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Abstract

One of the most widely studied convex relaxations in combinatorial optimization is the
relaxation of the cut polytope CN to the elliptope E N , which corresponds to the degree 2 sum-
of-squares (SOS) relaxation of optimizing a quadratic form over the hypercube {±1}N . We study
the extension of this classical idea to degree 4 SOS, which gives an intermediate relaxation we
call the degree 4 generalized elliptope E N

4 . Our main result is a necessary and sufficient condition
for the Gram matrix of a collection of vectors to belong to E N

4 . Consequences include a tight
rank inequality between degree 2 and degree 4 pseudomoment matrices, and a guarantee that
the only extreme points of E N also in E N

4 are the cut matrices; that is, E N and E N
4 share no

“spurious” extreme point.
For Gram matrices of equiangular tight frames, we give a simple criterion for membership in

E N
4 . This yields new inequalities satisfied in E N

4 but not E N whose structure is related to the
Schläfli graph and which cannot be obtained as linear combinations of triangle inequalities. We
also give a new proof of the restriction to degree 4 of a result of Laurent showing that E N

4 does
not satisfy certain cut polytope inequalities capturing parity constraints. Though limited to
this special case, our proof of the positive semidefiniteness of Laurent’s pseudomoment matrix
is short and elementary.

Our techniques also suggest that membership in E N
4 is closely related to the partial transpose

operation on block matrices, which has previously played an important role in the study of
quantum entanglement. To illustrate, we present a correspondence between certain entangled
bipartite quantum states and the matrices of E N

4 \ CN .
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1 Introduction

The optimization of quadratic forms over the hypercube {±1}N ,

M(W ) := max
x∈{±1}N

x>Wx, (1)

is a well-studied computational problem arising in several contexts, including the Grothendieck
problem [33, 42], graph problems such as finding the maximum cut [29, 62], synchronization over
the group Z/2Z [1, 4], spiked matrix estimation problems under priors with the i.i.d. Rademacher
distribution [2, 61], and the determination of ground state energies of hard two-spin models from
statistical physics [5, 58]. M(W ) may equivalently be viewed as optimizing a linear objective over
a convex set called the cut polytope:

CN := conv({xx> : x ∈ {±1}N}), (2)

M(W ) = max
X∈CN

〈W ,X〉. (3)

Though it is convex, this problem is nonetheless difficult to solve exactly (e.g., NP-hard for W a
graph Laplacian, which computes the maximum cut [40]) due to the intricate discrete geometry of
the cut polytope [22].

A popular algorithmic choice for approximating M(W ) and estimating its optimizer is to form
relaxations of CN , larger convex sets admitting simpler descriptions. Often, the relaxed sets may be
described concisely in terms of positive semidefiniteness (psd) conditions, which leads to semidefinite
programming (SDP) relaxations of M(W ). The most common way to execute this strategy is to
optimize over the elliptope,

E N = E N
2 := {X ∈ RN×Nsym : X � 0, diag(X) = 1} ⊇ CN . (4)

For example, the well-known approximation algorithms of Goemans-Williamson [29] and Nes-
terov [57] optimize over E N

2 and then perform a rounding procedure to recover an approximately
optimal x ∈ {±1}N from X ∈ E N

2 .
As our notation suggests, E N

2 is only the first of a sequence of increasingly tighter relaxations
of CN , corresponding to sum-of-squares (SOS) relaxations of M(W ). These sets are indexed by
an even integer d ≥ 2 called the degree, and we call the set described at degree d the degree d
generalized elliptope, denoted E N

d . The generalized elliptopes satisfy the inclusions

E N
2 ⊇ E N

4 ⊇ · · · ⊇ E N
N+1{N odd} = CN . (5)

(The last equality and its tightness in the sense that no generalized elliptope of lower degree equals
CN are non-trivial results proven by [24] and [46] respectively.) Thus, optimizing over generalized
elliptopes of higher degree may yield better approximations of M(W ); however, it is also costlier,
since the associated semidefinite program is over matrix variables of size Nd/2×Nd/2, whereby while
general-purpose SDP algorithms will solve such an optimization to fixed accuracy in polynomial
time in N , the bound on their runtime will be of order NO(d) [8]. It is therefore important to
know whether optimizing over generalized elliptopes of constant degree d > 2 actually improves
the bounds on M(W ) achieved by optimizing over E N

2 on specific classes of optimization problems
as N →∞.1

1There is an extensive literature relating this question to the Unique Games Conjecture [43, 69], which implies
for several problems, most notably MaxCut, that optimizing over generalized elliptopes of constant degree cannot
improve the worst-case approximation ratio achieved by optimizing over EN2 (see e.g. [41, 63]). On the other hand,
similar questions in the average case, for instance the typical quality of approximation that can be achieved for
natural random models of W , are only beginning to be understood. For instance, [56] is a recent work in this
direction concerning SDP relaxations for MaxCut and related problems on random graphs.
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Figure 1: Cut polytope and elliptopes in low dimension. We plot the cross-section of C 5,
E 5
2 , and E 5

4 by an isotropic random subspace (in the off-diagonal matrix entries) by numerically
solving suitably constrained linear and semidefinite programs. This is different from the projection
of these sets onto such a subspace, for which we observe that E 5

4 is almost always indistinguishable
from C 5. Note also that N = 5 is the lowest dimension where E N

4 6= CN .

Nonetheless, although many fundamental geometric results on E N
2 were obtained soon after

this relaxation was introduced [48, 49], relatively little remains known about the geometry of E N
d

for specific constant values of d > 2. Instead, most progress on higher-degree SOS relaxations has
been through the algebraic interpretation of SOS, and concerning the limit d→∞ after N →∞.
A prominent line of work in this direction is on negative results for SOS, proving that its approxi-
mations are poor for some problems even at high degrees. This began with the works of Grigoriev
[30, 31, 32] giving lower bounds for the SOS degree needed prove linear systems over Z/2Z unsat-
isfiable. With similar techniques, Laurent [46] produced examples of inequalities over CN that do
not hold over E N

d until d = Ω(N). Schoenebeck [65] later rediscovered Grigoriev’s results and em-
phasized their application to constraint satisfaction problems. More recently, similar ideas yielded
rapid progress on the planted clique problem [55, 21, 35, 6], culminating in a framework called
pseudo-calibration introduced in [6] for constructing pseudomoment matrices based on statistical
reasoning, which has since been applied to several other problems [36, 64]. The general proof tech-
nique behind these results is to first construct candidate pseudomoment matrices entrywise, and
then analyze whether those candidates satisfy the necessary constraints. Among those constraints,
the requirement that the pseudomoment matrix be psd is notoriously difficult to verify.

In this paper, we make two contributions to the state of affairs outlined above. First, we
derive some novel geometric facts about E N

4 , the first generalized elliptope, relating its extrema to
the facial geometry of E N

2 . Second, in doing so, we introduce a technique for constructing SOS
pseudomoment matrices as Gram matrices of collections of vectors, which are therefore guaranteed
by construction to be psd. We use this to provide an alternate proof of part of Laurent’s theorem
[46] mentioned above, and believe that this idea may eventually lead to simplified proofs of other
difficult negative results in the SOS optimization literature.
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2 Main Results

2.1 Preliminaries

Pseudomoment matrices. We first present the description of E N
d in terms of the pseudomoment

interpretation of SOS optimization. The formal definition is as follows.

Definition 2.1. For a finite set A, we write A≤d for the collection of finite (possibly empty) strings
in the elements of A of length at most d, i.e.

A≤d := {∅} t A t A2 t · · · t Ad. (6)

The sets A≤d for all d ∈ N := {n ∈ Z : n ≥ 0} may be thought of as embedded in the set A<∞
of all finite strings in the elements of A. For s ∈ A<∞, we write |s| for the length of s, and for
s, t ∈ A<∞, we write s ◦ t ∈ A|s|+|t| for the concatenation of s and t.

Definition 2.2. For s ∈ A<∞, odd(s) ⊂ A denotes the set of symbols that occur an odd number
of times in s.

Definition 2.3. E N
d ⊂ RN×Nsym is the set of X such that there exists Y ∈ RN

d/2×Nd/2
, whose row and

column indices we identify with the set [N ]d/2 ordered lexicographically, having Y(1···1i)(1···1j) = Xij

for all i, j ∈ [N ] and satisfying the following properties:

1. Y � 0.

2. Yst only depends on odd(s ◦ t).

3. Yst = 1 whenever odd(s ◦ t) = ∅.

In this case, we say Y is a degree d pseudomoment matrix over {±1}N (or, more properly, for the
constraints {x2i − 1 = 0 : i ∈ [N ]}) which extends X.

(In Appendix A we present the standard reductions that allow us to restrict our attention to only
the pseudomoments of degree exactly d for the case of relaxing the problem M(W ).) In this paper,
for the sake of brevity, we will simply refer to such Y as a degree d pseudomoment matrix, since
we only study optimization over {±1}N .

We will also only study degree 4 pseudomoment matrices in detail (though it will occasionally
be instructive to refer to higher degree cases for comparison), so we briefly give a more concrete
version of the above conditions for that case.

Proposition 2.4. Let Y ∈ RN
2×N2

, with the row and column indices of Y identified with pairs
(ij) ∈ [N ]2 ordered lexicographically. Then, Y is a degree 4 pseudomoment matrix if and only if
the following conditions hold:

1. Y � 0.

2. Y(ij)(kk) does not depend on the index k.

3. Y(ii)(ii) = 1 for every i ∈ [N ].

4. Y(ij)(k`) is invariant under permutations of the indices i, j, k, `.

5



The intuitive meaning of these conditions is that Y contains pseudomoments of degree 4 of a
fictitious distribution over x ∈ {±1}N , entry Y(ij)(k`) equaling the pseudoexpectation of xixjxkx`.

We represent the constraint x ∈ {±1}N as the system of polynomial constraints x2i = 1 for i ∈ [N ],
which constrains the pseudomoments per Conditions 2 and 3 of the definition. The remaining
constraints are properties that the moments of probability distributions in general must satisfy.
Conditions 1 through 4 taken together, however, still do not imply that a distribution over {±1}N
exists whose moments equal the specified pseudomoments.

The matrix X, a minor of Y , contains the degree 2 pseudomoments (which, as also discussed
in greater detail in Appendix A, are in this case already among the degree 4 pseudomoments). We
may then think of E N

4 relaxing CN in the sense that CN is the set of degree 2 moment matrices of
true distributions over {±1}N , while E N

4 is the set of degree 2 pseudomoment matrices that “admit
a consistent extension to degree 4.”

Note that the case d > 2 is fundamentally different from d = 2 in the important regard that,
while E N

2 is itself an affine slice of the psd cone (making it a so-called spectrahedron), there does
not appear to be a straightforward way to describe any E N

d with d > 2 in this way. (On the
other hand, it does not appear to be established that E N

d actually fails to be a spectrahedron for
d > 2, though this is a natural conjecture. Some similar results in simpler cases are presented
in [11].) Rather, these sets are most directly described as projections of spectrahedra (so-called
spectrahedral shadows), the sets of all degree d pseudomoment matrices, from a higher-dimensional
space. Thus, we should expect the generalized elliptopes to have a more subtle geometry than the
classical elliptope, and our subject E N

4 is the first of these subtler cases.
No more than the above is needed to understand our results, but for a more general and detailed

presentation of the pseudomoment-and-pseudoexpectation optimization framework we direct the
reader to [7, 45, 47].

Convex geometry. We next recall some basic notions from the geometry of convex sets. In what
follows, let K ⊆ Rd be a closed convex set.

Definition 2.5. The dimension of K is the dimension of the affine hull of K, denoted dim(K).

Definition 2.6. A convex subset F ⊆ K is a face of K if whenever θX + (1 − θ)Y ∈ F with
θ ∈ (0, 1) and X,Y ∈ K, then X,Y ∈ F .

Definition 2.7. X ∈ K is an extreme point of K if {X} is a face of K (of dimension zero).

Definition 2.8. The intersection of all faces of K containing X ∈ K is the unique smallest face
of K containing X, denoted faceK(X).

Definition 2.9. The perturbation of X in K is the subspace

pertK(X) :=
{
A ∈ Rd : X ± tA ∈ K for all t > 0 sufficiently small

}
. (7)

The perturbation will come up naturally in our results, so we present the following useful fact
giving its connection to the more intuitive objects from facial geometry.

Proposition 2.10. Let X ∈ K. Then,

faceK(X) = K ∩ (X + pertK(X)) . (8)

6



In particular, the affine hull of faceK(X) is X + pertK(X), and therefore

dim(faceK(X)) = dim(pertK(X)) (9)

(in which there is a harmless reuse of notation between the dimension of a convex set and the
dimension of a subspace).

Proof. Let G := K ∩ (X + pertK(X)). It is simple to check that Y ∈ G if and only if there exists
Y ′ ∈ K and θ ∈ (0, 1] with X = θY + (1− θ)Y ′ (and if θ < 1 then Y ′ ∈ G as well).

Then, if F is any face of K containing X, and Y ∈ G, there exists Y ′ ∈ K and θ ∈ (0, 1] such
that X = θY + (1 − θ)Y ′. If θ = 1, then Y = X ∈ F . Otherwise, Y ∈ F by the definition of a
face. Thus, in any case Y ∈ F , so G ⊆ F . Since this holds for any face F containing X, in fact
G ⊆ faceK(X).

