
FUNCTIONS HOLOMORPHIC OVER FINITE-DIMENSIONAL COMMUTATIVE ASSOCIATIVE

ALGEBRAS 1: ONE-VARIABLE LOCAL THEORY I

MARIN GENOV

Abstract. We study in detail the one-variable local theory of functions holomorphic over a finite-dimensional commuta-
tive associative unital C-algebra A, showing that it shares a multitude of features with the classical one-variable Complex

Analysis, including the validity of the Jacobian conjecture for A-holomorphic regular maps and a generalized Homological
Cauchy’s Integral Formula. In fact, in doing so we replace A by a morphism ϕ : A → B in the category of finite-

dimensional commutative associative unital C-algebras in a natural manner, paving a way to establishing an appropriate

category of Funktionentheorien. We also treat the very instructive case of non-unital finite-dimensional commutative
associative R-algebras as far as it serves above agenda.
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Notations & Conventions

By abuse of notation, we shall denote by the same letter both a curve γ : [0, 1] → X (as a continuous map) and its
image (support as a cycle), e.g.

∫
γ
ω. Moreover, loops γ : S1 → X will always be parametrized for notational simplicity

as γ(t) with t ∈ [0, 1].

In the presence of tensors, we will try to always denote free indices by i, j, k, ` and summation indices by r, s, t, unless
we forget to do so.

N: the natural numbers {1, 2, 3, . . . }.

N0: the extended natural numbers, i.e. N ∪ {0}.
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2 MARIN GENOV

R: a ring, often times commutative, with unit, and of characteristic charR = 0.

K: arbitrary field, usually charK = 0 or perfect, unless explicitly stated otherwise.

κ: arbitrary algebraically closed field, usually charκ = 0, unless explicitly stated otherwise.

K: the field R or C.

C×: the multiplicative group of the complex numbers.

C+: the additive group of the complex numbers.

Ga: the additive (affine) group (scheme).

Gm: the multiplicative (affine) group (scheme).

Sn: the n-sphere.

Tn := (S1)n: the standard n-torus.

VectK : the category of K-vector spaces.

CRing: the category of commutative rings with identity element.

fdAlgK : the category of finite-dimensional associative unital algebras over K.

fdCAlgK : the category of finite-dimensional commutative associative unital algebras over K.

BanAlgK: the category of Banach algebras over K.

CBanAlgK: its subcategory of commutative Banach algebras over K.

A, B, C: finite-dimensional, commutative, associative, unital algebras over R, K or K.

A, B, C: finite-dimensional commutative associative, but not necessarily unital algebras over R, K or K.

M, N: connected finite-dimensional commutative associative non-unital K-algebras, maximal ideals of some A.

A× = U(A): the group of units (=multiplicative group) of A.

J(A): the Jacobson radical of A.

JKF : the (K-)Jacobian of a map F .

Matn×m(R): n×m-matrices over some ring R.

Mn(R) := Matn(R): the ring of n× n-matrices over a ring R and an associative R-algebra if R ∈ CRing.

En: the identity matrix of size n.

Ik: certain idempotent element.

AT : transpose of a matrix A.

Int(γ): the interior of a closed plane curve γ ⊆ C.

Dr(z0): the open disc with radius r around z0 ∈ C.

D∗r(z0): the punctured open disc with radius r around z0 ∈ C.

∆r(z): open polydisc of radius r around z ∈ Cn.

∆r(z): closed polydisc of radius r around z ∈ Cn.

Br(z): open ball of radius r around z ∈ Kn.

Br(z): closed ball of radius r around z ∈ Kn.

Z(f): the zero set of a function f whenever that makes sense.

Ck(U, V ): space of k-times continuously differentiable functions on U with values in V , k ∈ N0 ∪ {∞, ω}.

‖f‖K := supx∈K ‖f(x)‖: the uniform norm over (usually a compactum) K, e.g. ‖f‖B,γ .

C 1
pw(S1, U): space of piece-wise continuously differentiable curves.

{pt.}: the one-point space.

4: a proverbial solid triangle with boundary ∂4.
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�: a proverbial solid rectangle with boundary ∂�.

FF : a star-shaped open set.

l: a leaf from a tree or a bush.

: piece-wise smooth path.

1. Introduction and Overview

Starting with the definition of complex differentiability of a function f : U → C for an open U ⊆ C,

f ′(z0) := lim
h→0

f(z0 + h)− f(z0)

h
, (1.1)

given the ubiquity of Complex Analysis throughout mathematics, it is a natural question if it can be generalized to
K-algebras A other than C itself and, if yes, to what extent. For example, if U ⊆ A is open and f : U → A some
function, one may want to define

f ′(Z0) := lim
H→0
H∈A×

f(Z0 +H)− f(Z0)

H
, (1.2)

whenever the limit makes sense, or

f(Z0 +H) = f(Z0) + f ′(Z0)H + o(H) as H → 0, H ∈ A. (1.3)

A moment’s thought shows that such a generalization and its usefulness would depend in an essential way on the basic
properties of A such as associativity, commutativity, or unitality. If A is both commutative and associative, then a
function f satisfying 1.3 is often called A-differentiable at Z0. To reasonably formalize such generalization attempts,
borrowing from the German language, we shall henceforth call any one-variable theory of functions that exhibits the
following broadly understood properties a (generalized) Funktionentheorie1:

(i) presence of generalized Cauchy-Riemann equations (CR);

(ii) presence of generalized Cauchy and Morera Integral Theorems (CIT & MIT);

(iii) presence of generalized Cauchy Integral Formula(s) (CIF);

(iv) presence of Analyticity (AN).

Furthermore, since we are in practice working within an entire category of algebraic objects, namely (finite-dimensional)
commutative associative (Banach) K-algebras, it makes sense to adopt a relative point of view and consider a morphism
ϕ : A→ B of such algebras instead of restricting ourselves to a single fixed object A. This should serve as a first hint at
the underlying categorical flavour of the theory. Picking a morphism ϕ turns B into an A-algebra in the usual way via
∀A ∈ A ∀B ∈ B : AB := ϕ(A)B, and the appropriate generalization of A-differentiability reads as follows: for U ⊆ A
open we define a function f : U → B to be ϕ-differentiable at Z0 ∈ U iff

f(Z0 +H) = f(Z0) + f ′(Z0)ϕ(H) + o(ϕ(H))
def
= f(Z0) + f ′(Z0)H + o(‖ϕ(H)‖) as H → 0 in A (1.4)

for some element f ′(Z0) ∈ B, which is then the (ϕ)-derivative of f . For example, if ϕ : C → C, z 7→ z̄, is the complex
conjugation, then the ϕ-holomorphic functions are precisely the anti-holomorphic functions. If A is complex and unital
and ι : C ↪→ A is the canonical inclusion of the scalars, then ι-holomorphic functions are the same as A-holomorphic
functions when viewed as functions of Several Complex Variables (satisfying additional conditions). More generally,
ϕ-differentiable functions for some ϕ : A→ B can be viewed as certain B-valued functions of Several (usually, however,
non-free) A-Variables. Finally, note that we recover A-differentiability by simply setting ϕ := idA.

In the present series of papers including [MG02, MG03] we study in detail and optimal generality the local theory
of ϕ-differentiable functions in the finite-dimensional setting, having at our disposal the basic structure theory of
finite-dimensional commutative associative algebras and the apparatus of (finite-dimensional) differential geometry and
algebraic topology. The two key facts we use are that these algebras, when unital, are Artinian and hence decompose into
a finite direct sum of local Artinian K-algebras with nilpotent corresponding maximal ideals and that their group of units
A× is path-connected iff the algebra carries a compatible complex structure, in which case they are also triangulable
since C is algebraically closed.

While the notion of A-differentiability for a (finite-dimensional) unital commutative associative (Banach) K-algebra
is rather old2, its generalization to ϕ-differentiability for a morphism ϕ : A → B of (not necessarily unital) finite-
dimensional associative commutative K-algebras and the study of the thus resulting function theory together with the

1(ger.) function theory;
2the first article on the subject was published already in 1893 by Scheffers [Sch93]. While a survey on A-differentiability would be too

ambitious for the scope of this introduction, we give an overview of relevant references on the subject at the end of the article.
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possibility of a category of Funktionentheorien are to our best knowledge very much new. To unpack the definition, in
Section 3 we give a discussion of various aspects, pitfalls, and consequences of ϕ-differentiability, using the aforementioned
algebraic structure theory. In particular, we demonstrate that for many purposes of a local function theory as a
consequence it suffices to consider morphisms of connected algebras, or even only inclusions of connected algebras.
A byproduct of this discussion is the fact that a ϕ-differentiable function f : U → B automatically extends to a

ϕ-differentiable function f̂ : Û → B, where the precise meaning of Û is given in Definition 3.0.4.

Furthermore, in Lemma 3.0.6 we establish the relationship between the abstract A-derivative of an A-differentiable
function f and its Jacobian JKf over K when seen as a function of several K-variables. As a consequence of this and the
structure theory of finite-dimensional commutative associative K-algebras we show in Corollary 3.0.7 that the Jacobian
Conjecture easily follows for A-holomorphic regular maps, where A is unital. The validity of the Jacobian Conjecture
in the case of A-holomorphic regular maps as well as the easiness of its proof serve in our opinion as a philosophical
affirmation of the view that A-holomorphic functions are much closer in spirit to the function theory of one complex
variable than of Several Complex Variables, both locally and globally, and hence provide a middleground between
both realms that presents a suitable opportunity to test statements known in one complex dimension, but unknown or
difficult in higher complex dimensions. We finish Section 3 by verifying that the collection of ϕ-differentiable functions
actually yields a sheaf Oϕ of A-algebras with a distinguished derivation. In [MG02] we study among other things further
properties of Oϕ for ϕ : (A,m)→ (B, n) a morphism of local C-algebras and show in particular that (U,OA|U ) for U ⊆ A
open is a locally ringed space. Later on, in [MG07] we shall use OA to model global 1-dimensional analytic spaces over
A, i.e. A-analytic curves with singularities.

In Section 4 we move on to state various versions of the corresponding generalized Cauchy-Riemann Equations for
ϕ-differentiable functions and give a discussion of the various angles of the local coordinate formulations, including
answering some inverse questions such as the extent to which an abstractly given collection of A-differentiable functions
determines A uniquely. We finish Section 4 with the introduction of certain differential operators dij := ai

∂
∂zj − aj

∂
∂zi ,

where {a1, . . . , an} is a K-basis of A, that actually play the analogous role of the Wirtinger derivatives, and state the
analogous critaria for ϕ-differentiability. Later on we will show in Proposition 5.0.6 that dijf are in fact the coordinates
of d(f(Z)dZ) in the case K = R or ∂(f(Z)dZ) in the case of K = C.

In Section 5 we routinely but carefully verify for completeness sake that certain standard facts about integrals over
closed contours from the Complex Analysis of One Variable transfer almost verbatim to the case of a morphism of not
necessarily unital commutative associative K-algebras, including the Cauchy-Goursat Integral Theorem. These concern
ϕ-primitives and ϕ-integrability of a function f : U → B, which are the obvious analogues of the corresponding notions
in the Complex Analysis of One Variable. Most of the proofs turn out to be just like in the case of one complex
variable and can therefore be skipped. However, some of the consequences are topologically more interesting due to the
fact that we now find ourselves in three or more real dimensions. At the heart of the matter lies the fact that for a
ϕ-differentiable function f the B-valued 1-form ω := f(Z)dZ is d-closed, which is also central to the later theory by
ensuring the homotopy-invariance of (the integrals of) ω.

This is pretty much as far as one can model the classical theory of one complex variable in the case of non-unital
commutative associative K-algebras. To take the theory further, we need to consider contour integrals of dZ/Z and
related 1-forms, and thus it becomes abundantly clear that one cannot dispense with the path-connectedness of A×,
which is shown in Section 2.4 to be the case if and only if A is in fact a C-algebra. Triviality of π0(A×) turns out
to be the only obstruction to obtaining all the features of a Funktionentheorie as Section 6 demonstrates. Thus, from
here on out we will suppose ϕ : A → B to be a morphism of complex unital finite-dimensional commutative associative
algebras.

In Section 6.1 we introduce some conventions and objects of purely technical nature that will reoccur throughout and
that allow us to state the integration theorems in their full generality. A key feature governing the Funktionentheorie over
finite-dimensional commutative associative unital C-algebras A is the algebraic fact that if SpmA = {M1, . . . ,MM}
is the (maximal) (ring-theoretic) spectrum of A, then the quotient (spectral) projections σk : A � A/Mk

∼= C,
1 ≤ k ≤ M , are not only algebra epimorphisms, but also projections onto 1-complex-dimensional subspaces of A and
moreover σ(Z) := {σ1(Z), . . . , σM (Z)} is precisely the (eigenvalue) spectrum of Z ∈ A as suggested by the choice of
notation.

In Section 6.2 we introduce Indϕ(Γ, Z0) for Z0 ∈ U and Γ ∈ Z1(U,Z), which is the appropriate analogue of the index of
a 1-cycle around a point in the complex plane suitable for the purposes of the theory of ϕ-holomorphic functions. While
some ad hoc lower-dimensional cases of Indϕ in disguise have already been computed explicitly in the literature, we give
a general treatment and computation in full, showing that it reduces in an appropriate way to the usual C-indices of
the spectral projections of the said 1-cycle in the respective complex planes. While the generalized index depends in
principle very much on a choice of an algebra structure on the underlying vector space A, it turns out to be invariant
under algebra endomorphisms. Another interesting feature of the generalized index is the fact that it is B-valued in a
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natural way, hinting that it is also useful to consider 1-cycles Γ ∈ Z1(U,R) with values in a commutative ring other
than Z like R = A or R = B. This point of view will be pursued in detail later in [MG04].

In Section 6.3 we prove the analogue of Cauchy’s Integral Formula with index for ϕ-holomorphic functions. A consequence
of this, most easily stated for a morphism ϕ : (A,m)→ (B, n) of local C-algebras, is that, if f : U → B is a ϕ-holomorphic
function on some open U ⊆ A, then f extends ϕ-holomorphically to cylinders Dr(σA(Z))×m, where σA : A� A/m ∼= C
is the canonical projection, Z ∈ U is a point, and r > 0 is a small enough radius such that Dr(σA(Z)) ⊆ σA(U). In

fact, we show a little later that f extends to the whole Ũ := σA(U)×m.

Section 6.4 is entirely dedicated to questions of analyticity. LetA = (A,m) be a local C-algebra. If f(Z) =
∑∞
n=0AnZ

n ∈
A{Z} is a convergent power series, we define as usual

R := Rf :=
1

lim sup
n→∞

‖An‖1/n
∈ [0,∞] (1.5)

to be its radius of convergence. If ρA denotes the spectral radius of elements in A (in fact, we have in this case
ρA = |·| ◦ σA), we show that the precise domain of convergence of f is the spectral ball of radius R, that is, f(Z) is
convergent for all ρA(Z) < R and divergent for all ρA(Z) > R. While the first part is no surprise at all, the second
part is specific to finite-dimensional commutative (local) C-algebras. If we did not suppose commutativity or finite
dimensionality, divergence of f(Z) outside of the spectral ball would be in general false since in that case we could
have for example zero divisors with positive spectral radius. The convergence behaviour of f(Z) for a general finite-
dimensional commutative C-algebra A then follows from the Artin property of A and the decomposition of A into a
direct sum of local Artin C-algebras. We remark that the spectral ball of a local finite-dimensional C-algebra around
Z0 ∈ A is actually a spectral cylinder as it has the form DR(σA(Z0))×m.

We then go on to prove a version of the Cauchy-Transform for B-valued measures and a certain class of A-valued
measurable functions satisfying “more-width-than-depth”-type of a condition. When applied to the generalized Cauchy’s
Integral Formula, this shows that ϕ-holomorphic functions are locally analytic of the class B{ϕ(Z − Z0)} and gives a
generalized Cauchy’s Integral Formula with index for the (ϕ)-derivatives of f . This in turn leads to generalized Cauchy’s
Inequalities and a generalized Liouville’s Theorem specific to ϕ-holomorphic functions. We remark that we study the
properties of the algebras A{Z} and other related objects much more closely in [MG02], while in [MG05] we take a
purely algebraic approach to generalized holomorphy that is applicable to a much wider class of commutative associative
R-algebras for some R ∈ CRing of charR = 0 by considering subalgebras A[[a1X1 + · · ·+ anXn]] ⊆ A[[X1, . . . , Xn]] and
related objects and establish properties of ϕ-holomorphic functions valid already on the level of formal power series. In
particular, this treatment includes arithmetic holomorphy which concerns itself with the case of number fields and rings
of integers. For example, in this context the classical holomorphy is the one associated to the field extension C/R.

In the other direction, the local form of analyticity in the shape of B{ϕ(Z)} has several important implications, some
of which we list here. For starters, it is immediate that, if for example ϕ : A ↪→ B is an inclusion (C-linear ring
extension) of C-algebras, then a ϕ-holomorphic function f : U → B, U ⊆ A open, is locally a restriction of a unique
B-holomorphic function, regardless of the dimension difference between A and B. Another important consequence is
that, if ϕ : (A,m)→ (B, n) is a morphism of local C-algebras, then f has the canonical form

f(Z)
def
= f(z ⊕X) =

ν−1∑
k=0

f (k)(z)

k!
ϕ(X)k, (1.6)

where z ∈ C, X ∈ m, f (k)|σA(U)→ B simply are C-holomorphic functions with values in the finite-dimensional Banach
space B, and ν := h(ϕ) := min{h(A),h(B)} is called the height of the morphism, i.e. the minimum of the degrees of

nilpotency of the maximal ideals m and n. This in turn leads to the promised automatic extension of f to Ũ and goes to
show by separating the scalar variable from the nilpotent variable that the theory of ϕ-holomorphic functions is, locally
at least, quite literally a combination of the complex analysis of one variable and the multiplicative structure of finite-
dimensional commutative connected C-algebras. Conversely, above formula prescribes a way to create ϕ-holomorphic
functions, and so we obtain a full characterization of ϕ-holomorphic functions for ϕ : A → B being a morphism of unital
C-algebras. It is not difficult to take this a little further and show that an A-biholomorphism f : U

∼−→ V automatically

extends to an A-biholomorphism f̃ : Ũ
∼−→ Ṽ .

Finally, a key consequence of this form of analyticity is the ability to derive at nilpotent elements3: if (A,m)
ϕ−→ (B, n)

is a morphism of local C-algebras and Z0 ∈ U and X ∈ m = nilA, then the limit

f ′(X)(Z0) := lim
H→X
H∈A×

f(Z0 +H)− f(Z0)

ϕ(H)
(1.7)

3for a lack of a better term;
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exists and gives rise to a function f̌ : m×U → B, (X,Z) 7→ f ′(X)(Z), polynomial in X and ϕ-analytic in Z. This has in

turn the important implication that the function g : U × U → B, given by

g(Z,W ) :=

{
f(W )−f(Z)
ϕ(W−Z) , if W − Z ∈ A× ∩ U
f ′(W−Z)(Z), if W − Z ∈ m ∩ U

(1.8)

is ϕ-holomorphic both in Z and W (see Lemma 6.4.19). This plays a key role in the proof of the generalized Homological
Cauchy Integral Theorem (6.5.2), which we state here only for the case of local C-algebras for notational simplicity: if
ϕ : (A,m) → (B, n) is a morphism of local C-algebras, σA : A � A/m ∼= C the canonical quotient projection, U ⊆ A
path-connected and open, f ∈ Oϕ(U), and Γ ∈ Z1(U,Z) a 1-cycle such that (σA)#Γ ∈ B1(σ(U),Z), then

f(Z) Indϕ(Γ, Z) =
1

2πi

∫
Γ

f(W )

ϕ(W − Z)
dW, (1.9)

whenever the integral is well-defined. A similar result has been shown by Giovanni Battista Rizza (1952) [Riz52] for
1-cycles Γ in a local finite-dimensional C-algebra A = (A,m) under the condition that [Γ] = 0 in H1(U,Z). Clearly, our
result makes use of a much weaker topological assumption.

Thus, in summary, to every morphism of finite-dimensional complex commutative associative unital algebras one as-
sociates a Funktionentheorie. We mention that already in complex dimension 7 there exist infinitely many distinct
isomorphism classes of local commutative associative unital C-algebras [see Poo08, Sup56, ST03, ST68], which attests
to the richness of the theory. In [MG03] we shall continue this line of thought in conjunction with the philosophy of
[Sch82] and [SZ82] towards constructing an “analytic” category fdCFkth of finite-dimensional commutative Funktionen-
theorien. In [MG06] we will study the A-analogue of Riemann Surfaces, i.e. smooth A-curves, of which there exist
many examples, towards constructing a “smooth geometric” version of fdCFkth, while in [MG07] we will also allow for
singularities.

2. Preliminaries

2.1. The Structure Constants of a K-Algebra. Let K be an arbitrary field and let A be a finite-dimensional K-
algebra with a choice of basis {a1, . . . , an}. We shall denote by λ : A→ EndVect(A) ∼= Mn(K), a 7→ (λa : a′ 7→ aa′), the
left regular representation of A. Notice that, unless A = A is unital, λ is not necessarily faithful, e.g. take A0 := Cε
with ε2 = 0, but one can obtain a faithful representation of A by adjoining a unit and then removing the scalars from
the regular faithful representation of the unital algebra.

Definition 2.1.1: The structure tensor (structure constants) (αijk)1≤i,j,k≤n of A with respect to the choice of basis

{a1, . . . , an} is given by

∀1 ≤ j, k ≤ n : ajak =

n∑
r=1

αrjkar. (2.1)

In other words, we have
∀1 ≤ j ≤ n : aj(a1, . . . , an) = (a1, . . . , an)(αijk)1≤i,k≤n. (2.2)

Thus λ(aj) = (αijk)1≤i,k≤n =: Aj ∈ Mn(K), 1 ≤ j ≤ n, are precisely the representation matrices of the basis vec-
tors.

Furthermore, if A = A is unital with unit 1A, we define

1A =:
n∑
r=1

εrar (2.3)

to be the coordinates of the unit.

Lemma 2.1.2 (Basic Relations for the Structure Tensor of A):
(1) A is unital with unit 1A if and only if ∃(εr)1≤r≤n ∈ Kn ∀1 ≤ i, k ≤ n :

n∑
r=1

εrαirk =

n∑
r=1

εrαikr = δik. (2.4)

Moreover, in the special case a1 = 1A, we have ∀1 ≤ i, k ≤ n :

αi1k = αik1 = δik. (2.5)

(2) A is commutative if and only if ∀1 ≤ i, j, k ≤ n :

αijk = αikj . (2.6)
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(3) A is associative if and only if ∀1 ≤ i, j, k, ` ≤ n :

n∑
r=1

αrjkα
i
r` =

n∑
r=1

αrk`α
i
jr. (2.7)

Proof: To (1): this is a coordinate restatement of ∀1 ≤ k ≤ n : 1Aak = ak1A = ak.

To (2): this is a coordinate restatement of ∀1 ≤ j, k ≤ n : ajak = akaj .

To (3): this is a coordinate restatement of ∀1 ≤ i, j, j ≤ n : (aiaj)ak = ai(ajak). �

2.2. The Structure Constants of a Morphism of K-Algebras. Let A
ϕ−→ B be a morphism of K-algebras with

bases {a1, . . . , an} and {b1, . . . , bm} and corresponding structure tensors (αijk)1≤i,j,k≤n and (βijk)1≤i,j,k≤m, respectively.

Then B is a left A-module via ∀a ∈ A b ∈ B : ab := ϕ(a)b.

Definition 2.2.1: The (left) structure constants (γijk)1≤i,k≤m,1≤j≤n of the morphism ϕ with respect to the bases

{a1, . . . , an} and {b1, . . . , bm} are given by

∀1 ≤ j ≤ n ∀1 ≤ k ≤ m : ajbk =

m∑
r=1

γrjkbr. (2.8)

There are many relations one could state, but for the moment we shall need only the following two:

Lemma 2.2.2: Let B be associative. Then:

(1) We have ∀1 ≤ j ≤ n ∀1 ≤ i, k, ` ≤ m :

m∑
r=1

βir`γ
r
jk =

m∑
r=1

γijrβ
r
k`. (2.9)

(2) Multiplicativity of ϕ implies ∀1 ≤ j, k ≤ n ∀1 ≤ i, ` ≤ m :

n∑
r=1

γir`α
r
jk =

m∑
s=1

γijsγ
s
k`. (2.10)

Proof: To (1): ∀1 ≤ j ≤ n, ∀1 ≤ k, ` ≤ m : (ajbk)b` = aj(bkb`).

To (2): ∀1 ≤ j, k ≤ n, ∀1 ≤ ` ≤ m : (ajak)b` = aj(akb`). �

2.3. Some Commutative Algebra. In the following subsection all rings (incl. algebras) are assumed commutative,
associative, and with unit, unless explicitly stated otherwise. Moreover, in this chapter we will be using U(R) to denote
the group of units of any R ∈ CRing instead of R×, e.g. U(R[[T1, . . . , Tm]]) instead of R[[T1, . . . , Tm]]×.

Since commutative algebras are central in what follows, it is prudent to discuss some general facts from Commutative
Algebra. If A is an n-dimensional K-algebra, then, by virtue of finite dimensionality, A is Artinian, that is, every
descending chain of ideals stabilizes (becomes stationary). We summarize the most important facts about Artinian
rings in the following

Lemma 2.3.1 (Artin Rings): Let A be an Artinian Ring. Then:

(1) A possesses a composition series of ideals A =: a` % a`−1 % · · · % a1 % a0 := 0 of length `A(A) := ` <∞, i.e. A
is of finite length as an A-module.

(2) A is Noetherian.

(3) A has Krull dimA = 0, i.e. SpecA = SpmA as sets, and moreover they are finite.

(4) J(A) = nilA, and moreover it is a nilpotent ideal.

(5) A can be written uniquely up to index permutation as a finite product of Artin local rings A ∼=
⊕M

j=1(Aj ,mj),
where we have a bijection

{m1, . . . ,mM} ↔ SpmA =: {M1, . . . ,MM},
given by Mj = A1 × · · · ×Aj−1 ×mj ×Aj+1 × · · ·AM , 1 ≤ j ≤M .

Proof: We refer the reader to [AM69]. �
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Thus let us additionally suppose that (A,m, κ) is local. In particular, m = J(A) = nil(A) is nilpotent of order
≤ n. By finite dimensionality, κ/K is a finite field extension and A ∼= κ ⊕ m as vector K-spaces, hence we have
dimK A = [κ : K] + dimK m.

Lemma 2.3.2: Let (A,m, κ) be a local ring and M a simple A-module. Then M ∼= κ.

Proof: Let 0 6= x ∈M and define a homomorphism of A-modules f : A→M , a 7→ ax. Then f 6= 0 since f(1) = x 6= 0.
Hence im f ⊆ M is a non-trivial submodule. By simplicity of M , it follows that f is surjective, thus M ∼= A/ ker f ,
which is then also simple and therefore ker f = m by the correspondence for ideals of quotient rings. In other words,
M ∼= A/m = κ. �

Corollary 2.3.3: Let (A,m, κ) be a local n-dimensional κ-algebra. Then `A(A) = dimκA
def
= n.

Proof: Since A is Artinian, take a composition series of ideals A =: a` % m =: a`−1 % · · · % a1 % a0 := 0. Then by
definition ai/ai+1 is a simple A-module and therefore a 1-dimensional κ-vector space. In particular, so is a1. �

Lemma 2.3.4: Let K be a perfect field and let (A,m, κ) be a finite-dimensional local K-algebra. Then A is automatically
a κ-algebra, extending the K-algebra structure.

