_q,4(0) # 0.

Proof. Since

R (Or, E070,um, Or—l) + R(QSZQ@,um, 07,_1, E070,um, Or—l) Q ker dr—l—i—(r—i—l)\m\,r’

rt (D)1 (52000 Lo o™ _ _m ~ b jj m
i ((T - S)br—q,q7 Or 2(T - 5>b7‘—q,q7 OT) = g ; Tq,q’u Broii:
We conclude that the parametric terms E,_, 4™ and Es_, ,n™ for arbitrary nonzero m €
7%, are simplified in the (r 4+ 1)-th level partial parametric normal form. Eulerian terms
asii_l_jhj(/i)ES_l’_l_j’j for1<l1<r—s—1and p<j<p+I are simplified in the (s + 1)-th
level. Similar to the proof of Theorem [B:4] we consider matrix representation (B.8]) and
remove its third sub-matrix block. When [ +r — s+ 1 < g — p, the column spaces of
matrices 2(s — r)M! and ML"* are linearly independent and thus, Fj,,_;;-terms for
p<j<p+l+r—sandq<j<qg+! are simplified while for p+I14+r—s+1<j<¢q¢—-1
and 0 < j <p—1, Ej4,_; -terms may remain in the r 4 1-level normal form. Assume that
q—p <l+r—s+1. Similar to what is described in equations (39), Ej;,_; ;-terms for
p <7 < q—1 can be simplified. Now we obtain the matrix

A B
G D
by eliminating the first g-rows and g—p-columns starting from [+2-th column to [+q—p+1-

th column of [2(s — r)ML  MY"=9]; i.e., we omit the first ¢ — p-columns of ML=, By
Lemma [3.3], we have

[+1 if g—p—r+s<Il<a—-r-—2
u = (45)
a—r—1 when [>a—1r—2.
Hence all Ej,_j ;j-terms for p < j <p+ 1+ r — s+ u; can be simplified. O

Remark 4.3. Eulerian parametric terms
Aspi—jjBspi—jp™  for 1<I<r—s—1and p<j<p+lI

are also simplified in the (s + 1)-th level parametric normal form. Now we complete the
proof by a parametric version of Theorem [3.4] as follows. For [ < p — ¢ — 1, Eulerian terms
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Eijjforp<j<p+l+r—sand 0 < j < ¢ —1 are simplified while Ej,;;-terms
for ¢ < 7 < p—1 cannot be normalized in the r 4+ 1-th level normalization step. When
l+1>p—q, Eyyjj-terms for p < j <p+1{+r — s+ are simplified while these cannot
be normalized when p+{+r—s+u,+1 < j <[+r and y; is defined by [B.I0) and (BIT).

Corollary 4.4. Assume that rank [Mi Mffr‘s] =r+s+1 andp < q. Then, the infinite
level extended partial parametric normal form of w™) is given by

—rs—1,q— 1,0+
w™ D =g + 307 (af (107 5 4 big (W) Eig) + 0T 2T g Dier—id (1) Bier—jig
2,0+ —s,p—1,l+
2 it st2 b= () Brvr—j.5 + 30020 0 i1 Ois—i,g (1) Eies—j. g

1,0+
+ ZiJrj:S a%7j(u)911,j + Zfolpj OJSlerJrl aH—s -3, _]( )®l2+s —75,7"

Here for each1 <1 <r—s—1, bjys_;;(0) =0 when 0 <j <p—Tlandp+i+1<j<l+s.
Furthermore, bs_p, ,(1t) = bs—_p»(0) # 0 and b,_q (1) = byr_q,4(0) # 0.

Proof. In this case, Proposition 2.7] implies p = 0. For 1 <[ < ¢ —r + s — 1, Theorem [3.4]
concludes that Ejy,_; -terms for 0 < j <[ +7 —sand ¢ < j < ¢+ [ are simplified. Since
w=Il+1lforg—r+s<1<s—-1, Bjj;-terms for 0 < 7 <2l +r — s+ 1 are also
normalized. However u; = s for [ > s — 1. Thus, all Eulerian terms of grade [ + r can be
normalized. Proof is complete by Theorem (4.2l O

Remark 4.5. When p > ¢ and rank [./\/ll, Mff’"_s] =r + s+ 1, parametric normal form
follows a parametric version of Proposition3.6land Theorem [4.2l A similar argument to the
case p > ¢ in the r + 1-level orbital normal form implies that the r + 1-level normalization
gives rise to an infinite level parametric normal form.