It then suffices to show that G is a face of K. Suppose Y ∈ G, and Y1,Y2 ∈ K and θ ∈ (0, 1)
with Y = θY1 + (1− θ)Y2. Since Y ∈ G, there exists Z ∈ K and φ ∈ (0, 1] such that

X = φY + (1− φ)Z

= φ
(
θY1 + (1− θ)Y2

)
+ (1− φ)Z

= φθY1 + φ(1− θ)Y2 + (1− φ)Z. (10)

This is a convex combination of three points where the coefficients of Y1 and Y2 are strictly positive,
so by the previous characterization we have Y1,Y2 ∈ G, completing the proof.

Finite-dimensional frames. Finally, we review some definitions of special types of frames in
finite dimension, which are overcomplete collections of vectors with certain favorable geometric
properties. A more thorough introduction, in particular for the more typical applications of these
definitions in signal processing and harmonic analysis, may be found in [15]. In what follows, let
v1, . . . ,vN ∈ Rr be unit vectors and let X := Gram(v1, . . . ,vN ) (meaning that Xij = 〈vi,vj〉 for
i, j ∈ [N ]).

Definition 2.11. The vectors vi form a unit norm tight frame (UNTF) if any of the following
equivalent conditions hold:

1.
∑N

i=1 viv
>
i = N

r Ir.

2. The eigenvalues of X all equal either zero or N
r .

3.
∑N

i=1

∑N
j=1〈vi,vj〉2 = N2

r .

(The equivalence of the final condition is elementary but less obvious; the quantity on its left-hand
side is sometimes called the frame potential [9].)

Definition 2.12. The vi form an equiangular tight frame (ETF) if they form a UNTF, and there
exists α ∈ [0, 1], called the coherence of the ETF, such that whenever i 6= j then |Xij | = α.

The following remarkable result shows that ETFs are extremal among UNTFs in the sense of
worst-case coherence. Moreover, when an ETF exists, α is determined by N and r.

Proposition 2.13 (Welch Bound [70]). If v1, . . . ,vN ∈ Rr with ‖vi‖2 = 1, then

max
1≤i,j≤N
i 6=j

|〈vi,vj〉| ≥
√

N − r
r(N − 1)

, (11)

with equality if and only if v1, . . . ,vN form an ETF.

7



ETFs usually arise from combinatorial constructions and should generally be understood as rigid
and highly structured objects. For instance, there remain many open problems about the pairs
of dimensions (N, r) for which ETFs do or do not exist. More comprehensive references on these
aspects of the theory of ETFs include [67, 16, 27].

2.2 Gramian Description of E N
4

Rather than directly working with the pseudomoment interpretation, we will study E N
4 by pursuing

an analogy with the following geometric description of the elliptope:

E N
2 =

{
X ∈ RN×Nsym : ∃v1, . . . ,vN ∈ Rr such that ‖vi‖2 = 1 and X = Gram(v1, . . . ,vN )

}
, (12)

Besides being used in many geometric arguments about the elliptope, which we will review later, in
applications this description is central to the rounding procedures of [29, 57] as well as the efficient
rank-constrained approximations of [13]. Our first result gives an analogous description of E N

4 as
Gram matrices of certain collections of unit vectors. The following family of matrices plays an
important role in this description.

Definition 2.14. For M ∈ RrN×rN , we write M[ij] with i, j ∈ [N ] for the r × r block in position

(i, j) when M is viewed as a block matrix. With this notation, let B(N, r) ⊂ RrN×rNsym consist of
matrices M satisfying the following properties:

1. M � 0.

2. M[ii] = Ir for all i ∈ [N ].

3. M[ij] = M>
[ij] for all i, j ∈ [N ].

In terms of these matrices, E N
4 admits the following description.

Theorem 2.15. Let v1, . . . ,vN ∈ Rr, let X := Gram(v1, . . . ,vN ) ∈ RN×Nsym , let V ∈ Rr×N have

v1, . . . ,vN as its columns, and let v := vec(V ) ∈ RrN be the concatenation of the vi. Then,
X ∈ E N

4 if and only if
∑N

i=1 ‖vi‖22 = N and there exists M ∈ B(N, r) such that v>Mv = N2.

Moreover, if X ∈ E N
4 and a degree 4 pseudomoment matrix Y ∈ RN

2×N2

sym extends X, then there

exists M ∈ B(N, r) with v>Mv = N2 and

Y = (IN ⊗ V )>M(IN ⊗ V ), i.e. (13)

Y(ij)(k`) = v>i M[jk]v` for all i, j, k, ` ∈ [N ]. (14)

Conversely, if
∑N

i=1 ‖vi‖22 = N and M ∈ B(N, r) with v>Mv = N2, then Y as defined by (13) is
a degree 4 pseudomoment matrix extending X.

We think of M as a witness of the fact that X ∈ E N
4 , an alternative to the pseudomoment witness

Y described in Proposition 2.4. The second, more detailed part of Theorem 2.15 gives one direction
of the equivalence between these two types of witness; the other direction will be described in the
course of the proof in Section 4.

8



2.3 Constraints on Pseudomoment Extensions

Through Theorem 2.15, we will next connect the structure of degree 4 pseudomoment extensions
of X ∈ E N

2 and the local geometry of E N
2 near X. Theorem 2.15 describes the membership

of Gram(v1, . . . ,vn) in E N
4 in terms of a semidefinite program, whose variable is M ∈ B(N, r).

Studying the dual of this semidefinite program and arguing through complementary slackness, we
find that the optimal M is highly constrained, as follows.

Lemma 2.16. Let v1, . . . ,vN ∈ Sr−1 be a spanning set, let V ∈ Rr×N have the vi as its columns,
let v := vec(V ) ∈ RrN be the concatenation of v1, . . . ,vN , let X := Gram(v1, . . . ,vN ) ∈ E N

2 , and
let M? ∈ B(N, r) be such that v>M?v = N2.

Then, all eigenvectors of M? with nonzero eigenvalue belong to the subspace

Vsym :=
{
vec(SV ) : S ∈ Rr×rsym

}
⊂ RrN . (15)

Additionally, v is an eigenvector of M? with eigenvalue N , and all eigenvectors of M? with nonzero
eigenvalue that are orthogonal to v belong to the subspace

V ′sym :=
{
vec(SV ) : S ∈ Rr×rsym ,v

>
i Svi = 0 for i ∈ [N ]

}
⊂ RrN . (16)

We next apply (13), which shows how a spectral decomposition of M? gives an expression for
the associated pseudomoment matrix Y as a sum of rank(M?) (not necessarily orthogonal) rank
one matrices, which are constrained by Lemma 2.16. It turns out that these latter constraints are
similar to those appearing in results of [53, 49] connecting the smallest face of E N

2 containing X
to span({viv>i }Ni=1), which lets us describe the constraints on Y concisely in terms of the local
geometry of E N

2 near X.

Theorem 2.17. Suppose X ∈ E N
4 and Y is a degree 4 pseudomoment matrix extending X. Then,

Y � vec(X)vec(X)>, and all eigenvectors of Y − vec(X)vec(X)> with nonzero eigenvalue belong
to the subspace vec(pertEN2

(X)).
Consequently,

rank(Y ) ≤ dim
(
pertEN2

(X)
)

+ 1 (17)

=
rank(X)(rank(X) + 1)

2
− rank(X�2) + 1 (18)

≤ rank(X)(rank(X) + 1)

2
. (19)

In particular, if X is an extreme point of E N
2 and is extendable to a degree 4 pseudomoment matrix

Y , then rank(Y ) = rank(X) = 1, and X = xx> and Y = (x⊗ x)(x⊗ x)> for some x ∈ {±1}N .

Remark 2.18. The matrix Y −vec(X)vec(X)> is quite natural in the pseudomoment framework:
entry (ij)(k`) of this matrix contains the difference between the pseudoexpectation of xixjxkx` and
the product of the pseudoexpectations of xixj and xkx`. It is natural to think of this quantity as the
pseudocovariance of xixj and xkx`, and it is then not surprising that the SOS constraints imply
that the pseudocovariance matrix is psd. We are not aware, however, of previous results on SOS
optimization that make direct use of the pseudocovariance matrix.

(As we will discuss in Section 5, the equality (18) is a previously known result of [53, 49]. Recall
also that pertEN2

(X) as a subspace has the same dimension as faceEN2
(X) as a convex set.) The

9



final claim gives a strong, albeit non-quantitative, suggestion that E N
4 is a substantially tighter

relaxation of CN than E N
2 : it implies that no “spurious” extreme points of E N

2 that are not already
extreme points of CN persist after constraining to E N

4 .
The bounds (18) and (19) are similar in form to the Pataki bound on the rank of extreme

points of feasible sets of general SDPs [59]. Because of the very large number of linear constraints
in SDPs arising from SOS optimization, however, the Pataki bound is less effective in this setting.
In particular, the Pataki bound gives, at best,

rank(Y ) ≤ (1 + oN→∞(1))
√

2m (20)

for Y an extreme point of the set of degree 4 pseudomoment matrices, where m is the number
of linear constraints in the definition of an N2 ×N2 degree 4 pseudomoment matrix. The degree
4 SOS constraints require that for each subset {i, j, k, `} ⊆ [N ], the permutation invariance of
Y(ij)(k`) be enforced. There are

(
N
4

)
∼ 1

24N
4 such subsets and 24 “copies” whose equality must

be enforced for each, of which it suffices to consider 12 since the constraint that the matrix Y be
symmetric is not counted. Thus m = (1− oN→∞(1))1124N

4, whereby the right-hand side of (20) is

(1− oN→∞(1))
√

11
12N

2.

On the other hand, even with the weaker of our bounds (19) and the naive further bound
rank(X) ≤ N , we obtain the stronger claim that any degree 4 pseudomoment matrix, not necessarily
an extreme point, has rank at most

(
N+1
2

)
∼ 1

2N
2. Additionally, the stronger inequality (18) is

tight, achieved for instance by the degree 4 pseudomoment matrix Y where Y(ij)(k`) = 1 if each
index i, j, k, ` appears an even number of times and Y(ij)(k`) = 0 otherwise (this matrix is the

average of (x ⊗ x)(x ⊗ x)> over all x ∈ {±1}N ), which extends X = IN . Our bound would also
give improved control of rank(Y ) in the case where X is low-rank (say, when rank(X) ≤ δN for
small enough δ). The question of whether, in fact, the degree 2 pseudomoments of an optimal
degree 4 pseudomoment matrix are typically low-rank in practical or random problems appears
not to have been studied extensively and would be an interesting question for future work. The
result (17) casts some doubt on this natural conjecture, as it implies that there is less “room” to
build a degree 4 pseudomoment matrix extending a degree 2 pseudomoment matrix that lies on a
low-dimensional face of E N

2 .

2.4 Examples from Equiangular Tight Frames

We next analyze the highly structured case of ETF Gram matrices, where the constraints of the
previous section may guide the search for a degree 4 pseudomoment matrix extending a given degree
2 pseudomoment matrix. The main reason that it is convenient to work with ETFs is that, when X
is the Gram matrix of an ETF, then |Xij | takes only two values, 1 when i = j and some α ∈ [0, 1]
otherwise. Therefore, in particular, the matrix X�2 is very simple,

X�2 = (1− α2)IN + α21N1>N . (21)

As we have seen in Theorem 2.17, X�2 is intimately related to pertEN2
(X) and therefore to the

possible degree 4 pseudomoment extensions of X. In the case of ETFs, its simple structure makes
it possible to compute an explicit (albeit naive) guess for a degree 4 pseudomoment extension,
which rather surprisingly turns out to be correct.

By such reasoning, we obtain a complete characterization of membership in E N
4 for ETF Gram

matrices X, which is quite simple in that it depends only on the dimension and rank of X. This
result is as follows.
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Theorem 2.19. Let v1, . . . ,vN ∈ Rr form an ETF, and let X := Gram(v1, . . . ,vN ). Then, X ∈
E N
4 if and only if N < r(r+1)

2 or r = 1. If r = 1, then X = xx> for x ∈ {±1}N , and a degree 4

pseudomoment matrix Y extending X is given by Y = (x⊗x)(x⊗x)>. If r > 1 and N < r(r+1)
2 ,

then, letting Pvec(pert
EN2

(X)) be the orthogonal projection matrix to vec(pertEN2
(X)) ⊂ RN

2
, a degree

4 pseudomoment matrix Y extending X is given by

Y = vec(X)vec(X)> +
N2(1− 1

r )
r(r+1)

2 −N
Pvec(pert

EN2
(X)), i.e. (22)

Y(ij)(k`) =
r(r−1)

2
r(r+1)

2 −N
(XijXk` +XikXj` +Xi`Xjk)−

r2
(
1− 1

N

)
r(r+1)

2 −N

N∑
m=1

XimXjmXkmX`m. (23)

As we will discuss further in the sequel, it is always the case that N ≤ r(r+1)
2 for an ETF (this is the

Gerzon bound [51]), and the maximal ETFs with N = r(r+1)
2 are notoriously elusive combinatorial

objects; for instance, they are known to exist for only four values of N , and the question of their
existence is open for infinitely many values of N [27]. Our result invokes another regard in which
these ETFs are extremal, which was in fact present but perhaps unnoticed in existing results (in
particular in an elegant proof of the Gerzon bound that we will present later): maximal ETF Gram
matrices are the only ETF Gram matrices that are extreme points of E N

2 (thus, by Theorem 2.17,
these Gram matrices cannot belong to E N

4 ).
In our argument it will become clear that the case of ETFs (those non-maximal ones that do

belong to E N
4 ) is perhaps the simplest possible situation for degree 4 pseudomoments over the

hypercube: as shown in (22), the degree 4 pseudomoment matrix Y will have only two distinct
positive eigenvalues, and will equal of the sum of the rank one matrix vec(X)vec(X)>, which
contributes the “naive” pseudomoment value XijXk`, with a constant multiple of the projection
matrix onto the subspace vec(pertEN2

(X)), which contributes the remaining “symmetrization” term

appearing in (23).