Proof: Since A = κ⊕m as K-vector spaces, it suffices to show that m is a vector space over κ, extending the K-linear
structure. Since K is a perfect field, the finite extension κ/K is separable. Thus, by the Primitive Element Theorem
we have κ = K[θ̄] for some 0 6= θ̄ ∈ A/m = κ. Now, pick a representative θ ∈ θ̄, θ ∈ U(A), and define a K-linear action
κ × m → m via θ̄ · x := θx. This defines a κ-linear structure on m, depending on θ and clearly extending the K-linear
one. �

For the special case of κ = C, we include here a second proof4 that does not require finite dimensionality of A:

Lemma 2.3.5: Let (A,m,C) be an Artin local, not necessarily finite-dimensional, R-algebra. Then A is automatically
a C-algebra, extending the R-algebra structure.

Proof: Since A is Artin, we have nil(A) = m. We are going to plug nilpotent elements into formal power series
to construct a root of T 2 + 1 in A. As κ is algebraically closed, there exists a ∈ A such that ā2 = −1 in κ, i.e.
a2 + 1 =: x ∈ m is nilpotent. Therefore, −a2 = 1 − x has an inverse 1 + y = 1 + x + x2 + . . . for y ∈ m, which in
turn has a square root 1 + z = 1 + y/2 − y2/8 + y3/16 − . . . for some z ∈ m. Now set a′ := a(1 + z), and we get
a′2 = a2(1 + z)2 = a2(1 + y) = a2/(1− x) = −1 as desired. �

So far, for an n-dimensional local Artinian K-algebra (A,m, κ) we have established the following important quanti-
ties:

(i) the dimension of A as a K-vector space: dimK A = n (by definition);

(ii) the Krull dimension of A (the supremum of the lengths of all strictly ascending chains of prime ideals of A, i.e.
the “geometric” dimension of A): dimA = 0;

(iii) the length of A as an A-module: `A(A) = dimκA.

But there are several other important quantities one can associate to an n-dimensional local Artinian K-algebra (A,m, κ)
that will play a role.

Definition 2.3.6:
(1) Height5 of A: h(A) is the smallest ν ∈ N such that mν = 0, mν−1 6= 0, i.e. the “order of nilpotency” of m;

(2) Width(s) of A: di := dimK mi/mi+1, 1 ≤ i ≤ h − 1, in particular, d := d1 is the dimension of the Zariski
cotangent space m/m2, also called width of the local algebra A;

(3) Define nr := 2 +
∑r−1
i=1 di, 1 ≤ r ≤ h and notice that n1 = 2, nr+1 − nr = dr ≥ 1, and nh − 1 = n.

Definition 2.3.7 (Height of a morphism): Let (A,m)
ϕ−→ (B, n) be a morphism of local Artinian K-algebras. Then

h(ϕ) := min{h(A),h(B)} is called height of the morphism ϕ.

Remark: We have ∀X ∈ m : ϕ(X)h(ϕ) = ϕ(Xh(ϕ)) = 0 in any case.

Since each mi is a finitely generated A-module, each choice of κ-basis for mi/mi+1 lifts to a generating set (over A) of
mi. In the case of m/m2 such a generating set for m is also called pseudo-basis of m.

4due to Jeremy Rickard, see [MSE01];
5should not be confused with the height of a prime ideal, which coincides with the Krull dimension of its localization;
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Lemma 2.3.8: Let (A,m, κ) be an n-dimensional κ-algebra. Then A has a basis {e1 = 1A, e2, . . . , en} with structure
tensor (αijk) such that:

(i) ∀1 ≤ i, k ≤ n : αi1k = αik1 = δik and

(ii) ∀j, k ≥ 2 ∀i ≤ max{j, k} : αijk = αikj = 0.

Proof: Since A is an algebra over its residue field, there exists a composition series of ideals of length n, A =: a1 % m =:
a2 % · · · % an % an+1 := 0. Pick e1 := 1A ∈ a1 \ a2, e2 ∈ a2 \ a3, ei ∈ ai \ ai+1, 1 ≤ i ≤ n, and notice that the choice of
e1 gives (i).

Now without loss of generality suppose that 2 ≤ j ≤ k. Then ejek ∈ ak, hence ∀i < k : αijk = 0. We are left to check
the case i = k. We have

(ej − αkjk)ek =

n∑
i=k+1

αijkei ∈ ak+1.

If αkjk 6= 0, then ej − αkjk ∈ U(A), therefore ek ∈ ak+1, a contradiction. This proves (ii). �

Remark: In particular, if n ≥ 2, then e2
n = 0, and if n ≥ 3, then en−1en = 0.

One criterion for niceness of a basis choice is the number of zero structure constants. In this regard, the choice in
Lemma 2.3.8 is not necessarily the most optimal one. To improve on this number one might use the following

Lemma 2.3.9: Let (A,m, κ) be a local n-dimensional κ-algebra. Then A has a κ-basis {e1 := 1A, e2, . . . , en} with
structure tensor (αijk) such that:

(i) ∀1 ≤ i, k ≤ n : αi1k = αik1 = δik and

(ii) ∀1 ≤ r, s ≤ h− 1 ∀j ≥ nr ∀k ≥ ns ∀1 ≤ i ≤ nmin{r+s,h} − 1 : αijk = 0.

Proof: Consider the descending chain of ideals A % m % m2 % · · · % mh−1 % mh = 0. This is a decreasing chain of
vector κ-subspaces of A, therefore we can pick a basis e1 := 1A ∈ A\m, en1

, . . . , en2−1 ∈ m\m2, en2
, . . . , en3−1 ∈ m2 \m3

etc. Let r, s ≥ 1 and let ej ∈ mr and ek ∈ ms, that is, j ≥ nr and k ≥ ns. Then ejek ∈ mr+s, therefore ∀1 ≤ i ≤
nmin{r+s,h} − 1 : αijk = 0, where the min condition comes from the fact that ejek = 0 whenever r + s ≥ h. �

Remarks:
(1) We still have e2

n = 0 if n ≥ 2, and en−1en = 0 if n ≥ 3. In fact ∀j ≥ nr ∀k ≥ nh−r : ejek = 0, since ej ∈ mr and
ek ∈ mh−r.

(2) It is not always possible to improve on the number of zero structure constants by means of Lemma 2.3.9, e.g. if
d1 = d2 = · · · = dh−1 = 1 like in the case of An−1 := K[t]/(tn−1).

Lemma 2.3.10 (Triangular Form): Let κ be algebraically closed and A = (A,m, κ) local κ-algebra of dimκA = n. Then
A is triangulable, i.e. isomorphic to a (commutative) κ-algebra of matrices of size n of the formx ∗

. . .

0 x

 .

Proof: Identify A with one of its faithful representations into Mn(κ). Since κ is algebraically closed, all elements of
A are triangulable as their minimal polynomials split, and in fact they are simultaneously triangulable since they are
mutually commuting [see HK71, p.199-204], hence A is triangulable. Next notice that any local ring is connected: if
R1 and R2 are commutative rings together with m1 ∈ SpmR1 and m2 ∈ SpmR2, then m1 × R2 and R1 × m2 are two
distinct maximal ideals of R1 ×R2. Put together, this forces A to have the above form. �

Remark: It is easily seen that the regular representation of a commutative upper-triangular algebra is the transposed,
lower-triangular one (see also Lemma 2.3.8 (ii)), which we will occasionally also call the stable lower-triangular repre-
sentation due to the fact that it coincides with its own regular representation. We will often use the lower-triangular
representation as the more canonical one.

Corollary 2.3.11: Let κ be algebraically closed, let A =
⊕M

k=1(Ak,mk, κ) be a finite-dimensional κ-algebra decom-
posed into Artinian local κ-algebras and let nk := dimκAk, 1 ≤ k ≤ M . Identify A with its stable lower-triangular

representation and let Z =
⊕M

k=1(zk ⊕Xk) ∈ A, where zk ∈ κ and Xk ∈ mk, 1 ≤ k ≤M . Then:

(1) We have tr(Z) =
∑M
k=1 nkzk and det(Z) =

∏M
k=1 z

nk
k .
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(2) The spectrum of Z is given by σ(Z) := {z1, . . . , zM}, where each eigenvalue zk has algebraic multiplicity nk.

�

Finally, let us mention a result of Schur and Jacobson:

Lemma 2.3.12 (Schur-Jacobson): If K is an arbitrary field, then the maximal dimension of a commutative K-algebra
of matrices of size n is bn2/4c+ 1.

Proof: We refer the reader to [Jac44] for the classical source or to [Mir98] for a more modern and proof-efficient
treatment. �

Let us now determine the structure of morphisms A ϕ−→ B of finite-dimensional commutative K-algebras. Let B =⊕N
`=1 B` be the decomposition of B into Artin local K-algebras. Then ϕ is the same as an N -tuple of morphisms

ϕ` : A → B`, where ϕ` = prB` ◦ϕ and prB` : B � B` is the canonical projection, 1 ≤ ` ≤ N , i.e. ϕ(a) = (ϕ1(a), . . . , ϕN (a)).
Therefore it suffices to assume that B is local, in particular connected. We have:

Lemma 2.3.13 (Ring morphisms and decomposition): Let R
ϕ−→ S be a non-zero morphism in CRing. Then:

(1) R =
⊕M

k=1Rk decomposes as a finite direct product (sum) of non-trivial rings (M ≥ 2) if and only if R contains

a non-trivial complete system of M distinct mutually orthogonal idempotents {e1, . . . , eM}, i.e.
∑M
k=1 ek = 1R

and ∀1 ≤ k, ` ≤M : ek 6= 0, 1, eke` = δk`ek. In this case we have ∀1 ≤ k ≤M : Rk = Rek.

(2) If R =
⊕M

k=1Rk and S is connected (for example if S is local), then there exists exactly one 1 ≤ k ≤ M such
that ϕ factors as ϕ = ϕ̄ ◦ prk for some ring homomorphism ϕ̄ : Rk → S, where prk denotes the k-th canonical
projection. That is, we have a commutative diagram

R S

Rk

prk

ϕ

ϕ̄

Proof: To (1): This is well-known. For example, it follows by induction from [AM69, Prop. 1.10], since any sum of
distinct non-trivial mutually orthogonal idempotents is again idempotent.

To (2): First of all, notice that ϕ 6= 0 implies S 6= 0. Put fk := ϕ(ek), 1 ≤ k ≤ M . Then ∀1 ≤ k, ` ≤ M : fkf` =

ϕ(eke`) = δk`fk and
∑M
k=1 fk = ϕ(

∑M
k=1 ek) = 1S . Thus we only need check the conditions fk ∈ {0, 1S}. Suppose

that ∀1 ≤ k ≤ M : fk = 0, then 0 =
∑M
k=1 fk = 1S , i.e. S = 0, a contradiction. Hence not all fk are 0. Therefore,

if no fk is 1S either, we obtain a non-trivial complete subsystem of distinct mutually orthogonal idempotents, which
is a contradiction to S being connected. Thus at least one fk is 1S . Now suppose that there are two of them, i.e.
that there exist indices k 6= ` such that fk = f` = 1S . Then 1S = fkf` = 0, again a contradiction. Therefore
there is exactly one 1 ≤ k ≤ M such that fk = 1S . Without loss of generality let that be f1 = 1S . We have

∀2 ≤ k ≤M : 0 = f1fk = fk = ϕ(ek), hence e2, . . . , eM ∈ kerϕ. Thus, if we put I :=
∑M
k=2Rek ⊆ kerϕ, then ϕ factors

through R/I ∼= (
⊕M

k=1Rek)/
∑M
k=2Rek

∼= Re1 = R1 as desired. �

Corollary 2.3.14 (Canonical Factorization of Homomorphisms of Artinian Rings): Let A
ϕ−→ B be a homomorphism

of Artinian rings and let A ∼=
⊕M

k=1(Ak,mk) and B ∼=
⊕N

`=1(B`, n`) be their respective decompositions into Artin local
rings. Then up to index permutation there exists a uniquely determined mapping τ := τϕ : {1, . . . , N} → {1, . . . ,M},
` 7→ τ(`), such that we have a commutative diagram⊕M

k=1Ak
⊕N

`=1B`

⊕N
`=1Aτ(`)

ϕ

Π
∃1ϕ̄

(2.11)

where Π := Πτ := (prAτ(1), . . . ,prAτ(N)) : (a1, . . . , aM ) 7→ (aτ(1), . . . , aτ(N)) is the obvious ring epimorphism and ϕ̄ =

⊕N`=1ϕ̄` for some local homomorphisms ϕ̄` : (Aτ(`),mτ(`)) → (B`, n`), 1 ≤ ` ≤ N , of local Artinian rings, that is,

ϕ = (ϕ̄1 ◦ prAτ(1), . . . , ϕ̄N ◦ prAτ(N)). Moreover, if ϕ ∈ Mor(fdCAlgK), then also ϕ̄ ∈ Mor(fdCAlgK).

Proof: This follows from the previous discussion, so we only need to show that ϕ̄` are local, 1 ≤ ` ≤ N . Indeed, more
generally, if ψ : (R,m) → (S, n) is a homomorphism of local rings with maximal ideals of nilpotent elements, then ψ is
necessarily itself local: one clearly has ψ(m) ⊆ n since ∀x ∈ m : ψ(x) is nilpotent. K-linearity of ϕ̄ follows directly from
the proof of Lemma 2.3.13 if we suppose K-linearity of ϕ there. �
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Remarks:
(1) Conversely, any mapping of indices τ : {1, . . . , N} → {1, . . . ,M} together with a family of ring homomorphisms

ϕ` : Aτ(`) → B`, 1 ≤ ` ≤ N , gives again a morphism ϕ := (ϕ1 ◦ prτ(1), . . . , ϕN ◦ prτ(N)) : A :=
⊕M

k=1Ak → B :=⊕N
`=1B` of commutative rings.

(2) If A is a non-unital finite-dimensional commutative associative K-algebra, then we recover all of the above

structure theory by adjoning a unit. In particular, A decomposes as A =
⊕N

k=1 Ak into connected K-algebras,
some of which may be unital, and A has stable lower-triangular representation. Moreover, if A is a connected
non-unital K-algebra, then by adjoining a unit one obtains a local A = (A,m) with m = A.

(3) If ψ : (R,m, κ)→ (S, n, λ) is a morphism of local rings with maximal ideals of nilpotent elements, then ψ induces
a well-defined extension ψ̄ : κ ↪→ λ of residue fields, and we have a commutative diagram

(R,m) (S, n)

κ λ

ψ

πR πS

ψ̄

where πR and πS denote the canonical quotient projections. In particular, if ϕ : (A,m,K) → (B, n,K) is a
morphism of local K-algebras with maximal ideals of nilpotent elements, then we have a commutative diagram

(A,m,K) (B, n,K)

K
σA

ϕ

σB
(2.12)

where σA and σB denote the canonical quotient projections.

2.4. The Structure of U(A). For any finite-dimensional associative unital K-algebra, U(A) is an affine algebraic group
(and a rational variety). If K = K, then U(A) is also a Lie group, open and dense in A. Since we are only interested in
the commutative kind, we can take an elementary, ad hoc approach in determining U(A). If A is a finite-dimensional
unital commutative associative K-algebra, then A decomposes as A ∼= A1 × · · · × AM of commutative Artin local
K-algebras, hence U(A) ∼= U(A1)× · · · × U(AM ). Therefore it suffices to assume that (A,m, κ) is a finite-dimensional
(Artin) local K-algebra. Note, however, that in general the Ak-s can have different residue fields.

Proposition 2.4.1: Let (A,m, κ) be a local finite-dimensional commutative associative unital K-algebra. Then

U(A)
∼=−→ κ× × (m,+), u+ x 7→

(
u, log

(
1 +

x

u

))
,

which is a rational map. �

Proof: By Lemma 2.3.4, the K-algebra structure of A extends to a κ-algebra structure and A ∼= κ⊕m as vector κ-spaces.
In particular, every unit in A can be uniquely written as u + x = u

(
1 + x

u

)
for some u ∈ κ \ {0} = κ× and x ∈ m

(nilpotent). Moreover, the natural epimorphism σA : A� A/m = κ induces a short exact sequence of abelian groups:

1→ 1 + m→ U(A)→ κ× → 1,

which splits non-canonically: we have an isomorphism of (abelian) groups U(A) ∼= κ×⊕ (1 +m,×), u+ x 7→
(
u, 1 + x

u

)
,

induced by the algebra structure. Next we show that (1 + m,×) ∼= (m,+) as groups. We use a little trick involving
formal power series and nilpotents. Recall the formal power series

exp(T )
def
=

∞∑
k=0

T k

k!
∈ K[[T ]] and log(1 + T )

def
=

∞∑
k=1

(−1)k+1

k
T k ∈ K[[T ]],

which are formal inverses to each other. Then clearly ∀x ∈ m : log(1 + x) ∈ m and exp(x) ∈ 1 + m are well-defined as x
is nilpotent, and we get homomorphisms exp and log of abelian groups such that exp(log(1 + x)) = 1 + x. �

Corollary 2.4.2: Let κ be an algebraically closed field and let A be a finite-dimensional commutative associative unital
κ-algebra. Then U(A) ∼= (κ×)M × (κ+)N for some M ∈ N and N ∈ N0, where M = # SpecA = # SpmA. �

Definition 2.4.3: U(A) is called for short of type (M,N) if U(A) ∼= GMm ×GNa .

Conversely, any (M,N)-type occurs as the group of units of some A ∈ fdCAlgκ, for instance6

A := κM × κ[X1, . . . , XN ]/(X1, . . . , XN )2

In particular, there exist finite-dimensional local κ-algebras (A,m, κ) with an arbitrary (finite) dimκm.

6example due to Julian Rosen, see [MO01]
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Proposition 2.4.4 (Path-connectedness of U(A)): Let A be a finite-dimensional commutative associative unital R-
algebra. Then π0(U(A)) is trivial if and only if A has a complex structure, extending the real one.

Proof: “⇐”: Clear by Corollary 2.4.2.

“⇒”: By Artin decomposition and Proposition 2.4.1 we have

U(A) ∼=
M∏
i=1

U(Ai) ∼=
M∏
i=1

(κ×i ×mi),

where κi is either R or C and the isomorphism is of topological groups (it is even given by rational functions). Since
U(A) is assumed path-connected, no copies of R× can occur in above representation. �

2.5. Matrix Analysis: Norms and Spectral Radius. Our main reference for this chapter is the book [HJ13]. By
a vector norm on Mn(K) or any finite-dimensional associative K-algebra A we will mean a norm ‖·‖ that turns the
underlying vector space structure of A into a normed space, hence a Banach space over K by finite dimensionality.
By a matrix or an algebra norm on A we will mean a vector norm ‖·‖ on A that is also submultiplicative, that is,
∀A,B ∈ A : ‖AB‖ ≤ ‖A‖ ‖B‖, i.e. it turns A into a Banach K-algebra.

A vector norm ‖·‖ onA ∈ fdAlgK is called normalized or unital iff ‖1A‖ = 1. Notice that for an arbitrary submultiplicative
norm on A we only have ‖1A‖ ≥ 1. Finite-dimensional associative K-algebras A usually enjoy various (automatically
topologically equivalent) submultiplicative norms, for example inherited from Mn(K) along a faithful representation
ρ : A ↪→ Mn(K). Despite being topologically equivalent, some algebra norms are more equal than others, depending on
the application. We list some. One particularly close to geometric intuition is given by:

Lemma-Definition 2.5.1 (`2-norm, Frobenius / Schur / Hilbert-Schmidt norm): For A ∈ Mn(K) the expression

‖A‖F :=

( n∑
i,j=1

|aij |2
) 1

2

defines a matrix norm on Mn(K), called the Frobenius norm. �

Indeed this coincides with the Euclidean norm on the vector space Mn(K) (with the usual basis). However, in general
there is no reason to expect that it restricts to the Euclidean norm on the vector space A ∼= Kn, e.g.∥∥∥∥(z w

0 z

)∥∥∥∥2

F

= 2 |z|2 + |w|2 6= |z|2 + |w|2 .

A sometimes technical disadvantage of “geometric” (read `p-related) algebra norms is that, somewhat ironically, they
are usually not normalized: for example if En is the identity matrix of Mn(K), then ‖En‖F =

√
n.

Lemma-Definition 2.5.2 (Induced Operator Norm): Let (V, ‖·‖) be a finite-dimensional normed K-vector space. Then
the induced by ‖·‖ operator norm on EndK(V ) ∼= Mn(K) given by

‖A‖op := sup
v∈V

‖Av‖
‖v‖

is a normalized submultiplicative norm. �

For the moment we are only concerned with the existence of normalized norms, and the above lemma grants us
that.

Perhaps the most essential drawback of algebra norms is the fact that they can be only submultiplicative, which breaks
many of the standard proofs in complex analysis as we shall see.

Proposition 2.5.3 (Gelfand-Mazur): Let A be a normed division C-algebra. Then A ∼= C isometrically. �

Corollary 2.5.4 (Most C-algebra norms are only submultiplicative): Let (A, ‖·‖A) ∈ BanAlgC such that ‖·‖A is multi-
plicative. Then A ∼= C isometrically.

Proof: This is well-known, so we only sketch the proof. One shows that, if we have ∀x ∈ A× :
∥∥x−1

∥∥ ≤ ‖x‖−1
, then A×

is closed in A\{0}. But clearly it is also open in A\{0}. Since A is complex, A\{0} is connected, hence A× = A\{0},
i.e. A is a division algebra and one can apply Proposition 2.5.3. �

There is also a real version of Gelfand-Mazur:
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Proposition 2.5.5 (A “Frobenius Theorem” for normed algebras): Let (A, ‖·‖A) be a normed division R-algebra. Then
A ∼= R,C, or H isometrically. �

However, for a (A, ‖·‖A) ∈ BanAlgR with a multiplicative norm the proof of the last corollary does not apply since
A \ {0} need not be connected, and it no longer follows that A ∈ {R,C,H}. Indeed, there are infinite-dimensional
real Banach algebras with multiplicative norms (also termed “absolute values”) [see UW60]. On the other hand, in
the finite-dimensional setting the full list of all real unital, but not necessarily associative algebras with multiplicative
norms is rather short, being given by {R,C,H,O} as shown in [Alb47]. But in that setting at least all norms are
equivalent.

Often times any sufficiently abstract statement involving some algebra norm is automatically valid for all algebra norms
(finite dimensionality assumed). With the help of the next proposition this suggests that the correct notion to consider
in many instances instead is the spectral radius, even though it itself is not a norm.

Definition 2.5.6 (Spectral Radius): Let A ∈ Mn(K) and let σ(A) denote its spectrum. Then

ρ(A) := max{|z| : z ∈ σ(A)}
is called the spectral radius of A.

Proposition 2.5.7: Let ‖·‖ denote an algebra norm on Mn(C). Then:

(1) ∀A ∈ Mn(C) : ‖A‖ ≥ ρ(A);

(2) ∀A ∈ GLn(C) :
∥∥A−1

∥∥ ≥ ρ(A)−1;

(3) ∀A ∈ Mn(C) ∀ε > 0 ∃ ‖·‖ : ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε;

(4) ∀A ∈ Mn(C) : ρ(A) = inf{‖A‖ : ‖·‖matrix norm} = inf{‖A‖op : ‖·‖op induced operator norm}.

Proof: These are Theorem 5.6.9 and Lemma 5.6.10 in [HJ13]. �

Notice that ‖·‖ in (3) depends not only on ε but also on A ∈ Mn(C). The following is a trivial consequence of (3) that
we record here because it will often be used in one form or another:

Corollary 2.5.8 (Principle of spectral comparison): Let A,B ∈ Mn(C).

(1) If for all matrix norms ‖A‖ ≤ ‖B‖, then ρ(A) ≤ ρ(B).

(2) Conversely, if ρ(A) < ρ(B), then there exists a matrix norm such that ‖A‖ < ‖B‖.

Proof: To (1): take inf‖·‖ on both sides.

To (2): Let ε > 0 such that ρ(A) + ε < ρ(B). Then by Proposition 2.5.7 there exists an algebra norm ‖·‖, depending on
both A and ε, such that ‖A‖ ≤ ρ(A) + ε < ρ(B) ≤ ‖B‖. �

Corollary 2.5.9 (Spectral radius is algebra-norm-like): Let A,B ∈ Mn(C) such that [A,B] = 0, then:

(1) ρ(En) = 1;

(2) ∀z ∈ C : ρ(zA) = |z| ρ(A);

(3) ρ(A+B) ≤ ρ(A) + ρ(B);

(4) ρ(AB) ≤ ρ(A)ρ(B); �

The only norm property that ρ lacks here is due to the fact that ρ(X) = 0 does not imply X = 0.

Lemma 2.5.10 (Spectral radius in fdCAlgC): Let A ∈ fdCAlgC and identify A with its stable lower-triangular matrix
representation. Let ‖·‖ be an arbitrary algebra norm on A and denote ρA := ρ|A the restriction of the spectral radius
function. We have:

(1) If A = (A,m) is local and σA : A� A/m ∼= C is the canonical projection, then ρA = |·| ◦ σA.

(2) If A = (A,m) is local, then m = {Z ∈ A : ρA(Z) = 0} and U(A) = {Z ∈ A : ρA(A) > 0}. In other words, ρA
is “pseudo-valuative”.

(3) Let A =
⊕N

k=1Ak be a decomposition of A into Artin local C-algebras and let Z =
⊕N

k=1(zk ⊕ Xk) ∈ A,
where zk ∈ C and Xk ∈ mk, 1 ≤ k ≤ N . Then ρA(Z) = max

1≤k≤N
|zk|. In particular ‖Z‖ ≥ max

1≤k≤N
|zk| and∥∥Z−1

∥∥ ≥ 1
min

1≤k≤N
|zk| .
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In particular, ρA is multiplicative if and only if A is local.

Proof: All of that follows directly from the lower-triangular representation of A and the previous discussion. �

Because of submultiplicativity of algebra norms, it is generally difficult to estimate norms of inverses from above. The
following standard fact helps:

Lemma 2.5.11 (Upper Bound of the Norm of an Inverse): Let ‖·‖ be a unital matrix norm on Mn(C) and let A ∈ Mn(C)
with ‖A‖ < 1. Then:

1

1 + ‖A‖
≤
∥∥∥∥ 1

1−A

∥∥∥∥ ≤ 1

1− ‖A‖
. (2.13)

�

In fact, when A = (A,m) is local, we can do better:

Lemma 2.5.12 (Upper Bound of the Norm of Inverses in local A): Let A = (A,m) be a local C-algebra equipped with
a unital submultiplicative norm ‖·‖. Write Z := z ⊕ X ∈ A× with z ∈ C× and X ∈ m and let ν ∈ N be the smallest
integer such that Xν = 0. Then: ∥∥Z−1

∥∥ ≤ 1

|z|

(
‖1A‖+

ν−1∑
j=1

(
‖X‖
|z|

)j)
(2.14)

In particular, if ‖·‖ is unital, we have:∥∥Z−1
∥∥ ≤ 1

|z|

ν−1∑
j=0

(
‖X‖
|z|

)j
=

{
1−‖X‖ν/|z|ν
|z|−‖X‖ , if |z| 6= ‖X‖

ν
|z| , if |z| = ‖X‖

def
=

{
1−‖X‖ν/ρA(Z)ν

ρA(Z)−‖X‖ , if ρA(Z) 6= ‖X‖
ν

ρA(Z) , if ρA(Z) = ‖X‖ .
(2.15)

Proof: Since X ∈ m = nilA with Xν = 0, we have:

Z−1 = z−1

(
1−

(
−X
z

))−1

=
1

z

ν−1∑
j=0

(
−X
z

)j
,

from which both claims follow. �

Remarks:
(1) Note that ν ∈ N can instead be chosen uniformly for the whole m, since m itself is nilpotent, though this is of

course less optimal than choosing for an individual X ∈ m.