Theorem 4.6 (The case r =00). 1. Let r = o0 and s < oo. Then, the infinite level
parametric normal form is given by equation (A3) where E,_;;(0) = 0 for all s #
n >0 and Es_p (1) = Es—p,(0).

2. Assume that r = oo and s = co. FEither the nonparametric part of the vector field is
linearizable or there exists a natural number sy so that its ss + 1-th level parametric
normal form is

s I 1,14+
’LU( ) T U0+Z?j—j=0bi3( ) 1J+Zz+j 1 l]( )@iijZ;X’f; 0l+;22+1 al2+52 J]( )912+52 —7,J (46>

where a2 _ = a? (0) # 0. The vector field w*2TV is the infinite level para-

$2—P2,P2 $2—P2,P2
metric normal form.
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Proof. By a parametric version of the proof in Theorem ET], equation (A3]) is the infinite
level parametric normal form. Assuming that » = oo and s = oo, we define the grading
function §(p™O;,_; ;) = m|+n+i—1fori=1,2 and §(u™E,_;;) = [m| + n for the first
level parametric normal form v". Via a parametric version of Theorem [3.2] the first level

reads

w = vy + Z;}ijzo bij (1) Eij + Zz—i—] 1 zy( )612)’ b;,;(0) = 0. (4.7)

When s = oo and sy = oo, the nonparametric part of the vector field is linearizable.
Otherwise, let s, < oo. For this case, the grading function for s, 4+ 1-level is updated by
S(umei_. ) = |m|(s2+ 1) +n for i = 1,2 and §(p™E,—;;) = |m|(sa + 1) + n. Now

n—j.j

by [™Eop, ©2, ;] = —2s,u™02, ;. and employing a parametric version of item 2 in
Theorem [3.2], the claim is obtained. O

Theorem 4.7. Assume that 6071(0)283270(0) —b071(0)b170(0)b171(0) +b072(0)b170(0)2 7é 0. When
b10(0) # 0, the infinite level parametric normal form of v is given by

VO =g+ Yy al ()0 + 0 (a2, (1)0F by (1) B ) +553(0) Boa+ 30 a3 (1) 95 (4.8)

and b((f%(O) = bor*bao—burbigh+biobez - frepe bi; denotes b; ;(0). For byg = 0,bo1 # 0, the infinite

bio
level parametric normal form of v is expressed as

Vo) = gk Y gal (0L (a2, (10)©2 by (1) Eig) H0S(0) Bag+ 350, a2 ()01 (4.9)

and 65?3(0) = 501_2(5012520 — bo1bigbi + 5102502)-

P’f’OOf. Since 6071(0)26270(0) — 6071(0)b170(0)b171(0) + 6072(0)6170(0)2 7é O,
Zjl'o j,1— ]() # 0, Z?o j,2— ]() #0, and s=1.

When b, (0) # 0, p = 0. Consider the normal form coefficients bypm and by1m € R. Hence
by Theorem M1 the second level parametric normal form is

0 = vy Sl (@, (002 + big () Br) + iy aby ()01, + 502, (a6 ()0, + b7 (1) Bo

and b((f%(O) = bp2(0) + b()ﬂlmb:# Hence, r = 2, ¢ = 2 and ¢ > p. Theorem [£.2 and
the equation dl+3|m|+273(b2°é—§;(—2(l — 1)Z04,0, Eo, 0)u™) = —bor2Eo4opu™ for m e 25,
where

S o R(=2(1 = 1)Z1_,;,0, Ei_jj,0)u™ C ker d+3m+12

Jj=0
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imply that the third level parametric normal form of v® is given by equation (Z8). Hence,
rank| M2 M3] = 4 by Proposition 27l Proposition concludes that the normal form
vector field v® is the infinite level parametric normal form. The block matrices A;, B;, C;
and D; are obtained by removing the first two rows of [-2M}  M{™] and two columns
(I +2-th and [ + 3-th) from [—2M% M4™] . Then,

