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Parametric normal form classification for Eulerian
and rotational non-resonant double Hopf singularities
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Abstract

In this paper we provide novel results on the infinite level normal form and or-
bital normal form classifications of nonlinear Eulerian and rotational vector fields
with two pairs of non-resonant imaginary modes. We use the method of multiple Lie
brackets and its extension along with time rescaling for orbital normal form classifica-
tion. Furthermore, we apply two reduction techniques. The first is to use the radical
Lie ideal of rotational vector fields and its corresponding quotient Lie algebra. The
second technique is to employ a Schur complement block matrix type in Gaussian
elimination and analysis of block matrices. The infinite level parametric normal form
classification are also presented. The latter is also viewed as a normal form result for
multiple-input controlled systems with non-resonant double Hopf singularity. We also
discuss nonlinear symmetry transformations associated with the nonlinear symmetry

group of the simplest normal forms. Symbolic normal form transformation generators
are derived for computer algebra implementation. Further, the results are efficiently
implemented and verified using Maple for all three types of normal form compu-
tations up to arbitrary degree, where they can also include both small bifurcation
parameters and arbitrary symbolic constant coefficients.
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1 Introduction

In this paper we are concerned with normal forms of Eulerian and rotational vector fields

with a non-resonant double Hopf singularity. Hence, we consider

v(x) := v0 + Ef +Θ1
g1
+Θ2

g2
, (1.1)
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where v0 := w1Θ
1
0,0 + w2Θ

2
0,0, ω1ω2 6= 0, ω1

ω2
/∈ Q, g1(0) = g2(0) = f(0) = 0,

Ef := fE0,0, E0,0 := E1
0,0 + E2

0,0, Ei
0,0 := xi

∂
∂xi

+ yi
∂
∂yi

,

Θi
gi
:= gi(x)Θ

i
0,0, Θi

0,0 := −yi
∂
∂xi

+ xi
∂
∂yi

,

for any g1, g2, f ∈ R[[x]], x := (x1, y1, x2, y2), g 6= 0, and i = 1, 2. We refer to Ef as an

Eulerian, Ei
f = fEi

0,0 as a radial vector field while Θi
gi

stands for a rotating vector field.

The vector field (1.1) is associated with the differential system d xi

d t
= −wiyi − yifi + xig,

d yi
d t

= wixi + xifi + yig for i = 1, 2. We refer to

w := v0 + EF +Θ1
G1

+Θ2
G2

(1.2)

as a multiple-parametric perturbation of v(x), a parametric vector field or a multiple input-

system when F,Gi ∈ F[[x, µ]], µ ∈ RN , F (x, 0) = f(x), Gi(x, 0) = gi(x), i = 1, 2.

The conventional approach is to exclude the input parameters of an input system by

setting them to zero and then, obtain the normal form of the system without inputs. Then,

one derives a parametric model (called universal unfolding) by adding parametric terms to

the normal form system so that the dynamics of the universal unfolding would represent

the local dynamics of any possible small perturbations of the normal form system. Next,

the bifurcation analysis of the universal unfolding concludes any possible bifurcation sce-

narios of the original input system. However, this does not describe the actual quantitative

dynamical experience in terms of the original parameters. Hence, the only useful normal

form for the actual bifurcation analysis and control of a real life problem is the controlled

and parametric normal forms. These have recently been obtained for only a few cases;

see [11, 15, 16, 20–22, 42] while we here treat the families (1.1) and (1.2). The controlled

and parametric normal forms are derived in a way to play the role universal unfolding of

the original plant. Thus, the controller designs based on these will be robust against small

unavoidable errors and perturbations; see [15,16]. Furthermore, the truncated classical nor-

mal forms may destroy the Eulerian structural symmetry of the vector field (1.1). Hence,

the truncated normal form system may represent a qualitative dynamics inconsistent with

the original Eulerian dynamics. Therefore, the second goal here is to classify normal forms

of the plant (1.1) and controlled system (1.2) so that their Eulerian structure are preserved

in all normalization steps. This is possible when the set of normalizing transformations pre-

serve the structural symmetry. These facilitate our third objective for a symbolic normal

form computer algebra implementation.

In the last two decades, there have been numerous contributions on hypernormalization

and classification of two dimensional state space systems; e.g., see [4, 7, 11, 20–22, 30, 36,
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38, 39, 41] and the references therein. As the state dimension of the singularities increase,

the complexity of hyper-normal form classifications significantly amplifies. For the three-

dimensional cases, there are only a few results for Hopf-zero and triple zero singularities;

see [1, 8, 9, 12, 14, 15, 31, 32, 43, 44]. Contributions on normal form classification of three

dimensional singularities use specific structural symmetries. They use and preserve the

structure in their normal form results and/or use it for a normal form decomposition.

However, there does not yet exist results on normal form classification with regards to

non-resonant double Hopf singularity.

Sections 2, 3, and 4 treat normal forms of all generic and degenerate cases of vector

field types (1.1) by preserving their structural symmetry. However, in order to simplify the

following formulas presented in the introduction, we assume that

b0,1
2b2,0 − b0,1b1,0b1,1 + b0,2b1,0

2 6= 0, (1.3)

and b1,0 6= 0 when bi,j-s are the first level normal form coefficients. Then, the infinite level

normal form of (1.1) reads

żi =
∑2

j+k=0 c
i
j,k|z1|

2j|z2|
2kzi +

∑

k≥3 c
i
0,k|z2|

2kzi, ẇi = żi = żi, wi = zi, i = 1, 2,

where cij,k := bj,k + Iaij,k, b0,3 = ai2,0 = ai1,1 = 0, b0,0 = 0, ai0,0 = ωi, I
2 = −1, (zi, wi)

denotes the complex coordinates and the over-line stands for the complex conjugate. The

infinite level coefficients are uniquely determined by equation (1.1). When b1,0 :=
∂2f

4∂x2
1

(0)+
∂2f

4∂y2
1

(0) 6= 0, the infinite level orbital normal form is

żi = Iωizi +
∑1

j=0 c
i
1−j,j|z1|

2−2j|z2|
2jzi + b0,2|z2|

4zi +
∑

j≥2 a
i
0,jI|z2|

2jzi, ẇi = żi, i = 1, 2,

where a10,j = 0 for j ≥ 2. Since b0,2 6= 0, the input vector field (1.2) can be uniquely

transformed into

ż1 = b0,2|z2|
4z1+

∑1
n=0

∑n

j=0

(

bn−j,j(µ)+a1n−j,j(µ)I
)

|z1|
2(n−j)|z2|

2jz1,

ż2 =
∑1

n=0

∑n

j=0

(

bn−j,j(µ) + a2n−j,j(µ)I
)

|z1|
2(n−j)|z2|

2jz2 + b0,2|z2|
4z2+

∑∞
j=2 a

2
0,j(µ)I|z2|

2jz2

and ẇi = żi for i = 1, 2. Here, b1,0(µ) = b1,0, b0,0(0) = 0, a20,0(0) = ω2 and a10,0(µ) = ω1.

The rest of this paper is organized as follows. Complete normal form classification

of vector fields (1.1) are derived in Section 2; where we only use the changes of state

variables. Proofs include deriving the transformation generator formulas for practical im-

plementations in a computer algebra system. Near-identity time rescaling are also used
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for the orbital normal form classification in Section 3. Section 4 treats the parametric

normal form classification for multiple-input vector fields (1.2). An efficient algorithm is

proposed in Section 5 for the normal form computation using computer algebra systems.

Some normal form formulas are also derived for practical applications.

2 Infinite level normal forms

For l, k ∈ Z, and i = 1, 2, let

Ek−l,l = (x1
2 + y1

2)
k−l

(x2
2 + y2

2)
l
E0,0 and Θi

k−l,l := (x1
2+y1

2)
k−l

(x2
2+y2

2)
l
Θi

0,0.(2.1)

Define L = Rv0 + {
∑∞,k

k=0,l=0 al,kEk−l,l +
∑∞,k,1

k=1,l=0,i=0 b
i
l,kΘ

i
k−l,l | al,k, b

i
l,k ∈ R}. Any non-

resonant double Hopf singularity can be transformed into a first level normal form given

by a vector field v(1) ∈ L . Hence, we call L as the space of all (first level) normal

form vector fields. Assume that S ∈ L has no linear term in its power series expansion.

Then, S generates a near-identity changes of state variables, that is, the time-one map flow

associated with S. Therefore, we call S a transformation generator. A Lie bracket is defined

by [u, w] := uw−wu, where v and w are considered as differential operators; see [30,32,34].

This provides a natural Lie algebra structure for L .

Proposition 2.1 (Structure constants). The space L is a Lie algebra and its structure

constants are given by

[

Θi
m,n,Θ

j
k,l

]

= 0,
[

Θi
m,n, Ek,l

]

= 2(m+n)Θi
m+k,n+l, [Em,n, Ek,l] = 2(m+n−k−l)Em+k,n+l. (2.2)

Proof. The proof is a straightforward computation.

The normal form formulations here are presented using the method of multiple Lie

brackets and matrix representations; e.g., see [4, 7, 8, 30–32, 41]. We provide recursive

relations for the normal form transformation generators transforming the updating vector

field into a higher level normal form. Following [11, 16, 20], we simultaneously recall the

theory of our infinite level hypernormalization steps for this section and the next three

sections. Let B be either L or its parametric extension, B =
∑∞

k=0Bk be a Z≥0-Lie graded

structure for B, i.e., [Bk,Bl] ⊆ Bl+k for all l, k ∈ Z≥0, and for vk ∈ Bk, v =
∑∞

k=0 vk ∈ B be

an updating (i.e., being normalized) non-resonant double Hopf singular vector field. Denote

the graded linear space A =
∑∞

k=1Ak for the normalizing transformation generators and

∗ for its graded action on B, i.e., Ak ∗ Bl ⊆ Bk+l for all l ≥ 0 and k ≥ 1. The space A
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and action ∗ are different in Sections 2, 3, and 4 and they will be defined in these sections

accordingly. Define

dk,1 : Ak → Bk, by dk,1(Xk) := Xk ∗ v0 for Xk ∈ Ak. (2.3)

Assume that Rk,1 := im(dk,1) and Ck,1 denotes for its complement space that is uniquely

determined via a normal form style. Then, Rk,1⊕Ck,1 = Bk and by [20, Lemma 4.2], there

exists a sequence of near identity transformations sending v into the first level extended par-

tial (orbital or parametric depending on the space A) normal form v(1) := v
(1)
0 +

∑∞
k=1 v

(1)
k ,

where v
(1)
k ∈ Ck,1 and v0 = v

(1)
0 ; also see [35]. The idea is to use the transformations gen-

erated by Ak to eliminate all terms living in Rk,1 from the normalizing vector field. Since

the space ker(dk,1) does not contribute to the simplification of terms in grade k, we shall

use them in normalizing higher graded terms. A systematic derivation of hypernormaliza-

tion steps to infinity is required for derivation and computer algebra implementation of the

infinite level normal forms, i.e., no further normalization is possible. In each normalization

step, one needs to simultaneously track the effects of the normalizing transformations to

the normalizing vector field and also derive the available normalizing transformations for

higher level hypernormalization steps. This is naturally reflected to the computational bur-

den for the normal form classification as the state-dimension of the singularity increases.

Thereby, we inductively denote

dk,r : ker(dk−1,r−1)×Ak → Bk (for any r ≤ k), (2.4)

given by dk,r(Xk−r+1, . . . , Xk−1, Xk) :=
∑r−1

i=0 Xk−i ∗ v
(r−1)
i , where

(Xk−r+1, Xk−r+2, · · · , Xk−1) ∈ ker(dk−1,r−1) (2.5)

for the r-th level map; also see the differential of bi-degree (r, 1 − r) defined on [20, page

1015]. For any r > k, let dk,r := dk,k. Let Rk,r := im(dk,r) and Ck,r be its complement

subspace with respect to a formal basis style, i.e., R
k,r⊕Ck,r = Bk. The complement space

associated with formal basis styles are generated by Eulerian terms and rotational terms;

see [20] for more details on formal basis style. The space of all rotational vector fields

constitutes the radical Lie ideal of Lie algebra L and provides a reduction technique for

normal form computations; see [18] for a proof of our claim. In particular,

Ck,r = πradL (Ck,r)⊕ Π(Ck,r + radL ) and πradL (Ck,r) = Ck,r ∩ radL .