2.5 Applications

New inequalities in E N
4 . There are many results in combinatorial optimization enumerating

linear inequalities satisfied by CN (see e.g. [22]). The practical purpose of this pursuit is that
such linear inequalities may be included in linear programming (LP) relaxations of CN , which are
typically more efficient than the SDP relaxations we work with here. The putative convenience of
SDP relaxations is that they do not require their user to know specifically which inequalities will
be relevant for a given problem; the psd constraint captures many relevant inequalities at once. For
theoretical understanding, however, it is again important to know which specific inequalities over
CN are satisfied at which degrees of SOS relaxation, since those inequalities may then be used as
analytical tools.

Yet, to the best of our knowledge, very few inequalities over CN are known to be satisfied in
E N
4 but not E N

2 ; indeed, it appears that the only infinite such family known before this work was
the triangle inequalities,

− sisjXij − sjskXjk − siskXik ≤ 1 for X ∈ E N
4 , s ∈ {±1}N . (24)

Guided by the results from the previous section, we find a new family of similar but independent
inequalities. First, from the negative result of Theorem 2.19, we obtain concrete examples of
matrices X ∈ E N

2 \ E N
4 , namely the Gram matrices of ETFs with N = r(r+1)

2 . As mentioned
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before, these are only known to exist for four specific dimensions, namely r ∈ {2, 3, 7, 23}. By
convex duality, there must exist certificates that these matrices do not belong to E N

4 , taking the
form of linear inequalities that hold over E N

4 but fail to hold for these matrices. Indeed, for the
smallest two examples r ∈ {2, 3}, a triangle inequality is a valid certificate of infeasibility.

For r = 7, on the other hand, the absolute value of the off-diagonal entries of the Gram matrix
is α = 1

3 , so the triangle inequalities are satisfied, and the certificates of infeasibility must be new
inequalities which cannot be obtained as linear combinations of triangle inequalities. We compute
these certificates numerically and identify the constants that arise by hand to allow the certificates
to be validated by symbolic computation (this amounts to checking that a certain N2×N2 matrix
is psd, where in this case N2 = 282 = 784).

For r = 23 the same appears to occur numerically and a similar argument shows that yet another
independent family of inequalities must arise as the certificates of infeasibility, but the symbolic
verification of such a certificate is a much larger problem which a naive software implementation
does not solve in a reasonable time. We thus only present the verified result for r = 7 here as a
proof of concept, leaving both further computational verification of exact inequalities and further
theoretical analysis of these certificates to future work.

Theorem 2.20. Let Z be the Gram matrix of an ETF of 28 vectors in R7. Then, for any X ∈ E N
4

and any π : [28]→ [N ] injective, ∑
1≤i<j≤28

sgn(Zij)Xπ(i)π(j) ≤ 112, (25)

and this inequality cannot be obtained as a linear combination of the triangle inequalities

− sisjXij − sjskXjk − siskXik ≤ 1 for s ∈ {±1}N . (26)

As we will detail in the sequel, there is a general correspondence between ETFs and strongly regular
graphs (SRGs) [28], under which the ETF of 28 vectors in R7 (which is unique up to negating a
subset of its vectors) corresponds to the Schläfli graph, a remarkably symmetrical 16-regular graph
on 27 vertices (see e.g. [14, 18] for examples of its structure and significance in combinatorics). We
thus refer to these inequalities as Schläfli inequalities.

As a point of comparison, since Z ∈ E N
2 , the half-space parallel to that defined by (25) most

tightly bounding E N
2 must have the right-hand side at least∑

1≤i<j≤28
sgn(Zij)Zij =

∑
1≤i<j≤28

|Zij | =
28(28− 1)

2
· 1

3
= 126 > 112. (27)

Thus, the Schläfli inequalities describe directions in the vector space of symmetric matrices along
which E N

4 is strictly “narrower” than E N
2 .

New proofs of complexity of parity inequalities. Lastly, our results on ETFs imply a special
case of the following theorem of Laurent, which shows a lower bound for what degree of the SOS
hierarchy is required to describe the cut polytope exactly. (In the same work this bound was
conjectured to be optimal, which was later proven in [24].)

Proposition 2.21 (Theorems 5 and 6 of [46]). Let N ≥ 3 be odd. Define

X(N) :=

(
1 +

1

N − 1

)
IN −

1

N − 1
11>. (28)
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Then, X(N) ∈ E N
N−1\CN , and the degree N−1 pseudomoment matrix Z(N) ∈ R[N ](N−1)/2×[N ](N−1)/2

whose entries are given by

Z
(N)
st := (−1)|odd(s◦t)|/2

∏
i odd

1≤i<|odd(s◦t)|

i

N − i (29)

extends X(N). In particular, E N
N−1 6= CN .

The “parity inequality” we refer to in the heading of this section is the fact that X(N) /∈ CN , which
follows from the fact that when N is odd, then 1>NX1N ≥ 1 for all X ∈ CN (which in turn follows

from the fact that when X = xx> with x ∈ {±1}N , then this simply says (
∑N

i=1 xi)
2 ≥ 1), while

1>NX
(N)1N = 0. Proposition 2.21 then says that this parity inequality fails to hold over E N

N−1.

Observing that X(N) is the Gram matrix of an ETF, we are able to reproduce a weaker version
of this result as a corollary of Theorem 2.19, where E N

N−1 is replaced with E N
4 .

Corollary 2.22. Let N ≥ 4. Then, the matrix Y ∈ RN
2×N2

defined by

Y
(N)
(ij)(k`) =


1 : |odd((ijk`))| = 0,
− 1
N−1 : |odd((ijk`))| = 2,

3
(N−1)(N−3) : |odd((ijk`))| = 4

(30)

is a degree 4 pseudomoment matrix extending X(N).

Though this result is weaker than the full Proposition 2.21, the technique of its proof is far simpler:
we do not rely on any of the theory of association schemes or hypergeometric series used in the
argument of [46], and we obtain the correct value for the degree 4 pseudomoments, the key result
that Y � 0, and explicit descriptions of the eigenvalues and eigenvectors of Y (via the matrix
formula (22)) from a single straightforward linear algebra calculation. We believe it is likely that
a generalization of the methods presented here can yield the full result of Laurent’s theorem in a
similarly simplified fashion.

3 Notations

Boldface uppercase letters (X) denote matrices, and boldface lowercase letters (x) denote vectors.
Entries of matrices and vectors are written without boldface and with subscripts (Xij , xi), except
if the vector or matrix itself has a subscript, in which case parentheses are used ((xi)j , (Xi)jk).

Id denotes the d× d identity matrix, 1d denotes the all-ones vector of length d, and 1̂d denotes
its normalization to a unit vector, 1̂d = 1√

d
1d. The subscripts from these notations will be omitted

when the suitable dimension is clear from context.
Sr−1 ⊂ Rr denotes the sphere of unit radius in Rr. Rk×k (resp. Rk×ksym , Rk×kantisym) denotes the set

of k × k matrices (resp. symmetric, antisymmetric k × k matrices) with real entries. O(k) denotes
the group of k × k orthogonal matrices.

For a matrix V , row(V ) denotes the span of its rows, ker(V ) denotes its kernel as an operator
(also the orthogonal complement of row(V )), rank(V ) denotes its rank, and null(V ) denotes its
nullity, the dimension of its kernel. For a vector v ∈ Rk, diag(v) ∈ Rk×k is the diagonal matrix
with diag(v)ii = vi. For matrices X,Y of the same dimensions, X � Y denotes the Hadamard or
entrywise product, and X�k denotes the matrix obtained by taking the kth power of each entry
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of X. For any subspace V ⊆ Rr, PV ∈ Rr×r denotes the orthogonal projection matrix to V . For
v1, . . . ,vN ∈ Rk, Gram(v1, . . . ,vN ) ∈ RN×N denotes the Gram matrix (〈vi,vj〉)Ni,j=1.

We will work extensively with block matrices, for which we propose a non-standard but helpful
notation. When X ∈ Rab×cd and we have declared X to be a b× d matrix of blocks of size a× c,
then X[ij] ∈ Ra×c denotes the block in position (i, j) ∈ [b] × [d]. Similarly, when x ∈ Rab and we
have declared x to be divided into blocks of length a, then x[i] ∈ Ra denotes the block in position
i ∈ [b]. When c = a, so that the blocks of X are square, we define the partial transpose operation
XΓ to produce the matrix where every a× a block of X is transposed.2

4 Gramian Description of E N
4 : Theorem 2.15

In this section we give the proof of Theorem 2.15, followed by some ancillary results providing
intuitive interpretations of its statement and suggesting some connections to the notion of separa-
bility as studied in quantum information theory. Recall that Theorem 2.15 describes an equivalence
between the pseudomoment witness Y ∈ RN

2×N2
extending X ∈ E N

2 and the Gram vector witness
M ∈ B(N, r). The basic idea is that M describes certain rotations by which the blocks of Y must
be related because of the pseudomoment matrix constraints. We will show first how to build M
from Y , and then how to build Y from M .

4.1 Proof of Theorem 2.15: Pseudomoment Witness to Gram Vector Witness

Let Y ∈ RN
2×N2

be a degree 4 pseudomoment matrix extending X ∈ RN×N , where for some
v1, . . . ,vN ∈ Rr, X = Gram(v1, . . . ,vN ). Let V ∈ Rr×N have the vi as its columns, and let
v = vec(V ) ∈ RrN be the concatenation of v1, . . . ,vN . We will then show that there exists
M ∈ B(N, r) with v>Mv = N2 and

Y = (IN ⊗ V )>M(IN ⊗ V ). (31)

We first analyze the special case r = rank(X), then extend to the general case.

Case 1: r = rank(X). We buildM based on a suitable factorization of Y . Let r′ := rank(Y ) ≥ r,
then there exists A ∈ Rr

′×N2
such that Y = A>A. Let us expand in blocks

A =
[
A1 A2 · · · AN

]
, (32)

for Ai ∈ Rr
′×N . Since A>1 A1 = Y[11] = X = V >V , there exists Z ∈ Rr

′×r such that A1 = ZV

and Z>Z = Ir. By adding extra columns, we may extend Z to an orthogonal matrix Z̃ ∈ O(r′).
The factorization Y = A>A is unchanged by multiplying A on the left by any element of O(r′).
By performing this transformation with Z̃, we may assume without loss of generality that A is
chosen such that

A1 =

[
V
0

]
} r
} r′ − r (33)

where the numbers following the braces show the dimensionality of the matrix blocks.
Now, since A>i Ai = Y[ii] = X = A>1 A1 for every i ∈ [N ] (since, by the degree 4 pseudomoment

conditions, Y(ik)(i`) = Y(ii)(k`) = Y(11)(k`) = Xk`), there must exist Ir′ = Q1, . . . ,QN ∈ O(r′) such

2This notation, standard in the quantum information literature, is justified by the symbol Γ being “half of” the
transpose symbol >.
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that Ai = QiA1. Let us expand Qi in blocks,

Qi =
[
Ui︸︷︷︸
r

Ũi︸︷︷︸
r′−r

]
. (34)

We then have
Ai = QiA1 = UiV . (35)

(The extra variable Ũi will not be used in the argument.) Therefore, the blocks of Y are given by

Y[ij] = A>i Aj = V >U>i UjV . (36)

By the permutation symmetry of Y , every such block is symmetric. Since V has full rank, V V >

is invertible, and therefore the matrix (V V >)−1V Y[ij]V
>(V V >)−1 = U>i Uj is also symmetric.

We now define M blockwise by
M[ij] := U>i Uj . (37)

Then M � 0 by construction, M[ii] = Ir since this is the upper left block of Q>i Qi = Ir′ , and
M[ij] is symmetric by the preceding derivation. Thus, M ∈ B(N, r). By (36), we also have

Y = (IN ⊗ V )>M(IN ⊗ V ). (38)

It remains only to check that v>Mv = N2:

v>Mv =
N∑
i=1

N∑
j=1

v>i M[ij]vj =
N∑
i=1

N∑
j=1

(V >U>i UjV )ij =
N∑
i=1

N∑
j=1

Y(ii)(jj) = N2, (39)

completing the proof of the first case.

Case 2: r > rank(X). We will reduce this case to the previous case. Let r0 = rank(X) < r. Fix
Gram vectors v1, . . . ,vN ∈ Rr0 such that X = Gram(v1, . . . ,vN ), and, by the previous argument,
choose M ∈ B(N, r0) having v>Mv = N2.

Suppose that v′1, . . . ,v
′
N ∈ Rr such that X = Gram(v′1, . . . ,v

′
N ). Let v′ be the concatenation

of v′1, . . . ,v
′
N . Since the Gram matrices of v1, . . . ,vN and v′1, . . . ,v

′
N are equal, there must exist

Z ∈ Rr×r0 with Zvi = v′i for each i ∈ [N ] and Z>Z = Ir0 . Define M ′ ∈ RrN×rN to have blocks

M ′
[ij] :=

{
ZM[ij]Z

> : i 6= j,

Ir : i = j.
(40)

Equivalently,
M ′ = (IN ⊗Z)M(IN ⊗Z)> + IN ⊗ (Ir −ZZ>). (41)

Since ZZ> � Ir (the left-hand side is a projection matrix), M ′ � 0, and by constructionM ′
[ii] = Ir

and M ′
[ij] is symmetric. Thus, M ′ ∈ B(N, r).