-6170 b071 0 tee 0
0 b . .
Bl pu— : .1;70 ‘. ..
Dl . . . . O )
: ' ' bio bon
0 - - 0 5170_
01—
By = biolixi + boa [ IX;I 2 0} A = [bO2Il><l Ol><1] G = [lel 502] and D; =

[le(l_l) 6071} . By Proposition 8.6, u; =1 for all l > 1. For b; o =0 and by; # 0, p = 1. By
Theorem 4.1, the second level parametric normal form is read by

0 = wo + g (63 (002 + big () Bg) + Xy aly ()0, + 5532, (a3 (1020 + 03 (1) B ).

By 00,1(0)%b2,0(0) — bo,1(0)b1,0(0)b1,1(0) + bo.2(0)b1o(0)* # 0, b5H(0) = bap(0) # 0, r = 2
and ¢ = 0. Now by parametric version of Theorem [3.7] and Theorem [£.2] the third level
parametric normal form of v® is given in equation (EJ). By Remark 5] the vector field
(4.9) is an infinite level parametric normal form. O

5 First level normal form coefficients

A new and efficient algorithm is here proposed to derive the first level truncated normal
form formulas for nonlinear singular Eulerian vector fields given by

v(z) = w1Ofy + w205 o + Ey, for f € R[[z]],2 := (21, w1, 22,w3) € C* and w; = . (5.1)
All even-degree homogeneous vector fields are eliminated in the first level normal form.
Thus, we always have fl, = Z?Zl be—jjlz1 257D |2]% for | > 2k, and fl,., = 0 for

[ > 2k 4 1. Denote the transformation generator for simplification of grade-k homogenous
part of v*~1 by Ej, , that is determined by

( ](21'.]1'7,2']2')71 6’“ fkil(Z)
(

11 — jl)W1 -+ (iQ — jg)(dg 8z1i18w1118z2"20w212 |Z=0

Ri := 3 i1 int i +io=k, ) 211wy 2wy 2. (5.2)

117192772
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Theorem 5.1. The first level normal form of vector field ([&.1)) is given by
v = w08 ) + waO3 4 + 30 S b B

where b,_; j-s are given by

82k f2k—1
bp—ii = . .
2k — 5))1(29)10]21 [PE0)0)] 2] la=0”

(5.3)

while the n-jet truncation of f* recursively follows the equation

n— nt 1 m . . m -
JrfE = Jr R (Vi ve) + S0 S8 — IS (G = m)k — i) ™ fE7, - (54)

forn >k, and f°:= f.

Proof. Since

(21 w1 ™ 2™ we ™ Ey g, Vo) = (Wl(m1 — 1) + wa(mg — nz))Z1m1w1"122m2w2"2E0,0,

21wy "L 2pM2wo"2 Pl 1 ~ D20 42 }_ mi1+p1,,, n1+q1 . _me+p2,,, n2+q2
[k e o, 21 P un 2 wa By ] = 21 wq 22 W Eo,0,

all monomial vector fields with odd degrees can be eliminated from the first level normal
form. Further, for the case of homogenous odd-degree vector fields, we can eliminate
all terms except |21]%|29]*2Ey for i1, i5 € N. For an even number k, the k + 1-degree
homogeneous vector field part of v¥~! follows

8k fk—l
(201)!(2i2)10] 21 [ 9 z2]* ==

D o0 t2is—h ( ) |21 | 22] Eq p.

0

The transformation generator Ej, gives rise to

k. k=1 _ , k—1 o 1 .am k-1 _ k-1 o0 © 1 _m k-1
v :=expadpg, vV =v +Zm:1madEhkU =v "‘Zm:lZi:omadEhkUi ,

and vF™! € %, Since vt = vy, vF T = B, and v*7! = v + Epeen,

00 00 1 m . . m rpk—
vh = oh 4 adg,, vo + D omet Qi ml Hj:Jrzl ((j —m)k — i) h™ fF " Eo

and equation (5.4]) holds. O
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Theorem [B.1] introduces the following algorithm for computing a truncated first level
normal form of the vector field (B.1I).