(2) Indeed the estimate in Equation (2.15) is not only valid for ‖X‖ ≥ |z| unlike Equation (2.13), but it is also
tighter than Equation (2.13) for the case ‖X‖ < |z|: since ‖X‖ < |z|, we have 1− (‖X‖ / |z|)ν < 1, hence

1− ‖X‖ν / |z|ν

|z| − ‖X‖
<

1

|z| − ‖X‖
,

the latter being the estimate of
∥∥Z−1

∥∥ obtained by means of Equation (2.13).

When the “depth” of Z ∈ (A,m) is less than its “width”, we even have:

Lemma 2.5.13: Let A = (A,m) be a local C-algebra and let Z = z ⊕X ∈ A×. If ν ∈ N is the smallest integer with
Xν = 0 and ‖X‖ ≤ |z|, then ∥∥Z−1

∥∥ ≤ ν

|z|
def
=

ν

ρA(Z)
. (2.16)

Proof: By Lemma 2.5.12 it suffices to show that

1− ‖X‖ν / |z|ν

|z| − ‖X‖
≤ ν

|z|

whenever ‖X‖ ≤ |z|. Indeed, putting t := ‖X‖
|z| , this is equivalent to

p(t) := tν − t+ ν − 1 ≥ 0

for t ∈ [0, 1]. We have p(0) = p(1) = ν − 1 ≥ 0 as ν ≥ 1 and p′(t) = νtν−1 − 1. If ν is even, then t0 := (1/ν)1/(ν−1) is
the only critical point of p(t), and t0 ∈ (0, 1) since ν ≥ 2. In this case p′′(t) = ν(ν − 1)tν−2, hence p′′(t0) > 0, and thus
t0 is a local minimum of p(t). Moreover, we have 1/ν ∈ (0, 1) ⇒ (1/ν)1/(ν−1) ∈ (0, 1) ⇒ (1/ν)1/(ν−1) > (1/ν)ν/(ν−1) ∈
(0, 1) ⇒ (1/ν)1/(ν−1) − (1/ν)ν/(ν−1) ∈ (0, 1) ⇒ p(t0) = ν − 1 − ((1/ν)1/(ν−1) − (1/ν)ν/(ν−1)) > 0 since ν − 1 ≥ 1. It
follows that ∀t ∈ [0, 1] : p(t) ≥ 0.
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If ν is odd, then without loss of generality ν 6= 1 since for ν = 1 we have p(t) ≡ const = 0. For ν ≥ 3 odd p′(t) has two
roots t0 > 0 as above and (−t0). But t ∈ [0, 1], hence the same discussion as above is applicable as ν > 1. �

Lemma-Definition 2.5.14 (Direct Sum Norm): Let A ∈ fdCAlgC and let A =
⊕N

k=1Ak be the decomposition of A
into Artin local C-algebras (Ak,mk), 1 ≤ k ≤ N . Let each Ak be equipped with a normalized submultiplicative norm
‖·‖Ak , 1 ≤ k ≤ N (we already know this to be possible). Then∥∥∥∥∥

N⊕
k=1

Zk

∥∥∥∥∥
⊕

:= max
1≤k≤N

‖Zk‖Ak

defines a normalized submultiplicative norm on the direct sum A. �

Definition 2.5.15 (Spectral Balls and Spectral Annuli): Let A ∈ BanAlgK, Z0 ∈ A, and R > r ≥ 0. Then:

(1) Spectral ball: Bsp
A (Z0, R) := {Z ∈ A : ρA(Z − Z0) < R} and Bsp

A (Z0, R) := {Z ∈ A : ρA(Z − Z0) ≤ R} are called
the open and the closed spectral R-balls of A respectively.

(2) Spectral annulus: Asp
A (Z0, r, R) := {Z ∈ A : r < ρA(Z − Z0) < R} and Āsp

A (Z0, r, R) := {Z ∈ A : r ≤
ρA(Z − Z0) ≤ R} are called the open and the closed spectral r-R-annuli of A respectively.

Remark: Let A ∈ BanAlgK and R > 0. Then Āsp
A (Z0, 0, R)

def
= Bsp

A (Z0, R).

3. The Notion of ϕ-Holomorphy

Unless explicitly stated otherwise, in the following all algebras are assumed finite-dimensional, commutative, and asso-
ciative, but not necessarily unital, and also equipped with some (any) submultiplicative norm. By a K-algebra A we
will always mean to take the maximal possible coefficient field K for A. Morphisms of unital algebras are automatically
assumed to preserve the unit. Kn will always have the standard basis. Furthermore, we make the following notational
conventions: A, B, C will always denote possibly non-unital algebras, whereas A, B, C will be reserved (strictly) for
unital ones.

Even though we are mostly interested in complex unital finite-dimensional commutative associative algebras, it is in-
structive to try and develop the basic theory for real, not necessarily unital finite-dimensional commutative associative
algebras as far as possible in order to see where exactly unitality and the complex structure enter in a decisive man-
ner.

Rather than working inside a single algebra A, our starting point is a morphism7 of K-algebras A
ϕ−→ B. Such a morphism

turns B into an A-algebra the usual way via ∀a ∈ A ∀b ∈ B : ab := ϕ(a)b, and multiplication by B-elements on A gives
rise to a K-linear map A → B of K-vector spaces. Note that there exist non-trivial morphisms of finite-dimensional
K-algebras:

Example: Let A := C[X,Y ]/(X2 + Y 3, XY 2, Y 4). Then A is a local C-algebra of dimCA = 6, and the quotient
projection

q : A� A/(Y 3) ∼= C[X,Y ]/(X2, XY 2, Y 3) =: B
with dimC B = 5 is a non-trivial (necessarily local) homomorphism of local C-algebras. �

Definition 3.0.1 (Fréchet ϕ-differentiability): Let A
ϕ−→ B be a morphism of K-algebras, U ⊆ A open, Z0 ∈ U a point,

and f : U → B a map. Then:

(1) f is called (Fréchet) ϕ-differentiable at Z0 if there exists B ∈ B such that

f(Z0 +H) = f(Z0) +Bϕ(H) + r(H), (3.1)

where ‖r(H)‖ = o(‖ϕ(H)‖) as H → 0. In this case (Df)(Z0) = f ′(Z0) := B is called the derivative of f at Z0.

(2) f is called ϕ-differentiable if it is ϕ-differentiable everywhere in U .

(3) f is called ϕ-holomorphic at Z0 if there exists an open neighbourhood V 3 Z0 such that f is ϕ-differentiable
everywhere in V .

(4) f is called ϕ-holomorphic if it is ϕ-holomorphic everywhere in U .

(5) The space of ϕ-holomorphic functions on U will be denoted by Oϕ(U).

(6) f will also be called A-differentiable/-holomorphic (at Z0) if ϕ = idA : A→ A. In this case OA(U) := OidA
(U).

7following Grothendieck’s point of view that one should look at morphisms instead of objects;
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Example: Let Z := z1 + εz2 ∈ A2 and define f(Z) := f(z1, z2) := f1(z1, z2) + εf2(z1, z2), where

f1(z1, z2) = z3
1 − z2

1 + 1,

f2(z1, z2) = 2z3
1 + 3z2

1z2 + z2
1 − 2z1z2 + 3.

Then f is A-holomorphic: f(Z) = (1 + 2ε)Z3 + (−1 + ε)Z2 + (1 + 3ε) with f ′(Z) = (3 + 6ε)Z2 + (−2 + 2ε)Z.

Definition 3.0.2 ( ϕ-differentiability classically): Let A ϕ−→ B be a morphism of unital K-algebras, U ⊆ A open, Z0 ∈ U
a point, and f : U → B a map. Then:

(1) f is called classically ϕ-differentiable at Z0 if the limit of the difference quotient

f ′(Z0) := lim
H→0
H∈A×

f(Z0 +H)− f(Z0)

ϕ(H)
(3.2)

exists.

(2) Classical ϕ- and A-differentiability/-holomorphy (at Z0) are defined in an analogous way as above.

Remarks:
(1) Fréchet ϕ-differentiability is indeed a special case of Fréchet differentiability, that we also call inner Fréchet

differentiability because the linear operator LB : A → B, H 7→ Bϕ(H), is given by inner8 multiplication in B.
In particular, the differential Df = LB is A-linear (with respect to the A-module structure on B induced by ϕ)
due to the commutativity (and associativity) of the involved operations. If A = A is unital, then all A-linear
maps are given that way because L(H) = ϕ(H)L(1A) = ϕ(H)B, where B := L(1A). However, if A is not unital,
this is no longer the case, and inner Fréchet differentiability is stronger than mere A-linearity of Df : for instance,
take the local algebra A3 := K[X]/(X3) with maximal ideal m = (X̄), put A := m, and define the m-linear map
L : m→ m, X̄ → (1 + X̄)X̄ = X̄+ X̄2, given by multiplication with an element 1 + X̄ ∈ A× = A\m. Moreover,
since A is non-unitial, A-linearity of Df does not in general guarantee K-linearity of Df .

(2) (Non-)Uniqueness of the ϕ-derivative9: while the Fréchet derivative is always unique as a linear operator in
HomK(A,B), an inner linear map between non-unital K-algebras is itself usually not uniquely represented. For
instance, consider the algebra A0 := Cε with ε2 = 0, then 0 : A0 → A0 can be represented by multiplication
with any zε, z ∈ C. More generally, if M is a connected non-unital K-algebra, hence nilpotent, and ν ∈ N is
the smallest integer such that Mν = 0, then 0 : M→M can be represented by multiplication with any element
from Mν−1. On the other hand, if ϕ : A → B is a morphism of unital K-algebras, then f ′(Z) = B ∈ B in
Equation (3.1) is uniquely determined as an element of B: if we have f(Z + H) = f(Z) + B1,2ϕ(H) + r1,2(H)
for two elements B1, B2 ∈ B and two o(‖ϕ(H)‖)-functions r1, r2 as H → 0, then putting B := B2 − B1 and
r(H) := r1(H) − r2(H) we get Bϕ(H) = r(H), where again r(H) = o(‖ϕ(H)‖). Now taking H ∈ K× ⊆ A,
H → 0, we conclude that

‖B‖ =

∥∥∥∥ r(H)

ϕ(H)

∥∥∥∥ =

∥∥∥∥r(H)

H

∥∥∥∥ =
o(|H|)
|H|

H→0−−−→ 0,

where we have chosen ‖·‖ to be itself normalized for convenience. Notice that the assumption of unitality of
the algebras is essential to guarentee inclusion of the scalars and unconditional computation of the norm of the
fraction.

(3) We remark that, since ϕ is bounded (being a linear operator between finite-dimensional K-vector spaces), one
also has ‖r(H)‖ = o(‖H‖) as H → 0. On the other hand, requiring only ϕ(H)→ 0 instead of H → 0 would be
insufficient, even though ‖r(H)‖ = o(‖ϕ(H)‖), since kerϕ need not be trivial.

(4) If f : U → B is Fréchet ϕ-differentiable at Z0, then, clearly, f is totally K-differentiable at Z0: even in the
non-unital case, f ′(Z0) being represented by an element B ∈ B rather than being merely A-linear ensures that
it is itself K-linear. In particular, if K = C, then a ϕ-holomorphic function at Z0 is also analytic at Z0. We are
going to show later that if ϕ : A → B is a morphism of unital C-algebras, then the analytic expansion of f is
in fact of the special form B{ϕ(Z)} via an approach similar to the one used in the complex analysis of a single
variable.

(5) Notice that the expression in Equation (3.2) makes sense because A× is dense in A. If ϕ is a morphism of unital
K-algebras and f is Fréchet ϕ-differentiable at Z0, then restricting H to A× in Equation (3.1) shows that f ′(Z0)
can be computed using Equation (3.2).

8cfg. the inner automorphisms of a group are those given by conjugation with an element from the group;
9functions that have a unique derivative are sometimes called monogenic, though the term “monogenic function” has varying meaning

throughout the literature;
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(6) In [Wat92] it is claimed that f is (Fréchet) A-holomorphic at Z0 if and only if f is classically A-holomorphic
at Z0. The previous point shows that “⇒” is trivially valid already at the level of A-differentiability at Z0.
However, the converse direction “⇐” requires (classical) A-differentiability in a neighbourhood.

(7) If A is infinite-dimensional, using Definition 3.0.1 is in fact the only sensible approach (also used in [Lor43]) as
one can no longer expect A× to remain dense in A [see DF02].

(8) However, since in general there also exist non-zero non-units, Definition 3.0.2 together with denseness of A×
suggests that it is natural to try and extend the definition of (classical) ϕ-differentiability to other non-units: if
X ∈ A \ A×, define

f ′(X)(Z0) := lim
H→X
H∈A×

f(Z0 +H)− f(Z0)

ϕ(H)
,

provided the limit exists. It turns out that such limits exist when f is ϕ-holomorphic at Z0 and play a role in
the proof of a generalized homological version of Cauchy’s Integral Formula.

(9) Somewhat differently than the usual notions of differentiability, ϕ-differentiability of f is entwined in both the
domain and the codomain for it depends on a choice of a morphism ϕ. This becomes apparent once we state
the generalized Cauchy-Riemann equations for the morphism ϕ (see Equation (4.1)). In contrast, the Cauchy-
Riemann equations for holomorphic functions taking values in, say, any Banach space f : C→ E are always the
same.

(10) Essentially, the definition of ϕ-differentiability uses only the fact that B is a topological A-module. So, how
does the algebra structure of B come into play? An important feature of the definition is that if f : U → B
is a ϕ-holomorphic function, then the derivative f ′ is again a function U → B. This is in contrast to the
situation when A and B are only K-vector spaces. Thus one might suggest that a better analogy would be to
take holomorphic functions with values in Banach spaces f : C → E, since their derivatives retain the same
domain and target f ′ : C → E. Unfortunately, in general these cannot be composed with each other without
further ado. One can overcome this defi(ni)ciency by introducing holomorphic functions between Banach spaces
f : E1 → E2 (via Fréchet derivatives) which then can be composed E1 → E2 → E3, but their derivatives have
targets again different than the original ones, f ′ : E1 → BL(E1, E2). We have come a full circle.

(11) It is a natural question whether the inclusion of a morphism ϕ in the definition is trivial for whatever reasons.
There are two possibilities for this. Perhaps a ϕ-differentiable function f : A → B is always given as a
composition ϕ ◦ g for an A-differentiable function g : U → A for some (open) U ⊆ A? The answer is negative:
f(Z) := Bϕ(Z) for B /∈ imϕ clearly cannot be written that way. The second possibility is that f : U → B
perhaps lifts to a B-differentiable function h : ϕ(U) → B with f = h ◦ ϕ. Notice that unless ϕ is surjective,
which requires dimK B ≤ dimK A, ϕ(U) is not open. At least locally we are going to give a positive answer to
the lifting question as a consequence of analyticity.

Definition 3.0.3 (Canonical Projections):

(1) Let A ∼=
⊕N

k=1 Ak be the decomposition of a not necessarily unital K-algebra A into connected K-algebras. Then

prk := prAk : A� Ak

will denote the k-th canonical projection, 1 ≤ k ≤ N .

(2) Let A ∼=
⊕N

k=1Ak be the decomposition of a unital K-algebra A into Artin local K-algebras (Ak,mk), where
Ak = K(k) ⊕mk as vector spaces and K(k) denotes the k-th copy of K. Then

σk := σAk : A Ak Ak/mk ∼= K(k)
prk σAk

will denote the k-the canonical (“spectral”) quotient projection.

Remark: If A is unital and Z ∈ A, then σk(Z) is precisely the k-th eigenvalue of Z. Moreover, σk is an epimorphism
of K-algebras, projecting onto the scalars.

Let us fix some further notations. Let A ∼=
⊕M

k=1 Ak and B ∼=
⊕N

`=1 B` be two not necessarily unital K-algebras
decomposed into connected K-algebras and let ϕ : A→ B be a morphism of K-algebras. Then by Corollary 2.3.14 there
exists (up to index permutation) a unique mapping of indices τ : {1, . . . N} → {1, . . . ,M} and a unique morphism of
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K-algebras ϕ̄ = ⊕N`=1ϕ̄` with ϕ̄` : Aτ(`) → B`, 1 ≤ ` ≤ N , such that we have a commutative diagram⊕M
k=1 Ak

⊕N
`=1 B`

⊕N
`=1 Aτ(`)

ϕ

Πτ ∃1ϕ̄

where Π = Πτ = (prAτ(1), . . . ,prAτ(N)) : (Z1, . . . , ZM ) 7→ (Zτ(1), . . . , Zτ(N)) is the obvious epimorphism of K-algebras.

Definition 3.0.4 (Projection Closure and Polycylindrical Closure): Let I ⊆ {1, . . . ,M} be an index subset.

(1) Projection closure of U with respect to I: we shall denote by

Û := ÛI :=
⋂
k∈I

pr−1
k (prk(U)) =

M∏
k=1

{
prk(U), if k ∈ I
Ak, otherwise

the biggest subset of A containing U and satisfying ∀k ∈ I : prk(ÛI) = prk(U).

(2) Spectral polycylindrical closure of U with respect to I: if Ak = (Ak,mk), 1 ≤ k ≤ M , and B` = (B`, n`),
1 ≤ ` ≤ N , are unital local K-algebras, then we shall denote by

Ũ := ŨI :=
⋂
k∈I

σ−1
k (σk(U)) =

M∏
k=1

{
σk(U)×mk, if k ∈ I
Ak, otherwise

the biggest subset of A := A containing U and satisfying ∀k ∈ I : σk(ŨI) = σk(U).

(3) If A
ϕ−→ B is a morphism of K-algebras, we define

Û := Ûϕ := Ûim τ .

Moreover, if A = A and B = B are unital, then

Ũ := Ũϕ := Ũim τ .

Remarks:

(1) Clearly, if U is open, then so are Û and Ũ . Moreover, we have U ⊆ Û ⊆ Ũ ,
̂̂
U = Û ,

˜̃
U = Ũ , and

˜̂
U =

̂̃
U = Ũ .

(2) Let A ∼=
⊕M

k=1 Ak and B ∼=
⊕N

`=1 B` be two K-algebras decomposed into a direct sum of connected K-algebras.
Let τ : {1, . . . , N} → {1, . . . ,M} be an arbitrary mapping, let ϕ` : Aτ(`) → B` be a morphism of K-algebras,

1 ≤ ` ≤ N , and let f̄` : Uτ(`) → B` be a ϕ`-differentiable function on an open subset Uτ(`) ⊆ Aτ(`), 1 ≤ ` ≤ N .
Then

ϕ := (ϕ1 ◦ prτ(1), . . . , . . . , ϕN ◦ prτ(N)) : A→ B

is a morphism of K-algebras and

f := (f̄1 ◦ prτ(1), . . . , f̄N ◦ prτ(N)) :

N⋂
`=1

pr−1
τ(`)(Uτ(`))→ B

is a ϕ-differentiable function.

Conversely, all ϕ-differentiable functions can be written that way and then some:

Lemma 3.0.5: Let ϕ = (ϕ1, . . . , ϕN ) : A =
⊕M

k=1 Ak → B =
⊕N

`=1 B` be a morphism of K-algebras that are decomposed
into connected K-(sub)10algebras Ak, 1 ≤ k ≤ M , and B`, 1 ≤ ` ≤ N , respectively. Let U ⊆ A be open and let
f = (f1, . . . , fN ) : U → B be a ϕ-differentiable function. Then:

(1) f is ϕ-differentiable if and only if ∀1 ≤ ` ≤ N : f` : U → B` is ϕ`-differentiable.

(2) Furthermore, ∀1 ≤ ` ≤ N ∃1f̄` : prτ(`)(U)→ B` ϕ̄`-differentiable function such that the diagrams

A B`

Aτ(`)

prτ(`)

ϕ`

ϕ̄`
=⇒

U B`

prτ(`)(U)

prτ(`)

f`

f̄`

are commutative.

10in the category of non-unital algebras we have canonical inclusions of algebras A1,2 ↪→ A1 ⊕ A2;
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(3) Automatic extension: thus, if f̄ := ⊕N`=1f̄`, then f = (f̄1 ◦ prAτ(1), . . . , f̄N ◦ prAτ(N))
def
= f̄ ◦ Πτ , where f̄ is a

ϕ̄-differentiable function, that is, the following diagrams

A B

⊕N
`=1 Aτ(`)

ϕ

Πτ ∃1ϕ̄ =⇒
U B

Πτ (U)

f

Πτ
∃1f̄

=⇒
Û B

Πτ (U)

f̂

Πτ
∃1f̄

are commutative. In particular, f extends uniquely to a ϕ-differentiable function f̂ : Û → B in a natural way.

(4) Reduction to inclusions of connected K-algebras: if a � A is such that a ⊆ kerϕ and qa : A � A/a denotes the
canonical quotient projection, then ∃1ϕa : A/a→ B morphism of K-algebras ∃1fa : qa(U)→ B ϕa-differentiable:

A B

A/a

qa

ϕ

ϕa

=⇒
U B

qa(U)

qa

f

fa

are commutative diagrams. In particular, if a = kerϕ and q := qkerϕ, we have commutative diagrams

A B

A/ kerϕ

q

ϕ

ϕ
=⇒

U B

q(U)

q

f

f

Proof: To (1): It is immediate that f is ϕ-differentiable at Z ∈ U iff every f` is ϕ`-differentiable at Z, 1 ≤ ` ≤ N .

To (2): Without loss of generality suppose for notational simplicity ` = 1 and τ(1) = 1, i.e. ϕ̄1 : A1 → B1 and
ϕ = ϕ1 ◦ pr1. Writing H = H1 ⊕ H̄ ∈ A and Z = Z1 ⊕ Z̄ ∈ A, it follows from (1) that f1(Z +H) = f1(Z) + Bϕ(H) +
o(‖ϕ(H)‖) = f1(Z) +Bϕ(H1) +o(‖ϕ(H1)‖), hence letting H1 → 0 yields f1(Z+ H̄) = f1(Z), in other words f1 depends
only on Z1. Thus f1 canonically gives rise to a function f̄1(Z1) := f1(Z) that is clearly ϕ̄1-differentiable at Z1. Notice
that pr1(U) is open since pr1 is an open map.

To (3): f = f̄ ◦Πτ follows from (2), while ϕ̄-differentiability of f̄ is immediate from the ϕ̄`-differentiability of f̄` for all

1 ≤ ` ≤ N . Extension to f̂ : Û → B follows from the diagram and ϕ-differentiability of f̂ follows from the discussion in
the last remark.

To (4): If H ∈ a ⊆ kerϕ, then f(Z + H) = f(Z) + Bϕ(H) + o(‖ϕ(H)‖) = f(Z). In other words, if ϕ(Z) = ϕ(W ),
then also f(Z) = f(W ). Thus f induces a well-defined function fa(Z mod a) := f(Z) that is readily verified to be
ϕa-differentiable. Notice that qa(U) is open since qa is a projection. �

Remarks:
(1) In the case of K = C and A = A and B = B being unital, we will later show that f ∈ Oϕ(U) extends

ϕ-holomorphically further to Ũ in a natural way.

(2) Successive application of (1), (2), and (3) reduces the problem of studying ϕ-differentiable functions to the case of
ϕ : A ↪→ B being an inclusion of connected K-algebras. In the presence of units, this means ϕ : (A,m) ↪→ (B, n)
is an embedding of local (unital) K-algebras, which itself is automatically a local morphism. This suggests that
the only interesting morphisms for the purposes of a function theory and our conjectural category fdCFkth are
inclusions of local C-algebras, not unlike the category of field extensions11 over a given base field.

(3) Thus the question of whether a ϕ-differentiable function f : U → B, U ⊆ A open, has the form f = g ◦ ϕ for a
B-differentiable function g turns into a question of whether f is always a restriction of a B-differentiable function
g, and in particular, if every A-differentiable function f admits an extension to a B-differentiable function g
along an inclusion A ⊆ B of K-algebras. For a morphism ϕ : A → B of unital C-algebras, this will become clear
once we establish analyticity (Proposition 6.4.10) in ϕ. In other words we will have the following commutative
diagram:

A U B

B V

ϕ ϕ

f

∃1g

Even though A can be a subspace of B of an arbitrary codimension, the ϕ-holomorphic function of several
complex variables f extends locally in a unique fashion to a B-holomorphic function g.

11a bad, bad category with nice morphisms;
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(4) A version of the decomposition of A-differentiable function f into Ak-differentiable components fk, 1 ≤ k ≤M ,

where A =
⊕M

k=1Ak is the decomposition of A into Artinian local K-algebras, is given in [Wat92], but we are
not convinced of his argument12: he proves this first for the case of products of copies of R and C, where he uses
the multiplicativity of the absolute value on K in an essential way, and then later states that the same proof
applies to the case of products of local K-algebras. However, algebra norms are in general only submultiplicative,
which breaks the argument used in the first case.

(5) Lemma 3.0.5, reducing to inclusions A ⊆ B, raises the question as to why one should still bother with (general)
morphisms of K-algebras at all. Here are some conceptual reasons for doing this:

(i) As soon as one has A-holomorphic functions f : U → A available, one realizes in particular that we have
ridden ourselves of C being the inevitable choice of a codomain that appears when studying complex spaces
by means of the holomorphic functions f : X → C or f : X → P1 defined on them. In other words, there
is no longer a canonical choice of a codomain, and ϕ enables the only necessary compatibility condition
between domain and codomain while simultaneously also giving a notion of A-holomorphy with values in
some (but certainly not all) finite-dimensional A-modules B.

(ii) Continuing the previous point: tautologically, without introducing ϕ-holomorphy, we cannot even speak of
ϕ being “A-holomorphic with values in B” (since it takes values in a different algebra, for one), even though
it seems intuitively so, being a linear map and all, or, by extension, that a composition of a B-holomorphic
map f with ϕ also has nice, holomorphy-like properties. After all, in general, one does not expect (and
rightly so) that a holomorphic map when composed with some “arbitrary” map would still remain equally
well-behaved.

(iii) While C has exactly two continuous R-linear automorphisms, AutK(A) can be trivial or very rich; in fact, in
the spirit of the previous point, HomAlgK(A,−) is never boring. Thus ϕ-holomorphy is a vast generalization
of anti-holomorphy, but not as involutive.

(iv) Finally, as we shall see, the basic theory works seamlessly right away for ϕ-holomorphic functions, so there
really is no point in always proving two separate versions of each result (or for a fact in even remarking so).

Lemma 3.0.6 (The Jacobian of f): Let U ⊆ A be open and let f : U → A be A-differentiable at Z0 ∈ U . Then:

λ(f ′(Z0)) = (JKf)(Z0), (3.3)

where λ : A→ Mn(K) denotes the regular representation of A. Thus, if we identify A with its regular matrix represen-
tation, we have f ′(Z) = (JKf)(Z).

Proof: Let {a1, . . . , an} be a K-basis for A and let f = (f1, . . . , fn) be the components of f . We have ∀1 ≤ i ≤ n :

f ′(Z)ai
def
=

∂f

∂zi
=

∂

∂zi

n∑
r=1

frar = (a1, . . . , an)
∂

∂zi
(f1, . . . , fn)T ,

hence putting them all together we get f ′(Z)(a1, . . . , an) = (a1, . . . , an)(JKf)(Z), i.e. (JKf)(Z) is the representation
matrix of the multiplication by f ′(Z) in A as required. �

Remark: If ϕ : A→ B is a morphism of K-algebras with dimK A 6= dimK B and f is ϕ-differentiable, then f ′ and JKf
have different sizes.