Let im dk,r + radL be a linear subspace of quotient Lie algebra Lk+radL

radL
. Since the formal

basis style gives the priority of elimination to Eulerian terms than rotational terms of
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the same grade, the complement space for Rk,r is the same as the complement space for

(im dk,r ∩ radL ) + Π(im dk,r + radL ), i.e.,

• The linear space Π(im dk,r+radL ) determines all the normalizing Eulerian terms in

the r-th level.

• The normalizing rotational terms in the r-th level normalization step are determined

by im dk,r ∩ radL .

These explain the proofs in the following sections, where we present recursive formulas for

transformation generators and their impact on the normalizing vector field. Hence,

(im dk,r ∩ radL )⊕ (Ck,r ∩ radL )=radL ∩ Lk and (imdk,r+radL )⊕ (Ck,r+radL )= Lk+radL

radL
.(2.6)

Equations (2.6) suggest two reductional techniques for the computation of complement

spaces in Lk:

1. Possible restriction of the homological differential maps dk,r on the radical Lie ideal.

2. Introduction of a reduced map d̂l+r,r+1 based on the factor algebra L

radL
; see equation

(3.7).

When all k-grade-homogenous parts vk of a vector field v belongs to Ck,r = (Ck,r∩radL )⊕

Π(Ck,r+radL ), the vector field is called a r-th level extended partial (orbital or parametric)

normal form. The vector field v is called the infinite level (orbital or parametric) normal

form, when vk ∈ Ck,k for all natural numbers k. The coefficients of the infinite level normal

forms are uniquely determined by the original vector field.

Theorem 2.2. [20, Theorem 4.4] Consider a formal basis normal form style, a Lie graded

structure for B and a grading-module structure for B over the transformation (generator)

space A. Then for any vector field v ∈ B, there is a sequence of near-identity transfor-

mations so that they transform v into its r-th level extended partial (orbital or parametric

depending on the transformation space A) normal form v(r) and infinite level normal form

v(∞).

Denote eij := (0, 0, · · · , 1, · · · , 0) ∈ Rj for the i-th element of the standard basis in

Rj. The index for a bold zero denotes the dimension of a zero vector, i.e., 0k ∈ Rk. We,

however, skip the indices when it does not lead to a confusion. We use double, triple,

etc, indices for summations (or linear subspace spans), when we deal with double or triple

sums; e.g., we denote
∑k,n

j=1,j=2k aj for
∑n

j=2k aj +
∑k

j=1 aj . The rest of this section deals

with normalization of vector fields (1.1) by only using changes of state variables.
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Lemma 2.3. There exists a sequence of near-identity changes of state variables that they

transform any vector field given by (1.1) into

v(1) =
∑2

i=1

∑∞
m+n=0 a

i
m,nΘ

i
m,n +

∑∞
m+n=1 bm,nEm,n ∈ L , (2.7)

where aim,n, b
i
m,n ∈ R, m, n ∈ N0 := N ∪ {0}, and ai0,0 = ωi.

Proof. Since the space of vector field types (1.1) defined by

V := span
{

Ef ,Θ
i
gi
| f, gi ∈ F[[x]], i = 1, 2

}

is a Lie algebra, transformation generators from V transform the vector field (1.1) into a

vector field in V . Using formulas (2.2), the linear part of the vector field v0 = ω1Θ
1
0,0 +

ω2Θ
2
0,0, and the assumption ω1ω2 6= 0, ω1

ω2
/∈ Q, the first level normal form vector field

v(1) holds a two-torus symmetry and has an invariant algebra generated by the two-torus

invariants ri
2 := xi

2 + yi
2 for i = 1, 2, i.e., v(1) ∈ L .

The Eulerian and rotating structure of the vector field types (1.1) are preserved in

further hypernormalization steps as long as the normalizing transformations are derived

from L . Thus, normal form classifications in this paper deal with vector fields from B := L

with linear part v0 := ω1Θ
1
0,0 + ω2Θ

2
0,0. The space of permissible transformation generators

A is [L ,L ]. Let

s := min {m ≥ 1| ∃ i ≤ m, bm−i,i 6= 0} and p := min{i | bs−i,i 6= 0}. (2.8)

Then, s < ∞ and p ≤ s. Define a grading function δ by

δ(Em,n) = m+ n, δ(Θi
m,n) = s+m+ n, for i = 1, 2, and m,n ∈ Z≥0.

Lemma 2.4. Let s < ∞. Then, the s+ 1-st level normal form of v(1) is given by

v(s+1) = v0+
∑s

j=p bs−j,jEs−j,j+
∑2s

j=0 b2s−j,jE2s−j,j+
∑∞,2,p−1,l+s

l=1,i=1,j=0,j=l+p+1 a
i
l+s−j,jΘ

i
l+s−j,j

+
∑∞

l=1,l 6=s

∑p−1,l+s
j=0,j=l+p+1 bl+s−j,jEl+s−j,j +

∑s,2
l+j=1,i=1 a

i
l,jΘ

i
l,j.

Proof. Let

Ss
l+k :=

∑l+k

j=0cl+k−j,jEl+k−j,j+
∑2

i=1

∑l+k−s

j=0 dil+k−j−s,jΘ
i
l+k−j−s,j ∈ Ll+k for 0 ≤ k < s, (2.9)

where dil+k−s−j = 0 for l + k ≤ s, denote the available transformation generator of grade l

for the s+1-level hypernormalization step, i.e.,
(

Ss
l , S

s
l+1, · · · , S

s
l+s−1

)

∈ ker dl+s−1,s. Hence,

im dl+s,s+1 = spanl
j=0{d

l+s,s+1(El−j,j, 0s)} ⊕ advs(radL ∩ Ll−s).
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Let vl+s =
∑l+s

j=0 bl+s−j,jEl+s−j,j +
∑2,l

i=1,j=0 a
i
l−j,jΘ

i
l−j,j ∈ Ll+s. Since bs−p,p 6= 0, we propose

c0 :=
bl+s−p,p

−2(l−s)bs−p,p
,

cj :=
bl+s−p−j,p+j−

∑j−1

i=1
cibs−p+i−j,p+j−i

−2(l−s)bs−p,p
for 1 ≤ j ≤ s− p, (2.10)

and cj :=
bl+s−p−j,p+j−

∑s−p−1

j=0
ci−s+p+jbj,s−j

−2(l−s)bs−p,p

for s − p + 1 ≤ j ≤ l. These choices for cl−j,j eliminate all bl+s−j,jEl+s−j,j-terms when

j = p, · · · , p + l and s 6= l ≥ 1. However, b2s−j,jE2s−j,j-terms for all j ≤ 2s may appear

in the s + 1-level normalization step. We remark that the choices in (2.10) does not exist

when l ≤ s− p. By restricting the differential map dl+2s,s+1 on the radical Lie ideal and a

similar argument, all Θi
l−j,j-terms for p ≤ j ≤ l + p and i = 1, 2 can be eliminated in the

s+1-level normalization step when l ≥ s+1. Due to the rank condition rank dl+s,s+1 = l+1

when 1 ≤ l ≤ s − 1, rank d2s,s+1 = 0, and rank dl+s,s+1 = 3l − 2s + 3 if l ≥ s + 1, further

normalization in the (s+ 1)-th level is not possible.

Now let

r := min {m > s| ∃ j ≤ m, bm−j,j 6= 0} , q := min{j|br−j,j 6= 0}, and q ≤ r, (2.11)

and update the grading function δ by

δ(Em,n) = m+ n, δ(Θi
m,n) = r +m+ n, for i = 1, 2, and m,n ∈ Z≥0.

This update in the grading structure is compatible with our normal form algorithm. Now

we assume that s < r < ∞ and treat the cases for (s < ∞, r = ∞) and (r = s = ∞) in

Theorem 2.10.

Theorem 2.5. Assume that r, s < ∞ for r, s in equations (2.8) and (2.11). When q < p,

there exists u ∈ N∪{0} such that the (r+1)-th level normal form v(r+1) of v(1) in equation

(1.1) is given by

v0+
∑s

j=pbs−i,iEs−i,i+
∑

i+j=2s bi,jEi,j +
∑s,2

l+j=1,i=1a
i
l,jΘ

i
l,j+

∑q−1,r+s

j=0,j=p+r+us+1br+s−j,jEr+s−j,j

+
∑∞,2,p−1,l+s

l=1,i=1,j=0,j=l+p+1 a
i
l+s−j,jΘ

i
l+s−j,j +

∑∞
l=k

l 6=s,2s−r

∑p−1,l+r

j=0,j=p+r−s+1 bl+r−j,jEl+r−j,j.

Here, k = 0 for r 6= 2s while k = 1 for r = 2s. When p < q, we have im dl+r,r+1 = im dl+r,s+1

for l 6= s, and im dr+s,r+1 = im dr+s,s+1 + span{Es+r−j,j| p+ r + 1 ≤ j ≤ p+ r + us}.
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Proof. Due to the properties of r and s,

ker dl+r−1,r=⊕s
j=pREs−j,je

s−l+1
r +⊕l+r−s+k,s−1

j=0,k=0 REl+r−s+k−j,je
r−s+k+1
r +⊕l−1,k,2

k=0,j=0,i=1RΘ
i
k−j,je

r−l+k+1
r ,

when 0 ≤ s− l ≤ r − s− 1, and otherwise

ker dl+r−1,r = spans−1,l+r−s+k
k=0,j=0 {(0r−s+k, El+r−s+k−j,j, 0s−k−1)}+⊕ span2,s−1,l−s+k

i=1,k=0,j=0{
(

0,Θi
l−s+k−j,j, 0

)

}.

Hence, we only discuss l = s. Consider an ordered vector basis Br+s,r+1 for ker dr+s−1,r ×

Lr+s given by

Br+s,r+1 := ∪s
j=p

{

Es−j,je
1
r+1

}

∪s,r+k,2
k=0,j=0,i=1

{

Er+k−j,je
k+r−s+1
r+1 ,Θi

k−j,je
k+r−s+1
r+1

}

,

where the ordering ≺ is uniquely determined by the following rules: (1) The basis terms of

lower grades precede higher grade basis terms, (2) Rotational terms succeed Eulerian terms

of the same grade, (3) Θ1-terms precede Θ2-terms of the same grade, (4) Ek−j,je ≺ Ek−m,me

and Θi
k−j,je ≺ Θi

k−m,me when j < m for i = 1, 2, k ≥ m and the corresponding standard

basis vector e. A ordered basis for Lr+s is given by

Br+s := {Er+s,0, Er+s−1,1, · · · , E0,r+s}, Er+s−i,i ≺ Er+s−j,j when i ≺ j.

Then, the matrix representation of dr+s,r+1 with respect to (Br+s,r+1,≺) and (Br+s,≺) is

given by
[

dr+s,r+1
]

Br+s,r+1,Br+s
=

[

2(s− r)Ms
r 2(r − s)Mr

s 0

0 0 0

]

. (2.12)

The first two columns of block matrices in equation (2.12) are associated with E-term

transformation generators of grade r and s, respectively. Similarly, the third and fourth

columns of block-matrices correspond to Θ-terms of grade r and s. Now assume that q < p.

Then,

Π(im dr+s,r+1 + radL ) ∩ span{Er+s−j,j | 0 ≤ j ≤ q − 1} = {0}.