We also have

v′
>
M ′v′ =

N∑
i=1

‖v′i‖22 +
∑

1≤i,j≤N
i 6=j

v′
>
i M

′
[ij]v

′
j

= N +
∑

1≤i,j≤N
i 6=j

v>i M[ij]vj

= N2. (42)
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Lastly, we check the formula for the entries of Y , now distinguishing the cases i = j and i 6= j:

Y(ii)(k`) = Xk` = 〈v′k,v′`〉 = v′
>
k M

′
[ii]v

′
`, (43)

Y(ij)(k`) = v>kM[ij]v`

= v′
>
k ZM[ij]Z

>v′`

= v′
>
k M

′
[ij]v

′
` (for i 6= j), (44)

completing the proof.

4.2 Proof of Theorem 2.15: Gram Vector Witness to Pseudomoment Witness

Suppose that X = Gram(v1, . . . ,vN ) ∈ RN×N for some vi ∈ Rr having
∑N

i=1 ‖vi‖22 = N . Let v be
the concatenation of v1, . . . ,vN . Suppose also that M ∈ B(N, r) with v>Mv = N2. We will show
that Y ∈ RN

2×N2
defined by

Y(ij)(k`) = v>i M[jk]v` (45)

is a degree 4 pseudomoment matrix. Recall that this requires the following properties to hold:

1. Y � 0.

2. Y(ij)(kk) does not depend on the index k.

3. Y(ii)(ii) = 1 for every i ∈ [N ].

4. Y(ij)(k`) is invariant under permutations of the indices i, j, k, `.

(That the upper left N ×N block of Y is X follows from Property 4 and that M[ii] = Ir.) We will
obtain these one by one below. This essentially just entails reversing the derivation of the previous
part; however, verifying some of the properties of Y will require a more detailed understanding of
the factorization of M that we used.

The simplest is Property 1: since M � 0, there exist some U1, . . . ,UN ∈ Rr
′×r for some r′ ≥ 1

such that M[jk] = U>j Uk. Thus,

Y(ij)(k`) = v>i U
>
j Ukv` = 〈Ujvi,Ukv`〉, (46)

so Y = Gram(U1v1, . . . ,UNvN ) � 0.
For Properties 2 and 3, we will first need some basic results on the spectrum of M ∈ B(N, r).

The proofs of these facts are given in Appendix B.

Proposition 4.1. Let M ∈ B(N, r). Then,

1. ‖M[ij]‖ ≤ 1 for all i, j ∈ [N ];

2. ‖M‖ ≤ N ;

3. if Mv = Nv, and 0 6= v ∈ RrN is the concatenation of vi ∈ Rr, then the norms ‖vi‖2 are all
equal, and M[ij]vj = vi for all i, j ∈ [N ].

From Claim 2 in the Proposition, since ‖v‖22 = Tr(X) = N , then if v>Mv = N2 we must have
Mv = Nv. Therefore, by Claim 3, ‖vi‖2 = 1 for each i ∈ [N ]. Also by Claim 3, we have

Y(ij)(kk) = v>i M[jk]vk = 〈vi,vj〉. (47)
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This gives Property 2, and taking i = j = k gives Property 3 since ‖vi‖2 = 1.
Property 4 is more subtle to establish. First, for a moment treating i, j, k, ` as merely four dis-

tinct symbols, note that the symmetric group on {i, j, k, `} is generated by the three transpositions
(ij), (jk), and (k`). Therefore, to establish Property 4 it suffices to show the three equalities

Y(ij)(k`) = Y(ji)(k`) = Y(ij)(`k) = Y(ik)(j`) (48)

for all i, j, k, ` ∈ [N ]. One equality follows directly from both M[jk] and M being symmetric,
whereby M[jk] = M[kj]:

Y(ij)(k`) = v>i M[jk]v` = v>i M[kj]v` = Y(ik)(j`). (49)

The others require a more detailed argument involving a factorization of M ∈ B(N, r), as follows.

Proposition 4.2. Let M ∈ B(N, r). Then, there exists U ∈ Rr
′×rN for some r ≤ r′ ≤ rN such

that M = U>U , where

U =

[
S1 S2 · · · SN
R1 R2 · · · RN

]
(50)

for some Si ∈ Rr×rsym , S1 = Ir, Ri ∈ R(r′−r)×r, R1 = 0, which satisfy the relations

S2
i +R>i Ri = Ir, (51)

SiSj − SjSi +R>i Rj −R>j Ri = 0. (52)

(The latter relations encode the conditions M[ii] = Ir and M>
[ij] = M[ij], respectively.) Combining

Proposition 4.1’s Claim 3 and Proposition 4.2, we find that

vi = M[i1]v1 = Siv1, (53)

v1 = M[1i]vi = Sivi. (54)

We may therefore expand the entries of Y in terms of the matrices Si and Ri and the vector v1:

Y(ij)(k`) = v>i M[jk]v`

= v>1 Si(SjSk +R>j Rk)S`v1

= v>1 SiSjSkS`v1 + v>1 SiR
>
j RkS`v1. (55)

To show the first two equalities of (48), it then suffices to show that for any i, j ∈ [N ], we have

SiSjv1
?
= SjSiv1, (56)

RiSjv1
?
= RjSiv1. (57)

Observe first that, by (53) and (54), we have

S2
i v1 = v1. (58)

Taking (51) as a quadratic form with v1, we find

1 = ‖v1‖22 = v>1 S
2
i v1 + ‖Riv1‖22 = 1 + ‖Riv1‖22, (59)

hence Riv1 = 0 for all i ∈ [N ]. Then, multiplying (52) on the right by v1 establishes (56).
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Next, taking (51) as a quadratic form with vi = Siv1, we find

1 = ‖vi‖22 = ‖Sivi‖22 + ‖Rivi‖22 = 1 + ‖Rivi‖22, (60)

so RiSiv1 = Rivi = 0 for each i ∈ [N ] as well. Also, evaluating (51) as a quadratic form with
vj = Sjv1, we have

1 = ‖vj‖22 = ‖SiSjv1‖22 + ‖RiSjv1‖22. (61)

Taking (51) as a bilinear form with Siv1 and Sjv1 and using the two preceding observations gives

0 = v>1 Sj(SiSj − SjSi +R>i Rj −R>j Ri)Siv1

= ‖SiSjv1‖22 − 1 + 〈RiSjv1,RjSiv1〉
= −‖RiSjv1‖22 + 〈RiSjv1,RjSiv1〉. (62)

The same holds with indices i and j exchanged, so we find

〈RiSjv1,RjSiv1〉 = ‖RiSjv1‖22 = ‖RjSiv1‖22 = ‖RiSjv1‖2‖RjSiv1‖2. (63)

Thus the Cauchy-Schwarz inequality holds tightly between the vectors RiSjv1 and RjSiv1, so
RiSjv1 = RjSiv1, establishing (57) and completing the proof.

4.3 Interpreting Theorem 2.15 as a Relaxation

Since E N
4 may be seen as a relaxation of the cut polytope CN , one expects that the description

of E N
4 in terms of an SDP over the matrices of B(N, r), as stated in Theorem 2.15, should itself

relax a description of CN in terms of a similar SDP with additional non-convex constraints. In this
section, we show that the most naive such description one might expect is in fact incorrect, and
give the correct description, which highlights an interesting connection with ideas from quantum
information theory. The proofs of the results we give are deferred to Appendix C.

Naively, by analogy with the fact that if X ∈ E N
2 with rank(X) = 1 then X = xx> for

x ∈ {±1}N , one might expect that constraining the rank of M ∈ B(N, r) in Theorem 2.15 to be
as small as possible, namely to equal r, would give a description of CN . Unfortunately, as the
following result shows, this only holds in one direction: if the Gram vector witness M has rank r
then the associated X ∈ CN , but there exist X ∈ CN with rank(X) = r whose membership in E N

4

does not admit a Gram vector witness M with rank(M) = r.

Proposition 4.3. Let v1, . . . ,vN ∈ Rr, let X = Gram(v1, . . . ,vN ), and let v ∈ RrN be the concate-
nation of v1, . . . ,vN . Then, if

∑N
i=1 ‖vi‖22 = N and there exists M ∈ B(N, r) with rank(M) = r

and v>Mv = N2, then X ∈ CN . On the other hand, if N /∈ {1, 2} and N is not divisible by 4,
then IN ∈ CN with IN = Gram(e1, . . . , eN ), but letting v be the concatenation of e1, . . . , eN , there
does not exist M ∈ B(N,N) with v>Mv = N2 and rank(M) = N .

(The unusual condition on the negative result that N be odd is probably superfluous if one searches
for counterexamples other than the identity; the question is related to the relationship between the
rank of a matrix in CN and the minimum number of cut matrices to whose convex hull it belongs,
which, as is discussed in the proof, is known to be subtle.)

The correct way to “repair” this first attempt is quite surprising: the key condition on the Gram
vector witness M ∈ B(N, r) that is equivalent to X ∈ CN is not minimal rank, but separability,
a notion studied mainly in quantum information theory. Related ideas will play a role in our
derivation of constraints on the Gram vector witness M defined in Theorem 2.15, but the full
extent of this connection is still unclear and is an intriguing subject for future work.
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Definition 4.4. A matrix M ∈ RrN×rN with Tr(M) = 1 is separable if there exist a1, . . . ,am ∈
RN with ‖ai‖2 = 1, b1, . . . , bm ∈ Rr with ‖bi‖2 = 1, and ρ1, . . . , ρm ≥ 0 with

∑
i ρi = 1 such that

M =
m∑
i=1

ρi(ai ⊗ bi)(ai ⊗ bi)>. (64)

If it is not possible to write M in this way, M is entangled. (More properly, M is the density
matrix representing, with respect to a particular choice of basis, a bipartite quantum state, and
it is the state that is entangled or separable.) We write Bsep(N, r) ⊆ B(N, r) for the matrices
M ∈ B(N, r) such that 1

rNM is separable.

Proposition 4.5. Let v1, . . . ,vN ∈ Rr, let X = Gram(v1, . . . ,vN ), and let v ∈ RrN be the
concatenation of v1, . . . ,vN . Then, X ∈ CN if and only if

∑N
i=1 ‖vi‖22 = N and there exists

M ∈ Bsep(N, r) such that v>Mv = N2.

By corollary, if X ∈ E N
4 \CN , then any Gram vector witness M (suitably scaled) must be the

density matrix of an entangled state which, by the definition of B(N, r), has the positive partial
transpose (PPT) property that its partial transpose remains psd. If the partial transpose of a
density matrix of a state fails to be psd, it follows that the state is entangled, but the converse does
not hold in general [60, 37]. The structure of states for which this test does not prove entanglement
but which are nonetheless entangled has received considerable attention in the quantum information
literature (see e.g. [52, 68, 50, 17], as well as [38, 10, 3] for more general discussion). It is therefore
striking that these objects are, per our results, rather commonplace in SOS optimization—for every
hypercube optimization problem for which degree 4 SOS is not tight (i.e. for which the optimizer
X? ∈ E N

4 \ CN ), there is an underlying entangled PPT state that may be recovered from X?.

5 Constraints on Witnesses: Lemma 2.16 and Theorem 2.17

5.1 Proof of Lemma 2.16

Suppose that X = Gram(v1, . . . ,vN ) ∈ E N
4 for some v1, . . . ,vN ∈ Sr−1, v is the concatenation of

the vi, and v>M?v = N2 for some M? ∈ B(N, r). Then, M? is an optimizer for the following
SDP, described by Theorem 2.15:

GramSDP(v1, . . . ,vN ) :=


maximize 〈vv>,M〉
subject to M � 0,

M[ii] = Ir,

M[ij] = M>
[ij] for i 6= j.

 . (65)

We next apply basic convex optimization results to this SDP. Background on these general facts
may be found in [8, 12]. First, we obtain the dual SDP

GramSDP∗(v1, . . . ,vN ) :=


minimize Tr(D)
subject to D � vv>,

D[ij] = −D>[ij] for i 6= j.

 . (66)

It is simple to verify that the Slater condition holds, implying strong duality between the SDPs
(65) and (66), whereby GramSDP(v1, . . . ,vN ) = GramSDP∗(v1, . . . ,vN ) = N2. If M? and D? are
primal and dual variables achieving the optimal values of GramSDP and GramSDP∗ respectively,
then complementary slackness must hold between them, M?(D? − vv>) = 0.
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The key to Lemma 2.16 is that, while constructing M? achieving a value of N2 in GramSDP
from v1, . . . ,vN (when their Gram matrix belongs to E N

4 ) is difficult (indeed, by the more detailed
part of Theorem 2.15 it is equivalent to constructing the degree 4 pseudomoments themselves),
constructing D? achieving a value of N2 in GramSDP∗ turns out to be straightforward.

The construction uses the partial transpose operation, A 7→ AΓ mapping RrN×rN → RrN×rN ,
which transposes every r × r block of an rN × rN matrix:

AΓ :=
[
A>[ij]

]N
i,j=1

for A ∈ RrN×rN . (67)

We then define D? as
D? := vv> − (vv>)Γ + IN ⊗ (V V >). (68)

We have Tr(D?) = Tr(IN ⊗ (V V >)) = N2, and for i 6= j, D[ij] = viv
>
j − vjv>i , which is antisym-

metric as required. The final feasibility conditionD? � vv> is equivalent to (vv>)Γ � IN⊗(V V >),
which is simple to check directly: let x ∈ RrN be the concatenation of x1, . . . ,xN ∈ Rr, then

x>(vv>)Γx =

N∑
i=1

N∑
j=1

〈xi,vj〉〈xj ,vi〉

≤
N∑
i=1

N∑
j=1

〈xi,vj〉2

=

N∑
i=1

x>i (V V >)xi

= x>(IN ⊗ (V V >))x.

Thus, by complementary slackness an optimizer M? in GramSDP must have positive eigenvectors
in ker(D? − vv>) = ker(IN ⊗ (V V >)− (vv>)Γ).