Corollary 3.0.7 (Jacobian Conjecture for A-holomorphic regular maps): Let A =
⊕N

k=1Ak be a fully decomposed
unital K-algebra such that ∀1 ≤ k ≤ N : Ak/mk ∼= K and identify A ∼= Kn as vector spaces. Then the Jacobian
Conjecture holds trivially for A-holomorphic regular maps: if P = P (z1, . . . , zn) = (P1, . . . , Pn) : Kn → Kn is a regular
and A-holomorphic map with det JKP = const 6= 0, then P is biregular.

Proof: Since Ak/mk ∼= K for all 1 ≤ k ≤ N , we can identify A without loss of generality with its lower-triangular
representation: a change of basis for A translates into a composition of P with invertible linear maps; in fact, even the

value of the constant detJKP itself does not change. Then detP ′(Z) = det(JKP )(Z). Let P (Z) =
⊕N

k=1Qk(Zk) with

respect to the decomposition of A. Then also P ′(Z) =
⊕N

k=1Q
′
k(Zk), hence

detP ′(Z) =

N∏
k=1

detQ′k(Zk) ∈ K× = U(K[z1, . . . , zn])

12we are confident to mention this in here since at any time an arbitrary master thesis is read only by a very few selected people, and

moreover, almost no one reads footnotes;
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Therefore it suffices to assume that A = (A,m) is a local K-algebra with A/m ∼= K. By lower-triangular form
(Lemma 2.3.10) of the local A we get:

∀i < j :
∂Pi
∂zj

= 0 and ∀1 ≤ i ≤ n :
∂Pi
∂zi

=
∂P1

∂z1
,

i.e. ∀1 ≤ i ≤ n : Pi = Pi(z1, . . . , zi) is a polynomial depending only on the first i variables. Furthermore

0 6= const = det(JKP )(Z) = detP ′(Z) = det
∂P

∂z1
(Z) =

(
∂P1

∂z1

)n
⇒ P1 = cz1 + d

for some c ∈ K× and d ∈ K, and more generally, Pi = czi + pi(z1, . . . , zi−1) for some pi ∈ K[z1, . . . , zi−1]. Setting
wi := Pi, one can now write the inverse map recursively as follows:

z1 =
1

c
(w1 − d), zi =

1

c
(wi − pi(z1, . . . , zi−1)), 2 ≤ i ≤ n

�

Remark: Note that K is allowed to be R under the additional assumption that ∀1 ≤ k ≤ N : Ak/mk ∼= R. In general,
however, the Jacobian conjecture is known to be false over R. Moreover, this is a special instance (the main diagonal
consisting of the same element) of the case when det JKP has triangular form, which is dealt with in a similar fashion.
Note also that there exist examples of biregular maps with non-triangulable Jacobians.

Lemma 3.0.8: Let A
ϕ−→ B

ψ−→ C be morphisms of K-algebras and b ∈ B. Let f, f1, f2 : U → B ϕ-differentiable and
g : V → C be ψ-differentiable such that f(U) ⊆ V . Then:

(1) Linearity: (bf)′ = bf ′, (bg)′ = bg′, and (f1 + f2)′ = f ′1 + f ′2;

(2) Leibniz Rule: (f1f2)′ = f ′1f2 + f1f
′
2;

(3) Chain Rule: g ◦ f is ψ ◦ ϕ-differentiable and (g ◦ f)′(Z0) = g′(f(Z0))f ′(Z0);

(4) Constants: if B = B is unital, then ϕ is ϕ-differentiable with ϕ′ = 1B.

Proof: To (2): We have:

f1(Z0 +H)f2(Z0 +H) = (f1(Z0) + f ′1(Z0)ϕ(H) + o(‖ϕ(H)‖)) (f2(Z0) + f ′2(Z0)ϕ(H) + o(‖ϕ(H)‖)) =

= f1(Z0)f2(Z0) + (f1(Z0)f ′2(Z0) + f ′1(Z0)f2(Z0))ϕ(H)

+ f ′1(Z0)f ′2(Z0)ϕ(H)2︸ ︷︷ ︸
o(‖ϕ(H)‖)

+ (f1(Z0) + f2(Z0) + (f ′1(Z0) + f ′2(Z0))ϕ(H)) o(‖ϕ(H)‖)︸ ︷︷ ︸
o(‖ϕ(H)‖)

+o(‖ϕ(H)‖)2

as H → 0.

To (3): We have:

g(f(Z0 +H)) = g(f(Z0) + f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)︸ ︷︷ ︸
→0 as H→0

) =

= g(f(Z0)) + g′(f(Z0)) (f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)) + o (‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖) =

= g(f(Z0)) + g′(f(Z0))f ′(Z0)ϕ(H) + g′(f(Z0))o(‖ϕ(H)‖)︸ ︷︷ ︸
o(‖ϕ(H)‖)

+o (‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖) .

For the last term we get:

lim
H→0

o (‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖)
‖ϕ(H)‖

= lim
H→0

o(‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖)
‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖

‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖
‖ϕ(H)‖︸ ︷︷ ︸

bounded as H→0

= 0,

i.e. o (‖f ′(Z0)ϕ(H) + o(‖ϕ(H)‖)‖) = o(‖ϕ(H)‖) as H → 0.

To (4): ϕ(Z0 +H) = ϕ(Z0) + 1Bϕ(H). �

Corollary 3.0.9: Oϕ is a sheaf of A-algebras with a distinguished derivation.

Example (Sanity check): Let A be connected and non-unital. Then ∃ν ∈ N ∀Z ∈ A : Zν = 0, but ∃Z0 ∈ A : Zν−1
0 6= 0.

In particular, for f(Z) := Zν−1 we have f 6= 0. On the other hand, 0 = (Zν)′ = νZν−1 = νf(Z), even though
charA = 0. This seeming paradox is resolved by the fact that idA : A→ A is actually not A-differentiable since A does
not possess a 1A, so Leibniz’ rule does not apply successively to the function Zn on A. On the other hand, if A ∈ A,
then g(Z) := AZ is A-differentiable with g′(Z) = A. �
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4. The Generalized Cauchy-Riemann Equations

We will need at first to make a superficial distinction between the real and complex case. This is most easily done away
with by making the convention ∂ := d whenever K = R. Note that if K = C, this relation is actually implied since
d = ∂ + ∂̄ and ∂̄f = 0 as f is in particular holomorphic in each of its (complex) variables. Let (A, a1, . . . , an) and
(B, b1, . . . , bm) be based K-algebras, not necessarily unital.

Lemma 4.0.1 (Generalized Cauchy-Riemann-Scheffers13 Equations): Let A
ϕ−→ B be a morphism of K-algebras with

structure tensor (γijk)1≤j≤n,1≤i,k≤m, U ⊆ A open, Z := z1a1 + · · · + znan ∈ U a general A-variable, Z0 ∈ U a point,

and f := f1b1 + · · ·+ fmbm : U → B a map.

(1) General form of ϕ-differentiability: f is ϕ-differentiable at Z0 if and only if f is totally K-differentiable at Z0

and there exists a function g := g1b1 + · · ·+ gmbm at Z0 with values in B such that ∀1 ≤ j ≤ n ∀1 ≤ i ≤ m:

∂f i

∂zj
=

m∑
s=1

γijsg
s (4.1)

in Z0. In this case, f ′(Z0) = g(Z0).14

(2) Generalized Unital Cauchy-Riemann Equations (GUCR): Suppose that A = A is unital. Then f is ϕ-differentiable
at Z0 if and only if f is totally K-differentiable at Z0 and ∀1 ≤ j ≤ n ∀1 ≤ i ≤ m :

∂f i

∂zj
=

n∑
r=1

m∑
s=1

εrγijs
∂fs

∂zr
(4.2)

in Z0. In this case:

f ′(Z0) =

n∑
r=1

εr
∂f

∂zr
(Z0) (4.3)

(3) Generalized Cauchy-Riemann Equations with Unit (GCRU): Suppose that A = A is unital with a1 = 1A. Then
f is ϕ-differentiable at Z0 if and only if f is totally K-differentiable at Z0 and ∀2 ≤ j ≤ n ∀1 ≤ i ≤ m :

∂f i

∂zj
=

m∑
s=1

γijs
∂fs

∂z1
(4.4)

in Z0. In this case:

f ′(Z0) =
∂f

∂z1
(Z0) (4.5)

In particular, if ϕ = idA, then ∀2 ≤ j ≤ n ∀1 ≤ i ≤ n:

∂f i

∂zj
=

∂

∂z1

n∑
r=1

αijrf
r (4.6)

at Z0.

(4) Generalized Cauchy-Riemann-Scheffers Equations (GCRS): If f is ϕ-differentiable at Z0, then f is totally K-
differentiable at Z0 and ∀1 ≤ j, k ≤ n ∀1 ≤ i ≤ m :(

n∑
r=1

αrjk
∂

∂zr

)
f i =

∂

∂zk

(
m∑
s=1

γijsf
s

)
(4.7)

in Z0. The converse holds if A = A is unital.

(5) Cauchy-Riemann-Scheffers Equations (CRS): Let (αijk)1≤i,j,k≤n be the structure tensor of A. If f : U → A is
A-differentiable at Z0, then f is totally K-differentiable at Z0 and ∀1 ≤ i, j, k ≤ n :(

n∑
r=1

αrjk
∂

∂zr

)
f i =

∂

∂zk

(
n∑
r=1

αijrf
r

)
(4.8)

in Z0. The converse holds if A = A is unital.

Proof: To (1): Recasted in differential form(s), inner Fréchet differentiability (Equation (3.1)) is equivalent to

df = ∂f = g(Z)dZ

13in honour of Georg Scheffers, who was the first to generalize them equations;
14The functions gk, 1 ≤ k ≤ m, will be the coordinates of the derivative, which should not be confused with the derivatives of the

coordinate functions f i, 1 ≤ i ≤ n.
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(at Z0) for some function g(Z) defined in Z0, and then f ′(Z0) = g(Z0) by definition. We have:

∂f =

m∑
s=1

bs∂f
s =

m∑
s=1

n∑
r=1

∂fs

∂zr
bsdz

r.

On the other hand:

g(Z)dZ =

( m∑
t=1

btg
t

)( n∑
r=1

ardz
r

)
=

m∑
t=1

n∑
r=1

gtarbtdz
r =

m∑
t=1

n∑
r=1

gt
m∑
s=1

γsrtbsdz
r =

m∑
s=1

n∑
r=1

( m∑
t=1

γsrtg
t

)
bsdz

r.

Now, a direct comparison of the coefficients yields the desired result.

To (2): By definition, we have ∀1 ≤ i ≤ n :
∂f

∂zi
= f ′(Z)ai.

Using Equation (2.3), we get:
n∑
r=1

εr
∂f

∂zr
=

n∑
r=1

f ′(Z)εrar = f ′(Z)
def
= g(Z).

Therefore taking the j-th component gives

gj(Z) =

n∑
r=1

εr
∂f j

∂zr

for all 1 ≤ j ≤ m. Now substituting this in Equation (4.1) proves both directions.

To (3): Special case of (2). Notice that for j = 1 the system is vacuous since γi1r = δir.

To (4): “⇒”: Using Equation (4.1) and Equation (2.10), we get:

n∑
r=1

αrjk
∂f i

∂zr
=

n∑
r=1

αrjk

m∑
t=1

γirtg
t =

m∑
t=1

gt
n∑
r=1

γirtα
r
jk =

m∑
t=1

gt
m∑
s=1

γijsγ
s
kt =

m∑
s=1

γijs

m∑
t=1

γsktg
t =

m∑
s=1

γijs
∂fs

∂zk
.

We note that this only uses the multiplicativity of ϕ and the associativity of the A-operation on B.

“⇐”: If A = A is unital, we can use Equation (2.4) to obtain:

n∑
t=1

m∑
s=1

εtγijs
∂fs

∂zt
=

n∑
t=1

εt
∂

∂zt

(
m∑
s=1

γijsf
s

)
=

n∑
t=1

εt

(
n∑
r=1

αrjt
∂

∂zr

)
f i =

(
n∑
r=1

δrj
∂

∂zr

)
f i =

∂f i

∂zj

as required.

To (5): Special case of (4) with A
id−→ A. �

Remarks:
(1) Regardless of K, total K-differentiability implies existence of the partial K-derivatives, so it is in any case

sufficient. Depending on K, however, the assumption of total differentiability can be weakened appropriately.
If K = C, then by Hartogs’ theorem partial complex differentiability (on an open neighbourhood) implies total

complex differentiability there. If we write zj = xj +
√
−1yj , then one can impose weaker conditions on ∂f

∂xj and
∂f
∂yj to ensure (partial) complex differentiability, cfg. Loomen-Menchoff theorem. For a nice discussion on the

topic of sufficient conditions ensuring that the Cauchy-Riemann equations imply holomorphy in the complex
plane the interested reader can consult [GM78]. In the case of A being a K-algebra other than C, it would be
interesting to know if there exists an analogue of Loomen-Menchoff or of other results in the aforementioned
article that extend to K-algebras A.

(2) If K = C, the (G)CRS-equations are PDEs of holomorphic functions in several complex variables with possi-
bly complex coefficients unlike the classical CR-equation which has only real coefficients. Thus, implicitly, f
additionally also satisfies the usual real CR-equations for each of its complex variables.

(3) More generally, recall that any morphism A
ϕ−→ B of K-algebras gives a choice of scalars via the A-module

structure it induces on B. The K-(G)CRS-equations correspond to the K-module structure on B (when existent),
which, however, does not arise from a morphism ψ : K → B, unless A = A is unital. In this sense, ϕ : A → B
together with ϕ-linearity of Df also gives rise to (G)CRS-equations in Several (usually not free) A-variables,
but for the moment we shall not pursue this perspective here.

(4) All of the above PDEs can be written down for arbitrary structure constants (αijk) and (γrst), even though the
different versions of the equations will no longer remain equivalent. It is an open question if these equations
still enjoy as a meaningful interpretation in the case of noncommutative and/or non-associative A and B.
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(5) On the other hand, if the family of solutions of a linear PDE of the form

∂f i

∂zj
=

m∑
s=1

αijk
∂fk

∂z1

is to be stable under composition, then (αijk)1≤i,j,k≤n is the structure tensor of a left-unital associative C-algebra.
Indeed, a comparison of coefficients in

∂f i

∂z1
=

m∑
k=1

αi1k
∂fk

∂z1

implies ∀1 ≤ i, k ≤ n : αi1k = δik, i.e. the basis vector a1 is a left unit. Furthermore we obtain for two solutions
f and g with h := f ◦ g also being a solution:

∂hi
∂zj

=
∂

∂zj
fi(g1, . . . , gn) =

n∑
s=1

∂fi
∂zs

(g1, . . . , gn)
∂gs
∂zj

=

n∑
s=1

( n∑
`=1

αis`
∂f`
∂z1

(g1, . . . , gn)

)( n∑
k=1

αsjk
∂gk
∂z1

)
=

=

n∑
k,`=1

( n∑
s=1

αis`α
s
jk

)
∂f`
∂z1

(g1, . . . , gn)
∂gk
∂z1

and

∂hi
∂zj

=

n∑
s=1

αijs
∂hs
∂z1

=

n∑
s=1

αijs
∂

∂z1
fλ(g1, . . . , gn) =

n∑
s=1

αijs

n∑
k=1

∂fs
∂zk

(g1, . . . , gn)
∂gk
∂z1

=

=

n∑
s=1

αijs

n∑
k=1

( n∑
`=1

αsk`
∂f`
∂z1

(g1, . . . , gn)

)
∂gk
∂z1

=

n∑
k,`=1

( n∑
s=1

αijsα
s
k`

)
∂f`
∂z1

(g1, . . . , gn)
∂gk
∂z1

.

Hence a comparison of the coefficients yields ∀1 ≤ i, j, k, ` ≤ n:
n∑
s=1

αis`α
s
jk =

n∑
s=1

αijsα
s
k`,

which is precisely Equation (2.7).

(6) If A is not unital, it is not clear in how far the Scheffers’ form of the (generalized) Cauchy-Riemann equations
(4.7) fails to characterize A-differentiability of f when compared with Equation (4.1). Heuristically at least, if
A = m is the maximal ideal of a local K-algebra A = (A,m), then all the structure of A is contained in m.

(7) A short comparison between the different forms of generalized Cauchy-Riemann equations is in order. The
PDE system in Equation (4.4) gives an explicit expression for each partial derivative of each component as a
linear combination of the “free parameters”, played by the ∂

∂z1 -derivatives, and thus consists of only (n − 1)m

equations, which is optimal. In comparison, Scheffers’ PDE system (Equation (4.7)) consists of n2m equations,
which is an order of magnitude more than in Equation (4.4), and thus inevitably contains some “garbage” as
can be illustrated already in the case K = R, n = 2, A = C. Indeed, for the structure constants of C/R one has

α1
11 = 1, α2

11 = 0, α1
12 = α1

21 = 0, α2
12 = α2

21 = 1, α1
22 = −1, α2

22 = 0

and only two equations by (4.4) as follows:

∂f1

∂x2
= α1

21

∂f1

∂x1
+ α1

22

∂f2

∂x1
= −∂f

2

∂x1
,
∂f2

∂x2
= α2

21

∂f1

∂x1
+ α2

22

∂f2

∂x1
=
∂f1

∂x1
.

These are precisely the classical Cauchy-Riemann equations. In comparison, the PDE system (4.7) additionally
yields several vacuous or repeated equations:

• i = 1, j = 1, k = 1: 0 = 0;

• i = 1, j = 1, k = 2: ∂f1

∂x2 = ∂f1

∂x2 ;

• i = 1, j = 2, k = 1: ∂f1

∂x2 = −∂f
2

∂x1 ;

• i = 1, j = 2, k = 2: −∂f
1

∂x1 = −∂f
2

∂x2 ;

• i = 2, j = 1, k = 1: ∂f2

∂x1 = ∂f2

∂x1 ;
• i = 2, j = 1, k = 2: 0 = 0;

• i = 2, j = 2, k = 1: ∂f2

∂x2 = ∂f1

∂x1 ;

• i = 2, j = 2, k = 2: −∂f
1

∂x1 = ∂f1

∂x2 .
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(8) The PDE system (4.4) can also be written in the form

Γj
∂fT

∂z1
=
∂fT

∂zj
(4.9)

for 2 ≤ j ≤ n, where f = (f1, . . . , fm) and Γj
def
= (γijk)1≤i,k≤m. If ϕ = idA, then Γj = Aj = (αijk)1≤i,k≤n = λ(aj)

is the regular representation of the basis vector aj , 1 ≤ j ≤ n. Thus, if for example A = (A,m) is local with
a choice of basis a1 := 1A, a2, . . . , an ∈ m, we have ∀2 ≤ j ≤ n : det(Aj) = 0, so there is no a priori reason to

expect the matrices Γj to be invertible. Thus it is not always possible to express f ′(Z) = ∂f
∂z1 via the remaining

∂fi

∂zj , 2 ≤ j ≤ n, as shown by the next two examples below. Nevertheless, it might be possible to paste together

different parts of the PDE systems for different 2 ≤ j ≤ n to obtain a full rank linear system for the vector ∂fT

∂z1 .
In any case, it is dependent on the choice of basis for A. In fact, since A× is open, it contains a basis for A,
and for any such choice of basis a1, . . . , an ∈ A× we have A1, . . . , An ∈ GLn(K) and hence

∀2 ≤ j ≤ n : f ′(Z) =
∂f

∂z1
=

∂f

∂zj
(A−1

j )T .

If we start with a basis a1 := 1A and a2, . . . , an ∈ m, then we can obtain a new basis a′1 := 1A, a
′
2, . . . , a

′
n with

the property that a′j ∈ A× for some 2 ≤ j ≤ n as follows: let ε2, . . . , εn ∈ {0, 1}, not all of which are 0, and set
a′1
a′2
a′3
...
a′n

 :=


1 0 0 . . . 0
ε2 1 0 . . . 0
ε3 0 1 . . . 0
...

...
. . .

...
εn 0 0 . . . 1




a1

a2

a3

...
an

 .

This is clearly again a basis for A, since the transition matrix has det = 1, and a′j ∈ A× for all 2 ≤ j ≤ n with
εj = 1.

Examples:
(1) If A := C[ε] with ε2 = 0 (dual numbers), then α1

11 = 1, α2
11 = 0, α1

12 = α1
21 = 0, α2

12 = α2
21 = 1, α1

22 = α2
22 = 0,

thus:

∂f1

∂z2
= 0,

∂f2

∂z2
=
∂f1

∂z1
.

In particular, we have no expression for ∂f2

∂z1 . On the other hand, if we choose basis a1 := 1A and a2 := 1 + ε,

then α1
11 = 1, α2

11 = 0, α1
12 = α1

21 = 0, α2
12 = α2

21 = 1, α1
22 = −1, α2

22 = 2, thus

∂f1

∂z2
= 2

∂f2

∂z1
,
∂f2

∂z2
=
∂f1

∂z1
+ 2

∂f2

∂z1
=
∂f1

∂z1
+
∂f1

∂z2
,

hence

f ′(Z) =
∂f

∂z1
=

(
∂f2

∂z2
− ∂f1

∂z2

)
+

1 + ε

2

∂f1

∂z2
.

(2) If A := C[j] with j2 = 1 (hyperbolic aka. split-complex numbers), then α1
11 = 1, α2

11 = 0, α1
12 = α1

21 = 0, α2
12 =

α2
21 = 1, α1

22 = 1, α2
22 = 0, thus:

∂f1

∂z2
=
∂f2

∂z1
,
∂f2

∂z2
=
∂f1

∂z1
.

Lemma 4.0.2: Let U ⊆ Kn be open, let f := (f1, . . . , fm)T : U → Km be a partially K-differentiable function and
g := (g1, . . . , gm)T : U → Km a function, satisfying the PDE system

∂f i

∂zj
=

m∑
s=1

γijsg
s

for some constants (γijk) ⊆ K, 1 ≤ j ≤ n, 1 ≤ i, k ≤ m. Furthermore define G : (Kn)m → Mm(K)

G(Z1, . . . , Zm) := (g(Z1), . . . , g(Zm)) =

 g1(Z1) . . . g1(Zm)
...

. . .
...

gm(Z1) . . . gm(Zm)

 .
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Then (γijk) are uniquely determined if and only if spanKg(U) = Km. In this case

γijk = det



g1(Z1) . . . g1(Zm)
...

...
∂fi

∂zj (Z1) . . . ∂fi

∂zj (Zm)− k-th row
...

...
gm(Z1) . . . gm(Zm)

 / det

 g1(Z1) . . . g1(Zm)
...

. . .
...

gm(Z1) . . . gm(Zm)

 = const (4.10)

whenever the denominator is non-zero.

Proof: We have spanK im g = Km if and only if there exist points P1, . . . , Pm ∈ Kn such that the vectors g(P1), . . . , g(Pn)
are K-linearly independent. For each 1 ≤ j ≤ n and 1 ≤ i ≤ n we get a system of m linear equations with m variables

(γij1, . . . , γ
i
jm)

 g1(P1) . . . g1(Pm)
...

. . .
...

gm(P1) . . . gm(Pm)

 =

(
∂f i

∂zj
(P1), . . . ,

∂f i

∂zj
(Pm)

)
,

hence the row (γijk)1≤k≤m is uniquely determined if and only if rkG(P1, . . . , Pm) = m. Conversely, the m unknowns

(γijk)1≤k≤m for each fixed i, j are uniquely determined if and only if we can find m points P1, . . . , Pm with the above
property. �

Corollary 4.0.3: Let A ∼= Kn be a finite-dimensional commutative associative K-algebra, let U ⊆ Kn be an open subset
and f : U → Kn ∼= A an A-differentiable map.

(1) If spanKf
′(U) = Kn, then A is uniquely determined by f . In particular, if B is another algebra structure on Kn

such that f is also B-differentiable, then A ∼= B.

(2) If A 3 A with A2 6= 0, then A can be recovered from OA(U) for an arbitrary open U ⊆ A.

(3) If spanKf
′(U) = Kn, then commutativity of A is equivalent to

det



f ′1(Z1) . . . f ′1(Zn)
...

...
∂fi

∂zj (Z1) . . . ∂fi

∂zj (Zn)− k-th row
...

...
f ′n(Z1) . . . f ′n(Zn)

 = det



f ′1(Z1) . . . f ′1(Zn)
...

...
∂fi

∂zk
(Z1) . . . ∂fi

∂zk
(Zn)− j-th row

...
...

f ′n(Z1) . . . f ′n(Zn)

 (4.11)

for all 1 ≤ i, j, k ≤ n and any Z1, . . . , Zn ∈ A with f ′(Z1), . . . , f ′(Zn) K-linearly independent.

(4) If spanKf
′(U) = Kn, then associativity of A is equivalent to

n∑
r=1

det



f ′1(Z1) . . . f ′1(Zn)
...

...
∂fr

∂zj (Z1) . . . ∂fr

∂zj (Zn)− k-th row
...

...
f ′n(Z1) . . . f ′n(Zn)





f ′1(Z1) . . . f ′1(Zn)
...

...
∂fi

∂zr (Z1) . . . ∂fi

∂zr (Zn)− `-th row
...

...
f ′n(Z1) . . . f ′n(Zn)

 =

n∑
r=1

det



f ′1(Z1) . . . f ′1(Zn)
...

...
∂fr

∂zk
(Z1) . . . ∂fr

∂zk
(Zn)− `-th row

...
...

f ′n(Z1) . . . f ′n(Zn)





f ′1(Z1) . . . f ′1(Zn)
...

...
∂fi

∂zj (Z1) . . . ∂fi

∂zj (Zn)− r-th row
...

...
f ′n(Z1) . . . f ′n(Zn)



(4.12)

for all 1 ≤ i, j, k, ` ≤ n and any Z1, . . . , Zn ∈ A with f ′(Z1), . . . , f ′(Zn) K-linearly independent.

(5) If spanKf
′(U) = Kn, then unitality of A is equivalent with the existence of (εr)1≤r≤n ⊆ K such that

δik =

n∑
r=1

det



f ′1(Z1) . . . f ′1(Zn)
...

...

εr
∂fi

∂zr (Z1) . . . εr
∂fi

∂zr (Zn)− k-th row
...

...
f ′n(Z1) . . . f ′n(Zn)

 =

n∑
r=1

det



f ′1(Z1) . . . f ′1(Zn)
...

...

εr
∂fi

∂zk
(Z1) . . . εr

∂fi

∂zk
(Zn)− r-th row

...
...

f ′n(Z1) . . . f ′n(Zn)

 (4.13)
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for all 1 ≤ i, k, ` ≤ n and any Z1, . . . , Zn ∈ A with f ′(Z1), . . . , f ′(Zn) K-linearly independent.

Proof: To (1): Since f is A-differentiable, after a choice of basis we have ∀1 ≤ i, j ≤ n:

∂f i

∂zj
=

n∑
s=1

αijsf
′s,

hence ∀1 ≤ i, j, k ≤ n:

αijk = det



f ′1(Z1) . . . f ′1(Zn)
...

...
∂fi

∂zj (Z1) . . . ∂fi

∂zj (Zn)− k-th row
...

...
f ′n(Z1) . . . f ′n(Zn)

 / det

f
′1(Z1) . . . f ′1(Zn)

...
. . .

...
f ′n(Z1) . . . f ′n(Zn)

 .

To (2): Consider the globally defined A-differentiable map f : A → A, f(Z) := 1
2Z

2, f 6= 0. Then f ′(Z) = Z, i.e.

f ′ = idA, and the claim follows with f
∣∣
U
∈ OA(U) since every open set U ⊆ Kn contains a K-basis. Notice that f ′ itself

is not necessarily A-differentiable.