Since br−q,q 6= 0, terms of the form br+s−j,jEr+s−j,j for q ≤ j ≤ p − 1 can be simplified

through

dr+s,r+1
(

∑p−q−1
j=0 cs−j,jEs−j,j, 0r+s

)

= −
∑p−1

j=q br+s−j,jEr+s−j,j

where cs,0 :=
br+s−q,q

2(r−s)br−q,q
, and cs−j,j for 1 ≤ j ≤ p− q − 1 follows the recursive equations

cs−j,j :=
br+s−q−j,j−

∑j−1

i=0
cs−i,ibr−q−j+i,q+j−i

2(r−s)br−q,q
. (2.13)
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Now omit all zero-block sub-matrices along with the first p rows and the first p−q columns

of matrix representation dr+s,r+1 to obtain
[

A B
C D

]

(2.14)

where A,B,C,D are matrices of sizes (r+ 1)× (s− p+ q + 1), (r+ 1)× (r+ 1), (s− p)×

(s−p+q+1), and (s−p)× (r+1), respectively. The matrix B is a lower triangular matrix

where the entries on the main diagonal are constant and equal to bs−p,p. Since bs−p,p 6= 0,

B is invertible and
[

B−1 0(r+1)×(s−p)

−DB−1 I(s−p)×(s−p)

] [

A B
C D

]

=

[

B−1A I(r+1)×(r+1)

−DB−1A+ C 0(s−p)×(r+1)

]

.

Let

us := rank(C −DB−1A). (2.15)

The matrix C−DB−1A plays a similar role to the Schur complement of a block in Gaussian

elimination of a block matrix. The index s stands for consistency with ul in equation (3.10).

Given the matrix representation for dr+s,r+1, d+ r+1-terms associated with the first rows

of the matrix (2.14) are simplified, i.e.,

{Er+s−j,j | p ≤ j ≤ p+ r + us} ⊆ Π(im dr+s,r+1 + radL ).

Thus, we can simplify Er+s−j,j-terms for r+ p+1 ≤ j ≤ r+ p+ us in the r+1-level. Since

there are s− p-rows in the matrix C, we have us ≤ s− p. For us < s− p, all terms Er+s−j,j

for r + p + us < j ≤ r + s can still appear the r + 1-level normal form. When us = s− p,

Er+s−j,j-terms for p ≤ j ≤ r+ s do not appear in the (r+1)-level hypernormalization step.

Let q ≥ p. The case q = p occurs only when r = 2s. Since bs−p,p 6= 0, for p ≤ j ≤ q− 1

we can directly simplify Er+s−j,j-terms in the r + 1-level using the first q rows of the

representation matrix. However, note that the first p-rows are zero row vectors. Hence,

we eliminate the first q rows of block matrix [2(s− r)Ms
r 2(r − s)Mr

s] and the first q− p

columns of sub-block matrix 2(r− s)Mr
s in the r+1-level map. Then, we obtain a blocked

matrix of type (2.14) where A,B,C,D are matrices of sizes (r − q + p + 1) × (s + 1),

(r−q+p+1)× (r−q+p+1), (s−p)× (s+1), and (s−p)× (r−q+p+1). The matrix B is

a lower triangular matrix and the entries on its diagonal are the constant bs−p,p. Therefore,

B is invertible and
[

B−1 0(r−q+p+1)×(s−p)

−DB−1 I(s−p)×(s−p)

] [

A B
C D

]

=

[

B−1A I(r−q+p+1)×(r−q+p+1)

−DB−1A+ C 0(s−p)×(r−q+p+1)

]

.
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Given us defined by equation (2.15), terms of the form Er+s−j,j for p ≤ j ≤ r + p + d are

simplified while Er+s−j,j-terms for 0 ≤ j ≤ p− 1 and r+ p+ d+1 ≤ j ≤ r+ s may appear

in the r + 1-th level normal form. When us = s − p, all Es+r−j,j-terms for p ≤ j ≤ s + r

are simplified in the (r + 1)-level.

Example 2.6. The map dr+s,r+1 does not always have a full rank. For instance, let

v(3) := v0 + a2,0E2,0 + a1,1E1,1 + a0,2E0,2 + a1,2E1,2 + a0,3E0,3 + · · · ,

where s = 2, r = 3, p = 0, a3,0 and a2,1 are simplified in the third level normalization step.

Thus, we have a2,0 6= 0 and (a1,2, a3,0) 6= (0, 0). Let a2,0 = a1,1 = 4a0,2 = a0,3 =
a1,2
2

= 1,

and q = 2. Thereby after removing the zero blocks, [d5,4]
B5,4,B5

is given by

















a2,0 0 0 0 0 0 0
a1,1 a2,0 0 0 0 0 0
a0,2 a1,1 a2,0 0 a1,2 0 0
0 a0,2 a1,1 a2,0 a0,3 a1,2 0
0 0 a0,2 a1,1 0 a0,3 a1,2
0 0 0 a0,2 0 0 a0,3

















,

[

A B
C D

]

=













a2,0 0 | a1,2 0 0
a1,1 a2,0 | a0,3 a1,2 0
a0,2 a1,1 | 0 a0,3 a1,2
− − | − − −
0 a0,2 | 0 0 a0,3













,

C − DB−1A = [0 0], u2 = 0, and rank [d5,4]
B5,4,B5

= 5. When a0,3 6= 0 and a1,2 =

0, A = [a2,0 a1,1 a0,2]
T , B = a0,3I3×3 (a three by three diagonal matrix), q = 3 and

rank [d5,4]
B5,4,B5

= 6.

Proposition 2.7. Assume that the rank condition (2.15) and the hypothesis of Theorem

2.5 hold. When either p < q or r 6= 2s holds, r + 2 ≤ rank dr+s,r+1 ≤ r + s + 1 while

2s+ 1 ≤ rank d3s,2s+1 ≤ 3s+ 1. Furthermore, q > p+ r − s when r 6= 2s and q ≥ p.

Theorem 2.8. Consider equations (2.8) and (2.11). Assume that rank [dr+s,r+1]
Bs∪Br ,Br+s

=

r + s+ 1. Then, (r + 1)-th level normal form of v(1) is given by

v(r+1) = v0 +
∑s

j=p bs−i,iEs−i,i +
∑

i+j=2s bi,jEi,j +
∑s,2

l+j=1,i=1 a
i
l,jΘ

i
l,j

+
∑∞,2,p−l−1,s

l=1,i=1,j=−l,j=p+1 a
i
s−j,j+lΘ

i
s−j,j+l +

∑∞
l=0

l 6=s,2s−r

∑p−l−1,r
j=−l,j=p+r−s+1 br−j,j+lEr−j,j+l.

Furthermore, v(r+1) constitutes the infinite level normal form of v(1). There does not ex-

ist any nontrivial nonlinear symmetry transformation generator within L associated with

v(∞) = v(r+1).
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Proof. By Proposition 2.7, we obtain an invertible matrix by removing the s+1-th column

of the matrix representation [dr+s,r+1]
Bs∪Br ,Br+s

. Hence, we remove the last column of Ms
r

and denote it by M̂s
r. Then, we introduce the transformation coefficients by

(cs,0, cs−1,1, · · · , c1,s−1, cr,0, · · · , c0,r)
t := 1

2(r−s)

[

−M̂s
r Mr

s

]−1

(br+s,0, · · · , b0,r+s)
t.

Therefore,

dr+s,r+1
(

∑s
j=0 cs−j,jEs−j,j, 0,

∑r
j=0 cr−j,jEr−j,j, 0

)

= −
∑r+s

j=0 br+s−j,jEr+s−j,j,

and all Er+s−j,j-terms for 0 ≤ j ≤ r+s are simplified in the (r+1)-level hyper normalization

step.

Let v(r+1) = v0 + vs + vr + v2s + h.o.t., vi ∈ Li. We show that for l ≥ 1,

dl+r+1,l+r+1(S) = dl+r+1,r+1(Sl+1, Sl+2, · · · , Sl+r+1) (2.16)

where S := (S1, S2, · · · , Sl+r+1). However, for s ≤ l,

ker dl+r,l+r = R(0, vs, 0, vr, vr+1, · · · , vl+r−s, 0s) +⊕s−1,l+r−k
k=0,j=0 REl+r−k−j,je

l+r−k
l+r

+⊕s−1,2,l−k
k=0,i=1,j=0 RΘ

i
l−k−j,je

r+k
l+r . (2.17)

Since (S1, S2, · · · , Sl+r) ∈ ker dl+r,l+r, dl+r+1,l+r+1(S) for l ≥ s is given by

[Sl+r−s+1, vs] + α [vs, vl+r−s+1] + α
∑l+1

k=r [vk, vl+r−k+1] = [Sl+r−s+1, vs]− α [vl+r−s+1, vs] .

The latter belongs to im dl+r+1,s+1. The equality here is followed from

∑l+1
k=r [vk, vl+r−k+1] =

1

2

∑l+1
k=r ([vk, vl+r−k+1] + [vl+r−k+1, vk]) = 0.

For s > l + 1, dl+r+1,l+r+1(S) = [Sl+r−s+1, vs] ⊆ im dl+r+1,s+1. When s = l + 1,

dl+r+1,l+r+1(S) = [Sr, vs] + [Ss, vr] ⊆ im dl+r+1,r+1.

For sufficiently large values of l, we merely consider equation (2.17). Thereby, ker dl+r,l+r

has three subspaces. On the one hand, the subspaces ⊕s−1,l+r−k
k=0,j=0 REl+r−k−j,je

l+r−k
l+r and

⊕l,2,l−k
k=0,i=1,j=0RΘ

i
l−k−j,je

r+k
l+r converge to zero in filtration topology when l approaches to in-

finity. On the other hand, the limit of the space R(0, vs, 0, vr, vr+1, · · · , vl+r−s, 0s) in the

filtration topology generates the vector field v(∞)−v0. Since v
(∞)−v0 is the trivial nonlinear

symmetry transformation generator for v(∞), the proof is complete.
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Corollary 2.9. Assume that b0,1
2b2,0 − b0,1b1,0b1,1 + b0,2b1,0

2 6= 0 hold for the first level

normal form coefficients in equation (2.7). When b1,0 6= 0, the infinite level normal form

of v(1) is given by

v(∞)=v0+
∑2,1

i=1,j=0a
i
1−j,jΘ

i
1−j,j+

∑2
i+j=1 bi,jEi,j+

∑

j≥2

(

a10,jΘ
1
0,j+a20,jΘ

2
0,j+b0,j+2E0,j+2

)

.(2.18)

For b1,0 = 0, b0,1 6= 0, the infinite level normal form is given by

v(∞)=v0+
∑2,1

i=1,j=0a
i
1−j,jΘ

i
1−j,j+b0,1E0,1+

∑

j≥2

(

a1j,0Θ
1
j,0+a2j,0Θ

2
j,0+bj+2,0Ej+2,0

)

. (2.19)

The infinite level normal form coefficients bi,j for i + j ≤ 2 are the same as in equation

(2.7). Furthermore, v(∞) does not have any nontrivial nonlinear symmetry transformation

generator within L .

Proof. Assume that b1,0 6= 0. Then s = 1 and p = 0. Since b0,1
2b2,0−b0,1b1,0b1,1+b0,2b1,0

2 6= 0

and E2−j,j-terms for 0 ≤ j ≤ 2 cannot be normalized by the second level normal form, we

have (s, r) = (1, 2). Now by Theorem 2.4, im dl,2 = span {El−j,j,Θ
i
l−j,j| 0 ≤ j ≤ l − 1} for

l > 2, and

v(2) = v0+
∑2,1

i=1,j=0 a
i
1−j,jΘ

i
1−j,j+

∑2
i+j=1 bi,jEi,j+

∑∞
j=2

(

a10,jΘ
1
0,j + a20,jΘ

2
0,j+b0,j+1E0,j+1

)

.

Now by Proposition 2.7, 3 ≤ rank d3,3 ≤ 4. Due to the condition b0,1
2b2,0 − b0,1b1,0b1,1 +

b0,2b1,0
2 6= 0, the three column vectors (0, b2,0, b1,1, b0,2)

t, (0, b1,0, b0,1, 0)
t and (0, 0, b1,0, b0,1)

t

are linearly independent. Hence, each column of the matrix M1
2 is linearly independent

with column space of M2
1. Therefore, rank d

3,3 = 4 and Theorem 2.5 implies that

im dl,3 = im dl,2 + span{E3−j,j| 0 ≤ j ≤ 3} for l ≥ 3.