Algorithm 1 Computation of a truncated first level normal form.

Inputs: (v,n): Vector field v given by (5.1) and a natural number n.
Output: J?*vM: A 2n-grade truncation of the first level normal form v,
Let J?" f9 be the 2n-degree truncation of the scalar function f associated with wv.
Take 0 := w,Of o + w203y and k := 1.
while £k < 2n —1 do
Take J2" fk=1 = Z?Zl ff_l where ff_l is the j-degree homogeneous polynomial part
of fF=1for1 <j < 2n.
Define the transformation generator hy according to equation (5.2]).
Use the equation [5.4] to simplify ff~' and update J?" f*=1 with J2" f&.
if k£ is odd then
while 1 <i < |£] +1do
Compute by_;; from equation (5.3)).
Let ﬁ(l) = ’lAJ(l) + bk_i7i|2’1|2(k_i)|2’2|2iE070.

end while
end if
Take k := k + 1.
end while

Set J2pM .= 5@,
return J2 oM,

Corollary 5.2. Consider the vector field (5.1) where

f(x) == a121 + asyr + azms + asys + asz1? + asT1y1 + arT122 + asT1y2 + agyr? + aoy1T2 + a11y1y2
+a1222? + a1372y2 + ar4y2>.

The vector field (B.1)) can be transformed to the 6-jet truncated normal form

V(%) 1= w108 o + w202 o+ Sh_y S b Brj

where by 1,b1.2 are given in appendiz and Theorem [51] and

_ as+ag — ai12+aiq _ 011a133—@01004041—0A8G3A2+A704G2 a3z®+a4® a1%+as?
bio = P bo1 = 2 by = 2wiwe +4w22(as+09)’1 +4w12(a12+a14)71’
b _ asai’+3asas’—2agaias+3agar’+ agas’? b _ a12a3’+3a19a4®>—2a13a3a4+3 arqa3’+ ajaaq’
2,0 — 8w 2 ) 0,2 — 8o 2 )
b _ (a5+a9)(01206*20102as+201¢12¢19*a2206) (012+a22)(al2115+5¢11209*4a10206+5022¢15+a22a9) (5 5
3,0 = 16w 3 16w1 % ) 5)
b« — (a12+a14)(a32a13—2a3a4a12+2a3a4a14—a42a13) (11321112+5U«32al4—4a3¢l4a13+5U«42012+a42014)
0,3 — 64w, 3 +

64wo4(az2+as2) !
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Proof. Using the changes of coordinates to the complex coordinates, we have

fO = f(Z) — (z1+w1’ 2'12111)17 zz-;wz’ z22— wz) fO( ) + fg(z)7

where fj(z) := Ajz1 + Aswy + Azzg + Aqws,

f02 (Z) = A5212 +A6,21w1 +A72122 +A821U}2+A9U}12 +A10w122 +A11’U}1’LU2 +A12222+A13221U2+A14UJQQ.

Recall hy(z) from (5.3) by hi(z) := %zl + %ﬁwl + %zg + %‘;u@ By applying this trans-
formation generator and Theorem (B.I)), (Vhi,0) = —f. Now we have by o = i

f ‘ —
A|z1]2 12=0
1 1 oft
As = a5 + 5a9, by = L

_ _ 1 1
Beal? |-—0 = A1z = 5012 + 5a14 and

o IA5 2 TA7 TAg IAQ 2 TA1g _ TA11 IA12 2 TA14
hQ(Z)‘_ 2w1 +w1+w22122+w1 wzzlwz 2w1 +w2 w1w122 w1+w2w Wt 50 + 2W2w2

Employing hs(z), we obtain

6—i| ] m
J2= T (Vhe, ©) 4+ L, Y2 TI (G = m)k — i) b1,
f2=biglz1|? + bo1|22)® — haf9 + hihofS + hi® £ — 2ha*ha f§ — ha® £ + i fY.