To (3): This is simply a restatement of Equation (2.6) using the expression from the proof of (1).

To (4): This is simply a restatement of Equation (2.7) using the expression from the proof of (1).

To (5): This is simply a restatement of Equation (2.4) using the expression from the proof of (1). �

Remarks:
(1) In particular, this suggests that if a function f : U → Kn (e.g. a polynomial or an analytic function) can be

written as an A-differentiable function over some A and f(Z) = O(Z2), then it can be written so in an essentially
unique way up to AutK(A). This in turn is also suggestive as to what the morphisms of Funktionentheorien
should look like.

(2) The 1-dimensional non-unital nilpotent K-algebra A2 := {( 0 x
0 0 ) : x ∈ K} is a pathological case that oftens needs

to be excluded. It is also the only connected commutative associative non-unital K-algebra with the property
that ∀Z ∈ A2 : Z2 = 0.

(3) If rk(f ′(Z1), . . . , f ′(Zn)) < n or even varies, we get parametric families of candidates (αijk) to be structure

constants of n-dimensional K-algebras (commutativity or associativity does not follow a priori), and it might
be possible to write f non-uniquely as a function over different or isomorphic K-algebras. It is not immediately
clear that there is an algebra in the parametric space that is valid for the whole U .

Finally, we consider a certain differential operator that lies at the heart of the theory of ϕ-differentiable functions:

Definition 4.0.4: Let A
ϕ−→ B be a morphism of K-algebras, U ⊆ A an open subset, and f : U → B a ϕ-differentiable

function. If {a1, . . . , an} is a K-basis of A and Z = z1a1 + · · ·+ znan, then we define the linear operators

dij := ai
∂

∂zj
− aj

∂

∂zi
def
= ϕ(ai)

∂

∂zj
− ϕ(aj)

∂

∂zi
, 1 ≤ i, j ≤ n. (4.14)

Furthermore, if A ϕ−→ B is a morphism of unital K-algebras with a1 = 1A, then we also put

dj := d1j
def
=

∂f

∂zj
− aj

∂f

∂z1
, 2 ≤ j ≤ n. (4.15)

Remarks:
(1) Clearly, ∀1 ≤ i, j ≤ n : dii = 0, dij = −dji.

(2) If (a′1, . . . , a
′
n) = (a1, . . . , an)(uij)1≤i,j≤n is a change of basis for A with Z =: w1a′1 + · · ·+wna′n and one defines

d′k` := a′k
∂

∂w`
− a′`

∂

∂wk

with respect to this new basis, one checks immediately that ∀1 ≤ k, ` ≤ n:

d′k` =

n∑
i,j=1

uiku
j
`dij . (4.16)

Lemma 4.0.5: Let A
ϕ−→ B be a morphism of K-algebras, U ⊆ A an open subset, and f : U → B a totally K-

differentiable function.
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(1) If f is ϕ-differentiable, then ∀1 ≤ i < j ≤ n : dijf = 0, where the last condition is independent of the choice of
basis for A.

(2) If A ϕ−→ B is a morphism of unital K-algebras, then the converse of (1) is true. In fact, if a1 = 1, then it suffices

to have only ∀2 ≤ j ≤ n : djf
def
= d1jf = 0 satisfied.

Proof: The independence of the condition ∀1 ≤ i < j ≤ n : dijf = 0 of the choice of basis for A follows directly from
bilinearity (Equation (4.16)) of the operators dij .

“⇒”: clear, since ∂f
∂zi

(Z) = f ′(Z)ai
def
= f ′(Z)ϕ(ai), 1 ≤ i ≤ n, and aiaj = ajai.

“⇐”: We show that f satisfies the Generalized Cauchy-Riemann Equations with Unit (Equation (4.4)). Writing
f = f1b1 + · · ·+ fmbm, we have:

∂f

∂z1
ϕ(aj) =

m∑
s=1

∂fs

∂z1
ϕ(aj)bs =

m∑
s=1

∂fs

∂z1

m∑
r=1

γrjsbr =

m∑
r=1

br

( m∑
s=1

γrjs
∂fs

∂z1

)
.

On the other hand,
∂f

∂zj
=

∂f

∂z1
aj ,

since djf = 0 for all 2 ≤ j ≤ n. Therefore ∀1 ≤ i ≤ m ∀2 ≤ j ≤ n:

∂f i

∂zj
=

m∑
s=1

γijs
∂fs

∂z1

as desired. �

5. Function Theory over Non-Unital K-Algebras

Most of the proofs in this section are routine verifications that the given classical theorems from the Complex Analysis
of One Variable transfer almost verbatim to our setting and can therefore be safely skipped by the reader.

Definition 5.0.1: Let A
ϕ−→ B a morphism of not necessarily unital K-algebras, U ⊆ A open, and f ∈ C 0(U,B). Then

f is called ϕ-integrable if f has a ϕ-primitive, i.e. if there exists F ∈ Oϕ(U) such that F ′ = f .

Recall that continuous functions can in general be integrated over rectifiable paths. However, in many of the following
statements we will need for technical reasons slightly stronger regularity assumptions for the paths, namely piece-wise
smoothness.

Lemma-Definition 5.0.2: Let λA : A ↪→ Mn(K) be the stable lower-triangular representation of A, let ‖·‖A be a
submultiplicative norm on A, and let γ ∈ C 1

pw(I,A) be a piece-wise smooth path, where I := [0, 1].

(1) LA(γ) :=
∫ 1

0
‖γ′(t)‖A dt is the length of γ with respect to ‖·‖A.

(2) If ‖·‖A := ‖·‖F, then LA(γ)
def
= L(λA ◦ γ) =

∫ 1

0
‖γ′(t)‖F dt is the Euclidean length of γ in Mn(K).

(3) If A := A is a unital K-algebra and γ is a scalar curve, then LA(γ) = ‖1A‖LK(γ). In particular, if ‖·‖A = ‖·‖F,
then LA(γ) =

√
nLK(γ), where n = dimKA.

(4) If A
ϕ−→ B is a morphism of not necessarily unital K-algebras, then LB(γ) := LB(ϕ ◦ γ) =

∫ 1

0
‖ϕ(γ′(t))‖B dt.

(5) If A ϕ−→ B is a morphism of unital K-algebras and γ is a scalar curve, then so is ϕ ◦ γ and LB(ϕ ◦ γ) =
‖1B‖B LK(γ). In particular, if ‖·‖B = ‖·‖F, then LB(ϕ ◦ γ) =

√
mLK(γ), where m = dimK B.

Proof: To (3): γ being scalar in A implies ‖γ′(t)‖F = |γ′(t)| ‖1A‖F = |γ′(t)|
√
n.

To (4): Since ϕ is R-linear in all cases, (ϕ(γ(t)))′ = ϕ(γ′(t)).

To (5): Clearly, ϕ ◦ γ is a scalar curve since ϕ is K-linear. We have ‖ϕ(γ′(t))‖B = |γ′(t)| ‖ϕ(1A)‖B = |γ′(t)| ‖1B‖B. �

Remark: When γ is a scalar curve, it is more convenient to choose a unital norm.

Lemma 5.0.3 (“ϕ-integrable functions have
∮

= 0”): Let A
ϕ−→ B be a morphism of not necessarily unital K-algebras,

U ⊆ A open, f ∈ C 0(U,B) ϕ-integrable, and γ ∈ C 1
pw(S1, U). Then∮
γ

f(Z)dZ = 0.
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Proof: Let F be a ϕ-primitive of f , then∮
γ

f(Z)dZ =

∮
γ

F ′(Z)dZ =

∫ 1

0

F ′(γ(t))γ′(t)dt
def
=

∫ 1

0

F ′(γ(t))ϕ(γ′(t))dt =

∫ 1

0

d(F ◦ γ) = F (γ(1))− F (γ(0)) = 0.

�

Lemma 5.0.4: Let A
ϕ−→ B be a morphism of not necessarily unital K-algebras, γ ∈ C 1

pw(S1,A), and f ∈ C 0(γ,B).
Then: ∥∥∥∥∮

γ

f(Z)dZ

∥∥∥∥
B

≤ ‖f‖B,γ LB(γ).

Proof: Using the submultiplicativity of the norm, we obtain∥∥∥∥∮
γ

f(Z)dZ

∥∥∥∥
B

=

∥∥∥∥∫ 1

0

f(γ(t))ϕ(γ′(t))dt

∥∥∥∥
B

≤
∫ 1

0

‖f(γ(t))‖B ‖ϕ(γ′(t))‖B dt ≤ sup
Z∈γ
‖f(Z)‖B

∫ 1

0

‖ϕ(γ′(t))‖B dt

as required. �

Lemma 5.0.5 (Pre-Morera: ϕ-integrability of continuous functions): Let A
ϕ−→ B be a morphism of not necessarily

unital K-algebras.

(1) Let U ⊆ A be open and path-connected and let f ∈ C 0(U,B) be such that for any rectifiable loop γ ∈ C 0(S1, U)∮
γ

f(Z)dZ = 0.

Then f is (globally) ϕ-integrable.

(2) Let FF ⊆ A be open and star-convex with center ∗ ∈ FF and let f ∈ C 0(FF ,B) be such that for any triangle
4 ⊆FF with vertex at ∗ ∮

∂4
f(Z)dZ = 0.

Then f is ϕ-integrable in FF with a ϕ-primitive given by

F (Z) :=

∫ Z

∗
f(W )dW.

It follows in particular that ∀γ ∈ C 1
pw(S1,FF):∮

γ

f(Z)dZ = 0.

(3) Let U ∈ A be open and path-connected and let f ∈ C 0(U,B) be such that ∀ � ⊆ U :∮
∂�

f(Z)dZ = 0.

Then f is ϕ-integrable with primitive

F (Z) :=

∫
Z0 Z

f(W )dW,

where the integral is taken along a stairway from Z0 to Z with sufficiently small stairs. It follows in particular
that ∀γ ∈ C 1

pw(S1, U): ∮
γ

f(Z)dZ = 0.

Proof: To (1): By assumption, the function

F (Z) :=

∫ Z

Z0

f(W )dW

is well-defined for any fixed Z0 ∈ U as it is independent of the choice of an integration path. We are going to show that
F is a ϕ-primitive of f . For a fixed Z we have:

F (Z +H)− F (Z) =

∫ Z+H

Z

f(W )dW = f(Z)

∫ Z+H

Z

dW +

∫ Z+H

Z

g(W )dW = f(Z)H +

∫ Z+H

Z

g(W )dW,

where g(W ) := f(W )− f(Z)
W→Z−−−−→ 0 by continuity of f . Since U is open, for sufficiently small H we can take an open

ball around Z, which is convex15, containing Z + H and the R-line segment [Z,Z + H], which we also take to be the

15finite-dimensional K-vector spaces are locally convex TVS
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integration path. Now, using Lemma 5.0.4, we can estimate:∥∥∥∥∥
∫ Z+H

Z

g(W )dW

∥∥∥∥∥
B

≤ ‖g‖B,[Z,Z+H] LB([Z,Z +H]),

where ‖g‖B,[Z,Z+H]
H→0−−−→ 0 because g(W )

W→Z−−−−→ 0. Since ϕ is in any case R-linear,

LB([Z,Z +H])
def
= LB(ϕ([Z,Z +H])) = LB([ϕ(Z), ϕ(Z) + ϕ(H)]) = ‖ϕ(H)‖B .

Therefore F (Z +H)− F (Z) = f(Z)H + o(‖ϕ(H)‖B) as required.

To (2): For H small enough we have 4 := [∗, Z + H,Z] ⊆ FF , and ∂4 = [∗, Z + H] + [Z + H,Z] + [Z, ∗]. Since∮
∂4 f(W )dW = 0, we get:

F (Z +H)− F (Z) =

∫ Z+H

Z

f(W )dW,

from where one proceeds analogously to (1).

To (3): It suffices to prove the claim for a single stair y. Let H1 and H2 correspond to the sides of y := Zy(Z +H), i.e.
H1 +H2 = H. Then LB(ϕ(y)) ≤ ‖ϕ(H1)‖B + ‖ϕ(H2)‖B ≥ ‖ϕ(H)‖B, and we proceed as in (1):∥∥∥∥∫

y
g(W )dW

∥∥∥∥
B

≤ ‖g‖B,y LB(y) ≤ ‖g‖B,y (‖ϕ(H1)‖B + ‖ϕ(H2)‖B) ,

the latter being again o(‖ϕ(H)‖B) as desired. �

Proposition 5.0.6 (d-closedness of ϕ-holomorphic forms): Let A
ϕ−→ B be a morphism of not necessarily unital K-

algebras, U ⊆ A open, f : U → B a totally K-differentiable function, and define ω := f(Z)dZ. We have:

(1) If f is also ϕ-differentiable, then ω is ∂-closed.

(2) If ϕ : A → B is a morphism of unital K-algebras, then the converse of (1) also holds.

(3) If K = C and f is also ϕ-differentiable, then ω is also d-closed.

Proof: To (1) & (2): Let {a1, . . . , an} be a basis of A and write Z = z1a1 + · · ·+ znan. Since dzi ∧ dzj = −dzj ∧ dzi,
we have:

∂ω =

n∑
i=1

∂f

∂zi
dzi ∧ dZ =

n∑
i=1

∂f

∂zi
dzi ∧

( n∑
j=1

ajdz
j

)
=

n∑
i,j=1

∂f

∂zi
ϕ(aj)dz

i ∧ dzj =

=
∑

1≤i<j≤n

(
∂f

∂zi
ϕ(aj)−

∂f

∂zj
ϕ(ai)

)
dzi ∧ dzj =

∑
1≤i<j≤n

(dijf)dzi ∧ dzj ,

from which both claims follow by Lemma 4.0.5.

To (3): If K = C, claim follows from (1), since d = ∂ + ∂̄ and ∂̄ω =
∑n
i=1

∂f
∂z̄i dz̄

i ∧ dZ = 0 as f is holomorphic (in each
variable). �

Remarks:
(1) Much of what follows hinges upon the fact that ω = f(Z)dZ is d-closed. The proof of (1) shows that to this

effect it suffices for f to only be directionally ϕ-differentiable in directions of some basis of A. Another byproduct
of the proof is the interpretation of dijf as the coordinates of ∂(f(Z)dZ).

(2) Recall that if ω is a d-closed 1-form, then it is locally exact by Poincare’s lemma. This is one way to show that
ϕ-holomorphic functions admit local ϕ-primitives. We will give another proof of this based on a generalized
Cauchy-Goursat theorem.

(3) The existence of local primitives in turn enables the integration of ω along continuous paths [see BG91, Ch.1,
§7]. In the same vein, homotopy arguments about

∫
ω work in the continuous category, so we won’t always

have to take extra care of path regularity. Thus the next proposition is stated for continuous paths, but for the
purpose of obtaining another proof of the existence of local primitives without appealing to Poincare’s lemma
one should assume the paths to be rectifiable or C 1

pw-regular.

Proposition 5.0.7 (Cauchy-Goursat Integral Theorem over A): Let A
ϕ−→ B a morphism of not necessarily unital

K-algebras, U ⊆ A open and path-connected, and f ∈ C 0(U,B).
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(1) Homological Cauchy-Goursat: if f ∈ Oϕ(U), where additionally f ′ is assumed continuous in the case K = R,
and Γ ∈ Z1(U,Z) is a 1-cycle with [Γ] = 0 in H1(U,Z), then∫

Γ

f(Z)dZ = 0. (5.1)

(2) Homotopical Cauchy-Goursat: in particular, if f ∈ Oϕ(U), where additionally f ′ is assumed continuous in the
case K = R, and π1(U) = 0, then for any γ ∈ C 0(S1, U):∮

γ

f(Z)dZ = 0. (5.2)

(3) Cauchy-Goursat minus a point: if f ∈ Oϕ(U \ {pt.}), then ∀4 ⊆ U :∮
∂4

f(Z)dZ = 0. (5.3)

(4) Minus a finite number of points: if f ∈ Oϕ(U \ {p1, . . . , ps}), then ∀4 ⊆ U :∮
∂4

f(Z)dZ = 0. (5.4)

Proof: To (1): If K = C, then ω := f(Z)dZ is C 1-regular (in fact, C ω-regular), so we can apply Stokes’ theorem: since
Γ ∈ B1(U,Z), there exists � ∈ Z2(U,Z) such that Γ = ∂�. But ω is closed by Proposition 5.0.6, therefore∫

Γ

ω =

∫
∂�

ω =

∫
�

dω = 0.

To (2): Since π1(U) = 0, any γ ∈ C 0(S1, U) is homotopical to a point, hence null-homologous in particular. Alternatively,
use homotopy-invariance of closed 1-forms.

To (3): We adapt Goursat-Pringsheim’s approach following Rudin’s exposition, which is applicable to K without the
need of additional C 1-regularity of ω. First suppose that p /∈ 4 and let 4 = [a, b, c]. Let a′, b′, c′ be the mid points
on the opposite sides and let 4′j , 1 ≤ j ≤ 4, be the respective newly formed triangles by connecting a′, b′, c′ with each
other. Then

J :=

∮
∂4

ω =

4∑
j=1

∮
∂4′j

ω

and therefore ∥∥∥∥∥
∮
∂4′j

ω

∥∥∥∥∥
B

≥
‖J‖B

4

for certain fixed 1 ≤ j ≤ 4. Repeating the same procedure for 4′j in place of 4, we get a sequence of triangles

41,42, . . . ,4k, . . . such that 4 ⊃ 41 ⊃ 42 ⊃ . . . with LA(∂4k) = 2−kLA(∂4) and

‖J‖B ≤ 4k
∥∥∥∥∮

∂4k
ω

∥∥∥∥
B

, k ∈ N.

Since ϕ is R-linear in any case, we also have LB(∂4k) = 2−kLB(∂4). By Cantor’s “nested intervals theorem”, it
follows that there is a (unique) point Z0 ∈

⋂
k∈N4k ⊆ 4, and f is ϕ-differentiable at Z0. Therefore ∀ε > 0 ∃δ >

0 ∀ ‖Z − Z0‖A < δ : ‖f(Z)− f(Z0)− f ′(Z0)(Z − Z0)‖B ≤ ε ‖ϕ(Z − Z0)‖B. There exists k ∈ N such that ∀Z ∈ 4k :
‖Z − Z0‖A < δ. Then also ‖ϕ(Z − Z0)‖B ≤ diamB ϕ(4k) < LB(∂4k) = 2−kLB(∂4). Now, since

∮
∂4k dZ = 0 and∮

∂4k(Z − Z0)dZ = 0 (they have the obvious ϕ-primitives), we have:∮
∂4k

ω =

∮
∂4k

(
f(Z)− f(Z0)− f ′(Z0)(Z − Z0)

)
dZ,

whence

‖J‖B ≤ 4k
∥∥∥∥∮

∂4k

(
f(Z)− f(Z0)− f ′(Z0)(Z − Z0)

)
dZ

∥∥∥∥
B

≤ 4k sup
Z∈∂4k

‖f(Z)− f(Z0)− f ′(Z0)(Z − Z0)‖B LB(∂4k)

≤ 4k sup
Z∈∂4k

ε ‖ϕ(Z − Z0)‖B LB(∂4k) ≤ 4kε2−kLB(∂4)LB(∂4k) = εLB(∂4)2

for all ε > 0. Thus J = 0.
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Now suppose without loss of generality that p = a is a vertex of 4. If a, b, c are colinear, then the claim is trivial. If
not, choose x ∈ [a, b] and y ∈ [a, c] both close to p = a. Then∮

4
ω =

(∮
∂[a,x,y]

+

∮
∂[x,b,y]

+

∮
∂[b,c,y]

)
ω,

the last two being 0, since they do not contain p = a. Therefore:∮
4
ω =

(∫ x

a

+

∫ y

x

+

∫ a

y

)
ω.

Since f is bounded on 4, letting x, y → p = a we get the desired result. Finally, if p ∈ 4 arbitrary, then apply the
above to the triangles [a, b, p], [b, c, p] and [c, a, p].

To (4): follows from (3) (or its proof). �

Remarks: Let A
ϕ−→ B a morphism of not necessarily unital K-algebras.

(1) If U ⊆ A is open and f ∈ Oϕ(U \ {p1, . . . , ps}), then ∀ � ⊆ U :
∮
∂� f(Z)dZ = 0, because � = 4+ O.

(2) If U ⊆ A is open and 1-connected and f ∈ Oϕ(U), then f is ϕ-integrable, i.e. f has a ϕ-primitive. This is more
general than what Poincare’s lemma delivers because simply connected domains are not necessarily contractible,
e.g. Sn for n ≥ 2, or better yet, Bn \ {pt.} for n ≥ 3.

(3) In particular, if U ⊆ A is an arbitrary open set and f ∈ Oϕ(U), then f is locally ϕ-integrable, i.e. for every
p ∈ U there exists an (open) neighbourhood Vp 3 p inside U such that f |Vp has a ϕ-primitive. This follows also
from Poincare’s lemma.

(4) For instance, if dimR A ≥ 3, U ⊆ A path-connected, and ∅ 6= S ⊂ U such that π1(U \ S) = 0, then all
f ∈ Oϕ(U \S) are (globally) ϕ-integrable, e.g. take U open with π1(U) = 0 and S := B a topological ball inside
U . This is in stark contrast to the complex plane, where removing even a single point breaks global integrability,
cfg. 1/z on C.

(5) If FF ⊆ A is star-convex and f ∈ C 0(FF ,B) such that f ∈ Oϕ(FF \ {p1, . . . , ps}), then f has a ϕ-primitive. �

6. Function Theory over Unital C-Algebras: The Cornerstones

6.1. Admissible Points and 1-Cycles. We have reached the point where both the real and complex and the non-unital
and unital theory diverge from each other. Let us first fix some notations.

Definition 6.1.1: Let A ∈ fdCAlgK. Then Asing := A \ A× is called the singular cone of A.

Let A be a unital C-algebra and let SpmA = {M1, · · · ,MM} be its (maximal) spectrum. In particular, # SpmA = M

and Asing =
⋃M
k=1 Mk. Accordingly, the decomposition of A into local Artin algebras gives a vector space decomposi-

tion
A = A1 × · · · × AM = (C(1) ⊕m1)× · · · × (C(M) ⊕mM ),

where C(k) are indexed copies of C and in this notation Mk = A1 × · · · × Ak−1 ×mk ×Ak+1 × · · · × AM , 1 ≤ k ≤ M .

As a topological space A× sits coordinate-wise inside said vector space in the form of

A× = (C×(1) ×m1)× · · · × (C×(M) ×mM ).

Notice that here we make no use of the structure of A×k , 1 ≤ k ≤M , as a Lie group, but only as a topological space. Let
us denote by Ik := (0, . . . , 0, 1Ak , 0, . . . , 0) ∈ A, 1 ≤ k ≤ M , the canonical idempotents for said decomposition. They

satisfy the usual relations IkI` = δk`Ik, 1 ≤ k, ` ≤ M , and
∑M
k=1 Ik = 1A. Every Z ∈ A can be uniquely written as

Z =
⊕M

k=1 Zk =
∑M
k=1 IkZk for some Zk ∈ Ak. Recall the projections prk : A � Ak and σk : A � C(k), 1 ≤ k ≤ M .

In particular, Zk = prk(Z), and for a given γ ∈ C 0(S1,A) we shall also write γk := prk(γ) := prk ◦γ : S1 → Ak, and
γsp
k := σk(γ) := σk ◦ γ : S1 → C(k) = C. Moreover, if ιspk : C(k) ↪→ A and ιk : Ak ↪→ A are the respective canonical

inclusions of vector spaces, we shall also consider ιspk ◦ γ
sp
k = Ikγ

sp
k and ιk ◦ prk(γ) = Ikγk, where by slight abuse of

notation (Ikγ
(sp)
k )(t) := Ikγ

(sp)
k (t). Furthermore, for the homotopy classes of closed curves in A× we have

[S1;A×] =

M∏
k=1

[S1;C×(k) ×mk] =

M∏
k=1

[S1;C×(k)],

where namely γ '
∑M
k=1 γkIk '

∑M
k=1 γ

sp
k Ik in π1(A×). Being projections, prk and σk are continuous and open.

Therefore, if U ⊆ A is open and 0-connected, then so are prk(U) ⊆ Ak and σk(U) ⊆ C(k) = C, 1 ≤ k ≤ M . Let
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Γ :=
∑m
j=1 njγj ∈ Z1(U,Z) be a 1-cycle. Then prk and σk induce chain maps

(prk)# : Z1(U,Z)→ Z1(prk(U),Z), Γk := (prk)#Γ
def
=

m∑
j=1

nj prk(γj)

(σk)# : Z1(U,Z)→ Z1(σk(U),Z), Γsp
k := (σk)#Γ

def
=

m∑
j=1

njσk(γj),

which in turn induce as usual maps in homology (prk)∗ : H1(U,Z)→ H1(prk(U),Z) and (σk)∗ : H1(U,Z)→ H1(σk(U),Z)
respectively, 1 ≤ k ≤M . Like in the case of loops, we shall use the same letter to denote both the cycle and its support
in order to avoid unnecessary additional notational clutter. Furthermore, if A = (A,m) is local, we shall write σ := σ1,
γsp := γsp

1 , Γsp := Γsp
1 := σ∗Γ, and z := z1 ≡ σ(Z).

Definition 6.1.2 (Admissible points, sets, and 1-cycles): Let A ∼=
⊕M

k=1(Ak,mk) and B ∼=
⊕N

`=1(B`, n`) be decomposi-
tions of A and B into local Artin C-algebras.

(1) Let I ⊆ {1, . . . ,M} be an index subset and let γ ∈ C 0(S1,A). Then the set

FI(γ) :=
⋃
k∈I

σ−1
k (γsp

k ) =
{

(zk ⊕Xk)k ∈
M∏
k=1

C(k) ⊕mk | ∃k ∈ I : zk ∈ γsp
k

}
is called the I-restricted set of forbidden points (forbidden zone) for γ. In the special case I = {1, . . . ,M} we
shall also write F(γ) := FA(γ) for the full forbidden zone of γ. Its complement

AdmI(γ) := A \ FI(γ) =
{
Z ∈ A | ∀k ∈ I : σk(Z) /∈ γsp

k

}
=

M∏
k=1

{
(C(k) \ γsp

k )×mk, if k ∈ I
Ak, otherwise

is called the I-restricted set of admissible points for γ. In the special case I = {1, . . . ,M} we shall also write
Adm(γ) := AdmA(γ) for the full admissible set of γ.

(2) Let I ⊆ {1, . . . ,M} be an index subset, let U ⊆ A be open and path-connected, and let Γ :=
∑m
j=1 njγj ∈ Z1(U,Z)

be a 1-cycle. Then

FI(Γ) :=

m⋃
j=1

FI(γj)
def
=
{
Z ∈ A| ∃k ∈ I : σk(Z) ∈ Γsp

k

}
is called the I-restricted forbidden zone of the 1-cycle Γ. In the special case I = {1, . . . ,M} we shall also write
F(Γ) := FA(Γ) for the full forbidden zone of Γ. Its complement

AdmI(Γ) := A \ FI(Γ) =

m⋂
j=1

AdmI(γj) =

M∏
k=1

{(
C(k) \

⋃m
j=1 γ

sp
j,k

)
×mk, if k ∈ I

Ak, otherwise

def
=

def
=

M∏
k=1

{
(C(k) \ Γsp

k )×mk, if k ∈ I
Ak, otherwise

is called the I-restricted set of admissible points for Γ. In the special case I = {1, . . . ,M} we shall also write
Adm(Γ) := AdmA(Γ) for the full admissible set of Γ.