Theorem 2.8 concludes that the third level normal form (2.18) is an infinite level normal

form.

Now consider the case b1,0 = 0, b0,1 6= 0. Then p = 1. Similar to the above argument

and by Theorem 2.4, imdl,2 = span{El−j,j,Θ
i
l−j,j|1 ≤ j ≤ l} for l ≥ 3 and v(2) follows

v0 +
∑2,1

i=1,j=0 a
i
1−j,jΘ

i
1−j,j +

∑2
i+j=1 bi,jEi,j +

∑

j≥2

(

a1j,0Θ
1
j,0 + a2j,0Θ

2
j,0 + bj+1,0Ej+1,0

)

.

By Proposition 2.7 and the fact that each column of the matrix M1
2 is linearly independent

with column space of M2
1, we have rank d

3,3 = 4. Next, Theorem 2.5 concludes that E3−j,j-

terms for 0 ≤ j ≤ 3 are simplified in the third level normal form and the third level normal

form v(3) is given by equation (2.19). Finally by Theorem 2.8, v(3) is an infinite level normal

form.
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Theorem 2.10 (Normal form classification when r = ∞). Consider equations (2.8) and

(2.11). Then, the following holds.

1. When r = ∞ and s < ∞, the s+ 1-level normal form v(1) is given by

v0+bs−p,pEs−j,j+
∑∞,2,p−1,l+s

l=0,i=1,j=0,j=l+p+1 a
i
l+s−j,jΘ

i
l+s−j,j+

∑s,2
l+j=1,i=1 a

i
l,jΘ

i
l,j. (2.20)

When
∑2,∞,k

i=1,k=1,j=0 a
i
k−j,j

2
= 0, the equation (2.20) is infinite level normal form. The

time-one map flows associated with vector fields from span{Es−j,j|0 ≤ j ≤ s} are

nonlinear symmetry transformations in the symmetry group of v(∞).

2. For r = s = ∞, there exist si, pi so that the infinite level normal form is given by

either v0,

v0 + a1s1−p1,p1
Θ1

s1−p1,p1
+
∑∞,p1−1,l+s1

l=0,j=0,j=l+p1+1 a
1
l+s1−j,jΘ

1
l+s1−j,j +

∑∞
i+j=1 a

2
i,jΘ

2
i,j (2.21)

for s1 < ∞, or

v(s2+1) = v0 + a2s2−p2,p2
Θ2

s2−p2,p2
+
∑∞,p2−1,l+s2

l=0,j=0,j=l+p2+1 a
2
l+s2−j,jΘ

2
l+s2−j,j, (2.22)

when s1 = ∞ and s2 < ∞. The time-one map flows associated with vector fields from

radL constitute nonlinear symmetry transformations in the symmetry group of v(∞).

Proof. Item 1. Theorem 2.4 results the s+ 1-th level normal form follows equation (2.20).

Let aik−j,j = 0 for all indices. When l < s,

ker ds+l,s+l =
∑s,l+k

k=1,j=0R(0l, 0k−1, El+k−j,j, 0s−k) +
∑l,k

k=0,j=0R(0s−1, 0k,Θ
i
k−j,j, 0l−k).

If l ≥ s,

ker ds+l,s+l =
∑s,l+k

k=1,j=0R(0l, 0k−1, El+k−j,j, 0s−k) +
∑s

j=0R(0s−1, Es−j,j, 0l−s, 0s)
∑s,l−s+k

k=1,j=0R(0l, 0k−1,Θ
i
l−s+k−j,j, 0s−k) (2.23)

By choosing (0l, S
s
l+1, · · · , S

s
l+s) ∈ ker ds+l,s+l for l < s and cl+1−j,j = 0 for all 0 ≤ j ≤

l + 1 in equation (2.9), we have

ds+l+1,s+l+1(0l, S
s
l+1, · · · , S

s
l+s+1)=

[

∑l−s+1,2
j=0,i=1d

i
l−s+1−j,jΘ

i
l−s+1−j,j,

∑s
j=pas−j,jEs−j,j

]

∈ im ds+l+1,s+1.

For the case l ≥ s

ds+l+1,s+l+1(0s−1, S
s
s , 0l−s, S

s
l+1, · · · , S

s
l+s+1) =

[

∑l−s+1,2
j=0,i=1 d

i
l−s+1−j,jΘ

i
l−s+1−j,j,

∑s

j=p as−j,jEs−j,j

]

.
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The latter belongs to im ds+l+1,s+1. The argument for nonlinear transformation generators

for the symmetry group of v(∞) is similar to the proof in Theorem 2.8. The filtration

topology-limit of the space ker ds+l,s+l−1 given by equation (2.23) equals

∑s
j=0R(0s−1, Es−j,j, 0l).

Then, the time-one map flow associated with Es−j,j commutes with that of v(∞). This

concludes the proof.

Item 2. For i = 1, 2, define

si := min
{

m ≥ 1| ∃ j ≤ m, aim−j,j 6= 0
}

, pi := min
{

j| aisi−j,j 6= 0
}

. (2.24)

Hence,

im ds1+l+1,s1+1 = span0≤j≤l+1{[El+1−j,j,
∑s1

j=p1
Θ1

s1−j,j]}. (2.25)

Therefore, the s1 + 1-th level normal form of v(1) is expressed by equation (2.21) where

Θ1
l+s1+1−j,j-terms for p1 ≤ j ≤ l + p1 are simplified. Now we have

ker ds1+l,s1+l=
∑s1,l+k

k=0,j=0REl+k−j,je
l+k
s1+l+

∑l+s1,k
k=1,j=0RΘ

1
k−j,je

k
l+s1

+
∑l,k−s1

k=1,j=0RΘ
2
k−j,je

s1+k
l+s1

(2.26)

and this gives rise to

im ds1+l+1,s1+l+1 = span0≤j≤l+1

{[

El+1−j,j,
∑s1

j=p1
Θ1

s1−j,j

]}

= im ds1+l+1,s1+1.

Hence, no further terms can be normalized in the s1 + l-level. By the equation (2.26), the

limit of the space ker ds1+l,s1+l in filtration topology equals to the linear space spanned by

all nonlinear rotational vector fields. Therefore, the time-one map flows associated with

the transformation generators from the radical ideal of L commutes with the flow of the

simplest normal form.

Let s1 = ∞ and s2 < ∞ and define the grading function δ(Θi
m,n) = δ(Em,n) = m+ n.

This proves equation (2.22). Now the relation im ds2+l+1,s2+l+1 = im ds2+l+1,s2+1 for all l ≥ 1

holds due to

ker ds2+l,s2+l=
∑s2,l+k

k=1,j=0R(0l+k−1, El+k−j,j, 0s2−k)+
∑l+s2,2,k

k=1,i=1,j=0R(0k−1,Θ
i
k−j,j, 0l+s2−k).

This concludes that equation (2.22) is an infinite level normal form. The argument for the

nonlinear symmetry group of this case is similar to the case s1 < ∞.
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3 Orbital normal form classification

We define a module structure for time rescaling calculations. The integral domain of formal

power series generated by

Zm,n :=
(

x1
2 + y1

2
)m (

x2
2 + y2

2
)n

for m,n ≥ 0

is denoted by R and correspond with the near-identity time rescaling generators. Hence,

R acts on L by

Zm,nΘ
1
i,j := Θ1

i+m,j+n, Zm,nΘ
2
i,j := Θ2

i+m,j+n, Zm,nEi,j := Ei+m,j+n, (3.1)

and L is a torsion free R-module. Recall equations (2.3)-(2.4)-(2.5) by introducing

B := L , A := (R, [L ,L ]), and (T, S) ∗ v := Tv + [S, v] for T ∈ R, S ∈ [L ,L ].

We reorder time and state transformation generators in equation (2.5) so that time rescaling

generators appear consecutively. Recall s as in equation (2.8) and update the grading

function δ by

δ(Em,n) = m+ n, δ(Θi
m,n) = s +m+ n, for i = 1, 2. (3.2)

Lemma 3.1. There exist a sequences of permissible time scaling and changes of state

variables that they transform the vector field v in equation (1.1) into the (s + 1)-th level

extended partial orbital normal form

v(s+1) := v0 +
∑

i+j=s a
1
i,jΘ

1
i,j +

∑s

i+j=1 a
2
i,jΘ

2
i,j +

∑s

j=p bs−j,jEs−j,j

+
∑∞,p−1,l+s

l=1,j=0,j=l+p+1 bl+s−j,jEl+s−j,j +
∑∞,p−1,l+s

l=1,j=0,j=l+p+1 a
2
l+s−j,jΘ

2
l+s−j,j.

Proof. For l ≥ 1, we have

ker dl+s−1,s=spans−1,l+k
k=0,j=0{(0k,Zl+k−j,j,0),(0k+s, El+k−j,j,0)}+spans−1,l+k−s

k=0,j=0,l+k−s≥0

(

0k+s,Θ
i
l+k−s−j,j,0

)

.

Thereby, {dl+s,s+1(T, 0)|(T, 0) ∈ ker dl+s−1,s}+ radL is given by

{dl+s,s+1(0, S, 0)|(0, S) ∈ ker dl+s−1,s}+ radL for l 6= s,

and

span{Θ1
l−k,k|k = 0, · · · l} ⊆ {dl+s,s+1(T, 0)|(T, 0) ∈ ker dl+s−1,s} ∩ radL .
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For the case l 6= s, we use the latter inclusion to simplify all Θ1-terms except those of grade

2s. When l = s, {d2s,s+1(0, S, 0)|(0, S) ∈ ker d2s−1,s} = {0}. Therefore, we instead use the

inclusion

span{E2s−k,k|k = p, · · · , p+ s} ⊆ Π({d2s,s+1(T, 0)|(T, 0) ∈ ker d2s−1,s}+ radL )

to simplify E2s−k,k-terms for k = p, · · · , p + s. Since dimension of im dl+s,s + radL is

l+ 1 as a subspace of Ll+s

radL
, i.e., im dl+s,s + radL ⊆ Ll+s

radL
, hypernormalization of El+s−j,j-

terms beyond what are simplified in the non-orbital normal form process is not possible

when l 6= s. Given s-number of real values b2s−j,j ∈ R (p ≤ j ≤ p + s) for l = s, we

introduce c̄s−j,j in equation (??) as c̄s,0 :=
−b2s−p,p

bs−p,p
, c̄s−j,j :=

b2s−p−j,p+j+
∑j−1

i=0
c̄s−i,ibs−p−j+i,p+j−i

−bs−p,p

for 1 ≤ j ≤ s− p, and

c̄s−j,j :=
b2s−p−j,p+j+

∑s−p−1

j=0
c̄2s−j−p−i,j−s+p+ibj,s−j

−bs−p,p
when s− p+ 1 ≤ j ≤ s. (3.3)

Then, d2s,s+1
(

∑s

j=0 c̄s−j,jZs−j,j, 02s+1

)

= −
∑p+s

j=p b2s−j,jE2s−j,j, i.e., terms b2s−j,jE2s−j,j for

j = p, · · · , p+ s are simplified from the vector field v(s+1). When l 6= s, let

c̄l−j,j := − 1
ω1
a1l−j,j for 0 ≤ j ≤ l, l ≥ 1,

while cl−j,j and d2l−j,j are taken as in s+1-th level non-orbital hypernormalization. Hence,

all Θ1
l−j,j-terms for all l 6= s, 0 ≤ j ≤ l can be simplified in s + 1-th level orbital normal

form. However, Θ2
l−j,j-terms are not simplified more than what is done in the non-orbital

normal form case.