Remarkably, this subspace may be calculated exactly to produce the result of Lemma 2.16. This
calculation hinges on some elementary but perhaps not widely known facts of linear algebra that
originate in applications to quantum information theory. The first is the following, a rewriting of
the singular value decomposition.

Proposition 5.1 (Schmidt Decomposition, Section 2.2.2 of [3]). Let r ≤ N , V ∈ Rr×N

having singular value decomposition V =
∑r

i=1 σiyiz
>
i , where the yi ∈ Rr and zi ∈ RN each

form orthonormal sets and σi ≥ 0. Then,

vec(V ) =

r∑
i=1

σizi ⊗ yi. (69)

Note that in our case, v = vec(V ).
This representation makes it convenient to work with the partial transpose; in particular, using

the Schmidt decomposition, it is possible to diagonalize the partial transpose of a rank one matrix
explicitly, as follows. (This result appears to be folkloric in the quantum information literature;
the references we give are unlikely to be the earliest.)

Proposition 5.2 (Lemma III.3 of [34]; Lemma 1 of [39]). Let V ∈ Rr×N with r ≤ N and
V =

∑r
i=1 σiyiz

>
i where the yi ∈ Rr and zi ∈ RN each form orthonormal sets and σi ≥ 0. Let
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v = vec(V ). Then,

(vv>)Γ =
r∑
i=1

σ2i did
>
i +

∑
1≤i<j≤r

σiσjsijs
>
ij −

∑
1≤i<j≤r

σiσjaija
>
ij (70)

where

di = zi ⊗ yi, (71)

sij =
1√
2

(zi ⊗ yj + zj ⊗ yi) , (72)

aij =
1√
2

(zi ⊗ yj − zj ⊗ yi) . (73)

The r2 vectors di, sij ,aij moreover have unit norm and are mutually orthogonal, so (70) is a spectral
decomposition (up to the removal of any terms whose coefficient is zero if V is not full rank).

With this, it is straightforward to compute the subspace we are interested in, since IN⊗(V V >)
can also be diagonalized explicitly in a basis of the same Kronecker products zi ⊗ yj .

Proposition 5.3. Let V ∈ Rr×N with r ≤ N have full rank, and let v = vec(V ). Then,

IN ⊗ (V V >) � (vv>)Γ. (74)

The subspace on which this inequality is tight is given by

ker

(
IN ⊗ (V V >)− (vv>)Γ

)
=
{
vec(SV ) : S ∈ Rr×rsym

}
=: Vsym. (75)

Letting V =
∑r

i=1 σiyiz
>
i for yi ∈ Rr an orthonormal basis, zi ∈ RN an orthonormal set, and

σi > 0 be the singular decomposition, an orthonormal basis for Vsym is given by the r(r+1)
2 vectors

zi ⊗ yi for 1 ≤ i ≤ N, (76)

1√
σ2i + σ2j

(σizi ⊗ yj + σjzj ⊗ yi) for 1 ≤ i < j ≤ N. (77)

We provide proofs of the preceding three Propositions in Appendix D, giving more details on
Proposition 5.3 since it is the only one of these results that appears to be original.

From the previous discussion of complementary slackness and Proposition 5.3, we find that
all eigenvectors with positive eigenvalue of M must belong to Vsym. To obtain from this the
statement of Lemma 2.16, first note that if v>Mv = N2 then by Proposition 4.1 Mv = Nv, so
M = vv>+M ′ for some M ′ � 0. Suppose that w ∈ RrN is an eigenvector of M ′ with eigenvalue
λ > 0. Then, w ∈ Vsym by the above reasoning, so w = vec(SV ) for some S ∈ Rr×rsym . Also,

Ir = M[ii] � (vv> + λww>)[ii] = viv
>
i + λSviv

>
i S, (78)

and taking this as a quadratic form with vi shows that viSvi = 0. Since this holds for each i ∈ [N ],
we obtain the conclusion of Lemma 2.16, that

w ∈ V ′sym :=
{
vec(SV ) : S ∈ Rr×rsym ,v

>
i Svi = 0 for i ∈ [N ]

}
. (79)
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5.2 Proof of Theorem 2.17

Suppose X ∈ E N
4 with X = Gram(v1, . . . ,vN ), and vi ∈ Rr with r = rank(X). Then if V ∈ Rr×N

has the vi as its columns, V is full-rank. If Y ∈ RN
2×N2

is any degree 4 pseudomoment matrix
extending X, then there is M ∈ B(N, r) with v>Mv = N2. Suppose r′ = rank(M), then let us

write the spectral decomposition M = vv> +
∑r′−1

m=1 λmwmw
>
m for some λm > 0.

By Lemma 2.16, wm ∈ V ′sym. Therefore, wm = vec(SmV ) for some Sm ∈ Rr×rsym with v>i Smvi = 0
for all i ∈ [N ],m ∈ [r′ − 1]. By (13) from Theorem 2.15, we may therefore expand

Y = ṽṽ> +

r′−1∑
m=1

λmw̃mw̃
>
m, (80)

(ṽ)(ij) = 〈vi,vj〉, (81)

(w̃m)(ij) = 〈Smvi,vj〉. (82)

Thus, we simply have ṽ = vec(X) and w̃m = vec(V >SmV ).
The statement of Theorem 2.17 comes from combining this with the following previous result

about the facial geometry of E N
2 .

Proposition 5.4 (Theorem 1(a) of [53]). Let X = Gram(v1, . . . ,vN ) ∈ E N
2 for v1, . . . ,vN ∈

Sr−1 having rank(X) = r, and let V ∈ Rr×N have the vi as its columns, so that X = V >V . Then,

pertEN2
(X) =

{
V >SV : S ∈ Rr×rsym

}
∩ {A ∈ RN×N : diag(A) = 0} (83)

=
{
V >SV : S ∈ Rr×rsym ,v

>
i Svi = 0 for i ∈ [N ]

}
. (84)

Therefore, continuing the reasoning above, we find that for each m ∈ [r′ − 1], w̃m = vec(Am) for
someAm ∈ pertEN2

(X). Hence, every eigenvector of Y −vec(X)vec(X)> having nonzero eigenvalue

must lie in vec(pertEN2
(X)), establishing the first part of the result.

The second part of the result controls rank(Y ) ≤ r′. By the first part of the result,

r′ ≤ dim
(
pertEN2

(X)
)

+ 1, (85)

so it suffices to compute the right-hand side. Since V is full-rank, the map S 7→ V >SV is injective,
so this may be computed as

dim
(
pertEN2

(X)
)

= dim

(
span

(
{viv>i }Ni=1

)⊥)
=
r(r + 1)

2
− dim

(
span

(
{viv>i }Ni=1

))
. (86)

Since Gram(v1v
>
1 , . . . ,vNv

>
N ) = X�2, we equivalently have

dim
(
pertEN2

(X)
)

=
r(r + 1)

2
− rank(X�2), (87)

a previously known corollary of Proposition 5.4 used in [53, 49].
The final part of the result concerns the special case where X ∈ E N

2 is an extreme point,
whereby dim(pertEN2

(X)) = 0. Then, if Y is a degree 4 pseudomoment matrix extending X we

have rank(Y ) = r′ = 1, so rank(X) = 1 as well since X is a minor of Y . Since X ∈ E N
2 , in fact

X = xx> for some x ∈ {±1}N , and it is simple to check that the only possible degree 4 extension
of rank one is then Y = (x⊗ x)(x⊗ x)>.
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6 Examples from Equiangular Tight Frames: Theorem 2.19

Before giving the proofs of our results on ETFs, we first point out a general convenience of working
with the Gram matrices of UNTFs through Theorem 2.15. Suppose X = Gram(v1, . . . ,vN ) and the
vi ∈ Rr form a UNTF. Let V ∈ Rr×N have the vi as its columns. Suppose also that M ∈ B(N, r)
with v>Mv = N2. Lemma 2.16 then ensures that the eigenvectors of M with positive eigenvalue
lie in the subspace of vectors of the form vec(SV ) for S ∈ Rr×rsym . In the case where v1, . . . ,vN form
a UNTF, we show that in fact this mapping is, up to scaling, an isometry.

Definition 6.1. For V ∈ Rr×N , let us write VV : Rr×rsym → RrN for the map VV (S) =
√

r
N vec(SV ).

When the matrix V is clear from context, we will drop the subscript V .

Proposition 6.2. Let v1, . . . ,vN ∈ Sr−1 form a UNTF and let V ∈ Rr×N have the vi as its
columns. Then, the mapping V = VV is a linear isometry between Rr×rsym and {vec(SV ) : S ∈
Rr×rsym} ⊂ RrN , if Rr×rsym is endowed with the Frobenius inner product 〈S,S′〉 = Tr(SS′).

Proof. To check that inner products are preserved, we compute:

〈V(S),V(S′)〉 =
r

N

N∑
i=1

〈Svi,S′vi〉

=
r

N

N∑
i=1

v>i SS
′vi

= Tr
(
SS′

( r
N
V V >

))
= 〈S,S′〉. (88)

Clearly V is linear, injectivity follows from the vi forming a spanning set, and surjectivity follows
from the definition of the target space.

Similarly, Theorem 2.15 shows that Y can be produced from M by conjugating as

Y = (IN ⊗ V )>M(IN ⊗ V ) =
N

r

(
IN ⊗

√
r

N
V

)>
M

(
IN ⊗

√
r

N
V

)
, (89)

where in the latter expression the matrix IN ⊗
√

r
NV has orthonormal rows, so Y is also merely a

scaled and rotated copy ofM , embedded in a higher-dimensional space. In particular, the spectrum
of Y is the spectrum of M , scaled up by N

r .

6.1 Proof of Theorem 2.19

In this section we will prove the necessary and sufficient condition for the Gram matrix of an ETF
to lie in E N

4 . Let v1, . . . ,vN ∈ Rr form an ETF, let V ∈ Rr×N have the vi as its columns, let
v = vec(V ) be the concatenation of v1, . . . ,vN , and let X = V >V = Gram(v1, . . . ,vN ). Then, our

result is that X ∈ E N
4 if and only if N < r(r+1)

2 or r = 1. If r = 1, then each vi is a scalar equal to
±1, so X ∈ CN . Thus, it suffices to restrict our attention to r > 1.

First, we recall a classical result on equiangular lines (not necessarily forming a tight frame)
which shows that this result only excludes one extremal case. We also include its elegant proof,
since similar ideas will be involved in our argument.
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Proposition 6.3 (Gerzon Bound [51]). If v1, . . . ,vN ∈ Sr−1 and |〈vi,vj〉| = α < 1 for all

i, j ∈ [N ] with i 6= j, then N ≤ r(r+1)
2 .

Proof. For all i 6= j, 〈viv>i ,vjv>j 〉 = α2. Thus,

Gram(v1v
>
1 , . . . ,vNv

>
N ) = (1− α2)IN + α211>, (90)

which is non-singular. The viv
>
i are then linearly independent, so N ≤ dim(Rr×rsym ) = r(r+1)

2 .

By Theorem 2.17, the negative direction of Theorem 2.19 immediately follows: if N = r(r+1)
2 , then

the viv
>
i span Rr×rsym , so by Proposition 5.4 X is an extreme point of E N

2 , thus X cannot belong to

E N
4 unless rank(X) = 1, which is a contradiction if r > 1.

The positive direction with r > 1 is the more difficult part of the result. We proceed by
explicitly constructing M ∈ B(N, r) with v>Mv = N2. The construction is optimistic: we
consider the simplest possible choice for M respecting the constraint of Lemma 2.16. The Lemma
forces M = vv> +M ′ where M ′ � 0 with all of its eigenvectors with positive eigenvalue lying in
the subspace V ′sym. We then simply choose M ′ to equal a constant multiple of PV ′sym

. Choosing the
constant factor such that Tr(M) = rN , we obtain the candidate

M := vv> +
(r − 1)N
r(r+1)

2 −N
PV ′sym

. (91)

If we could show that M[ii] = Ir and M>
[ij] = M[ij] for all i, j ∈ [N ], then the proof would be

complete.
Surprisingly, the naive construction (91) does satisfy these properties. This may be verified by

calculating PV ′sym
explicitly, a calculation we perform in detail in Appendix E but outline briefly

here. Recall that

V ′sym :=
{
vec(SV ) : S ∈ Rr×rsym ,v

>
i Svi = 0 for i ∈ [N ]

}
⊂ RrN . (92)

The basic idea is then to write PV ′sym
y for some y ∈ RrN as vec(SV ) for S solving the least-squares

optimization problem for the orthogonal projection of y. We then solve this optimization explicitly
with Lagrange multipliers. Determining the Lagrange multipliers in turn amounts to inverting the
matrix X�2. Fortunately, for an ETF, as noted previously in the introduction and in the proof of
Proposition 6.3, this matrix has a simple structure, making the calculation tractable. In this way,
we obtain formulae for the blocks of PV ′sym

(see Corollary E.3), after which it is straightforward to
check that M ∈ B(N, r).

Finally, using the relation (14) between the blocks of M and the degree 4 pseudomoments, we
recover the elegant formula for the degree 4 pseudomoments:

Y(ij)(k`) =
r(r−1)

2
r(r+1)

2 −N
(XijXk` +XikXj` +Xi`Xjk)−

r2
(
1− 1

N

)
r(r+1)

2 −N

N∑
m=1

XimXjmXkmX`m. (93)

This derivation is a rather egregious instance of “bookkeeping for a miracle” [19], and it certainly
remains an open question to provide an intuitive explanation for why any ETF Gram matrices
ought to belong to E N

4 at all, or for the structure of the remarkably symmetric formula (93). We
remark additionally that, by the comments at the beginning of this section, the spectrum of Y
described by (93) is the same as the spectrum of M with a constant scaling, and thus is also
simple: Y equals the rank one matrix vec(X)vec(X)> plus a constant multiple of the projection
matrix onto the subspace vec(pertEN2

(X)).
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7 Applications

7.1 Schläfli Inequalities: Theorem 2.20

In this section we will describe the computer-assisted verification of the inequalities (25) and some
ancillary results. First, we review a connection between ETFs and strongly regular graphs (SRGs).
(In fact, there are two distinct correspondences between ETFs and SRGs: the one we will use
applies to arbitrary ETFs and is described in [28], while the other applies only to ETFs with a
certain additional symmetry and is described in [26].)