(3) If ϕ = ϕ̄ ◦ Πτ : A → B with τ = τϕ : {1, . . . , N} → {1, . . . ,M} is a morphism of C-algebras in canonical
factorization form, U ⊆ A is open and path-connected, and Γ :=

∑m
j=1 njγj ∈ Z1(U,Z) is a 1-cycle, then

Fϕ(Γ) := Fim τϕ(Γ) is called the set of ϕ-forbidden points for Γ. Its complement Admϕ(Γ) := Admim τϕ(Γ) is
called the set of ϕ-admissible points for Γ.

(4) A subset V ⊆ A is called ϕ-admissible for Γ if all its points are ϕ-admissible, that is, if V ⊆ Admϕ(Γ).
Symmetrically, given a subset V ⊆ A, a 1-cycle Γ ∈ Z1(U,Z) is called ϕ-admissible for V if V is a ϕ-admissible
set for Γ. One defines analogously ϕ-forbidden subsets of A with respect to a given 1-cycle and ϕ-forbidden
1-cycles with respect to a given subset of A.

Remarks: Let A =
⊕M

k=1Ak
ϕ−→ B =

⊕N
`=1 B` be a morphism of fully decomposed C-algebras with corresponding

index subset I := im τϕ ⊆ {1, . . . ,M}, let U ⊆ A be open and path-connected, and let Γ :=
∑m
j=1 njγj ∈ Z1(U,Z).

(1) Clearly, if I ⊆ J ⊆ {1, . . . ,M}, then FI(Γ) ⊆ FJ(Γ), or equivalently, AdmI(Γ) ⊇ AdmJ(Γ). In particular, one
always has Fϕ(Γ) ⊆ FA(Γ) and AdmA(Γ) ⊆ Admϕ(Γ).

(2) If A = (A,m) is local, then F(Γ) = Γsp × m
def
= Γ̃ is the cylindrical closure of (the support of) Γ. In general, if

A is not connected/local, we only have FI(Γ) ⊇ Γ̃I , i.e. AdmI(Γ) ⊆ A \ Γ̃I .
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(3) By definition, one has

Adm(Γ) =

M∏
k=1

{
Adm(Γk), if k ∈ I
Ak, otherwise

=

M∏
k=1

{
Adm(Γsp

k )×mk, if k ∈ I
Ak, otherwise ,

where Adm(Γk) and Adm(Γsp
k ) are taken in the C-algebras Ak and C(k) respectively, 1 ≤ k ≤ N .

(4) A ϕ-admissible point means that the winding numbers of the k-th projections, k ∈ I, are well-defined: the
projected points do not lie on the projected curves themselves. On the other hand, the condition (ϕ ◦TZ0

)#Γ ⊆
B× means that the integral of the B-valued differential form ω := dZ/ϕ(Z − Z0) is well-defined over Γ, and so
both notions are well compatible. We will see in a jiffy why this should not surprise us at all.

(5) FI(Γ) is a closed subset of A as a finite union of continuous preimages of closed sets, hence the set of admissible
points AdmI(Γ) is open. If Γ consists of sufficiently non-pathological curves such that C(k) \γsp

j,k is dense in C(k)

for all k ∈ I and 1 ≤ j ≤ m, then AdmI(γj), 1 ≤ j ≤ m, are finite products of open dense sets, hence AdmI(Γ)
too is dense open in A as an intersection of the finitely many AdmI(γj)-s. Thus, if V ⊆ A is open and Γ is a
not too pathological 1-cycle, then V always contains admissible points for Γ.

(6) Finally, if Z ∈ Admϕ(Γ) and keeping in mind that ϕ is in particular continuous, then ϕ(Z) ∈ AdmB(ϕ#Γ) since
∀` ∈ {1, . . . , N} : ϕ̄`(A×τ(`)) ⊆ B

×
` . �

6.2. The Index.

Definition 6.2.1 (Index over A): Let A ϕ−→ B be a morphism of unital C-algebras, U ⊆ A an open and path-connected
subset, and Γ :=

∑m
j=1 njγj ∈ Z1(U,Z) a 1-cycle. Then the index of Γ around Z0 is given by

Indϕ(Γ, Z0) := IndZ
ϕ(Γ, Z0) :=

1

2πi

∫
Γ

dZ

ϕ(Z − Z0)

def
=

m∑
j=1

nj
1

2πi

∮
γj

dZ

ϕ(Z − Z0)

def
=

m∑
j=1

nj Indϕ(γj , Z0) (6.1)

where IndZ
ϕ indicates that Γ has coefficients in Z. Moreover, we set IndA := IndidA for short.

Remarks:
(1) For example, if γ ∈ C 0(S1,C) is a loop and z /∈ γ, then above notation says ind(γ, z) = IndC(γ, z) = IndZ

C(γ, z) =:
indC(γ, z), the latter being used to emphasize the fact that the index is taken in the complex plane.

(2) If A ϕ−→ B is a morphism of C-algebras, U ⊆ A open and path-connected, Γ ∈ Z1(U,Z) a 1-cycle, and Z0 ∈
Adm(Γ), then IndA(Γ, Z0) ∈ A and Indϕ(Γ, Z0) ∈ B.

Lemma 6.2.2 (Periods of Cauchy’s Reproducing Kernel & Index Calculation over A): Let U ⊆ A be open and path-
connected and let Γ ∈ Z1(U,Z) be a C 1

pw-regular 1-cycle.

(1) Index with respect to composition of morphisms: if A ψ−→ B ϕ−→ C are morphisms of C-algebras, then ∀Z ∈
Admψ(Γ):

Indϕ◦ψ(Γ, Z) = Indϕ(ψ#Γ, ψ(Z)). (6.2)

In particular, if ϕ = idB, then ∀Z ∈ Admψ(Γ):

Indψ(Γ, Z) = IndB(ψ#Γ, ψ(Z)). (6.3)

(2) Index over a local A: if A = (A,m) is local and σ : A ∼=Vect C ⊕ m � A/m ∼= C is the canonical “spectral”
quotient projection onto the scalars, then ∀Z ∈ AdmA(Γ):

IndA(Γ, Z) = Indσ(Γ, Z) = indC(Γsp, z) ∈ Z, (6.4)

where recall the notation z
def
= σ(Z) and Γsp def

= σ#Γ is the “spectral” part of the 1-cycle Γ. It follows that if
ϕ : (A,m)→ (B, n) is a morphism of local C-algebras, then ∀Z ∈ Admϕ(Γ) ≡ AdmA(Γ):

Indϕ(Γ, Z) = IndA(Γ, z) = indC(Γsp, z) ∈ Z. (6.5)

(3) Index over a direct sum of morphisms: if ϕ := ⊕N`=1ϕ` : A :=
⊕N

`=1A` → B :=
⊕N

`=1 B`, Γ` := (pr`)#Γ, and

Z = ⊕N`=1Z`, then ∀Z ∈ Admϕ(Γ) =
∏N
`=1 Admϕ`(Γ`) :

Indϕ(Γ, Z) = ⊕N`=1 Indϕ`(Γ`, Z`) ∈ B. (6.6)

In particular, if ϕ` : (A`,m`)→ (B`, n`), 1 ≤ ` ≤ N , are morphisms of local C-algebras, then ∀Z ∈ Admϕ(Γ) ≡
AdmA(Γ):

Indϕ(Γ, Z) = ⊕N`=1 IndA`(Γ`, Z`) = ⊕N`=1 indC(Γsp
` , σ`(Z)) = ϕ(IndA(Γ, Z)) ∈ Z⊕N ⊆ B, (6.7)



FUNCTIONS HOLOMORPHIC OVER ALGEBRAS 35

where recall that Γsp
`

def
= (σ`)#Γ is the `-th eigenvalue part of the 1-cycle Γ.

(4) Index over a general morphism: if ϕ = (⊕N`=1ϕ̄`) ◦ Πτ : A ∼=
⊕M

k=1(Ak,mk) → B ∼=
⊕N

`=1(B`, n`) is a general
morphism of C-algebras in canonical factorization form, then ∀Z ∈ Admϕ(Γ) :

Indϕ(Γ, Z) = ⊕N`=1 Indϕ̄`(Γτ(`), Zτ(`)) = ⊕N`=1 indCτ(`)(Γ
sp
τ(`), zτ(`)) = ϕ(IndA(Γ, Z)) ∈ Z⊕N ⊆ B, (6.8)

provided Z ∈ AdmA(Γ) for the last part of the equality.

Proof: By Z-linearity of the definition of Indϕ(−, Z) it suffices to verify the claims for a single loop γ ∈ C 1
pw(S1, U).

To (1): Since ψ is linear, we have

Indϕ◦ψ(γ, Z)
def
=

∫
γ

dW

(ϕ ◦ ψ)(W − Z)
=

∫ 1

0

ϕ(ψ(γ′(t)))dt

ϕ(ψ(γ(t))− ψ(Z))
=

∫ 1

0

ϕ((ψ ◦ γ)′(t))dt

ϕ(ψ(γ(t))− ψ(Z))
= Indϕ(ψ ◦ γ, ψ(Z))

as required.

To (2): First assume (without loss of generality) that Z = 0 ∈ AdmA(γ). By Proposition 5.0.6, ω := dW/W is a
d-closed 1-form over A×, hence its integral is invariant under continuous homotopy γ ' γsp there. Thus

IndA(γ, 0)
def
=

1

2πi

∮
γ

dW

W
=

1

2πi

∮
γsp

dW

W
=

1

2πi

∫ 1

0

(γsp)′(t)1A
γsp(t)

dt =
1

2πi

∮
γsp

dz

z
= indC(γsp, 0) = Indσ(γ, 0)

by (1). Next, substituting V := W − Z and δ := γ − Z, we get ∀Z ∈ AdmA(γ):

IndA(γ, Z)
def
=

1

2πi

∮
γ

dW

W − Z
=

1

2πi

∮
δ

dV

V
= indC(σ ◦ δ, 0) = indC(σ(γ)− σ(Z), 0) = indC(σ(γ), σ(Z)) = Indσ(γ, Z)

as desired. Furthermore, if (A,m)
ϕ−→ (B,m) is a morphism of local C-algebras with corresponding canonical projections

σA : A� A/m and σB : B � B/n, then

Indϕ(γ, Z) = IndB(ϕ ◦ γ, ϕ(Z)) = indC(σB ◦ ϕ ◦ γ, σB(ϕ(Z))) = indC(σA ◦ γ, σA(Z)) = IndA(γ, Z)

by the previous discussion, (1), and Diagram 2.12.

To (3): We have

Indϕ(γ, Z)
def
=

1

2πi

∮
γ

dW

ϕ(W − Z)
=

1

2πi

∮
⊕N`=1γ`

d(⊕N`=1W`)

⊕N`=1ϕ`(W` − Z`)
=

N⊕
`=1

1

2πi

∮
γ`

dW`

ϕ`(W` − Z`)
def
=

N⊕
`=1

Indϕ`(γ`, Z`),

where notice that the direct sum happens in B =
⊕N

`=1 B`. If ϕ` are morphisms of local C-algebras, then the last
equality follows from (2) and the application of ϕ on ZN ⊆ A to arrive in ZN ⊆ B.

To (4): Since A ∼=
⊕M

k=1(Ak,mk), we have IndA(γ, Z) = ⊕Mk=1 IndAk(γk, Zk) by (3). Writing ϕ̄ := ⊕N`=1ϕ̄` and thus
ϕ = ϕ̄ ◦Πτ , we therefore have:

ϕ(IndA(γ, Z)) = ϕ̄(Πτ (⊕Mk=1 IndAk(γk, Zk))) = ϕ̄(⊕N`=1 IndAτ(`)(γτ(`), Zτ(`))) = Indϕ̄(⊕N`=1γτ(`),⊕N`=1Zτ(`)) =

= Indϕ̄(Πτ (γ),Πτ (Z)) = Indϕ̄◦Πτ (γ, Z)
def
= Indϕ(γ, Z)

by (3) and (1), as desired. �

Definition 6.2.3: If A is a C-algebra and Z0 ∈ A, then [Z0] := Z0 +nilA ∈ A/nilA ∼= C⊕M will denote the equivalence
class of Z0 mod nilA as a subset of A.

Corollary 6.2.4: Let A ϕ−→ B be a morphism of C-algebras, let U ⊆ A be open and path-connected, and let Γ ∈ Z1(U,Z)
be a 1-cycle.

(1) If Z0 ∈ Admϕ(Γ) and X0 ∈ nilA, then Indϕ(Γ, Z0 + X0) = Indϕ(Z0). Hence we have a well-defined map
Indϕ(Γ,−) : Admϕ(Γ)/ nilA → ZN ⊆ B, [Z0] 7→ Indϕ(Γ, [Z0]), where notice that Admϕ(Γ)/ nilA ⊆ CM . In
particular, if 0 ∈ Admϕ(Γ), then IndA(Γ, X0) = IndA(Γ, 0).

(2) If (A,m)
ϕ−→ (B, n) is a morphism of local C-algebras, then the Index of Γ is invariant under ϕ, that is, for a

fixed Z ∈ Adm(Γ) the quantity IndB(ϕ#Γ, ϕ(Z)) does not depend on ϕ. In particular, if A = (A,m) is local,
then IndA(Γ, Z) is invariant under C-algebra endomorphisms of A.

Proof: To (1): Since nilA =
⊕M

k=1 mk, this follows from Equation (6.8), which depends only on the eigenvalues of
Z0 +X0.

To (2): This is immediate from the second part of Lemma 6.2.2 (2). �
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Remarks:
(1) Using Equation (6.8), Indϕ can also be well-defined for merely continuous 1-cycles by means of the topological

degree since the projections always have well-defined topological degrees in the respective complex plane(s).

(2) Equation (6.8) makes it clear that, even though in the local case the Index is Z-valued like in the complex plane,
Indϕ is more accurately seen as B-valued. This illuminates the fact that in our setting it is only natural to
consider 1-cycles with more general coefficients than Z, for example A or B, as we shall do in [MG04].

(3) Let Z0 := 0, then IndA(−, 0) : γ 7→ IndA(γ, 0) = ⊕Mk=1 ind(γsp
k , 0) ∈ ZM ⊆ A is only a one-way homotopy

invariant in A×. Indeed, if γ, δ ∈ C 0(S1,A×) with γ ' δ in A×, then γsp
k ' δsp

k in C×(k), 1 ≤ k ≤M , and hence

IndA(γ, 0) = IndA(δ, 0), but clearly the converse need not hold.

(4) Let V be a C-vector space and A = (A,m) a choice of a local C-algebra structure on V . Then Equation (6.4)
shows that, as expected, IndA depends on this choice because it is determined by the choice of one-dimensional
complex subspace of V onto which γ ⊆ V and Z0 ∈ V are projected. On the bright side, IndA is at least
invariant under algebra endomorphisms by the previous corollary.

(5) By definition, we say that γ : S1 ↪→ A× is a simple loop around 0 or around the singular cone Asing iff
IndA(γ, 0) = 1. Likewise, γ is a simple loop around a point Z0 ∈ A or around Z0 +Asing iff IndA(γ, Z0) = 1.

(6) Further notice that Indϕ(γ, Z0) = 0 if and only if ∀k ∈ I : ind(γsp
k , σk(Z0)) = 0. Similarly, Indϕ(γ, Z0) ∈ B× if

and only if ∀k ∈ I : ind(γsp
k , σk(Z0)) 6= 0.

Lemma 6.2.5 (Index is locally constant): Let U ⊆ A be open and path-connected and Γ ∈ Z1(U,Z). Then the map

Indϕ(Γ,−) : Admϕ(Γ)→ Z, Z 7→
∫

Γ

dW

ϕ(W − Z)

is locally constant. In particular, Γ divides Admϕ(Γ) into two types of components: points with zero and non-zero Index.

Proof: This is a parameter integral with a continuously A-differentiable integrand, therefore:

d

dZ
Indϕ(Γ, Z) =

∫
Γ

d

dZ

(
1

ϕ(W − Z)

)
dW =

∫
Γ

dW

ϕ(W − Z)2
= 0,

since −1/ϕ(W − Z) is a global primitive of the integrand in the variable W . �

Notice that the zero or non-zero component of Indϕ(Γ,−) is allowed to be empty. We can now determine them:

Corollary 6.2.6 (Components of Γ): Let A =
⊕M

k=1Ak
ϕ−→ B =

⊕N
`=1 B` be a morphism of C-algebras with corre-

sponding index subset I := im τϕ ⊆ {1, . . . ,M}, let U ⊆ A be open and path-connected, let Γ ∈ Z1(U,Z) be a 1-cycle,
and Z0 ∈ Admϕ(Γ) a point. Then:

(1) Components of Indϕ(Γ,−): each component of Γ is of the form

M∏
k=1

{
Ck ×mk, if k ∈ I
Ak, otherwise,

where Ck is a component in C(k) = C of the locally constant function indC(Γsp
k ,−), k ∈ I.

(2) Invertible Index: Indϕ(Γ, Z0) ∈ B× if and only if for all k ∈ I the component of Γsp
k containing the projection

σk(Z0) is bounded in the respective complex plane C(k) = C.

Proof: To (1): This is immediate from Equation (6.8).

To (2): Again by Equation (6.8) we have Indϕ(Γ, Z0) ∈ B× ⇔ ∀k ∈ I : ind(Γsp
k , σk(Z0)) 6= 0⇔ the component of Γsp

k in
C containing σk(Z0) is not the unbounded one. �

6.3. Cauchy’s Integral Formula over A and Consequences.

Proposition 6.3.1 (Cauchy’s Integral Formula: Cauchy’s Reproducing Kernel over A): Let A ϕ−→ B be a morphism
of C-algebras and let Z0 ∈ A. Let ∆ := ∆r(Z0) be the open polydisc around Z0 of radius r and let f ∈ Oϕ(∆). If
γ ∈ C 1

pw(S1,∆) is an admissible loop for Z0, then

f(Z0) Indϕ(γ, Z0) =
1

2πi

∮
γ

f(Z)

ϕ(Z − Z0)
dZ. (6.9)

In particular, if Z0 ∈ nilA and γ is a simple C 1
pw-loop in A× around Z0, then

f(Z0) =
1

2πi

∮
γ

f(Z)

Z − Z0
dZ. (6.10)
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Proof: It suffices to prove the claim for Z0 = 0, otherwise simply consider f̃(Z) := f(Z+Z0) and γ̃(t) := γ(t)−Z0. Notice
that in general both f and Indϕ take values in B. We first show the claim for a local morphism ϕ : (A,m) → (B, n).
If we put d := dimC m, we have ∆× := ∆ ∩ A× = ∆ ∩ (C× × Cd) = D∗r(0)× Dr(0)d as topological spaces, where D∗r(0)
denotes the punctured open disk with radius r and center 0 in C. Therefore ∆× has the same homotopy structure as
A×, namely π0(∆×) = 1, [S1; ∆×] = [S1;D∗r(0)], and hence π1(∆×) = Z, where explicitly γ ' γε : [0, 1]→ D∗r(0)×{0m},
t 7→ εe2πiνt, for an arbitrary fixed 0 < ε < r and some winding number ν ∈ Z. By Equation (6.5) we have:

ϕ

(
γ′ε(t)

γε(t)

)
= ϕ(2πiν) = 2πiν

def
= 2πi indC(γε, 0) = 2πi Indϕ(γ, 0).

Since f ∈ Oϕ(∆), the B-valued differential form

ω :=
f(Z)− f(0)

ϕ(Z)
dZ

defined over ∆× is d-closed, hence its integrals are invariant under homotopy inside ∆×. Let ‖·‖B be any submultiplica-
tive norm on B. We can now proceed as in the proof of the classical Cauchy Integral Formula:∥∥∥∥ 1

2πi

∮
γ

f(Z)

ϕ(Z)
dZ − Indϕ(γ, 0)f(0)

∥∥∥∥
B

=

∥∥∥∥ 1

2πi

∮
γ

f(Z)− f(0)

ϕ(Z)
dZ

∥∥∥∥
B

=

∥∥∥∥ 1

2πi

∮
γε

f(Z)− f(0)

ϕ(Z)
dZ

∥∥∥∥
B

=∥∥∥∥ 1

2πi

∫ 1

0

f(γε(t))− f(0)

ϕ(γε(t))
ϕ(γ′ε(t))dt

∥∥∥∥
B

=

∥∥∥∥Indϕ(γ, 0)

∫ 1

0

(
f(γε(t))− f(0)

)
dt

∥∥∥∥
B
≤ |Indϕ(γ, 0)| ‖f − f(0)‖B,γε

ε→0−−−→ 0

as desired.

Next assume that ϕ has the form ϕ := ⊕N`=1ϕ` : A =
⊕N

`=1(A`,m`) →
⊕N

`=1(B`, n`). Writing Z = ⊕N`=1Z`, f(Z) =
⊕N`=1f`(Z`) for ϕ`-holomorphic f`, and γ(t) = ⊕N`=1γ`(t), one obtains:

1

2πi

∮
γ

f(Z)

ϕ(Z)
dZ =

N⊕
`=1

1

2πi

∮
γ`

f`(Z`)

ϕ`(Z`)
dZ` =

N⊕
`=1

f`(0) Indϕ`(γ`, 0) =

( N⊕
`=1

f`(0)

)( N⊕
`=1

Indϕ`(γ`, 0)

)
= f(0) Indϕ(γ, 0)

by Equation (6.7) as required. Finally, if A ϕ−→ B is a general morphism of C-algebras with canonical factorization
ϕ = ϕ̄ ◦Πτ as in Corollary 2.3.14, then by Lemma 3.0.5 it induces a corresponding factorization of f as

U B

Πτ (U)

f

Πτ
f̄

for some f̄ ∈ Oϕ̄(Πτ (U)) of the form f̄ = ⊕N`=1f̄`. Putting γ̄ := Πτ ◦ γ and noting dγ̄
def
= d(Πτ ◦ γ) = (Πτ ◦ γ)′(t)dt =

(Πτ ◦ γ′)(t)dt as Πτ is linear, we obtain

1

2πi

∮
γ

f(Z)

ϕ(Z)
dZ =

1

2πi

∫ 1

0

f(γ(t))ϕ(γ′(t))

ϕ(γ(t))
dt =

1

2πi

∫ 1

0

(f̄ ◦Πτ )(γ(t))(ϕ̄ ◦Πτ )(γ′(t))

(ϕ̄ ◦Πτ )(γ(t))
dt =

1

2πi

∮
γ̄

f̄(W )dW

ϕ̄(W )
=

= Indϕ̄(γ̄, 0)f̄(0) = Indϕ(γ, 0)f(0)

by the previous discussion and Lemma 6.2.2 as required. �

Remarks:
(1) A byproduct of the argument used in the proof of Proposition 6.3.1 is that every point Z0 ∈ A has an open

neighbourhood containing an admissible loop of an arbitrary integral index Indϕ(γ, Z0) ∈ Z⊕M = π1.

(2) Putting Iγ := Indϕ(γ,−), it follows from Proposition 6.3.1 that f |γ determines f in all components of the set
Adm(γ) ∩ I−1

γ ((Z \ {0})N ), which contains stuff outside of ∆: in particular, this set is always unbounded as it
contains a copy of nilA. In other words, one obtains a ϕ-holomorphic continuation of f . More precisely:

Lemma 6.3.2 (Continuation to a local cylinder): Let (A,m)
ϕ−→ (B, n) be a morphism of local C-algebras, let ∆ :=

∆r(Z0) ⊆ A be a polydisk, and f ∈ Oϕ(∆). Then for any loop γ ∈ C 1
pw(S1,∆) the function f has a ϕ-holomorphic

continuation to ∆ ∪ (Cγ ×m) given by ∀Z ∈ ∆ ∩ (Cγ ×m) ∀X ∈ m :

f(Z +X) :=
1

2πi Indϕ(γ, Z)

∮
γ

f(W )

ϕ(W − Z −X)
dW, (6.11)

where Cγ := {z ∈ C \ γsp : ind(γsp, z) 6= 0} is the non-zero-index component(s) of γsp := σA ◦ γ.

Proof: Firstly, notice that ∆ ∩ (Cγ × m) 6= ∅ is open and for X = 0 the RHS agrees with f on ∆ ∩ (Cγ × m) by
Proposition 6.3.1. Secondly, since A is local, Cγ × m ⊆ Adm(γ) and ∀Z ∈ Cγ × m : Indϕ(γ, Z) = ind(γsp, z) 6= 0, and
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since X ∈ m and Z ∈ Adm(γ), we have Z + X ∈ Adm(γ) and Indϕ(γ, Z + X) = Indϕ(γ, Z) 6= 0, so the RHS is well-
defined. In particular, if Z1 +X1 = Z2 +X2 for some Z1,2 ∈ U and X1,2 ∈ m, i.e. Z2 = Z1 +X for X := X1 −X2 ∈ m,
then Z1 ∈ Adm(γ) ⇔ Z2 ∈ Adm(γ) and Indϕ(γ, Z1 + X1) = Indϕ(γ, Z1) = Indϕ(γ, Z2) = Indϕ(γ, Z2 + X2), hence
f(Z + X) itself is well-defined. Finally, it is immediate that the so defined function is ϕ-holomorphic since Indϕ(γ, Z)
is locally constant and one can ϕ-differentiate under the integral sign. �

6.4. Analyticity.

Definition 6.4.1: Let A
ϕ−→ B be a morphism of not necessarily unital K-algebras and let U ⊆ A be open. A function

f : U → B is called ϕ-analytic at Z0 ∈ U if in a neighbourhood of Z0 it is given by a convergent power series of the
form

f(Z) =

∞∑
`=0

B`(Z − Z0)`
def
=

∞∑
`=0

B`ϕ(Z − Z0)`

for some B` ∈ B. The K-algebra of ϕ-analytic functions at 0 will be denoted by BA{Z} := Bϕ{Z} := B{ϕ(Z)}.

Remark: If A
ϕ−→ B is a morphism of not necessarily unital K-algebras, where A is connected and non-unital, then

∃ν ∈ N ∀Z ∈ A : Zν = 0, and therefore B{ϕ(Z)} = B[[ϕ(Z)]] = B[ϕ(Z)].

Definition 6.4.2 (Products of Spectral Balls and Annuli): Let A =
⊕M

k=1Ak be the decomposition of A into local
Artinian C-algebras and let Z0 ∈ A. Let r := (r1, . . . , rM ) ∈ [0,∞]M and R := (R1, . . . , RM ) ∈ [0,∞]M . Then:

(1) Spectral polyball (polycylinder): Bsp(Z0, R) :=
∏M
k=1 B

sp
Ak(prk(Z0), Rk) and Bsp(Z0, R) :=

∏M
k=1 B

sp
Ak(prk(Z0), Rk).

(2) Spectral polyannulus: Asp(Z0, r, R) :=
∏M
k=1 A

sp
Ak(prk(Z0), rk, Rk) and Āsp(Z0, r, R) :=

∏M
k=1 Ā

sp
Ak(prk(Z0), rk, Rk).

Lemma 6.4.3: Let (ai(k))k∈N ⊆ R, 1 ≤ i ≤ n, be n sequences of real numbers. Then

max
1≤i≤n

lim sup
k→∞

ai(k) = lim sup
k→∞

max
1≤i≤n

ai(k)

Proof: To “≤”: We have ∀k ∈ N ∀1 ≤ j ≤ n : aj(k) ≤ max
1≤i≤n

ai(k)⇒ ∀1 ≤ j ≤ n : lim sup
k→∞

aj(k) ≤ lim sup
k→∞

max
1≤i≤n

ai(k)⇒

max
1≤j≤n

lim sup
k→∞

aj(k) ≤ lim sup
k→∞

max
1≤i≤n

ai(k).