Theorem 3.2. 1. Let r = ∞ and s < ∞. Then, the infinite level orbital normal form

is given by

v(s+1)=v0+
∑

i+j=sa
1
i,jΘ

1
i,j+

∑s
i+j=1a

2
i,jΘ

2
i,j+

∑s
j=pbs−j,jEs−j,j+

∑∞,p−1,l+s
l=1,j=0,j=l+p+1a

2
l+s−j,jΘ

2
l+s−j,j.

2. When r = s = ∞ and s2 < ∞, the s2 + 1-th level (and the infinite level) orbital

normal form of v(1) is given by equation (2.22).

Proof. Item 1. In this case, the prime goal for normalization is to eliminate Θ-terms while

we prevent the creation of Eulerian terms. Since any further use of time rescaling beyond

the first level is not possible, the proof follows the arguments in the (s + l)-th level non-

orbital normal form case.
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Item 2. Since r = s = ∞, all Eulerian terms are simplified in the first level normal

form. The centralizer of RΘ1
0,0 + RΘ2

0,0 in L is given by L = CRΘ1
0,0+RΘ2

0,0
(L ). Hence,

only time rescaling terms can be used for further simplification in the first level. Hence all

Θ1
l−j,j-terms for l ≥ 1 and 0 ≤ j ≤ l are simplified in the first level and the first level orbital

normal form of v(1) is represented by v(1) := v0 +
∑∞

i+j=1 a
2
i,jΘ

2
i,j. Now update the grading

function δ(Θi
m,n) = δ(Em,n) = m + n for i = 1, 2. Define si, pi as in (2.24). Here this is,

of course, defined for the first level orbital normal form. The linear space ker dl+s2−1,s2 is

given by

∑s2−1,l−s+k
k=0,j=0

{

R(0s2+k, El−s2+k−j,j, 0s2−k−1) +
∑2

i=1R(0s2+k,Θ
i
l−s2+k−j,j, 0s2−k−1)

}

,

and im dl+s2+1,s2+1 =
∑l

j=0R

[

El−j,j,
∑s2

j=0Θ
2
s2−j,j

]

+
∑l

j=0RZl+s2−j,jv0. (3.4)

Since our priority of elimination is with Θ1-terms than Θ2-terms, no time rescaling can be

used for further elimination. Thereby, equation (2.22) represents (s2+1)-level normal form

of v(1). Now we have

ker dl+s2,l+s2 =
∑s,l+k

k=1,j=0REl+k−j,je
2l+s2+k
2l+2s2

+
∑l+s2,k

k=1,j=0RΘ
i
k−j,je

l+s2+k
2l+2s2

.

Thus, im dl+s2+1,l+s2+1 = im dl+s2+1,s2+1. Hence, (2.22) is the infinite level orbital normal

form.

The following lemma plays a central role in the infinite level derivation of orbital normal

forms.

Lemma 3.3. Let rank [Ms
r Mr

s] = α, s, r be similarly defined as in equations (2.8)-(2.11),

and l ≥ 0. Then,

rank
[

Ml
r Ml+r−s

s

]

=

{

2l + r − s+ 2 for 0 ≤ l ≤ α− r − 2,

α + l − s when l > α− r − 2.
(3.5)

The case l = 0 is useful for the results in Section 4.

Now we update the grading function δ by

δ(Em,n) = m+ n, δ(Θi
m,n) = r + s+m+ n, i = 1, 2.
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Theorem 3.4. Let p > q. There exist sequences of non-negative integers ul, permissible

state transformations and time scalings so that they transform equation (1.1) into the r+1-

th level orbital normal form

v0+br−q,qEr−q,q+
∑2,s,l

i=1,l=1,j=1a
i
l−j,jΘ

i
l−j,j+

∑s

j=pbs−i,iEs−i,i+
∑∞,p−1,l+s

l=1,j=0,l+p+1a
1
l+s−j,jΘ

1
l+s−j,j

+
∑

i+j=s a
2
i,jΘ

2
i,j+

∑∞,q−1,l+r
l=0,j=0,l+p+r−s+ul+1 bl+r−j,jEl+r−j,j+

∑p−q−1
l=0

∑p−1
j=q+l+1 bl+r−j,jEl+r−j,j

where br−j,j = 0 for j = 0, . . . , q − 1 and ul ≤ min{s− p,max{l − p+ q + 1, 0}}.

Proof. We have

ker dl+r−1,r := spans−1,l+r−s+k
k=0,j=0 {(0, Zl+r−s+k−j,j, 0), (0k+r−s, El+r−s+k−j,j, 0k−s+1)}

+⊕r−s−1,l+k
k=0,j=0 R(0, 2(s− l − k)Zl+k−j,j, 0, El+k−j,j, 0) +⊕2,s−1,l−2s+k

i=1,k=0,j=0 R(0,Θ
i
l−2s+k−j,j, 0).

We refer to 2(s−l−k)Zl+k−j,je
k+1
2l+2r+El+k−j,je

l+k+r+1
2l+2r as a coupled term, that is a time term

coupled with a state term. For an arbitrary (T, S) :=(Tl,Tl+1,· · · ,Tl+r−1,Sl,· · · ,Sl+r−1)∈ker dl+r−1,r,

dl+r,r+1(T, Tl+r, S, Sl+r) = Tlvr + Tl+r−svs + [Sl, vr] + [Sl+r−s, vs] ,

Sk :=
∑k

j=0 ck−j,jEk−j,j +
∑2,k−r−s

i=1,j=0 d
i
k−r−s−j,jΘ

i
k−r−s−j,j, (3.6)

c̄l+k−j,j := 2(s−l−k)cl+k−j,j for 0 ≤ k ≤ r−s−1 and dil+k−r−s−j,j := 0 for 0 ≤ k ≤ r−s−1.

Hence,

im dl+r,r+1 ∩ (Ll+r ∩ radL ) =
{[

∑2
i=1

∑l−2s
j=0 dil−2s−j,jΘ

i
l−2s−j,j, vs

]
∣

∣ dil−2s−j,j ∈ R
}

i.e., Θ-terms cannot be simplified more than what was simplified in the (s + 1)-th level

orbital normal form. Hence we apply a reduction approach using the factor Lie algebra

B̂ := L

radL
, Â = (R, [ L

radL
, L

radL
]), and by inductively defining

d̂l+r,r+1 : ker(d̂l+r−1,r)× Âl+r → B̂l+r (3.7)

as a projection of the map dl+r,r+1 on the factor Lie algebra. More precisely, we replace

(Â, B̂k, d̂
l+r,r+1) with (A,Bk, d

l+r,r+1) in (2.3)-(2.4)-(2.5) in order to only discus further

simplification of Eulerian terms in the factor Lie algebra B̂. Given the above argument,

im dl+r,r+1 = imΠ◦ d̂l+r,r+1+im dl+r,s+1. Similarly terms El+k−m,me
l+r−s+k
2l+2r +radL precede

El+k−j,je
l+r−s+k
2l+2r +radL terms and term Zl+k−m,me

k+1
2l+2r precedes Zl+k−j,je

k+1
2l+2r, when m <

j. Then, the matrix representation for d̂l+r,r+1 is

[

2(s− r)Ml
r Ml+r−s

s 2(l + r − 2s)Ml+r−s
s

]

. (3.8)
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Since the second and third blocks are linearly dependent, we omit the third block matrix
by assigning cl+r−s−j,j := 0 in the transformation generators for all l and 0 ≤ j ≤ l+ r− s.
Let l < p− q. Since the first q-rows and p-rows of the matrices Ml

r and Ml+r−s
s are zero,

El+r−j,j-terms for 0 ≤ j ≤ q − 1 cannot be normalized. On the other hand, terms of the
form El+r−j,j for q ≤ j ≤ q + l are simplified via

∑l
j=0 γj d̂

l+r,r+1
(

2(s − l)Zl−j,je
1
2l+2r + El−j,je

l+r+2
2l+2r

)

+
∑q+l

j=q bl+r−j,jEl+r−j,j,

that belongs to
∑l+r

j=q+l+1REl+r−j,j + radL . Here,

γ0 :=
bl+r−p,p

bs−p,p
, γi :=

bl+r−p−i,p+i−
∑i

j=1
γi−jbs−p−j,p+j

2(s−r)bs−p,p
for 1 ≤ i ≤ l, (3.9)

and real numbers bl+r−j,j stand for the coefficients of the normalizing vector field. Here note

that the transformation generated by
∑l

j=0 γj(2(s − l)Zl−j,je
1
2l+2r + El−j,je

l+r+2
2l+2r ) changes

the coefficients associated with terms in the radical ideal and bl+r−j,jEl+r−j,j-terms for

q + l + 1 ≤ j ≤ l + r. Since l ≤ p − q − 1, the column spaces associated with matrices

Ml
r and Ml+r−s

s are linearly independent and dim d̂l+r,r+1 = 2l + r − s + 2. We omit the

first p-rows and last s − p-rows of [2(s − r)Ml
r Ml+r−s

s ] to obtain matrices Al and Bl,

respectively. Hence, El+r−j,j-terms for p ≤ j ≤ p + l + r − s (via equation (??)) and

0 ≤ j ≤ q − 1 (via equation (3.9)) are simplified while El+r−j,j-terms for q ≤ j ≤ p − 1

cannot be normalized in the r + 1-th level normalization step.

When l+1 ≥ p− q, we use the recursive relations (3.9) to eliminate El+r−j,j-terms for

q ≤ j ≤ p − 1 in the r + 1-th level. Remove the first p-rows and the first p − q-columns

of [2(s− r)Ml
r Ml+r−s

s ] to obtain a matrix blocked by Al, Bl, Cl, Dl, where Bl is lower

triangular with bs−p,p 6= 0 on its diagonal entries. Let

ul := rank(Cl −DlB
−1
l Al) for l + 1 > p− q, and ul = 0 for l + 1 ≤ p− q. (3.10)

Next by Lemma 3.3, we have

ul =

{

l + 1− p+ q when p− q − 1 ≤ l ≤ α− r − 2,

α− r − 1− p+ q for l > α− r − 2,
(3.11)

where α := rank [Ms
r Mr

s]. Hence, rank d̂
l+r,r+1 = ul + l+ r− s+ 1+ p− q and all terms

El+r−j,j for p ≤ j ≤ p+ l + r − s+ ul are simplified and

Π(im dl+r,r+1 + radL ) = Π(im dl+r,s+1 + spank,p+l+r−s+ul

j=q,j=p+l+r−s{El+r−j,j}+ radL ),

for k = q + l when l < p− q, and k = p− 1 when l ≥ p− q.
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Remark 3.5. For p < q, we have im dl+r,r+1 = im dl+r,s+1 + span{El+r−j,j | p ≤ j ≤

k, p+ l+ r− s ≤ j ≤ p+ l+ r− s+ ul}, ul = 0 and k := p+ l+ r− s for l+ r− s+ p < q.

When l + r − s ≥ q − p, ul ≤ min{s− p, l + 1} and k := q − 1.

Proposition 3.6. When rank dr+s,r+1 = r + s + 1 and p > q, the infinite level orbital

normal form is

v(r+1) = v0+br,0Er,0+
∑s

i+j=1 a
1
i,jΘ

1
i,j+

∑s

j=p bs−i,iEs−i,i+
∑∞,p−1,l+s

l=1,j=0,j=l+p+1 a
1
l+s−j,jΘ

1
l+s−j,j

+
∑

i+j=s a
2
i,jΘ

2
i,j+

∑p−1,p−1,l+r

l=0,j=l+1,p+l+r−s+1 bl+r−j,jEl+r−j,j+
∑s−2,l+r

l=p,j=2l+r−s+2 bl+r−j,jEl+r−j,j.