Similarly, f? for i = 3,4, 5 is obtained. Then, the 6-jet truncation of the first level normal
form can be extracted from the following formulas:

JOfP— 2 = h12f§) + h3(bl,0|21\2 + bo,1|Z2|2) + hiha f9 — h13f20 + h14f20 - 2h12h2f§)7
SOt = TP =37 o bigla [Pzl A+ (hs + 2ha) 300 iy bl P[22l 4 haha f3
—h 3 ) — 2n 2 ho £ + bt fD,
TO 5 T4 A=yt 9 — 2R o fO 42Ny DRI IEA L PR N L L Ly AN P L PR

where
92i+2j ;
_ — — - f. for i+j5=1
b _ ) @) P
i,] 8224-2] 5 40 . .
T P P A A
and bi,j = (2i)!(2j)!623‘i:12|2i82j|22‘2j <hl4 fg - 2h2hl2 fg + 2hy Zi-i-j:l bz’,j|21|2i|2’2|2j) forv+j5 =

3. This gives rise to the normal form coefficients (5.5) and by, by 2 in the appendix. O
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6 Appendix

The following normal form coefficients are associated with Corollary

b ._ 3(a1*(as+3as)—2a1a2a¢+a2>(3as+as)) + (a1azai1—aiasai0—azazastazasar) 3(a1®+a2?)?(a12+a14)
2,1 = 80.122(0.11274.022)((1324*0.42)71 4u)1u)2(UJ1270J22)(G.12+(122)71 160.11400272(0.1127(.022)
+3(al2+al4)(a12+¢122)2*6(a3z+a42)(al2as+3al2¢19*201a2¢16+3022a5+a22¢19) _ (a1azai1—ajagaip—azazagtazaqsar)

16w12(w12—W22) 4w13wz*1(w12—w22)(a12+a22)*1
+(asag*¢14¢l7)(3111a5+5¢1109*0206)*(a3a11*114!110)(ala6*5aza5*3azag) _ (a12+a14)(a1%as—2a1a2a54+2a1a2a9—a2>ag)
80.120.113((4)12—0.122) 160.1130.1272(0.112—(4)22)
+(alzaﬁ*201020‘54’20‘10‘209*0220‘6)_a1a2(072“1’082‘0102‘0112)*(0‘12*‘7‘22)(01007“1’08011)+ w1 (aras+3aia0—azas)
16w1 (wi1Z—w2?)(a12+a1s) T 4wy (w12 —w2?) 4(w12—w2?)(azaiotasair) !
_ (azar+tasas)(aiag—3azas—azag)  (a1a3a8—a1a4a7—a2a3a11+a2a4a10)+asae(a1a11+azas)—asas(aiaiotasar)
4wy (w12 —w2?) 8wi2we (w12 —w2?)(as—ag) ! ’
b . 3(az’+as*)*(as+as)  aiz(as®—asz®)+2asas(a12—ais) _ 3((azas—aiaii)as+as(aiaio—azar))
1,2 = 16w1 2wot (w12 —ws?) 16w; —2wso3(ag+as) 1 (wi2—w2?) 4wi ~1wa3(a3?+aq?) (w2 —wa?)
+(a12—a14)(a1a3a10—a1a4a11—a2a3a7+a2a4a8)+a3a13(a1a11—a2a8)+a4a13(a1a10—a2a7) _ 3a4”(2a3°—a4”)(ag+as)
80.1224.0171(001270022) 160.122(001270.122)
+(a12+a22)(3a32a12+9a32a14+6a13a4a373a42a127a42a14) _ (3as?a12+9as’a14—6aizasaz+9asa12+3as®a14) (a1’ +a2?)
Bwa? (w12 —w2?) 8w1? (w12 —w2?)

(a3®—a4®)(aras+aioair)+(—ar’+as*—a10®+a11?)asas—aisas(arar+azaio)+(8asaiz+aisas)(aras+azai1)
4UJ2 (w12—w22)

+ 2a13(a1azaiitarasaio—azazag—azasar)—2aq4(5a12+3a14)(a1a11—azag)  az(3ai2+5a14)(araro—azar)
160.11(0.112—(4)22) 8w1(w12—w22)

+ 3((—a1a11+azas)astas(aiaio—azar))(as®+as?)

40.11002(001270.122
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