To “≥”: Put a(k) := max
1≤i≤n

ai(k) and a := lim sup
k→∞

a(k) ∈ [−∞,∞]. Let I ⊆ N such that a = lim
k∈I

a(k). Clearly,

∃1 ≤ j ≤ n : a(k) = aj(k) for infinitely many k ∈ I, and denote their set by J ⊆ I. In particular, lim
k∈J

aj(k) = a

and a ≤ lim sup
k→∞

aj(k). Thus lim sup
k→∞

max
1≤i≤n

ai(k) = a ≤ lim sup
k→∞

aj(k) ≤ max
1≤i≤n

lim sup
k→∞

aj(k), i.e. max
1≤i≤n

lim sup
k→∞

aj(k) ≥

lim sup
k→∞

max
1≤i≤n

ai(k). �

Lemma 6.4.4 (Root test in Banach spaces): Let (E, ‖·‖) be a Banach space, let a :=
∑∞
n=0 an be a series in E, and

define α := lim supn→∞ ‖an‖
1/n

.

(1) If α < 1, then the series converges.

(2) If α > 1, then the series diverges.

(3) If α = 1, then no conclusion can be drawn.

(4) α is independent of the choice of an equivalent vector norm ‖·‖′.

In particular, if E is finite-dimensional, then α is independent of any choice of ‖·‖ on E.

Proof: One readily verifies that the comparison and the root test are valid in any Banach space (E, ‖·‖) since the
proofs are the same and the (counter)-example(s) for the border case α = 1 are the same after a suitable choice of
an identification R ↪→ E with a 1-dimensional subspace of E. We only verify that α is independent of the choice of
an equivalent vector norm ‖·‖. So, let ‖·‖′ and ‖·‖′′ be two equivalent vector norms on E and let c′ > 0 and c′′ > 0
be constants such that ‖·‖′′ > c′ ‖·‖′ and ‖·‖′ > c′′ ‖·‖′′. Since c1/n → 1 as n → ∞, it follows by symmetry that

lim supn→∞ ‖an‖
′1/n

= lim supn→∞ ‖an‖
′′1/n

. �

Lemma-Definition 6.4.5 (Analytic Radius): Let (A, ‖·‖) ∈ CBanAlgK and let f(Z) =
∑∞
n=0AnZ

n ∈ A[[Z]]. Then
the analytic radius of the power series f is defined as

R := Rf :=
1

lim sup
n→∞

‖An‖1/n
∈ [0,∞] (6.12)
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and is independent of the choice of an equivalent vector norm. In particular, if A is finite-dimensional, then Rf is
independent of the choice of any (submultiplicative or not) norm ‖·‖ for A.

Proof: The proof is the same as of the previous lemma. �

Lemma 6.4.6: Let (ai(`))`∈N ⊆ C, 1 ≤ i ≤ n, be n sequences of complex numbers, let αi := lim sup`→∞ |ai(`)|
1/`

,
1 ≤ i ≤ n, and put α := max1≤i≤n αi. If there is exactly one 1 ≤ i0 ≤ n such that α = αi0 , then

lim sup
`→∞

∣∣∣∣ n∑
i=1

ai(`)

∣∣∣∣1/` = α

Proof: It is more convenient to work with the radii ri := 1/αi, r := 1/α = min1≤i≤n ri ∈ [0,∞], 1 ≤ i ≤ n. The
proof is by induction on n. The case n = 2, where r1 6= r2, is well-known from the convergence properties of power
series in the Complex Analysis of One Variable. Now, let n ≥ 3 and let i0 be the unique index with r = ri0 . Since
∀1 ≤ j ≤ n, j 6= i0 : rj > ri0 , the sequence a′j(`) := ai0(`) +aj(`) has again a radius ri0 . Now iterate the same argument
for the remaining indices 1 ≤ j ≤ n, j 6= i0. �

Remark: When n = 2 and r1 = r2 it is not possible to deduce r only from r1 and r2 without closer analysis of the sum
a1(`) + a2(`).

Proposition 6.4.7 (Analytic Radius and Polycylinder of Convergence): Let A ∈ fdCAlgC, let f(Z) =
∑∞
`=0A(`)Z` ∈

A[[Z]], let ‖·‖ be an arbitrary submultiplicative norm on A, and put R := Rf . Then:

(1) If A =
⊕M

k=1Ak is the decomposition of A into Artin local C-algebras and A(`) =: ⊕Mk=1ak(`) accordingly, then

R = min1≤k≤M Rk, where Rk := lim sup`→∞ ‖ak(`)‖1/`, 1 ≤ k ≤M , are the individual radii.

(2) If R > 0, then for any choice of a submultiplicative norm ‖·‖ the series f is locally normally convergent on the

R-ball B‖·‖R (0) := {Z ∈ A : ‖Z‖ < R}.

(3) If R < ∞, then for any choice of a vector norm ‖·‖ and any r > R there exists a point Z0 ∈ A with ‖Z0‖ = r
such that f is divergent at Z0.

(4) If R > 0, then f is locally normally convergent on B′R(0) :=
⋃
‖·‖ B

‖·‖
R (0), where the union is taken over all

submultiplicative norms on A.

(5) In fact, we have B′R(0) = Bsp
A (0, R)

def
= {Z ∈ A : ρA(Z) < R} is the spectral R-ball of A around 0.

(6) Cylinder of convergence: if (A,m) is local, then Bsp
A (0, R) = DR(0)×m.

(7) If A = (A,m) is local, then f is divergent16 everywhere outside of Bsp
A (0, R).

(8) Spectral radius of divergence: for a local C-algebra A = (A,m) define

Dsp :=
1

lim sup
`→∞

ρA(A(`))1/`
∈ [0,∞]

Then Dsp ≥ R and f diverges at any Z0 ∈ A with ρA(Z0) > Dsp.

(9) Polycylinder of convergence: if A ϕ−→ B is a morphism of C-algebras and A =
⊕M

k=1Ak is the decomposition
of A into connected C-algebras, then g(Z) ∈ B{ϕ(Z − Z0)} is locally uniformly convergent on some spectral
polycylinder

Bsp(Z0, R)
def
=

M∏
k=1

Bsp
Ak(prk(Z0), Rk) =

M∏
k=1

DRk(σk(Z0))×mk,

where R := (R1, . . . , RM ) ∈ (0,∞]M , and is divergent outside of it.

Proof: To (1): Since R is independent of the choice of norm, we can pick ‖·‖⊕. Applying Lemma 6.4.3, we get:

R =
1

lim sup
`→∞

‖A(`)‖1/`⊕
=

1

lim sup
`→∞

( max
1≤k≤M

‖ak(`)‖Ak)1/`
=

1

max
1≤k≤M

lim sup
`→∞

‖ak(`)‖1/`Ak
= min

1≤k≤M
Rk.

To (2): Let Z0 ∈ A be a point such that ‖Z0‖ < R and choose ‖Z0‖ < r1 < r2 < R. Since 1/r2 > 1/R, there exists L ∈ N
such that ∀` ≥ L : ‖A(`)‖ < 1/r`2. Thus ∀` ≥ L :

∥∥A(`)Z`
∥∥ ≤ ‖A(`)‖ ‖Z‖` < q := (r1/r2)`, hence

∑∞
`=0

∥∥A(`)Z`
∥∥ <∞

on the open {‖Z‖ < r1} 3 Z0, majorized by the geometric series in q.

16it has been recently brought to our attention that a proof of this fact is essentially contained in [Ket28];
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To (3): For example take Z0 := r and apply the root test. Notice that, unless A = C, f does not diverge for all Z0 with
‖Z0‖ = r because there exist nilpotent elements of arbitrary norm.

To (4): This follows from (2) since clearly any Z ∈ B′R(0) has an open neighbhourhood, on which f converges normally.

To (5): By Proposition 2.5.7, for Z0 ∈ A there exists a norm ‖·‖ with ‖Z0‖ < R if and only if ρA(Z0) < R. Indeed, if
‖Z0‖ < R, then ρA(Z0) ≤ ‖Z0‖ < R. Conversely, if ρA(Z0) < R and ε > 0 with ρA(Z0) + ε < R, then there exists an
algebra norm ‖·‖, depending on Z0 and ε, with ‖Z0‖ ≤ ρA(Z0) + ε < R.

To (6): follows from the triangular form of (A,m).

To (7): In accordance with Lemma 2.3.8 choose a filtering C-basis {e1 := 1A, e2, . . . , en} of A with corresponding
structure constants (γijk)1≤i,j,k≤n such that ∀1 ≤ i, k ≤ n : γi1k = γik1 = δik and ∀j, k ≥ 2 ∀i ≤ max{j, k} : γijk = γikj = 0.

Write A(`) =
∑n
i=1 ai(`)ei for ai(`) ∈ C, ` ∈ N. Endow A with the maximum vector norm ‖·‖∞ and write Z = z⊕X ∈ A

for z ∈ C, X ∈ m. Put αi := lim sup`→∞ |ai(`)|
1/`

, α := max1≤i≤n αi, and ri := 1/αi, 1 ≤ i ≤ n. By the same
argument as in (1) we obtain that R = min1≤i≤n ri, or equivalently, R = 1/α. Now assume that Z /∈ Bsp

A (0, R), i.e.

ρA(Z) = |z| > R = 1/α ≥ 0. We are going to show that lim sup`→∞
∥∥A(`)Z`

∥∥1/`

∞ > 1. We have:

∥∥A(`)Z`
∥∥1/`

∞ =
∥∥A(`)(z +X)`

∥∥1/`

∞ = |z|

∥∥∥∥∥A(`)

(
1 +

X

z

)`∥∥∥∥∥
1/`

∞

= |z|

∥∥∥∥∥A(`)

(
1 +

∑̀
k=1

(
`

k

)(
X

z

)k)
︸ ︷︷ ︸

=:u(`)

∥∥∥∥∥
1/`

∞

= |z| ‖A(`)u(`)‖1/`∞ ,

where ∀` ∈ N : u(`) ∈ A×. Write u(`) =
∑n
i=1 ui(`)ei, where u1(`) = 1. Moreover, if ν ∈ N is the smallest integer with

Xν 6= 0, then ∀` > ν:

u(`) = 1 +

ν∑
k=1

(
`

k

)(
X

z

)k
=

n∑
i=1

(
ν∑
k=1

cik

(
`

k

))
ei =

n∑
i=1

ui(`)ei

for some constants cik ∈ C, 1 ≤ i ≤ n, 1 ≤ k ≤ ν. Since
(
`
k

)
= O(`k) as `→∞ for fixed 1 ≤ k ≤ `, we have in any case

∀1 ≤ i ≤ n : ui(`) = O(`ν+1) as `→∞. Carrying out the multiplication with the filtering basis, one obtains

u(`)A(`) =

n∑
i=1

ei

(
n∑

j,k=1

γijkuj(`)ak(`)

)
= a1(`) +

n∑
i=2

ei

(
ui(`)a1(`) +

i−1∑
k=2

( i−1∑
j=2

γijkuj(`)

)
ak(`) + ai(`)

)
.

Now put α′1 := lim sup`→∞ |a1(`)|1/` = α1 and

∀2 ≤ i ≤ n : α′i := lim sup
`→∞

∣∣∣∣∣ui(`)a1(`) +

i−1∑
k=2

( i−1∑
j=2

γijkuj(`)

)
ak(`) + ai(`)

∣∣∣∣∣
1/`

.

We need to show that

lim sup
`→∞

‖A(`)u(`)‖1/`∞ ≡ max
1≤i≤n

α′i ≥ α
def
= max

1≤i≤n
αi.

Assume to the contrary that α′1, . . . , α
′
n < α and let i0 be the smallest integer such that α = αi0 . If i0 = 1, then consider

σ(f(Z)) =
∑∞
`=0 a1(`)z`, which has analytic radius r1

def
= 1/α1 = 1/α = R. But now we have |z| > R = r1 ⇒ σ(f(Z)) =

∞⇒ f(Z) =∞. If i0 ≥ 2, then consider

α′i0
def
= lim sup

`→∞

∣∣∣∣∣ui0(`)a1(`) +

i0−1∑
k=2

( i0−1∑
j=2

γi0jkuj(`)

)
︸ ︷︷ ︸

=:v
i0
k (`)

ak(`) + ai0(`)

∣∣∣∣∣
1/`

= lim sup
`→∞

∣∣∣∣∣ui0(`)a1(`) +

i0−1∑
k=2

vi0k (`)ak(`) + ai0(`)

∣∣∣∣∣
1/`

.

Since ui(`) = O(`ν+1) as ` → ∞, we also have vi0k (`) = O(`ν+1) as ` → ∞, hence lim sup`→∞ |ui0(`)a1(`)|1/` ≤ α1

and ∀2 ≤ k ≤ i0 − 1 : lim sup`→∞
∣∣vi0k (`)ak(`)

∣∣1/` ≤ αk. But by choice of i0 we have α1, . . . , αi0−1 < αi0 , hence by
Lemma 6.4.6 it follows that α′i0 = αi0 = α, a contradiction to our assumption. Thus

lim sup
`→∞

∥∥A`Z`∥∥1/`

∞ = |z| lim sup
`→∞

‖A(`)u(`)‖1/`∞ >
1

α
α = 1

as desired.

To (8): For any submultiplicative ‖·‖ and any ` ∈ N0 we have ρA(A(`)) ≤ ‖A(`)‖, hence Dsp ≥ R.
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To (9): If A ϕ−→ B is a general morphism of C-algebras, then by Corollary 2.3.14 we have a canonical factorization

ϕ = ϕ̄ ◦Πτ , where ϕ̄ = ⊕N`=1ϕ̄` :
⊕N

`=1(Aτ(`),mτ(`))→
⊕N

`=1(B`, n`). Since each ϕ̄` is C-linear and local, we have

ϕ̄−1
( N∏
`=1

DR`(σ`(Z0))× n`

)
=

N∏
`=1

DRτ(`)(στ(`)(Z0))×mτ(`),

and furthermore taking Π−1
τ gives precisely Bsp(Z0, R) for some R ∈ (0,∞]M , where notice that Bsp

Ak(prk(Z0),∞)
def
= Ak.

Finally, locally normal convergence of g = f ◦ ϕ ∈ B{ϕ(Z)} for f ∈ B{W} follows from the locally normal convergence
of f and continuity of the morphism ϕ. �

Remarks:
(1) The product spectral topology on A is the one generated by the open spectral polycylinders Bsp(Z0, R), Z0 ∈ A,

R ∈ (0,∞]M , as a subbasis of open sets.

(2) Given f ∈ Oϕ(U), we shall also sometimes write for short Bsp
f (Z0) := Bsp(Z0, Rf (Z0)) to mean the (maximal)

open spectral polycylinder of convergence of f at the point Z0 ∈ U .

(3) Proposition 6.4.7 (7) is specific to connected finite-dimensional commutative associative Banach algebras. If we
drop commutativity and/or finite dimensionality, then we can have convergence outside of the spectral ball, for
example whenever there exist elements A,B ∈ A with ρ(A), ρ(B) > 0 but AB = 0. Existence of such elements
is not possible in finite-dimensional local commutative C-algebras by the triangular structure. For an explicit
example consider the series

f(Z) :=

∞∑
`=0

(
0 2−`

0 0

)
Z`, Z ∈ M2(C).

Again all norms are equivalent and we have Rf = 2, but for Z0 := ( 3 0
0 0 ) we have ρA(Z0) = 3 > R and f(Z0) = 0.

(4) Since Dsp depends only on the behaviour of the first (unital) coordinate of A(`), it is generally easier to compute
than R, but it can be an arbitrarily suboptimal estimate.

(5) Notice that the well-known estimate |z1 + · · ·+ zn|1/` ≤ max1≤i≤n |zi|1/` for z1, . . . , zn ∈ C and ` ∈ N does not
help with the proof of (7) in Proposition 6.4.7 as it gives the “wrong” direction of the estimate.

Definition 6.4.8 (Banach-space-valued measures): Let (X,Σ) be a measurable space and E a Banach space. An E-
valued measure on (X,Σ) is a map µ : Σ→ E such that

(i) µ(∅) = 0;

(ii) µ(
⋃
· k∈NXk) =

∑
k∈N µ(Xk) for any countable disjoint family (Xk)k∈N ⊆ Σ.

Remarks:
(1) The only difference to the usual notion of a measure is the lack of non-negativity, which per se does not make

sense in an arbitrary Banach space E. Moreover, the order of summation does not matter since the order of
set-theoretic union does not.

(2) If E = A ∈ fdCAlgC and {a1, . . . , an} is a C-basis for A, then a measure µ : Σ→ A can be uniquely written as
µ =

∑n
k=1 akµk, where µk : Σ → C, 1 ≤ k ≤ n, are complex-valued measures (in the usual sense of functional

analysis).

Let B =
⊕N

`=1 B` be the decomposition of B into Artinian local C-algebras (B`, n`, ‖·‖B`), 1 ≤ ` ≤ N , with unital

submultiplicative norms and let ‖·‖ := ‖·‖⊕ = max1≤`≤N ‖·‖B` be the direct sum norm on B. For Z ∈ A =
⊕M

k=1(Ak,mk)

we shall write Z =
⊕M

k=1(zk ⊕ Zmk), where zk ∈ C and Zmk ∈ mk, 1 ≤ k ≤M .

Proposition 6.4.9 (Cauchy-Transform over A): Let ϕ = (⊕N`=1ϕ̄`) ◦ Πτ : A =
⊕M

k=1(Ak,mk) → B =
⊕N

`=1(B`, n`)
be a morphism of C-algebras given in canonical factorization form. Let Ω be a measurable space, µ a finite B-valued

measure on Ω, G :=
⊕M

k=1(gk ⊕Gmk) : Ω→ A a measurable function, and U ⊆ A open such that ∀Z ∈ U ∀1 ≤ ` ≤ N :

inf
t∈Ω

(∣∣gτ(`)(t)− zτ(`)

∣∣− ∥∥ϕ̄`(Gmτ(`)(t)− Zmτ(`))
∥∥
B`

)
> 0. (6.13)

In particular, ϕ(G(Ω)− U) ⊆ B×. Then f : U → B defined by

f(Z) :=

∫
Ω

dµ(t)

ϕ(G(t)− Z)

is ϕ-analytic on U with derivatives
f (k)(Z)

k!
=

∫
Ω

dµ(t)

ϕ(G(t)− Z)k+1
, k ∈ N0.
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Proof: Fix Z ∈ U and set

R := min
1≤`≤N

inf
t∈Ω

(∣∣gτ(`)(t)− zτ(`)

∣∣− ∥∥ϕ̄`(Gmτ(`)(t)− Zmτ(`))
∥∥
B`

)
> 0.

By continuity of ϕ choose r > 0 small enough such that B‖·‖A (Z; r) ⊆ U and ϕ(B‖·‖A (Z; r)) ⊆ B‖·‖B (ϕ(Z);R). By hypothesis
∀1 ≤ ` ≤ N ∀t ∈ Ω: ∥∥∥∥ ϕ̄`(Gmτ(`)(t)− Zmτ(`))

gτ(`)(t)− zτ(`)

∥∥∥∥
B`

< 1,

hence ∀t ∈ Ω:∥∥∥∥ 1

ϕ(G(t)− Z)

∥∥∥∥
B

=

∥∥∥∥∥
N⊕
`=1

1

(gτ(`)(t)− zτ(`)) + ϕ̄`(Gmτ(`)(t)− Zmτ(`))

∥∥∥∥∥
⊕

def
=

def
= max

1≤`≤N

∥∥∥∥∥ 1

(gτ(`)(t)− zτ(`)) + ϕ̄`(Gmτ(`)(t)− Zmτ(`))

∥∥∥∥∥
B`

= max
1≤`≤N

1∣∣gτ(`)(t)− zτ(`)

∣∣
∥∥∥∥∥∥∥

1

1−
ϕ̄`(Zmτ(`)

−Gmτ(`)
(t))

gτ(`)(t)−zτ(`)

∥∥∥∥∥∥∥
B`

≤ max
1≤`≤N

1∣∣gτ(`)(t)− zτ(`)

∣∣ 1

1−
∥∥∥∥ ϕ̄`(Gmτ(`)

(t)−Zmτ(`)
)

gτ(`)(t)−zτ(`)

∥∥∥∥
B`

= max
1≤`≤N

1∣∣gτ(`)(t)− zτ(`)

∣∣− ∥∥ϕ̄`(Gmτ(`)(t)− Zmτ(`))
∥∥
B`

≤ 1

R

by Lemma 2.5.11. Thus ∀W ∈ B‖·‖A (Z; r) ∀t ∈ Ω:

q :=

∥∥∥∥ ϕ(W − Z)

ϕ(G(t)− Z)

∥∥∥∥ ≤ ‖ϕ(W − Z)‖
∥∥∥∥ 1

ϕ(G(t)− Z)

∥∥∥∥ ≤ ‖ϕ(W − Z)‖
R

< 1.

Hence for all W ∈ B‖·‖A (Z; r) the geometric series

1

ϕ(G(t)−W )
=

1

ϕ(G(t)− Z)

1

1− ϕ(W−Z)
ϕ(G(t)−Z)

=
1

ϕ(G(t)− Z)

∞∑
`=0

(
ϕ(W − Z)

ϕ(G(t)− Z)

)`
converges uniformly in t ∈ Ω. Therefore, since µ is finite, we can interchange summation and integration to obtain

∀W ∈ B‖·‖A (Z; r):

f(W ) =

∫
Ω

dµ(t)

ϕ(G(t)−W )
=

∫
Ω

( ∞∑
`=0

ϕ(W − Z)`

ϕ(G(t)− Z)`+1

)
dµ(t) =

∞∑
`=0

(∫
Ω

dµ(t)

ϕ(G(t)− Z)`+1

)
ϕ(W − Z)`

as desired. �

Remark: Using Lemma 2.5.13 one can relax the hypothesis of Proposition 6.4.9 as follows:

∀Z ∈ U ∀1 ≤ ` ≤ N ∀t ∈ Ω :
∣∣gτ(`)(t)− zτ(`)

∣∣ ≥ ∥∥ϕ̄`(Gmτ(`)(t)− Zmτ(`))
∥∥
B`
,

but keep

inf
t∈Ω

∣∣gτ(`)(t)− zτ(`)

∣∣ > 0.

Indeed, if we fix Z ∈ U and choose R > 0 small enough such that
∣∣gτ(`)(t)− zτ(`)

∣∣ ≥ ν`R, where ν` ∈ N is the smallest
integer such that ∀t ∈ Ω : ϕ̄`(Gmτ(`)(t)− Zmτ(`))

ν` = 0, then by Lemma 2.5.13 we obtain∥∥∥∥ 1

ϕ̄`(Gτ(`)(t)− Zτ(`))

∥∥∥∥
B`

≤ ν`∣∣gτ(`)(t)− zτ(`)

∣∣ ≤ 1

R
,

from where one proceeds analogously as in the proof above. �

Proposition 6.4.10 (Analyticity & Cauchy’s Integral Formula over A for Derivatives): Let U ⊆ A be open and path-
connected and let f ∈ Oϕ(U). Then:

(1) For every open polydisk ∆ := ∆r(Z0) ⊆ U with center Z0 ∈ U and every Z0-admissible loop γ ∈ C 1
pw(S1,∆) in

it there exists an open neighbourhood V 3 Z0 in ∆ such that ∀Z ∈ V :

f (k)(Z) Indϕ(γ, Z) =
k!

2πi

∮
γ

f(W )

ϕ(W − Z)k+1
dW, k ∈ N0. (6.14)

(2) f is ϕ-analytic in U .

Proof: To (1): Let ∆ := ∆r(Z0) ⊆ U be an arbitrary open polydisk in U with center Z0 ∈ U . Fix a Z0-admissible
loop γ ∈ C 1

pw(S1,∆) 6= ∅ and put Iγ(Z) := Indϕ(γ, Z). Define V := ∆ ∩ Admϕ(γ) 3 Z0, which is open. Then by
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Proposition 6.3.1 we obtain ∀Z ∈ V :

f(Z)Iγ(Z) =
1

2πi

∮
γ

f(W )

ϕ(W − Z)
dW.

Differentiating both sides gives us

f ′(Z)Iγ(Z) + f(Z)I′γ(Z) = f ′(Z)Iγ(Z) =
1

2πi

∮
γ

f(W )

ϕ(W − Z)2
dW,

since Iγ : Admϕ(γ) → Z⊕N ⊆ B is a locally constant map. Now the formula for the higher derivatives f (k), k ∈ N,
follows in the same way by induction.

To (2): Without loss of generality we can assume Z0 = 0. Following the argument in the the proof of Proposition 6.3.1
we know constructively that there exists a sufficiently small ε > 0 such that the loop γ := γε, defined by

γε(t) :=

M⊕
k=1

εe2πit, t ∈ [0, 1],

is contained in ∆ and Z0-admissible with Iγ(Z0) = 1A (in fact, only the indices k ∈ im τ matter). Denote by C 3 Z0

the connected open component of Z0, on which Iγ stays = 1A. Then we have ∀Z ∈ V ∩ C:

f(Z) =
1

2πiIγ(Z)

∮
γ

f(W )

ϕ(W − Z)
dW =

1

2πi

∮
γ

f(W )

ϕ(W − Z)
dW.

One immediately checks that Ω := I
def
= [0, 1], G := γ, and dµ(t) := f(γ(t))ϕ(γ′(t))dt satisfy the hypothesis of Proposi-

tion 6.4.9. In particular, the “inf-condition” presents no problem because Ω is compact and γ is continuous. Now the
claim follows since Iγ |V ∩C = const = 1A. �

Remark: It is seductive to conjecture at this point that if A is a connected non-unital C-algebra, then all A-holomorphic
functions at 0 are given by A{Z} = A[Z], and hence that A[Z] contains in fact all A-holomorphic functions. However, this
is not true. Consider A := M being the maximal ideal of C[X]/(X3), i.e. A = Ce1⊕Ce2 with e2

1 = e2, e1e2 = 0, e2
2 = 0.

Let f ∈ C{z1} \ C[z1] and define F (z1e1 + z2e2) := e1 + f(z1)e2. Then F is not polynomial, but it is A-holomorphic:

F (Z +H) = e1 + f(z1 + h1)e2 = e1 + (f(z1) + f ′(z1)h1 + r(h1))e2 = e1 + f(z1)e2 + f ′(z1)h1e2 + r(h1)e2 =

= F (Z) + (f ′(z1)e1 + we2)(h1e1 + h2e2) + r(h1)e2,

where w ∈ C is arbitrary and |r(h1)| = o(|h1|). But ‖r(h1)e2‖1 = o(‖H‖1) because:

‖r(h1)e2‖1
‖h1e1 + h2e2‖1

=
|r(h1)|
|h1|+ |h2|

≤ |r(h1)|
|h1|

→ 0

as H → 0. Notice once again the non-uniqueness of the derivative F ′ for non-unital algebras. �

Corollary 6.4.11 (Cauchy’s Inequality over A): Let U ⊆ A be open and path-connected, Z0 ∈ U , f ∈ Oϕ(U), and
γ ∈ C 1

pw(S1, U) an admissible loop for Z0 with IndA(γ, Z0) = 1. Then ∀k ∈ N0 :∥∥∥f (k)(Z0)
∥∥∥
B
≤ k!