Proof. By Proposition (2.7), rank [Ms
r Mr

s] = r + s + 1 and p > q imply that q = 0. By

Lemma 3.3, Theorem 3.4, m = s− 1,

ul =

{

l + 1− p when p− 1 ≤ l ≤ s− 1,

s− p for l > s− 1,
and ul = 0 for l < p− 1. (3.12)

For 1 ≤ l ≤ p − 1, Theorem 3.4 implies that El+r−j,j-terms for 0 ≤ j ≤ l and p ≤

j ≤ p + l + r − s are normalized. However, El+r−j,j-terms for l + 1 ≤ j ≤ p − 1 and

p + l + r − s + 1 ≤ j ≤ l + r cannot be simplified. In the cases of l ≥ s − 1, all Eulerian

terms of grade l + r are normalized. Now we show that

dl+r+1,l+r+1(T, S) = dl+r+1,r+1(Tl+1, Tl+2, · · · , Tl+r+1, Sl+1, Sl+2, · · · , Sl+r+1) (3.13)

for all l ≥ 1, where T = (T1, T2, · · · , Tl+r+1) and S := (S1, S2, · · · , Sl+r+1). Assume that

1 ≤ l ≤ s − 2. Since all terms El+r−j,j for l ≥ s − 1 and 0 ≤ j ≤ l + r are simplified in

r + 1-th level, ker dl+r,l+r is given by

∑r−s,l+k
k=1,j=0R

2(s−l−k)Zl+k−j,je
l+k
2l+2r

+El+k−j,je
2l+k+r
2l+2r

2
+spans,l+r−s+k

k=1,j=0 {El+r−s+k−j,je
2l+k+2r−s
2l+2r , Zl+r−s+k−j,je

l+k+r−s
2l+2r }.

By Lemma 3.3 for l ≥ s− 1, ker dl+r+1,l+r+1 is described as

spans,l−r+s+k
k=1,j=0 {(0, Zl−r+s+k−j,j, 0),(0, El−r+s+k−j,j, 0)}+

∑s,l−2s+k
k=1,j=0 RΘi

l−2s+k−j,je
2l+k+2r−s
2l+2r .

Hence for 1 ≤ l ≤ s− 2,

dl+r+1,l+r+1(T,Tl+r+1,S,Sl+r+1)=Tl+1vr + Tl+r−s+1vs + [Sl+1,vr] + [Sl+r−s+1,vs]∈ im dl+r+1,r+1,

where Tl+k, Sl+k are defined by equations (3.6), c̄l+k−j,j=2(s−l−k)cl+k−j,j for 1 ≤ k ≤ r−s,

and dil+k−j,j = 0 for 1 ≤ k ≤ s, 0 ≤ j ≤ l + k, i = 1, 2. Similarly for l ≥ s− 1, we have

dl+r+1,l+r+1 (T, Tl+r+1, S, Sl+r+1) = [Sl+r−s+1, vs] ∈ im dl+r+1,s+1 ⊆ im dl+r+1,r+1

where cl+r−s+1−j,j = 0 for all 0 ≤ j ≤ l + r − s+ 1. This completes the proof.
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Theorem 3.7. When b1,0 = 0 and b0,1b2,0 6= 0 in equation (2.7), the second level extended

partial orbital normal form of v(1) is given by

v(2) = v0+
∑

i+j=1

(

a
1(2)
i,j Θ1

i,j+a
2(2)
i,j Θ2

i,j + bi,jEi,j

)

+
∑∞

j=2 b
(2)
j,0Ej,0 +

∑

j≥2 a
1(2)
j,0 Θ1

j,0, (3.14)

and b
(2)
2,0 = b2,0. Further, the infinite level orbital normal form of v(1) is

v(3) = v0+
∑

i+j=1

(

a
1(2)
i,j Θ1

i,j + a
2(2)
i,j Θ2

i,j + bi,jEi,j

)

+ b2,0E2,0 +
∑

j≥2 a
1(3)
j,0 Θ1

j,0. (3.15)

Proof. We have

d2,2
(

−b0,2
b0,1

Z0,1 +
−b1,1
b0,1

Z1,0, 0

)

= −b0,2E0,2 − b1,1E1,1

for any b0,2, b1,1 ∈ R. Hence, terms of E0,2 and E1,1 are simplified in the second level orbital

normal form while the normal form coefficient b
(2)
2,0 = b2,0 remain unchanged. On the other

hand, Theorem (3.1) implies that Ej,0-terms (2 ≤ j) are the only possible remaining terms

in the second level orbital normal form. Thus, equation (3.14) is the second level extended

partial orbital normal form. Since b
(2)
2,0 = b2,0 6= 0, (s, r) = (1, 2), q = 0, and p > q. We may

use dl+2,3(
bl+2,0

2b2,0
(−2(l − 1)Zl,0, 0, El,0, 0)) = −bl+2,0El+2,0 to simplify Ej,0-terms for j ≥ 3.

These give rise to the normalization of all Eulerian terms of grade l + 2. Thus, equation

(3.15) represents the third level orbital normal form of v(2) according to Theorem 3.4. The

block matrices Al, Bl, Cl and Dl are obtained by removing the first column and row of
[

−2Ml
2 Ml+1

1

]

. Hence, rank[M2
3 M3

2] = 4 by Proposition 2.7. Next, the third level

orbital normal form v(3) is the infinite level orbital normal form according to Proposition

3.6.

4 Multiple-input parametric normal forms

We consider a multiple-parametric system given by equation (1.2). Using the primary

shifts of coordinates [34, page 373], we can eliminate the nonzero parameter-dependent

constants from the system. Hence, we can assume that F (0, µ) = G(0, µ) = H(0, µ) = 0.

By formulas (2.1) for the case v0, we obtain a parametric version of Lemma 2.3, i.e., the

first level extended partial parametric normal form of (1.2) is given by

w(1) = v0 +
∑

j+j≥0 a
1
j,k(µ)Θ

1
j,k +

∑

j+k≥0 a
2
j,k(µ)Θ

2
j,k +

∑

j+k≥0 bj,k(µ)Ej,k, (4.1)
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where µ := (µ1, · · · , µN) stands for the inputs, m := (m1, m2, · · · , mN), µ
m := µm1 . . . µmN

N ,

and for i = 1, 2,

aij,k(µ) :=
∑∞

|m|=0 α
i
j,k,mµ

m, bj,k(µ) :=
∑∞

|m|=0 βj,k,mµ
m, |m| := m1 + · · ·+mN ,

and ai0,0(0) = b0,0(0) = 0. Now we assume that

s := min {m ≥ 1|∃j ≥ 0, bm−j,j(0) 6= 0} , p := min{i| bs−i,i(0) 6= 0}, p ≤ s. (4.2)

Theorem 4.1. Given the vector field (4.1) and conditions (4.2), there exist time rescaling

and changes of state variables transforming w(1) into the (s + 1)-th level extended partial

parametric normal form

w(s+1) := v0 +
∑s

i+j=0

(

a2i,j(µ)Θ
2
i,j + bi,j(µ)Ei,j

)

+
∑∞,p−1,l+s

l=1,j=0,j=p+l+1 bl+s−j,j(µ)El+s−j,j (4.3)

+
∑

i+j=s a
1
i,j(µ)Θ

1
i,j +

∑∞,p−1,l+s
l=1,j=0,j=p+l+1 a

2
l+s−j,j(µ)Θ

2
l+s−j,j,

where bs−p,p(µ) = bs−p,p(0) 6= 0, bi,j(0) = 0 for i+ j < s, and ai0,0(0) = 0 for i = 1, 2.

Proof. We use a structure constant extension to include
[

Ek,l,Θ
i
0,0

]

= 0, [E0,0, Ek,l] = 2(k + l)Ek,l,
[

E0,0,Θ
i
k,l

]

= −2(k + l)Θi
k,l,

for all k, l ≥ 0, i = 1, 2. Thus, the parametric terms Es−p,pµ
m for any nonzero m ∈ ZN

≥0

is simplified in the s + 1-th level parametric normal form. We simplify parametric terms
a10,0,mΘ1

0,0µ
m from the system by time rescaling via

−a1

0,0,m

ω1
Z0
0µ

mv0 = −
a1

0,0,m
ω2

ω1
Θ2

0,0µ
m − a10,0,mΘ1

0,0µ
m.

By parametric version of the formulas given in the proof of Lemma 3.1, the proof is

complete.

Let

r := min {m > s| ∃j, bm−j,j(0) 6= 0} , q := min{j| br−j,j(0) 6= 0}, q ≤ r. (4.4)

Theorem 4.2. Consider s, r < ∞, p, q defined by equations (4.2) and (4.4). Let q > p.

Then, there exist a sequence of natural numbers ul and invertible transformations (time

scaling and changes of state variables) transforming w(1) in (4.1) into the (r + 1)-th level

extended partial parametric normal form

w(r+1) := v0 +
∑s

i+j=1

(

a2i,j(µ)Θ
2
i,j + bi,j(µ)Ei,j

)

+
∑∞,p−1,l+r

l=1,j=0,j=l+p+r−s+ul+1 bl+r−j,j(µ)El+r−j,j

+
∑q−p−r+s−1,q−1

l=1,j=p+l+r−s+1 bl+r−j,j(µ)El+r−j,j +
∑r−s,p−1,s+l

l=1,j=0,j=p+l+1 bl+s−j,j(µ)El+s−j,j

+
∑

i+j=s a
1
i,j(µ)Θ

1
i,j +

∑∞,p−1,l+s
l=1,j=0j=l+p+1 a

2
l+s−j,j(µ)Θ

2
l+s−j,j.
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Here, bl+s−j,j(0) = 0 when 0 ≤ j ≤ p− 1 and p + l + 1 ≤ j ≤ l + s, for 1 ≤ l ≤ r − s− 1.

Furthermore, bs−p,p(µ) = bs−p,p(0) 6= 0 and br−q,q(µ) = br−q,q(0) 6= 0.

Proof. Since

R (0r, E0,0µ
m, 0r−1) + R(2sZ0,0µ

m, 0r−1, E0,0µ
m, 0r−1) ⊆ ker dr−1+(r+1)|m|,r,

dr+(r+1)|m|,r+1

(

sZ0,0µ
m

(r − s)br−q,q

, 0r,
E0,0µ

m

2(r − s)br−q,q

, 0r

)

= −µmEr−q,q −

r
∑

j=1

br−j,j

br−q,q

µmEr−j,j.

We conclude that the parametric terms Er−q,qµ
m and Es−p,pµ

m for arbitrary nonzero m ∈

Z
p
≥0 are simplified in the (r + 1)-th level partial parametric normal form. Eulerian terms

as+l−j,j(µ)Es+l−j,j for 1 ≤ l ≤ r − s − 1 and p ≤ j ≤ p + l are simplified in the (s + 1)-th

level. Similar to the proof of Theorem 3.4, we consider matrix representation (3.8) and

remove its third sub-matrix block. When l + r − s + 1 ≤ q − p, the column spaces of

matrices 2(s − r)Ml
r and Ml+r−s

s are linearly independent and thus, El+r−j,j-terms for

p ≤ j ≤ p+ l+ r− s and q ≤ j ≤ q+ l are simplified while for p+ l+ r− s+1 ≤ j ≤ q− 1

and 0 ≤ j ≤ p− 1, El+r−j,j-terms may remain in the r+1-level normal form. Assume that

q − p < l + r − s + 1. Similar to what is described in equations (3.9), El+r−j,j-terms for

p ≤ j ≤ q − 1 can be simplified. Now we obtain the matrix

[

Al Bl

Cl Dl

]

by eliminating the first q-rows and q−p-columns starting from l+2-th column to l+q−p+1-

th column of [2(s − r)Ml
r Ml+r−s

s ]; i.e., we omit the first q − p-columns of Ml+r−s
s . By

Lemma 3.3, we have

ul =

{

l + 1 if q − p− r + s ≤ l ≤ α− r − 2,

α− r − 1 when l > α− r − 2.
(4.5)

Hence all El+r−j,j-terms for p ≤ j ≤ p+ l + r − s+ ul can be simplified.