Definition 7.1. A graph G = (V,E) is a strongly regular graph with parameters (v, k, λ, µ),
abbreviated srg(v, k, λ, µ), if |V | = v, G is k-regular, every x, y ∈ V that are adjacent have λ
common neighbors, and every x, y ∈ V that are not adjacent have µ common neighbors.

Proposition 7.2 (Theorem 3.1 of [28]). Let v1, . . . ,vN ∈ Rr form an ETF with N > r, sup-
pose that for all i ∈ [N ] \ {1} we have 〈v1,vi〉 > 0, and let X = Gram(v1, . . . ,vN ). Define the
graph G on vertices in [N ] \ {1} where i and j are adjacent if and only if 〈vi,vj〉 > 0. Then, G is
an srg(v, k, λ, µ) with parameters

v = N − 1, (94)

k =
N

2
− 1 +

(
N

2r
− 1

)√
r(N − 1)

N − r , (95)

µ =
k

2
, (96)

λ =
3k − v − 1

2
. (97)

Note that the assumption that 〈v1,vi〉 > 0 for all i 6= 1 is not a substantial restriction, since any
vector in an ETF may be negated to produce another essentially equivalent ETF.

In our case, an ETF on 28 vectors in R7 corresponds to an srg(27, 16, 10, 8). By the result of
[66], this graph is unique, so we may take it by definition to be the Schläfli graph (a more natural
geometric description is given in the previous reference). Consequently, since by negating some
vectors every ETF can be put into the “canonical” form where 〈v1,vi〉 > 0 for all i 6= 1, we obtain
the following uniqueness result.

Proposition 7.3. Let v1, . . . ,v28 and w1, . . . ,w28 be two ETFs in R7. Then, there exist signs
1 = s1, s2, . . . , s28 ∈ {±1} and Q ∈ O(7) such that wi = siQvi for each i ∈ [28].

Since if X ∈ E N
4 then DXD ∈ E N

4 for any D = diag(d) with d ∈ {±1}N , it suffices to fix a
single ETF of 28 vectors in R7 and check (25), and the result will follow for all ETFs of the same
dimensions. Thus, let us fix v1, . . . ,v28 ∈ R7 forming an ETF with 〈v1,vi〉 > 0 for all i 6= 1, and
let Z = Gram(v1, . . . ,vN ). Let G be the graph on [28] where i and j are adjacent if 〈vi,vj〉 > 0,
so that G is the Schläfli graph with one extra vertex added that is attached to every other vertex.
We will write G|S for the subgraph induced by G on the set of vertices S.

We show (25) by producing a 0 � A ∈ RN
2×N2

such that for any Y a degree 4 pseudomoment
matrix extending some X a degree 2 pseudomoment matrix,

0 ≤ 〈A,Y 〉 = 112−
∑

1≤i<j≤28
sgn(Zij)Xij . (98)
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The construction of A is based on studying the results of numerical experiments. We identify the
constants appearing in A as

γ1 :=
1

126
, (99)

γ2 :=
1

36
, (100)

κ1 :=
2

9
, (101)

κ2 :=
1

28
. (102)

With this, we define

A(ij)(k`) :=



0 : |{i, j, k, `}| = 4,
−sgn(Zk`)γ1 : i = j, k 6= `,
γ2 : i = k, j 6= `, |E(G|{i,j,`})| = 0,

γ2 : i = k, j 6= `, |E(G|{i,j,`})| = 2, i ∼ j, i ∼ `,
−γ2 : i = k, j 6= `, |E(G|{i,j,`})| = 2, j ∼ `,
0 : i = k, j 6= `, |E(G|{i,j,`})| ∈ {1, 3},
−sgn(Zi`)γ1 : i = j = k, i 6= `,
κ1 : i = k, j = `, i 6= j,
κ2 : i = j, k = `.

(103)

A(i1i2)(i3i4) = A(iπ(1)iπ(2))(iπ(3)iπ(4)) for i ∈ [N ]4, π ∈ Sym(4). (104)

We then perform a computer verification that A � 0 using the SageMath software package for
symbolic calculation of a Cholesky decomposition. Verifying that the equality of (98) holds is
straightforward by counting the occurrences of various terms in 〈A,X〉. Accompanying code for
reproducing the verification is available online.3 Of course, this proof technique is rather unsatis-
fying, and it is an open problem to provide a more principled description of A and a conceptual
proof of its positive semidefiniteness (both for this specific case and for the general case of maximal
ETFs for any dimensions they may exist in).

7.2 Complexity of Parity Inequalities

In this section, we give the straightforward argument behind our proof of Corollary 2.22, a partial
reproduction of the result of Laurent given in Proposition 2.21. The matrix X(N) described there
is the Gram matrix of the following type of ETF.

Definition 7.4. The simplex ETF with parameter N ≥ 3 is an ETF of N vectors in Rr with
r = N − 1, whose vectors point to the vertices of an equilateral simplex whose barycenter lies at
the origin and whose vertices are unit distance from this barycenter. The coherence of the simplex
ETF is α = 1

r , and the inner product of any two distinct vectors is −α; that is, the Gram matrix

X(N) is

X(N) =

(
1 +

1

N − 1

)
IN −

1

N − 1
11>. (105)

When N = 3 and r = 2, then the simplex ETF is maximal, so X(3) /∈ E 3
4 , but for all N > 3 we

do have X(N) ∈ E N
4 , and the extending degree 4 pseudomoment matrix may be computed directly

3See the second author’s webpage at http://www.kunisky.com/publications/deg-4-elliptope/.
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from (93) (especially simple in this case since the terms Xij appearing in the summations only take
on two different values), completing the proof of the Corollary.

We remark that, in our previous results on ETFs, the only technical calculation was that
of the projection matrix PV ′sym

, and the only particularly novel idea required was the optimistic
construction of the Gram vector witness (91). In contrast, the original argument of [46] uses some
rather powerful machinery from the general theory of association schemes and analytic identities
for hypergeometric functions. We thus hope that our approach can be extended to view the higher-
degree pseudomoment matrices used for the full result of Proposition 2.21 as Gram matrices as well,
replacing these technicalities with simpler considerations of the geometry of the simplex ETFs.
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A Pseudomoment Reductions for Sum-of-Squares over {±1}N

In this appendix, we explain some standard reductions for the degree d SOS relaxation of the
problem

M(W ) = max
x∈{±1}N

x>Wx = max
x∈RN

x2i−1=0 for i∈[N ]

N∑
i=1

N∑
j=1

Wijxixj . (106)

The second expression above writes M(W ) as a polynomial optimization problem, so the stan-
dard machinery of SOS optimization (see e.g. [45, 47]) may be applied to formulate the degree d
relaxation. We first describe the decision variable of this relaxation.

Definition A.1. Let d be an even positive integer. Then, M (d) ⊂ RN
≤d/2×N≤d/2 is the set of degree

d complete pseudomoment matrices, consisting of Z whose row and column indices we identify
with the set [N ]≤d/2 ordered first by ascending length and then lexicographically and satisfying the
following properties.

1. Z � 0.

2. Zst depends only on odd(s ◦ t).

3. Zst = 1 whenever odd(s ◦ t) = ∅.

We then define the usual formulation of the degree d SOS relaxation of M(W ) in the following way.

Definition A.2. Let d be an even positive integer. The degree d SOS relaxation of M(W ) is the
optimization problem

SOSd(W ) := max
Z∈M(d)

N∑
i=1

N∑
j=1

WijZ(i)(j), (107)

where (i) ∈ [N ] and (j) ∈ [N ] are interpreted as strings of length 1.

The result we will prove in this appendix is that the pseudomoment matrices of Definition A.1
can be truncated to just the minor indexed by [N ]d/2 × [N ]d/2 without affecting the optimization
problem (107). First, we make the simple observation that, by Condition 2 of Definition A.1, the
objective function of SOSd(W ) may be rewritten in terms of this minor.

Definition A.3. For any N ≥ 1, let ek ∈ [N ]k be the string of length k with all entries equal to
the symbol 1 ∈ [N ].

Proposition A.4. For each d an even positive integer,

SOSd(W ) = max
Z∈M(d)

N∑
i=1

N∑
j=1

WijZ(ed/2−1◦(i))(ed/2−1◦(j)). (108)

We next show that it does not matter whether we define the set of minors of Z ∈M (d) indexed by
[N ]d/2 × [N ]d/2 by truncating Z or by applying the constraints of Definition A.1 to only a subset
of strings [N ]d/2 ⊂ [N ]≤d/2, as we did in the main text in Definition 2.3.

Definition A.5. Let d be an even positive integer. Then, M̃ (d) ⊂ R[N ]d/2×[N ]d/2 is the set of degree
d truncated pseudomoment matrices, consisting of Z̃ satisfying the properties of Definition A.1 but
only for strings of length exactly d/2, that is, for s, t ∈ [N ]d/2.
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Proposition A.6. M̃ (d) is equal to the set of Z̃ occurring as the minor indexed by [N ]d/2× [N ]d/2

of Z ∈M (d).

Proof. Clearly if Z ∈M (d) then the [N ]d/2 × [N ]d/2 minor of Z will belong to M̃ (d). Therefore, it
suffices to prove that for any Z̃ ∈ M̃ (d), there exists Z ∈ M (d) such that Z̃ is the [N ]d/2 × [N ]d/2

minor of Z.
We define the entries of Z to be

Zst := Z̃(s◦ed/2−|s|)(t◦ed/2−|t|). (109)

(Intuitively, this construction is in analogy to the possibility of assuming without loss of generality
that x1 = 1 in the optimization defining M(W ).) By construction, Z̃ is the necessary minor of Z.
We have

odd((s ◦ ed/2−|s|) ◦ (t ◦ ed/2−|t|)) = odd(s ◦ t ◦ e|s|+|t|), (110)

and |s|+ |t| ≡ |odd(s ◦ t)| (mod 2), so Zst is a function of only odd(s ◦ t). Also, if odd(s ◦ t) = ∅
then |s| + |t| must be even, so in this case the expression in (110) also equals ∅, thus in this case
Zst = 1 since Z̃ ∈ M̃ (d).

It then only remains to show that Z � 0 to show that Z ∈M (d). For two strings s, s′ ∈ [N ]<∞,
let us write s ≤1 s

′ if |s| ≤ |s′| and s′ = s ◦ e|s′|−|s|. Suppose that v ∈ R[N ]≤d/2, then using the
above definition we may write its quadratic form with Z as

v>Zv =
∑

s∈[N ]≤d/2

∑
t∈[N ]≤d/2

Zstvsvt

=
∑

s′∈[N ]d/2

∑
t′∈[N ]d/2

Z̃s′t′

 ∑
s∈[N ]≤d/2

s≤1s′

∑
t∈[N ]≤d/2

t≤1t′

vsvt



=
∑

s′∈[N ]d/2

∑
t′∈[N ]d/2

Z̃s′t′

 ∑
s∈[N ]≤d/2

s≤1s′

vs


 ∑
t∈[N ]≤d/2

t≤1t′

vt


≥ 0, (111)

where the last inequality follows because Z̃ � 0. Thus, Z ∈M (d), completing the proof.

The result we were interested in then follows, that SOSd(W ) may equivalently be defined in
terms of optimization over the truncated pseudomoment matrices M̃ (d).

Corollary A.7. For each d an even positive integer,

max
Z̃∈M̃(d)

N∑
i=1

N∑
j=1

WijZ̃(ed/2−1◦(i))(ed/2−1◦(j)). (112)

B Proofs of Structural Results on B(N, r)

B.1 Proof of Proposition 4.1

Let M ∈ B(N, r). To obtain the spectral bound on the blocks ‖M[ij]‖ ≤ 1, note that the claim is
trivial for i = j, so let us fix i, j ∈ [N ] with i 6= j and denote S := M[ij] ∈ Rr×rsym . Taking a suitable
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minor of M , we find [
Ir S
S Ir

]
� 0. (113)

Taking a quadratic form with this matrix, we find that for any v ∈ Rr with ‖v‖2 = 1,

0 ≤
[
±v
v

]> [
Ir S
S Ir

] [
±v
v

]
= 2± 2v>Sv, (114)

thus |v>Sv| ≤ 1, and the result follows.
From this, the bound ‖M‖ ≤ N follows from a simple case of the “block Gershgorin circle

theorem” [25], which may be deduced directly as follows: suppose v ∈ RrN is the concatenation of
v1, . . . ,vN ∈ Rr, then

v>Mv ≤
N∑
i=1

N∑
j=1

|v>i M[ij]vj | ≤
N∑
i=1

N∑
j=1

‖vi‖2‖vj‖2 =

(
N∑
i=1

‖vi‖2
)2

≤ N
N∑
i=1

‖vi‖22 = N‖v‖22,

(115)
giving the result.

For the final statement of the Proposition, if Mv = Nv, then all of the inequalities in (115)
must be equalities. For the third inequality to be an equality requires all of the ‖vi‖2 to be equal
for i ∈ [N ]. For the first inequality to be an equality requires v>i M[ij]vj ≥ 0 for all i, j ∈ [N ].
For the second inequality to be an equality requires M[ij]vj = vi for all i, j ∈ [N ], completing the
proof.