Remark 4.3. Eulerian parametric terms

as+l−j,jEs+l−j,jµ
m for 1 ≤ l ≤ r − s− 1 and p ≤ j ≤ p+ l

are also simplified in the (s + 1)-th level parametric normal form. Now we complete the

proof by a parametric version of Theorem 3.4 as follows. For l ≤ p− q− 1, Eulerian terms
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El+rj,j for p ≤ j ≤ p + l + r − s and 0 ≤ j ≤ q − 1 are simplified while El+rj,j-terms

for q ≤ j ≤ p − 1 cannot be normalized in the r + 1-th level normalization step. When

l + 1 ≥ p− q, El+rj,j-terms for p ≤ j ≤ p+ l + r − s+ ul are simplified while these cannot

be normalized when p+ l+ r− s+ ul +1 ≤ j ≤ l+ r and ul is defined by (3.10) and (3.11).

Corollary 4.4. Assume that rank
[

Ml
r Ml+r−s

s

]

= r+s+1 and p < q. Then, the infinite

level extended partial parametric normal form of w(1) is given by

w(r+1) = v0 +
∑s

i+j=1

(

a2i,j(µ)Θ
2
i,j + bi,j(µ)Ei,j

)

+
∑q−r+s−1,q−1,l+r

l=1,j=l+r−s+1,j=q+l+1 bl+r−j,j(µ)El+r−j,j

+
∑s−2,l+r

l=p,j=2l+r−s+2 bl+r−j,j(µ)El+r−j,j +
∑r−s,p−1,l+s

l=1,j=0,j=l+p+1 bl+s−j,j(µ)El+s−j,j

+
∑

i+j=s a
1
i,j(µ)Θ

1
i,j +

∑∞,p−1,l+s

l=1,j=0,j=l+p+1 a
2
l+s−j,j(µ)Θ

2
l+s−j,j .

Here for each 1 ≤ l ≤ r−s−1, bl+s−j,j(0) = 0 when 0 ≤ j ≤ p−1 and p+ l+1 ≤ j ≤ l+s.

Furthermore, bs−p,p(µ) = bs−p,p(0) 6= 0 and br−q,q(µ) = br−q,q(0) 6= 0.

Proof. In this case, Proposition 2.7 implies p = 0. For 1 ≤ l ≤ q − r + s− 1, Theorem 3.4

concludes that El+r−j,j-terms for 0 ≤ j ≤ l + r − s and q ≤ j ≤ q + l are simplified. Since

ul = l + 1 for q − r + s ≤ l ≤ s − 1, El+r−j,j-terms for 0 ≤ j ≤ 2l + r − s + 1 are also

normalized. However ul = s for l > s− 1. Thus, all Eulerian terms of grade l + r can be

normalized. Proof is complete by Theorem 4.2.

Remark 4.5. When p > q and rank
[

Ml
r Ml+r−s

s

]

= r + s+ 1, parametric normal form

follows a parametric version of Proposition 3.6 and Theorem 4.2. A similar argument to the

case p > q in the r + 1-level orbital normal form implies that the r + 1-level normalization

gives rise to an infinite level parametric normal form.

Theorem 4.6 (The case r = ∞). 1. Let r = ∞ and s < ∞. Then, the infinite level

parametric normal form is given by equation (4.3) where En−j,j(0) = 0 for all s 6=

n ≥ 0 and Es−p,p(µ) = Es−p,p(0).

2. Assume that r = ∞ and s = ∞. Either the nonparametric part of the vector field is

linearizable or there exists a natural number s2 so that its s2 + 1-th level parametric

normal form is

w(s2+1) := v0+
∑∞

i+j=0 bi,j(µ)Ei,j+
∑s2

i+j=1 a
2
i,j(µ)Θ

2
i,j+

∑∞,p2−1,l+s2
l=1,j=0,l+p2+1 a

2
l+s2−j,j(µ)Θ

2
l+s2−j,j (4.6)

where a2s2−p2,p2
= a2s2−p2,p2

(0) 6= 0. The vector field w(s2+1) is the infinite level para-

metric normal form.
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Proof. By a parametric version of the proof in Theorem 4.1, equation (4.3) is the infinite

level parametric normal form. Assuming that r = ∞ and s = ∞, we define the grading

function δ(µmΘi
n−j,j) = |m|+ n+ i− 1 for i = 1, 2 and δ(µmEn−j,j) = |m|+ n for the first

level parametric normal form v(1). Via a parametric version of Theorem 3.2, the first level

reads

w(1) := v0 +
∑∞

i+j=0 bi,j(µ)Ei,j +
∑∞

i+j=1 a
2
i,j(µ)Θ

2
i,j, bi,j(0) = 0. (4.7)

When s = ∞ and s2 = ∞, the nonparametric part of the vector field is linearizable.

Otherwise, let s2 < ∞. For this case, the grading function for s2 + 1-level is updated by

δ(µmΘi
n−j,j) = |m|(s2 + 1) + n for i = 1, 2 and δ(µmEn−j,j) = |m|(s2 + 1) + n. Now

by
[

µmE0,0,Θ
2
s2−j,j

]

= −2s2µ
mΘ2

s2−j,j and employing a parametric version of item 2 in

Theorem 3.2, the claim is obtained.

Theorem 4.7. Assume that b0,1(0)
2b2,0(0)−b0,1(0)b1,0(0)b1,1(0)+b0,2(0)b1,0(0)

2 6= 0. When

b1,0(0) 6= 0, the infinite level parametric normal form of v is given by

v(∞) := v0+
∑

i+j=1 a
1
i,j(µ)Θ

1
i,j+

∑1
i+j=0

(

a2i,j(µ)Θ
2
i,j+bi,j(µ)Ei,j

)

+b
(2)
0,2(0)E0,2+

∑∞
j=2 a

2
0,j(µ)Θ

2(2)
0,j (4.8)

and b
(2)
0,2(0) =

b01
2b20−b01b10b11+b10

2b02
b10

2 . Here bij denotes bi,j(0). For b10 = 0, b01 6= 0, the infinite

level parametric normal form of v is expressed as

v(∞) := v0+
∑

i+j=1a
1
i,j(µ)Θ

1
i,j+

∑1
i+j=0

(

a2i,j(µ)Θ
2
i,j+bi,j(µ)Ei,j

)

+b
(2)
2,0(0)E2,0+

∑∞
j=2 a

2
j,0(µ)Θ

2(2)
j,0 (4.9)

and b
(2)
2,0(0) = b01

−2(b01
2b20 − b01b10b11 + b10

2b02).

Proof. Since b0,1(0)
2b2,0(0)− b0,1(0)b1,0(0)b1,1(0) + b0,2(0)b1,0(0)

2 6= 0,

∑1
j=0 bj,1−j(0)

2 6= 0,
∑2

j=0 bj,2−j(0)
2 6= 0, and s = 1.

When b1,0(0) 6= 0, p = 0. Consider the normal form coefficients b20m and b11m ∈ R. Hence

by Theorem 4.1, the second level parametric normal form is

v(2) := v0 +
∑1

i+j=0

(

a2i,j(µ)Θ
2
i,j + bi,j(µ)Ei,j

)

+
∑

i+j=1 a
1
i,j(µ)Θ

1
i,j +

∑∞
i=2

(

a
2(2)
0,j (µ)Θ2

0,j + b
(2)
0,j (µ)E0,2

)

and b
(2)
0,2(0) := b0,2(0)+

b01
2b20−b01b10b11

b10
2 . Hence, r = 2, q = 2 and q > p. Theorem 4.2 and

the equation dl+3|m|+2,3(
b0l+2

2b02
(−2(l − 1)Z0,l, 0, E0,l, 0)µ

m) = −b0l+2E0,l+2µ
m for m ∈ ZN

≥0

where

∑l
j=0R(−2(l − 1)Zl−j,j, 0, El−j,j, 0)µ

m ⊆ ker dl+3|m|+1,2,
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imply that the third level parametric normal form of v(2) is given by equation (4.8). Hence,

rank[M2
3 M3

2] = 4 by Proposition 2.7. Proposition 3.6 concludes that the normal form

vector field v(3) is the infinite level parametric normal form. The block matrices Al, Bl, Cl

and Dl are obtained by removing the first two rows of
[

−2Ml
2 Ml+1

1

]

and two columns

(l + 2-th and l + 3-th) from
[

−2Ml
2 Ml+1

1

]

. Then,

[

Bl

Dl

]

=

















b1,0 b0,1 0 · · · 0

0 b1,0
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . b1,0 b0,1
0 · · · · · · 0 b1,0

















t

,

Bl = b1,0Il×l + b0,1

[

01×(l−1) 0
I 0

]

, Al = −2 [b0,2Il×l 0l×1] , Cl = −2 [01×l b0,2] , and Dl =
[

01×(l−1) b0,1
]

. By Proposition 3.6, ul = 1 for all l ≥ 1. For b1,0 = 0 and b0,1 6= 0, p = 1. By

Theorem 4.1, the second level parametric normal form is read by

v(2) := v0 +
∑1

i+j=0

(

a2i,j(µ)Θ
2
i,j + bi,j(µ)Ei,j

)

+
∑

i+j=1 a
1
i,j(µ)Θ

1
i,j +

∑∞
j=2

(

a
2(2)
j,0 (µ)Θ2

j,0 + b
(2)
j,0(µ)E2,0

)

.

By b0,1(0)
2b2,0(0) − b0,1(0)b1,0(0)b1,1(0) + b0,2(0)b1,0(0)

2 6= 0, b
(2)
2,0(0) = b2,0(0) 6= 0, r = 2

and q = 0. Now by parametric version of Theorem 3.7 and Theorem 4.2, the third level

parametric normal form of v(2) is given in equation (4.9). By Remark 4.5, the vector field

(4.9) is an infinite level parametric normal form.

5 First level normal form coefficients

A new and efficient algorithm is here proposed to derive the first level truncated normal

form formulas for nonlinear singular Eulerian vector fields given by

v(z) := ω1Θ
1
0,0 + ω2Θ

2
0,0 + Ef , for f ∈ R[[z]], z := (z1, w1, z2, w2) ∈ C4 and wi = z̄i. (5.1)

All even-degree homogeneous vector fields are eliminated in the first level normal form.

Thus, we always have f l
2k :=

∑k
j=1 bk−j,j|z1|

2(k−j)|z2|
2j for l ≥ 2k, and f l

2k+1 := 0 for

l ≥ 2k + 1. Denote the transformation generator for simplification of grade-k homogenous

part of vk−1 by Ehk
, that is determined by

hk :=
∑

i1+i2+j1+j2=k,
i1 6=j1,i2 6=j2

(

I(i1!j1!i2!j2!)
−1

(i1 − j1)ω1 + (i2 − j2)ω2

∂k fk−1(z)

∂z1i1∂w1
j1∂z2i2∂w2

j2

∣

∣

z=0

)

z1
i1w1

j1z2
i2w2

j2. (5.2)
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Theorem 5.1. The first level normal form of vector field (5.1) is given by

v(1) := ω1Θ
1
0,0 + ω2Θ

2
0,0 +

∑∞
k=1

∑k
j=1 bk−j,jEk−j,j.

where bk−j,j-s are given by

bk−j,j :=
∂2k f 2k−1

(2(k − j))!(2j)!∂|z1|2(k−j)∂|z2|2j

∣

∣

∣

z=0

, (5.3)

while the n-jet truncation of fk recursively follows the equation

Jnfk = Jnfk−1 + 〈∇hk, v0〉+
∑n−k

i=1

∑⌊n−i
k

⌋

m=1

1

m!

∏m+1
j=2 ((j −m)k − i) hk

mfk−1
i , (5.4)

for n ≥ k, and f 0 := f.

Proof. Since

[z1
m1w1

n1z2
m2w2

n2E0,0, v0] =
(

ω1(m1 − n1) + ω2(m2 − n2)
)

z1
m1w1

n1z2
m2w2

n2E0,0,
[

z1
m1w1

n1z2
m2w2

n2

m1+n1+m2+n2−p1−q1−p2−q2
E0,0, z1

p1w1
q1z2

p2w2
q2E0,0

]

= z1
m1+p1w1

n1+q1z2
m2+p2w2

n2+q2E0,0,

all monomial vector fields with odd degrees can be eliminated from the first level normal

form. Further, for the case of homogenous odd-degree vector fields, we can eliminate

all terms except |z1|
2i1|z2|

2i2E0,0 for i1, i2 ∈ N. For an even number k, the k + 1-degree

homogeneous vector field part of vk−1 follows

∑

2i1+2i2=k

(

∂k fk−1

(2i1)!(2i2)!∂|z1|
2i1∂|z2|

2i2

∣

∣

∣

z=0

)

|z1|
2i1 |z2|

2i2E0,0.

The transformation generator Ehk
gives rise to

vk := exp adEhk
vk−1 = vk−1 +

∑∞
m=1

1
m!
adm

Ehk
vk−1 = vk−1 +

∑∞
m=1

∑∞
i=0

1
m!
adm

Ehk
vk−1
i ,

and vk−1
i ∈ Li. Since vk−1

0 = v0, v
k−1
i = Efk−1

i
, and vk−1 := v0 + Efk−1 ,

vk = vk−1 + adEhk
v0 +

∑∞
m=1

∑∞
i=1

1

m!

∏m+1
j=2 ((j −m)k − i)hk

mfk−1
i E0,0

and equation (5.4) holds.
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Theorem 5.1 introduces the following algorithm for computing a truncated first level

normal form of the vector field (5.1).

Algorithm 1 Computation of a truncated first level normal form.

Inputs: (v, n): Vector field v given by (5.1) and a natural number n.
Output: J2nv(1): A 2n-grade truncation of the first level normal form v(1).
Let J2nf 0 be the 2n-degree truncation of the scalar function f associated with v.
Take v̂(1) := ω1Θ

1
0,0 + ω2Θ

2
0,0 and k := 1.

while k ≤ 2n− 1 do

Take J2nfk−1 =
∑2n

j=1 f
k−1
j where fk−1

j is the j-degree homogeneous polynomial part

of fk−1 for 1 ≤ j ≤ 2n.
Define the transformation generator hk according to equation (5.2).
Use the equation 5.4 to simplify fk−1

k and update J2nfk−1 with J2nfk.
if k is odd then

while 1 ≤ i ≤ ⌊k
2
⌋ + 1 do

Compute bk−i,i from equation (5.3).
Let v̂(1) := v̂(1) + bk−i,i|z1|

2(k−i)|z2|
2iE0,0.

end while

end if

Take k := k + 1.
end while

Set J2nv(1) := v̂(1).
return J2nv(1).

Corollary 5.2. Consider the vector field (5.1) where

f(x) := a1x1 + a2y1 + a3x2 + a4y2 + a5x1
2 + a6x1y1 + a7x1x2 + a8x1y2 + a9y1

2 + a10y1x2 + a11y1y2

+a12x2
2 + a13x2y2 + a14y2

2.

The vector field (5.1) can be transformed to the 6-jet truncated normal form

v6(x) := ω1Θ
1
0,0 + ω2Θ

2
0,0 +

∑3
k=1

∑k

j=0 bk−j,jEk−j,j

where b2,1, b1,2 are given in appendix and Theorem 5.1 and

b1,0 = a5+a9

2 , b0,1 = a12+a14

2 , b1,1 = a11a1a3−a10a4a1−a8a3a2+a7a4a2

2ω1ω2
+ a3

2+a4
2

4ω2
2(a5+a9)−1 +

a1
2+a2

2

4ω1
2(a12+a14)

−1 ,

b2,0 = a5a1
2+3 a5a2

2−2 a6a1a2+3 a9a1
2+ a9a2

2

8ω1
2 , b0,2 =

a12a3
2+3 a12a4

2−2 a13a3a4+3 a14a3
2+ a14a4

2

8ω2
2 ,

b3,0 =
(a5+a9)(a1

2a6−2a1a2a5+2a1a2a9−a2
2a6)

16ω1
3 +

(a1
2+a2

2)(a1
2a5+5a1

2a9−4a1a2a6+5a2
2a5+a2

2a9)
16ω1

4 , (5.5)

b0,3 =
(a12+a14)(a3

2a13−2a3a4a12+2a3a4a14−a4
2a13)

64ω2
3 +

(a3
2a12+5a3

2a14−4a3a4a13+5a4
2a12+a4

2a14)
64ω2

4(a3
2+a4

2)−1 .
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Proof. Using the changes of coordinates to the complex coordinates, we have

f0 := f(z) = g
(

z1+w1

2
, z1−w1

2I
, z2+w2

2
, z2−w2

2I

)

= f 1
0 (z) + f 2

0 (z),

where f 1
0 (z) := A1z1 + A2w1 + A3z2 + A4w2,

f 2
0 (z) :=A5z1

2+A6z1w1+A7z1z2+A8z1w2+A9w1
2+A10w1z2+A11w1w2+A12z2

2+A13z2w2+A14w2
2.

Recall h1(z) from (5.3) by h1(z) :=
IA1

ω1
z1+

IA2

−ω1
w1+

IA3

ω2
z2+

IA4

−ω2
w2. By applying this trans-

formation generator and Theorem (5.1), 〈∇h1,Θ〉 = −f 0
1 . Now we have b1,0 =

∂f1

∂|z1|2

∣

∣

z=0
=

A5 =
1
2
a5 +

1
2
a9, b0,1 =

∂f1

∂|z2|2
|z=0 = A12 =

1
2
a12 +

1
2
a14 and

h2(z) :=
IA5

2ω1
z1

2+ IA7

ω1+ω2
z1z2+

IA8

ω1−ω2
z1w2−

IA9

2ω1
w1

2+ IA10

ω2−ω1
w1z2−

IA11

ω1+ω2
w1w2+

IA12

2ω2
z2

2+ IA14

−2ω2
w2

2.

Employing h2(z), we obtain

f 2 = f 1 + 〈∇h2,Θ〉+
∑4

i=1

∑⌊ 6−i
2

⌋

m=1

1

m!

∏m+1
j=2 ((j −m)k − i) h2

mf 1
i ,

f 2 = b1,0|z1|
2 + b0,1|z2|

2 − h1f
0
2 + h1h2f

0
2 + h1

2f 0
2 − 2h1

2h2f
0
2 − h1

3f 0
2 + h1

4f 0
2 .

Similarly, f i for i = 3, 4, 5 is obtained. Then, the 6-jet truncation of the first level normal

form can be extracted from the following formulas:

J6f 3 − J2f 2 = h1
2f 0

2 + h3(b1,0|z1|
2 + b0,1|z2|

2) + h1h2f
0
2 − h1

3f 0
2 + h1

4f 0
2 − 2h1

2h2f
0
2 ,

J6f 4 − J3f 3 =
∑

i+j=2 bi,j |z1|
2i|z2|

2j + (h3 + 2h4)
∑

i+j=1 bi,j |z1|
2i|z2|

2j + h1h2f
0
2

−h1
3f 0

2 − 2h1
2h2f

0
2 + h1

4f 0
2 ,

J6f 5−J4f 4=h1
4f 0

2−2h1
2h2f

0
2+2h4

∑

i+j=1bi,j |z1|
2i|z2|

2j, J6f 6−J5f 5=
∑

i+j=3bi,j |z1|
2i|z2|

2j,

where

bi,j =















∂2i+2j

(2i)!(2j)!∂2i|z1|2i∂2j |z2|2j
f 0
2 for i+ j = 1

∂2i+2j

(2i)!(2j)!∂2i|z1|2i∂2j |z2|2j
h1

2 f 0
2 for i+ j = 2,

and bi,j =
∂2i+2j

(2i)!(2j)!∂2i|z1|2i∂2j |z2|2j

(

h1
4 f 0

2 − 2h2h1
2 f 0

2 + 2h4

∑

i+j=1 bi,j |z1|
2i|z2|

2j
)

for i + j =

3. This gives rise to the normal form coefficients (5.5) and b2,1, b1,2 in the appendix.
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6 Appendix

The following normal form coefficients are associated with Corollary 5.2:

b2,1 := 3(a1
2(a5+3a9)−2a1a2a6+a2

2(3a5+a9))
8ω2

2(ω1
2−ω2

2)(a3
2+a4

2)−1 + (a1a3a11−a1a4a10−a2a3a8+a2a4a7)
4ω1ω2(ω1

2−ω2
2)(a1

2+a2
2)−1 − 3(a1

2+a2
2)2(a12+a14)

16ω1
4ω2

−2(ω1
2−ω2

2)

+ 3(a12+a14)(a1
2+a2

2)2−6(a3
2+a4

2)(a1
2a5+3a1

2a9−2a1a2a6+3a2
2a5+a2

2a9)
16ω1

2(ω1
2−ω2

2) − (a1a3a11−a1a4a10−a2a3a8+a2a4a7)
4ω1

3ω2
−1(ω1

2−ω2
2)(a1

2+a2
2)−1

+ (a3a8−a4a7)(3a1a5+5a1a9−a2a6)−(a3a11−a4a10)(a1a6−5a2a5−3a2a9)
8ω2ω1

3(ω1
2−ω2

2) − (a12+a14)(a1
2a6−2a1a2a5+2a1a2a9−a2

2a6)
16ω1

3ω2
−2(ω1

2−ω2
2)

+ (a1
2a6−2a1a2a5+2a1a2a9−a2

2a6)
16ω1(ω1

2−ω2
2)(a12+a14)−1 − a1a2(a7

2+a8
2−a10

2−a11
2)−(a1

2−a2
2)(a10a7+a8a11)

4ω1(ω1
2−ω2

2) + ω1
−1(a1a5+3a1a9−a2a6)

4(ω1
2−ω2

2)(a3a10+a4a11)−1

− (a3a7+a4a8)(a1a6−3a2a5−a2a9)
4ω1(ω1

2−ω2
2) − (a1a3a8−a1a4a7−a2a3a11+a2a4a10)+a3a6(a1a11+a2a8)−a4a6(a1a10+a2a7)

8ω1
2ω2

−1(ω1
2−ω2

2)(a5−a9)−1 ,

b1,2 := 3(a3
2+a4

2)2(a9+a5)
16ω1

−2ω2
4(ω1

2−ω2
2) −

a13(a4
2−a3

2)+2a4a3(a12−a14)
16ω1

−2ω2
3(a9+a5)−1(ω1

2−ω2
2) −

3((a2a8−a1a11)a3+a4(a1a10−a2a7))
4ω1

−1ω2
3(a3

2+a4
2)−1(ω1

2−ω2
2)

+ (a12−a14)(a1a3a10−a1a4a11−a2a3a7+a2a4a8)+a3a13(a1a11−a2a8)+a4a13(a1a10−a2a7)
8ω2

2ω1
−1(ω1

2−ω2
2) − 3a4

2(2a3
2−a4

2)(a9+a5)
16ω2

2(ω1
2−ω2

2)

+ (a1
2+a2

2)(3a3
2a12+9a3

2a14+6a13a4a3−3a4
2a12−a4

2a14)
8ω2

2(ω1
2−ω2

2) − (3a3
2a12+9a3

2a14−6a13a4a3+9a4
2a12+3a4

2a14)(a1
2+a2

2)
8ω1

2(ω1
2−ω2

2)

− (a3
2−a4

2)(a7a8+a10a11)+(−a7
2+a8

2−a10
2+a11

2)a4a3−a13a3(a1a7+a2a10)+(8a3a12+a13a4)(a1a8+a2a11)
4ω2(ω1

2−ω2
2)

+ 2a13(a1a3a11+a1a4a10−a2a3a8−a2a4a7)−2a4(5a12+3a14)(a1a11−a2a8)
16ω1(ω1

2−ω2
2) − a3(3a12+5a14)(a1a10−a2a7)

8ω1(ω1
2−ω2

2)

+ 3((−a1a11+a2a8)a3+a4(a1a10−a2a7))(a3
2+a4

2)
4ω1ω2(ω1

2−ω2
2) .
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