B.2 Proof of Proposition 4.2

Let M ∈ B(N, r) and let r′ := rank(M). Since M contains Ir as a minor, r′ ≥ r, and since rN
is the dimension of M , r′ ≤ rN . Then, there exists U ∈ Rr

′×rN such that M = U>U . Let us
expand in blocks

U =
[
U1 U2 · · · UN

]
, (116)

for Ui ∈ Rr
′×r. Then, U>i Ui = M[ii] = Ir.

This factorization is unchanged by multiplying U on the left by any matrix of O(r′). Since
U1 has orthogonal columns, by choosing a suitable such multiplication we may assume without
loss of generality that the columns of U1 are the first r standard basis vectors e1, . . . , er ∈ Rr

′
.

Equivalently,

U1 =

[
Ir
0

]
} r
} r′ − r . (117)

Let us expand each Ui in blocks of the same dimensions,

Ui =:

[
Si
Ri

]
} r
} r′ − r , (118)

then S1 = Ir and R1 = 0. We first show that the Si are all symmetric. Expanding the block M[1i],
we have

M[1i] = U>1 Ui = S>1 Si +R>1 Ri = Si, (119)

and since M[1i] is symmetric, Si is symmetric as well.
It remains to show the relations (51) and (52). For the former, we expand M[ii]:

Ir = M[ii] = U>i Ui = S2
i +R>i Ri. (120)
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For the latter, we expand M[ij] and M[ji]:

0 = M[ij] −M[ji] = U>i Uj −U>j Ui = SiSj − SjSi +R>i Rj −R>j Ri. (121)

C Proofs of Relaxation Descriptions of Theorem 2.15

C.1 Proof of Proposition 4.3

Positive direction. Suppose v1, . . . ,vN ∈ Rr, X = Gram(v1, . . . ,vN ), v ∈ RrN is the concate-
nation of v1, . . . ,vN ,

∑N
i=1 ‖vi‖22 = N , and M ∈ B(N, r) with rank(M) = r and v>Mv = N2. By

Proposition 4.1, ‖vi‖2 = 1 for each i ∈ [N ] and M[ij]vj = vi for each i, j ∈ [N ].

Since M � 0 and rank(M) = r, there exist Qi ∈ Rr×r such that M[ij] = Q>i Qj . Moreover,

since Q>i Qi = M[ii] = Ir, Qi ∈ O(r) for each i ∈ [N ]. The above factorization is unchanged
by multiplying each Qi on the left by an orthogonal matrix, so we may assume without loss of
generality that Q1 = Ir.

Thus, M[1i] = Q>1 Qi = Qi, which must be symmetric, soQi is symmetric for each i ∈ [N ]. And,
M[ij] = QiQj is also symmetric, so Q1, . . . ,QN are a commuting family of symmetric orthogonal
matrices. Therefore, there exists some Q ∈ O(r) and 1 = d1, . . . ,dN ∈ {±1}r such that Qi =
QDiQ

> where Di = diag(di).
We have vi = M[i1]v1 = Qiv1 = QDiQ

>v1 for each i ∈ [N ]. Thus,

Xij = 〈vi,vj〉 = 〈DiQ
>v1,DjQ

>v1〉 = 〈DiDj ,Q
>v1v

>
1 Q〉. (122)

Let ρ = diag(Q>v1v
>
1 Q), then since Q>v1v

>
1 Q � 0, ρ ≥ 0, and

∑r
i=1 ρi = Tr(Q>v1v

>
1 Q) = 1.

Therefore, letting d̃k := ((di)k)
N
k=1 ∈ {±1}N , (122) is

Xij =
r∑

k=1

ρk(di)k(dj)k, (123)

X =
r∑

k=1

ρkd̃kd̃
>
k ∈ CN , (124)

completing the proof.

Negative direction. We have IN ∈ CN since IN = 1
2N

∑
x∈{±1}N xx

>, as each off-diagonal entry
occurs an equal number of times with a positive sign as with a negative sign in the summation.
We will view IN = Gram(e1, . . . , eN ), let v =

∑N
i=1 ei ⊗ ei be the concatenation of the ei, and will

show that if M ∈ B(N,N) with v>Mv = N2, then rank(M) > N when N /∈ {1, 2} ∪ 4N.
Suppose otherwise, then, as in the argument above, M ∈ B(N,N) has M[ij] = QiQj for

some Qi ∈ O(N) ∩ RN×Nsym , with Q1 = IN , and where Q1, . . . ,QN commute. We may then write

Qi = QDiQ
> for Q ∈ O(N) and Di = diag(di) for di ∈ {±1}N . Let us also write q1, . . . , qN for

the rows of Q, which form an orthonormal basis of RN .
We have

N2 = v>Mv =

N∑
i=1

N∑
j=1

(ei ⊗ ei)>M(ej ⊗ ej) =
N∑
i=1

N∑
j=1

(M[ij])ij . (125)

Since M � 0 and diag(M) = 1, all entries of M are at most 1, so each term in this sum must
equal 1, i.e. (M[ij])ij = 1 for all i, j ∈ [N ]. We then have, for any i, j,

1 = (M[ij])ij = e>i QDiDjQ
>ej = 〈Diqi,Djqj〉, (126)
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whereby Diqi = Djqj for all i, j. In other words, there exists some q ∈ RN with ‖q‖2 = 1 such
that Diqi = q, or qi = Diq. Thus, the qi are sign flips of a fixed vector.

On the other hand, the qi are the rows of Q ∈ O(N), whose columns must also form an
orthonormal basis. Therefore, every entry of q must have the same norm, so each entry of Q
also has equal norm; in other words, Q is, up to a scaling depending on definitions, a Hadamard
matrix with real entries [20]. A real-valued Hadamard matrix of order N can only exist when
N ∈ {1, 2} ∪ 4N, so under the assumptions of the Proposition this is a contradiction.

This example is simple to analyze but probably suboptimal. In general, a suitable example for
this result is a matrix X ∈ CN where rank(X) is strictly smaller than the smallest number of cut
matrices x1x

>
1 , . . . ,xmx

>
m for xi ∈ {±1}N such that X ∈ conv({xix>i }mi=1). The latter quantity

is similar to the notions of completely-positive rank and non-negative rank, and appears to behave
counterintuitively sometimes; see [23, 54] for some discussion.

C.2 Proof of Proposition 4.5

Suppose first that X = Gram(v1, . . . ,vN ) for vi ∈ Rr with
∑N

i=1 ‖vi‖22 = N , and M ∈ Bsep(N, r)
such that v>Mv = N2. By Proposition 4.1, ‖vi‖2 = 1 for each i ∈ [N ]. By absorbing constants
and rearranging tensor products, the condition M ∈ Bsep(N, r) may be rewritten as

M =
m∑
i=1

Ai ⊗ (bib
>
i ) (127)

for some Ai ∈ RN×Nsym with Ai � 0 and such that, letting ai = diag(Ai),

m∑
i=1

(ai)jbib
>
i = Ir (128)

for each j ∈ [N ].
Let V ∈ Rr×N have the vi as its columns. Then,

v>Mv =
m∑
i=1

N∑
j=1

N∑
k=1

(Ai)jk〈bi,vj〉〈bi,vk〉 =
m∑
i=1

b>i V AiV
>bi. (129)

We now bound b>i V AiV
>bi by applying a simple matrix inequality; the rather complicated for-

mulation below is only to handle carefully the possibility of certain diagonal entries of Ai equaling
zero. Let Ãi be the maximal strictly positive definite minor of Ai, of dimension Ni, and let wi

be the restriction of V >bi to the same indices. Then, diag(Ãi) > 0. Let πi : [Ni] → [N ] map the
indices of this minor to the original indices, and let us define a diagonal matrix Di ∈ RNi×Ni by

(Di)jj :=

 Ni∑
j′=1

√
(Ãi)j′j′ · |〈bi,vπi(j′)〉|

 |〈bi,vπi(j)〉|√
(Ãi)jj

. (130)

Then, we claim Di � wiw
>
i . This is a matter of applying a weighted Cauchy-Schwarz inequality:
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for x ∈ RN , we have

x>wiw
>
i x =

 Ni∑
j=1

xj〈bi,vπi(j)〉

2

≤

 Ni∑
j′=1

√
(Ãi)j′j′ · |〈bi,vπi(j′)〉|

 N∑
j=1

|〈bi,vπi(j)〉|√
(Ãi)jj

x2j


=

N∑
j=1

(Di)jjx
2
j . (131)

Therefore,

b>i V AiV
>bi = w>i Ãiwi

≤ 〈Di, Ãi〉

=

 Ni∑
j=1

√
(Ãi)jj · |〈bi,vπi(j)〉|

2

=

 N∑
j=1

√
(ai)j · |〈bi,vj〉|

2

. (132)

Now, combining (132) with (128) and (129) and using the Cauchy-Schwarz inequality, we find

v>Mv ≤ N
m∑
i=1

N∑
j=1

(ai)j〈bi,vj〉2 = N
N∑
j=1

‖vj‖22 = N2. (133)

Thus, the Cauchy-Schwarz inequality in (133) must be tight, whereby there exist κi ≥ 0 with∑m
i=1 κi = 1 such that

(ai)j〈bi,vj〉2 = κi (134)

for every i ∈ [m] and j ∈ [N ]. Note in particular that if κi > 0 for some i ∈ [m], then 〈bi,vj〉 6= 0
for all j ∈ [N ]. We may then define vectors βjk ∈ Rm by

(βjk)i :=

{ √
κi
〈bi,vj〉
〈bi,vk〉 : κi > 0,

0 : κi = 0.
(135)

Then,

‖βjk‖22 =
∑
i:κi>0

κi
〈bi,vj〉2
〈bi,vk〉2

=
∑
i:κi>0

(ai)k〈bi,vj〉2

≤
m∑
i=1

(ai)k〈bi,vj〉2

(128)
= 1, (136)

〈βjk,βkj〉 =
∑
i:κi>0

κi = 1. (137)
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Thus, in fact ‖βjk‖2 = 1 and βjk = βkj for all j, k ∈ [N ]. This implies first that whenever κi > 0
then 〈bi,vj〉2 does not depend on j, and second that whenever κi = 0 then (ai)k〈bi,vj〉2 = 0 for all
j, k ∈ [N ]. We may assume without loss of generality that Ai 6= 0, so ai 6= 0, and thus the latter
implies that whenever κi = 0, then 〈bi,vj〉2 = 0 for all j ∈ [N ]. Therefore, in all cases, 〈bi,vj〉2
does not depend on j.

Let us write ηi := 〈bi,vj〉2. For i where ηi 6= 0, by (134) (ai)j does not depend on j either. For
these i, let us write φi := (ai)j . Evaluating (128) as a bilinear form on vj and vk, we then find

Xjk = 〈vj ,vk〉 =
∑
i:ηi 6=0

φi〈bi,vj〉〈bi,vk〉 =
∑
i:ηi 6=0

φiηisgn(〈bi,vj〉)sgn(〈bi,vk〉). (138)

When ηi 6= 0, then φiηi = κi, and when ηi = 0 then κi = 0. Therefore, we have in fact

Xjk =

m∑
i=1

κisgn(〈bi,vj〉)sgn(〈bi,vk〉), (139)

showing X ∈ CN .
The converse is simpler: suppose that X ∈ CN and X = Gram(v1, . . . ,vN ) ∈ CN for

v1, . . . ,vN ∈ Rr. Let v ∈ RrN be the concatenation of the v1, . . . ,vN . We will buildM ∈ Bsep(N, r)
by essentially reversing the process described in the proof of Proposition 4.3. Let ρ1, . . . , ρm ≥ 0
with

∑m
i=1 ρi = 1 and d̃1, . . . , d̃m ∈ {±1}N be such that

X =
m∑
k=1

ρkd̃kd̃
>
k . (140)

We may assume without loss of generality that m ≥ r, by adding extra terms with zero coefficient to
this expression. Then, writing di := ((d̃k)i)

m
k=1 ∈ Rm, R = diag(ρ), and v′i = R1/2di, (140) implies

that X = Gram(v′1, . . . ,v
′
N ). There then exists Z ∈ Rm×r such that Zvi = v′i and Z>Z = Ir.

We let Di := diag(di), and define M ∈ RrN×rN to have blocks

M[ij] := Z>DiDjZ = (DiZ)>(DjZ). (141)

The last expression gives M as a Gram matrix, so M � 0. Since D2
i = Ir for each i ∈ [N ],

M[ii] = Ir, and since D1, . . . ,DN commute, M[ij] is symmetric. Thus, M ∈ B(N, r). We also have

v>Mv =

N∑
i=1

N∑
j=1

v′
>
i DiDjv

′>
j =

N∑
i=1

N∑
j=1

d>i R
1/2DiDjR

1/2dj =
N∑
i=1

N∑
j=1

m∑
k=1

ρk = N2. (142)

It only remains to check that M is separable. To do this, let z1, . . . ,zm ∈ Rr be the rows of Z,
then it is straightforward to check against (141) that we can write M =

∑m
i=1(d̃i ⊗ zi)(d̃i ⊗ zi)>.

D Proofs of Results on Partial Transposition

D.1 Proof of Proposition 5.1

This result is simply a matter of applying the vectorization operation vec to the singular value
decomposition: if V =

∑r
i=1 σiyiz

>
i for yi ∈ Rr and zi ∈ RN , then, noting that vec(yiz

>
i ) = zi⊗yi

and vec : Rr×N → RrN is linear, the result follows.
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D.2 Proof of Proposition 5.2

Suppose V ∈ Rr×N with r ≤ N has singular value decomposition V =
∑r

i=1 σiyiz
>
i for orthonormal

sets of yi ∈ Rr and zi ∈ RN and with σi ≥ 0. Let v = vec(V ). Applying Proposition 5.1, we may
write

vv> =

(
r∑
i=1

σizi ⊗ yi
)(

r∑
i=1

σizi ⊗ yi
)>

=
r∑
i=1

r∑
j=1

σiσj(ziz
>
j )⊗ (yiy

>
j )

=
r∑
i=1

r∑
j=1

σiσj(zi ⊗ yi)(zj ⊗ yj)>. (143)

Therefore, the partial transpose is

(vv>)Γ =
r∑
i=1

r∑
j=1

σiσj(ziz
>
j )⊗ (yjy

>
i )

=

r∑
i=1

r∑
j=1

σiσj(zi ⊗ yj)⊗ (zj ⊗ yi)>

=

r∑
i=1

σ2i (zi ⊗ yi)(zi ⊗ yi)>

+
∑

1≤i<j≤r
σiσj

(
(zi ⊗ yj)(zj ⊗ yi)> + (zj ⊗ yi)(zi ⊗ yj)>

)
, (144)

and the result follows by diagonalizing the rank-two matrices in the second sum.

D.3 Proof of Proposition 5.3

Suppose V ∈ Rr×N with r ≤ N has full rank and singular value decomposition V =
∑r

i=1 σiyiz
>
i

for an orthonormal basis of yi ∈ Rr and an orthonormal set zi ∈ RN , with σi > 0 by the full-rank
condition. Let v = vec(V ). Let us also extend z1, . . . ,zr with zr+1, . . . ,zN to a full orthonormal
basis.

Since V V > =
∑r

i=1 σ
2
i yiy

>
i , we may expand

IN ⊗ (V V >) =

(
N∑
i=1

ziz
>
i

)
⊗

 r∑
j=1

σ2jyjy
>
j

 =
N∑
i=1

r∑
j=1

σ2j (zi ⊗ yj)(zi ⊗ yj)>. (145)

Dividing this sum into those summands with i ≤ r and those with i > r and subtracting (144), we
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may write

IN ⊗ (V V >)− (vv>)Γ

=
∑

1≤i<j≤r

(
1

2
σ2i (zj ⊗ yi)(zj ⊗ yi)> +

1

2
σ2j (zi ⊗ yj)(zi ⊗ yj)>

− σiσj(zi ⊗ yj)(zj ⊗ yi)> − σiσj(zj ⊗ yi)(zi ⊗ yj)>
)

+
N∑

i=r+1

r∑
j=1

σ2j (zi ⊗ yj)(zi ⊗ yj)>

=
1

2

∑
1≤i<j≤r

(σizj ⊗ yi − σjzi ⊗ yj) (σizj ⊗ yi − σjzi ⊗ yj)>

+

N∑
i=r+1

r∑
j=1

σ2j (zi ⊗ yj)(zi ⊗ yj)>. (146)

We thus find an alternate proof that IN ⊗ (V V >) − (vv>)Γ � 0. The benefit of this approach is
that it allows us to read off the subspace we are interested in directly: note that up to rescaling
the expression (146) is a spectral decomposition, and thus

ker

(
IN ⊗ (V V >)− (vv>)Γ

)⊥

= span


 1√

σ2i + σ2j

(σizj ⊗ yi − σjzi ⊗ yj)


1≤i<j≤r

∪ {zi ⊗ yj}i∈[N ]\[r],j∈[r]

 , (147)

ker

(
IN ⊗ (V V >)− (vv>)Γ

)

= span


 1√

σ2i + σ2j

(σizj ⊗ yi + σjzi ⊗ yj)


1≤i<j≤r

∪ {zi ⊗ yi}i∈[r]

 , (148)

where the first equality follows from (146) and the second may be checked by counting dimensions
and verifying mutual orthogonalities. It is also straightforward to verify that the vectors enumerated
in (148) are orthonormal, and thus give an orthonormal basis for ker(IN ⊗ (V V >)− (vv>)Γ).

The only remaining task is to check the alternate description

ker

(
IN ⊗ (V V >)− (vv>)Γ

)
?
=
{
vec(SV ) : S ∈ Rr×rsym

}
=: Vsym. (149)

We have dim(ker

(
IN ⊗ (V V >) − (vv>)Γ

)
) = r(r+1)

2 by (148). Since vi are a spanning set, if

vec(SV ) = 0 then S = 0, so the map S 7→ vec(SV ) is injective and thus dim(Vsym) = dim(Rr×rsym ) =
r(r+1)

2 as well. Therefore, to show (149) it suffices to show one inclusion.
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Suppose that S ∈ Rr×rsym , then

((IN ⊗ (V V >)− (vv>)Γ)vec(SV ))[i] = (V V >)Svi −
N∑
j=1

vjv
>
i Svj

=

N∑
j=1

vjv
>
j Svi −

N∑
j=1

vjv
>
i Svj

= 0, (150)

where in the last step we use that S is symmetric. Thus, vec(SV ) ∈ ker(IN ⊗(V V >)−(vv>)Γ), so
Vsym ⊆ ker(IN ⊗ (V V >)− (vv>)Γ), which completes the proof by the previous dimension counting
argument.

E Tight Frame Projector Calculations

In this appendix we will derive formulae for the orthogonal projectors to various subspaces as-
sociated with a UNTF v1, . . . ,vN ∈ Sr−1, and the specializations to the case of ETFs. Let
V ∈ Rr×N have the vi as its columns, then recall that we define a map V : Rr×rsym → RrN by

V(S) =
√

r
N vec(SV ), which by Proposition 6.2 is a linear isometric embedding. Let us also write

X = V >V ∈ RN×N for the Gram matrix.
We then are interested in the projector to the following subspace:

V ′sym := V
({
S ∈ Rr×rsym : 〈S,viv>i 〉 = 0 for i ∈ [N ]

})
. (151)

As a warmup, we will also consider the following simpler subspace:

Vsym := V(Rr×rsym ). (152)

The idea of the calculation in both cases will be as follows: suppose V ⊂ Rr×rsym is some subspace

and y ∈ RrN is the concatenation of y1, . . . ,yN ∈ Rr. Then by the variational characterization of
the orthogonal projector, PV(V )y = V(S?(y)), where

obj(S;y) :=
1

2

N∑
i=1

∥∥∥∥√ r

N
Svi − yi

∥∥∥∥2
2

=
1

2
‖y‖22 +

1

2
Tr(S2)−

〈
S,

√
r

N

N∑
i=1

viy
>
i + yiv

>
i

2

〉
, (153)

S?(y) = argminS∈V obj(S;y). (154)

a minimization which we will solve by introducing Lagrange multipliers for the constraint S ∈ V ,
which will reduce the task to solving a linear system in the Lagrange multiplier variables.4

4Note that the simple form of the quadratic term in S is a consequence of the vi forming a UNTF, whereby∑N
i=1 viv

>
i = V V > = N

r
Ir. In a more general setting, the matrix V V > would appear and, upon differentiating with

respect to S, we would not get a formula for the optimizer S? but rather a so-called continuous matrix Lyapunov
equation (V V >)S? + S?(V V >) = Q. Such an equation in principle admits an analytic solution by reducing to a
linear equation in vec(S?) (see e.g. [44]), but this would further complicate the calculations.
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E.1 Projector to Vsym

We illustrate the first part of this idea below for the simplest case of V = Vsym, where no Lagrange
multipliers are required.

Proposition E.1. PVsym = r
2N (X ⊗ Ir + (vv>)Γ), where X = V >V is the Gram matrix of the vi.

Proof. We will solve the variational description (154) with V = Vsym. Since the optimization is
unconstrained, we may compute directly the first-order condition for the optimizer

0 =
∂obj

∂S
(S?;y) = S? −

√
r

N

N∑
j=1

vjy
>
j + yjv

>
j

2
, (155)

thus the optimizer is

S? = S?(y) =

√
r

N

N∑
j=1

vjy
>
j + yjv

>
j

2
. (156)

Then, the blocks of the projection of y may be recovered as

(PVsymy)[i] = (V(S?))[i]

=

√
r

N
S?vi

=
r

2N

N∑
j=1

(〈yj ,vi〉vj + 〈vi,vj〉yj)

=
N∑
j=1

r

2N

(
〈vi,vj〉Ir + vjv

>
i

)
yj . (157)

In particular, the matrices in each term of the sum give the blocks (PVsym)[ij], whereby the formula
in the statement is clearly correct for each block.

E.2 Projector to V ′sym

The case of V = V ′sym, being a constrained optimization, requires more intermediate calculations in
order to determine the Lagrange multipliers. An important role will be played by the Hadamard
square of the Gram matrix, X�2, which is equivalently the Gram matrix of the matrices viv

>
i

(and which figured in the proof of the Gerzon bound, Proposition 6.3, and the description of
perturbations of matrices in the elliptope, Proposition 5.4). To perform our calculations in closed
form, we will need to compute the inverse of this matrix explicitly. We will first give a general
result in terms of this inverse and then show how the inverse may be computed for the case of ETFs
needed in the main text.

Proposition E.2. Suppose that the matrices viv
>
i are linearly independent, or equivalently that

the matrix X�2 is non-singular. Then, the blocks of PV ′sym
are given by

(PV ′sym
)[ij] =

r

N

(
1

2
〈vi,vj〉Ir +

1

2
vjv

>
i −

N∑
k=1

N∑
`=1

((X�2)−1)k`〈vi,vk〉〈vj ,v`〉vkv>`

)
. (158)
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Proof. We must now solve (154) with T = V ′sym = span({viv>i : i ∈ [N ]})⊥. We introduce the
Lagrangian

L(S,γ;y) := obj(S;y)−
〈
S,

N∑
i=1

γiviv
>
i

〉
(159)

and write the first-order condition ∂L
∂S (S?,γ;y) = 0, which gives

S? = S?(y) =

√
r

N

N∑
j=1

vjy
>
j + yjv

>
j

2
+

N∑
j=1

γjvjv
>
j . (160)

The other first-order condition ∂L
∂γ (S?,γ;y) = 0 is equivalent to the constraints, 〈S?,viv>i 〉 = 0 for

all i ∈ [N ], which yields the system of linear equations for γ,

N∑
j=1

(X�2)ijγj = −
√

r

N

N∑
j=1

〈vi,vj〉〈vi,yj〉 for i ∈ [N ]. (161)

Since X�2 is invertible by assumption, this admits a unique solution which is given by

γj = −
√

r

N

N∑
k=1

N∑
`=1

((X�2)−1)jk〈vk,v`〉〈vk,y`〉. (162)

Substituting into (160), we find

S? =

√
r

N

 N∑
j=1

vjy
>
j + yjv

>
j

2
−

N∑
j=1

N∑
k=1

N∑
`=1

((X�2)−1)jk〈vk,v`〉〈vk,y`〉vjv>j

 . (163)

As before, we recover the blocks of the projection of y,

(PV ′sym
y)[i] = (V(S?))[i]

=

√
r

N
S?vi

=
r

N

 N∑
j=1

〈vi,yj〉vj + 〈vi,vj〉yj
2

−
N∑
j=1

N∑
k=1

N∑
`=1

((X�2)−1)jk〈vi,vj〉〈vk,v`〉〈vk,y`〉vj


=

N∑
j=1

r

N

(
1

2
〈vi,vj〉Ir +

1

2
vjv

>
i −

N∑
k=1

N∑
`=1

((X�2)−1)k`〈vi,vk〉〈vj ,v`〉vkv>`

)
yj , (164)

and the result follows.

Corollary E.3. Suppose that v1, . . . ,vN form an ETF with r > 1. Then, the blocks of PV ′sym
are

given by

(PV ′sym
)[ij] =

N − r
N(r − 1)

viv
>
j +

r

2N
vjv

>
i +

r

2N
〈vi,vj〉Ir −

r2(N − 1)

N2(r − 1)

N∑
k=1

〈vi,vk〉〈vj ,vk〉vkv>k . (165)
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Proof. By Proposition 6.3, the conditions of Proposition E.2 are satisfied, so it suffices to compute
(X�2)−1. The off-diagonal entries of X all equal the coherence α, which by Proposition 2.13 is
given by

α =

√
N − r
r(N − 1)

. (166)

Thus, we have

X�2 = (1− α2)IN + α211> =
N(r − 1)

r(N − 1)
IN +

N − r
r(N − 1)

11>. (167)

This matrix may be inverted by the Sherman-Morrison formula, giving

(X�2)−1 =
r(N − 1)

N(r − 1)
IN −

r(N − r)
N2(r − 1)

11>. (168)

Thus, the entries are

(X�2)−1ij =

{
a := r((N−1)2+r−1)

N2(r−1) : i = j,

b := − r(N−r)
N2(r−1) : i 6= j.

(169)

Substituting into the expression from Proposition E.2, we find

N∑
k=1

N∑
`=1

((X�2)−1)k`〈vi,vk〉〈vj ,v`〉vkv>`

= (a− b)
N∑
k=1

〈vi,vk〉〈vj ,vk〉vkv>k + b

N∑
k=1

N∑
`=1

〈vi,vk〉〈vj ,v`〉vkv>`

= (a− b)
N∑
k=1

〈vi,vk〉〈vj ,vk〉vkv>k + b(V V >vi)(V V
>vj)

>

=
r(N − 1)

N(r − 1)

N∑
k=1

〈vi,vk〉〈vj ,vk〉vkv>k −
N − r
r(r − 1)

viv
>
j . (170)

Combining with the full result of Proposition E.2 then gives the claim.
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