2π
‖f‖B,γ LB(γ) sup

t∈I

∥∥∥∥ 1

ϕ(γ(t))− ϕ(Z0)

∥∥∥∥k+1

B
. (6.15)

In particular, we have the following two special cases:

(1) If γ(t) := Z0 + re2πit, t ∈ I, then ∥∥∥f (k)(Z0)
∥∥∥
B
≤ k!

rk
‖f‖B,γ . (6.16)

(2) If (A,m)
ϕ−→ (B, n) and ‖·‖B is unital, then for X0 ∈ m and ν ∈ N with ϕ(X0)ν−1 6= 0 and ϕ(X0)ν = 0 in n and

γ(t) := (λ0 + re2πit), t ∈ I, with λ0 ∈ C we have ∀k ∈ N0:∥∥∥f (k)(λ0 +X0)
∥∥∥
B
≤ k! ‖f‖B,γ

( ν−1∑
j=0

(
‖ϕ(X0)‖B

r

)j)k+1

. (6.17)

Proof: We have∥∥∥f (k)(Z0)
∥∥∥
B

=
k!

2π

∥∥∥∥∫ 1

0

f(γ(t))ϕ(γ′(t))

ϕ(γ(t)− Z0)k+1
dt

∥∥∥∥
B
≤ k!

2π

∫ 1

0

‖f(γ(t))‖B ‖ϕ(γ′(t))‖B

∥∥∥∥ 1

ϕ(γ(t))− ϕ(Z0)

∥∥∥∥k+1

B
dt,

from which the desired inequality follows. Now, (1) and (2) follow by direct substitution as ϕ preserves scalars, where
in (2) we also apply Equation (2.15). �
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Corollary 6.4.12 (Liouville over A): Let U ⊆ A be open and path-connected and let f ∈ Oϕ(U). Suppose that there
exists a subset V ⊆ U such that:

(i) f |V is bounded and

(ii) for every Z0 ∈ U , V contains a collection of Z0-admissible simple loops {γn}n∈N such that{
sup
t∈I

∥∥∥∥ 1

ϕ(γn(t))− ϕ(Z0)

∥∥∥∥
B

: n ∈ N
}

is unbounded, but

LB(γn) sup
t∈I

∥∥∥∥ 1

ϕ(γn(t))− ϕ(Z0)

∥∥∥∥
B

n→∞−−−−→ 0.

Then f = const. In particular, if (A,m) is local, U ⊇ C, and f
∣∣
C is bounded, then f = const.

Proof: By Cauchy’s inequality over A we have for k = 1

‖f ′(Z0)‖B ≤
1

2π
‖f‖B,γn LB(γn) sup

t∈I

∥∥∥∥ 1

ϕ(γn(t))− ϕ(Z0)

∥∥∥∥
B
→ 0

as n ∈ N varies, because ‖f‖B,γn is bounded by assumption (no pun intended). Thus f is locally constant and hence

constant by path-connectedness of U . For the last statement it clearly suffices to take (scalar) loops in C. �

Corollary 6.4.13 (Local form of ϕ-holomorphic functions): Let U ⊆ A be open and A ϕ−→ B a morphism of C-algebras.
Let f ∈ Oϕ(U). Then:

(1) f locally factors analytically through ϕ: for every Z0 ∈ U there exist an open neighbourhood of V 3 Z0 and an
open neighborhood W 3 ϕ(Z0) with ϕ(V ) ⊆W such that ∃1gW ∈ OB(W ) : f |V = gW ◦ ϕ, namely:

A Bsp
A (Z0, R) B

B Bsp
B (ϕ(Z0), R)

ϕ ϕ

f

∃1g

(2) If U 3 0, then f extends polynomially to nilA.

Proof: To (1): This is immediate because locally at Z0 we have f ∈ B{ϕ(Z − Z0)}.

To (2): Explicitly, if f is analytic at 0, then in a small open neighbourhood of 0 we have f(Z) =
∑∞
j=0BjZ

j for some

Bj ∈ B. If X ∈ nilA, then simply f(X) :=
∑∞
j=0BjX

j , which is polynomial as X is nilpotent. �

Corollary 6.4.14: Let (A,m)
ϕ−→ (B, n) be a morphism of local C-algebras, U ⊆ A open with U 3 0, and f ∈ Oϕ(U).

If f(0) ∈ n, then f(m) ⊆ n.

Proof: In a spectral neighbourhood of 0 we have f(Z) =
∑∞
k=0Bkϕ(Z)k, where B0 = f(0) ∈ n by hypothesis. Since ϕ

is automatically local for Artinian A and B, i.e. ϕ(m) ⊆ ϕ(n), the claim follows as n is an ideal. �

Proposition 6.4.15 (Canonical form of ϕ-holomorphic functions): Let A ϕ−→ B be a morphism, let U ⊆ A be open and
f ∈ Oϕ(U).

(1) Separation of the scalar variable from the nilpotent variable: Suppose that A = (A,m) and B = (B, n) are local
and let ν := h(ϕ) be the height of ϕ. If z ⊕X ∈ U with z ∈ C and X ∈ m, then

f(Z) = f(z ⊕X) =

ν−1∑
k=0

f (k)(z)

k!
ϕ(X)k, (6.18)

where notice that f (k)|σA(U) → B simply are C-holomorphic functions with values in the finite-dimensional
Banach space B.

(2) If A = (A,m) and B = (B, n) are local, then f extends ϕ-holomorphically to Ũ . In other words, Oϕ(U) ∼= Oϕ(Ũ)
canonically. In particular, if U ⊇ C, then f extends to a ϕ-entire function.

(3) Conversely, if (A,m)
ϕ−→ (B, n) is a morphism of local C-algebras with ν := h(ϕ), V ⊆ C open, and g : V → B a

C-holomorphic function with values in B, then g̃ : V ×m→ B,

g̃(z ⊕X) :=

ν−1∑
k=0

g(k)(z)

k!
ϕ(X)k
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defines a ϕ-holomorphic function.

(4) f always extends ϕ-holomorphically to Ũ . In other words, Oϕ(U) ∼= Oϕ(Ũ) canonically.

Proof: To (1) and (2): Lemma 6.3.2 ensures that locally f extends to some sufficiently small open cylinder V = Ṽ
with σA(V ) ⊆ σA(U) ⊆ C. Since f is analytic in V , Taylor expansion at some fixed Z0 := z ⊕ 0, z ∈ σA(V ), gives
Equation (6.18) valid in some open spectral cylindrical neighbourhood of z. But this is a globally defined expression on

σA(U)×m that agrees on all spectral cylindrical open neighbourhoods inside Ũ . Notice that any open neighbourhood
of z contains in particular a basis of m, so the choice of ν is necessary to ensure that for all z⊕X in said neighbourhood
we have ϕ(X)ν = ϕ(Xν) = 0.

To (3): Write z1 := z and X =: z2a2 + · · · + znan for a C-basis {a2, . . . , an} of m. By Lemma 4.0.5 we only need to
check that ∀2 ≤ j ≤ n:

0 = dj g̃ ≡
(
− aj

∂

∂z1
+

∂

∂zj

)
g̃

Indeed we have

− aj
∂

∂z1
g̃ +

∂

∂zj
g̃ = −aj

ν−1∑
k=0

g(k+1)(z1)

k!
ϕ(X)k +

ν−1∑
k=1

g(k)(z1)

k!
ϕ(X)k−1kaj =

− aj
ν−1∑
k=0

g(k+1)(z1)

k!
ϕ(X)k + aj

ν−2∑
k=0

g(k+1)(z1)

k!
ϕ(X)k

def
= −ϕ(aj)ϕ(X)ν−1 = 0,

since ν
def
= h(ϕ).

To (4): If f ∈ Oϕ(U), then f = f̄ ◦ Πτ , where f̄ is of the form f̄ = ⊕N`=1f̄` for some ϕ̄`-holomorphic functions f̄`. Now
applying (2) to each f̄`, 1 ≤ ` ≤ N , and taking Π−1

τ yields the statement. �

Corollary 6.4.16:
(1) We have a bijection between m-tuples of C-holomorphic functions f i : V → C, V ⊆ C open, together with a

morphism A ϕ−→ B of local C-algebras, where m = dimC B, on the one hand and ϕ-holomorphic functions on
V ×m on the other hand

{(f : V → B, ϕ)} ←→ Oϕ(V ×m),

where f := f11B + f2b2 + . . . fmbm for a choice of C-basis {1, b2, . . . , bm} of B.

(2) Isolated Zeros in Scalar/Spectral Planes: let (A,m)
ϕ−→ (B, n) be a morphism of local C-algebras, U ⊆ A open

and connected, and 0 6= f ∈ Oϕ(U). Then ∀Z0 ∈ A : Z(f) ∩ (C + Z0) is a countable discrete subset of U .

(3) Identity Theorem in Scalar/Spectral Planes: let (A,m)
ϕ−→ (B, n) be a morphism of local C-algebras, U ⊆ A open

and connected, and f, g ∈ Oϕ(U). If the incidence set Z(f − g)∩ (C+Z0) has an accumulation point in U , then
f = g.

Proof: To (1): clear from Proposition 6.4.15.

To (2) & (3): We only prove (2). It follows essentially from Equation (6.18) and (1). We can assume U = Ũ . Since σA
is open and continuous as a projection, σA(U) is also open and connected. We can assume without loss of generality

that Z0 = 0, otherwise consider f̃(Z) := f(Z +Z0). Suppose that Z(f)∩C has an accumulation point in σA(U). Then
by the Identity Principle of Complex Analysis of a Single Variable f |σA(U) = 0. But by Equation (6.18) we have

f(z ⊕X) =

ν−1∑
k=0

f (k)(z)

k!
ϕ(X)k,

where ν = h(ϕ). Thus f = 0. �

Remarks:
(1) Thus the local theory of ϕ-holomorphic functions is in a sense about doing Complex Analysis of One Variable

with commutative nilpotents.

(2) Notice that (3) and (4) do not follow by simply applying the canonical projection σA to the power series of f
since this only yields f1 = 0 rather than f |C = 0. The reader is free to convince herself that the latter does not
necessarily follow from the former by means of the generalized Cauchy-Riemann-Sheffers equations for a local
C-algebra (A,m).

Definition 6.4.17: Let A = (A,m) be a local C-algebra, ‖·‖ an arbitrary vector norm on A, and ε > 0. Then

mε := {X ∈ m : ‖X‖ < ε}.
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Lemma 6.4.18 (Extension of bi-A-holomorphisms): Let A = (A,m) be a local C-algebra, U, V ⊆ A open subsets, and

f : U
∼=−→ V an A-biholomorphism. Then f extends to an A-biholomorphism f̃ : Ũ

∼=−→ Ṽ :

U V

Ũ Ṽ

∼=
f

∼=
f̃

Proof: Let g := f−1 : V → U , let f̃ be the extension of f to Ũ and g̃ be the extension of g to Ṽ . We need to show that

f̃(Ũ) ⊆ Ṽ : then likewise g̃(Ṽ ) ⊆ Ũ , and since g ◦ f = id on the open U , it follows by the identity principle of SCVs that

g ◦ f = id on Ũ . Now, if U =
⋃
i∈I Ui is an arbitrary (open) cover, then Ũ =

⋃
i∈I Ũi. Thus it suffices to show the claim

for bounded cylindrical neighbourhoods in U . Without loss of generality we can consider f(Z) =
∑∞
k=1AkZ

k ∈ A{Z}
and g(Z) =

∑∞
k=1BkZ

k ∈ A{Z} with A1, B1 ∈ A× inducing automorphisms on Dr(0)×mε for r ≤ min{Rf , Rg} and a
sufficiently small ε > 0. We need to show that then f(Dr(0)×m) ⊆ Dr ×m. But if f1 denotes the unital component of
f , then ∀z ⊕X ∈ Dr(0)×m : ρA(f(z ⊕X)) = |f1(z)| < r since f(Dr(0)×mε) ⊆ Dr(0)×mε. �

Lemma 6.4.19 (Analyticity and Nilpotents): Let (A,m)
ϕ−→ (B, n) be a morphism of local C-algebras, U ⊆ A open and

path-connected, and f ∈ Oϕ(U).

(1) For Z0 ∈ U and X ∈ m = nilA the limit of the generalized derivative

f ′(X)(Z0) := lim
H→X
H∈A×

f(Z0 +H)− f(Z0)

ϕ(H)

exists and gives rise to a function f̌ : m× U → B, (X,Z) 7→ f ′(X)(Z), polynomial in X and ϕ-analytic in Z.

(2) The function g : U × U → B,

g(Z,W ) :=

{
f(W )−f(Z)
ϕ(W−Z) , if W − Z ∈ A× ∩ U
f ′(W−Z)(Z), if W − Z ∈ m ∩ U

def
=

{
f(W )−f(Z)
ϕ(W−Z) , if W − Z ∈ A× ∩ U
f̌(W − Z,Z), if W − Z ∈ m ∩ U

(6.19)

is ϕ-holomorphic both in Z and W .

Proof: To (1): First notice that the definition makes sense because A× is dense in A. Without loss of generality we can

assume U = Ũ cylindrical. Fix Z0 ∈ U and let R := Rf (Z0) be the radius of convergence of f at Z0. By ϕ-analyticity
we have R > 0 and ∀W ∈ Bsp

A (Z0, R):

f(W ) =

∞∑
k=0

f (k)(Z0)

k!
ϕ(W − Z0)k

def
=

∞∑
k=0

f (k)(Z0)

k!
ϕ(H)k

for all H ∈ Bsp
A (0, R), where H := W − Z0. Hence ∀H ∈ Bsp

A (0, R):

f(W )− f(Z0)

ϕ(W − Z0)
=
f(Z0 +H)− f(Z0)

ϕ(H)
=

∞∑
k=1

f (k)(Z0)

k!
ϕ(H)k−1 =: f̌loc(H,Z0)

def
=

∞∑
k=0

f (k+1)(Z0)

(k + 1)!
ϕ(W − Z0)k

def
=

def
= f̌loc(W − Z0, Z0).

Since the power series of a ϕ-analytic function around a point converge on the biggest open disk cylinder that fits in,
there exist sufficiently small open subcylinders V1 ⊆ U for W , V0 ⊆ Bsp

A (0, R), V0 3 0, for H, and V2 ⊆ U , V2 3 Z0, for Z

with Minkowski difference V0 ⊇ V1−V2 ⊇ m, such that f̌loc : V0×V2 → B is well-defined and ϕ-holomorphic in H and Z,
and respectively f̌loc(W−Z,Z) is well-defined on V1×V2 and ϕ-holomorphic in both Z and W . Notice that f̌loc implicitly
depends on Z0, that is, on the small neighbourhood of definition V2 of Z (hence the notation). On the other hand, if
ν ∈ N is any integer with the property that ∀X ∈ m : Xν = 0, then we also have ∀Z ∈ U ∀H ∈ Bsp

A (0, R(Z)) ∩ A×:

lim
H→X

f(Z +H)− f(Z)

ϕ(H)
= lim
H→X

∞∑
k=1

f (k)(Z)

k!
ϕ(H)k−1 =

ν∑
k=0

f (k+1)(Z)

(k + 1)!
ϕ(X)k =: f̌(X,Z),

since ρ(X) = 0 < R, which in turn is globally defined in Z over m× U . Thus any f̌loc, when restricted to m = nilA in
the first argument, extends globally in the second argument to U . In other words, f̌ : m× U → B is ambiently always
a restriction of some f̌loc ϕ-holomorphic in the first (both) argument(s).

To (2): First we show that for any Z0 ∈ U the function g(Z0,W ) is ϕ-holomorphic in W . It suffices to prove this in a
neighbourhood of Z0 + m. This follows directly from the proof of (1): f̌loc(W − Z,Z) exists ϕ-holomorphically on an

open product V1× V2 3 (W,Z) with V2 3 Z0 and V1 ⊇ Z0 +m and coincides with f(W )−f(Z0)
ϕ(W−Z0) outside of {W −Z0 ∈ m}.
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Next, fix W0 ∈ U instead. The task at hand is similar, but slightly different in the way of choosing V1 and V2. We need
to show that

g(Z,W0)
def
=

{
f(W0)−f(Z)
ϕ(W0−Z) , if W0 − Z ∈ A× ∩ U
f̌(W0 − Z,Z), if W0 − Z ∈ m ∩ U

def
=

{
f(W0)−f(Z)
ϕ(W0−Z) , if W0 − Z ∈ A× ∩ U∑∞
k=0

f(k+1)(Z)
(k+1)! ϕ(W0 − Z)k, if W0 − Z ∈ m ∩ U

is ϕ-holomorphic in Z ∈ U . Again, it suffices to show this for Z in a small (cylindrical) neighbourhood of W0 + m.
For any W0 ∈ U there exist small (cylindrical) neighbhourhoods V1 ⊆ U , V1 3 W0, and V2 ⊆ U , V2 ⊇ V1, such that
∀W ∈ V1 ∀Z ∈ V2:

f̌loc(W − Z,Z)
def
=

∞∑
k=0

f (k+1)(Z)

(k + 1)!
ϕ(W − Z)k

is well-defined and ϕ-holomorphic in both W and Z and by the proof of (1) coincides with f(W )−f(Z)
ϕ(W−Z) for (W,Z) ∈

(V1 × V2) \ {W − Z ∈ m}. Therefore g(Z,W0) is ϕ-holomorphic for Z ∈ V2 ⊇ V1 ⊇W0 + m. �

Proposition 6.4.20 (Morera over A): Let U ⊆ A open and path-connected and let f ∈ C 0(U,B).

(1) If for all simple rectifiable loops γ in U ∮
γ

f(Z)dZ = 0,

then f ∈ Oϕ(U).

(2) If for all 4 ⊆ U ∮
∂4

f(Z)dZ = 0,

then f ∈ Oϕ(U).

(3) If for all � ⊆ U ∮
∂�

f(Z)dZ = 0,

then f ∈ Oϕ(U).

Proof: To (1): by Lemma 5.0.5 (1), f has a primitive F , which is analytic by Proposition 6.4.10, hence so is f .

To (2): Being finite-dimensional, A is a locally convex TVS. Therefore, U can be covered by (star-)convex open sets,
over which f has local primitives by Lemma 5.0.5.

To (3): by Lemma 5.0.5 (3). �

In the same spirit we obtain a slight variation of Proposition 5.0.6 (2):

Lemma 6.4.21: Let U ⊆ A be open and let f ∈ C 1(U,B) such that ω := f(Z)dZ is d-closed. Then f ∈ Oϕ(U).

Proof: ω d-closed ⇒ ω locally exact, i.e. f locally ϕ-integrable ⇒ f locally ϕ-analytic, i.e. f ∈ Oϕ(U). �

Proposition 6.4.22 (Weierstraß Convergence Theorems over A): Let A ϕ−→ B be a general morphism of C-algebras, let
U ⊆ A be open and path-connected, and let (fn)n∈N ⊂ Oϕ(U).

(1) If fn → f locally uniformly17, then f ∈ Oϕ(U) and f ′n → f ′ locally uniformly.

(2) If
∑n
k=1 fk → f locally normally18, then f ∈ Oϕ(U) and

∑n
k=1 f

′
k → f ′ also locally normally.

Proof: To (1): follows completely analogously to the case of A being the complex plane itself.

To (2): Fix Z0 ∈ U and γ ∈ C 1
pw(S1, U) a Z0-admissible loop with Indϕ(γ, Z0) = 1. Without loss of generality we can

assume that ‖·‖B is unital. By translation with −Z0 we can also assume without loss of generality that Z0 = 0, which
allows us to take γ to be a scalar curve. Note, however, that for an arbitrary Z0 the Indϕ = 1-condition may prevent
us in general from choosing γ to be a scalar curve, since A need not be a connected algebra. Now, let for instance
γ(t) := re2πit1A, t ∈ [0, 1], for a sufficiently small r > 0, in particular LB(γ) = 2πr. Fix 0 < ε < r. As before, there
exists a neighbourhood V 3 Z0 = 0 of γ-admissible points such that ∀Z ∈ V : Indϕ(γ, Z) = 1 and ‖ϕ(Z)‖ < ε by
continuity of ϕ. By Lemma 2.5.11 we have ∀Z ∈ V :∥∥∥∥ 1

γ(t)− ϕ(Z)

∥∥∥∥
B
≤ 1

r − ‖ϕ(Z)‖B
<

1

r − ε
.

17since A is locally compact, locally uniform convergence not only implies compact convergence, but is also equivalent to it;
18for the same reason, locally normal convergence not only implies compactly normal convergence, but is equivalent to it;
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Thus by Cauchy’s inequality over A (6.4.11) we obtain ∀Z ∈ V :

‖f ′n(Z)‖B ≤
LB(γ)

2π
‖fn‖B,γ sup

t∈I

∥∥∥∥ 1

γ(t)− Z0

∥∥∥∥
B
≤ r

r − ε
‖fn‖B,γ ,

which proves the claim. �

6.5. The Homological Cauchy’s Integral Formula over A.

Definition 6.5.1: Let A ∼=
⊕M

k=1(Ak,mk) be a decomposition of A into local Artin C-algebras, let U ⊆ A be open and
path-connected, and let I ⊂ {1, . . . ,M} be an index subset.

(1) I-restricted spectral 1-homology: Bsp
1 (U,Z)I :=

⋂
k∈I(σk)−1

# (B1(σk(U),Z)), Hsp
1 (U,Z)I := Z1(U,Z)/Bsp

1 (U,Z)I .

(2) Spectral 1-homology associated to ϕ: if ϕ : A → B is a morphism of C-algebras, then Bϕ1 (U,Z) := Bsp
1 (U,Z)im τϕ

and Hϕ
1 (U,Z) := Hsp

1 (U,Z)im τϕ .

Theorem 6.5.2 (Homological Cauchy Integral Formula over A): Let U ⊆ A be open and path-connected, let f ∈ Oϕ(U),
and Γ ∈ Z1(U,Z). If [Γ] = 0 in Hϕ

1 (U,Z), then ∀Z ∈ U ∩Adm(Γ):

f(Z) Indϕ(Γ, Z) =
1

2πi

∫
Γ

f(W )

ϕ(W − Z)
dW. (6.20)

In particular ∫
Γ

f(W )dW = 0. (6.21)

Proof: We first prove the claim for a local morphism (A,m)
ϕ−→ (B,m), which then easily translates to a general A ϕ−→ B.

We adapt the well-known proof of Dixon to our setting. Extend f : U → B to f : Ũ → B and define g : Ũ × Ũ → B,

g(Z,W ) :=

{
f(W )−f(Z)
ϕ(W−Z) , if W − Z ∈ Ũ ∩ A×

f̌(W − Z,Z), if W − Z ∈ Ũ ∩m.

We note that Ũ ⊇ F(Γ)
def
= Γsp ×m and

Ũ ∩m
def
=

{
m, if σA(U) 3 0

∅, otherwise.

By Lemma 6.4.19 g is ϕ-holomorphic in Z and W . Now put

h(Z) :=
1

2πi

∫
Γ

g(Z,W )dW.

Then h ∈ Oϕ(Ũ) as a parameter-integral over the compact Γ. We have ∀Z ∈ Ũ ∩Adm(Γ):

h(Z) =
1

2πi

∫
Γ

f(W )− f(Z)

ϕ(W − Z)
dW =

1

2πi

∫
Γ

f(W )

ϕ(W − Z)
dW − f(Z) indC(Γsp, z),

where recall that z
def
= σA(Z) and indC(Γsp, z) = Indϕ(Γ, Z). We are going to show that h = 0. By hypothesis, we have

∀z ∈ σA(U)c : indC(Γsp, z) = 0. Therefore h ∈ Oϕ(Ũ) extends over Ũ c = σA(U)c ×m ⊆ Adm(Γ) to a ϕ-entire function
via

h(Z) :=
1

2πi

∫
Γ

f(W )

ϕ(W − Z)
dW, Z ∈ Ũ c.

Now consider h|C. Since Γ ' Γsp in Ũ , we obtain for z, w ∈ C:

h(z) =
1

2πi

∫
Γsp

f(w)

w − z
dw → 0 as |z| → 0

by the usual estimate, where notice that h(z) is simply a (C-)entire function taking values in B. Thus by Liouville

(Corollary 6.4.12) we have h = const = 0. In other words, ∀Z ∈ Ũ ∩Adm(Γ):

0 = h(Z) =
1

2πi

∫
Γ

f(W )

ϕ(W − Z)
dW − f(Z) Indϕ(Γ, Z)

as desired. Finally, using Equation (6.7), Equation (6.8), and the definition of Bϕ1 (U,Z), the result easily generalizes to

an arbitrary A ϕ−→ B in an analogous manner as in the proof of Proposition 6.3.1. �

Remarks:
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(1) Passing to Ũ in the proof allows to contain F(Γ) entirely in the initial domain of definition of h, which makes

it easier to exhibit the holomorphic continuation of h to Ũ c. If we didn’t extend f to Ũ , we would have had to
prove that

h(Z) :=

{
1

2πi

∫
Γ

f(W )
ϕ(W−Z)dW, if Z ∈ Ũ c ∩Adm(Γ)

0, if Z ∈ Ũ c ∩ F(Γ)

gives the analytic continuation of h, for example by using the somewhat cumbersome f̌loc-yoga.

(2) A similar result has been shown by Giovanni Battista Rizza (1952) in [Riz52]. As of writing this, we have not been
able to obtain his paper, however the Zentralblatt review indicates that his proof uses much stronger topological
assumptions. Namely, in our language his main statement reads as follows: let A = (A,m) be local, U ⊆ A open
and path-connected, f ∈ OA(U), and Γ ∈ Z1(U,Z) with [Γ] = 0 in H1(U,Z). Then ∃N ∈ N ∀Z ∈ U ∩Adm(Γ):

f(Z)2πiN =

∫
Γ

f(W )

W − Z
dW.

In comparison, we only require [Γsp] = 0 in H1(σA(U),Z).

(3) In order to illustrate the difference between the condition [Γ] = 0 in H1(U,Z) and the condition ∀1 ≤ k ≤ N :
[Γsp
k ] = 0 in H1(σk(U),Z), we give the following example19: consider the set U := (C2 \ {z3

1 + z2
2 = 0}) ∩Br(0),

where Br(0) ⊆ C2 is an open ball of radius r > 0 around the origin. U is known to be diffeomorphic to
(S3 \K)× (0, r), where K denotes the trefoil knot. Then H1(U,Z) = Z, but H1(p1(U),Z) = H1(p2(U),Z) = 0,
where p1,2 : C2 → C are the canonical projections, since p1,2(U) are open disks in C of radius r.

It is now evident that the right choice of index-based 1-homology in the theory of ϕ-holomorphic functions is given by
“spectral” ϕ-1-Homology Hϕ

1 (U,Z):

Corollary 6.5.3: Let U ⊆ A be open and path-connected. We have a well-defined Z-B-bilinear pairing

β : Hϕ
1 (U,Z)×Oϕ(U)→ B, ([Γ], f) 7→

∫
Γ

f(Z)dZ (6.22)

between ϕ-1-homology and ϕ-holomorphic functions. �

Proposition 6.5.4 (Homological Cauchy Differentiation Formula over A): Let U ⊆ A be open and path-connected and
let f ∈ Oϕ(U). Then for every open polydisk ∆ := ∆r(Z0) ⊆ U with center Z0 ∈ U and every Z0-admissible 1-cycle
Γ ∈ Bsp

1 (∆,Z) there exists an open neighbourhood V 3 Z0, V ⊆ ∆, such that ∀Z ∈ V :

f (k)(Z) Indϕ(Γ, Z) =
k!

2πi

∫
Γ

f(W )

ϕ(W − Z)k+1
dW, k ∈ N0. (6.23)

Proof: Same as the proof of Proposition 6.4.10. �

Corollary 6.5.5 (Cauchy’s Inequality overA for 1-Cycles): Let U ⊆ A be open and path-connected, Z0 ∈ U , f ∈ Oϕ(U),
and let Γ :=

∑m
j=1 njγj ∈ B

sp
1 (U,Z), γi 6= γj ∀i 6= j, be a Z0-admissible 1-cycle with Indϕ(Γ, Z0) = 1. Then ∀k ∈ N0 :∥∥∥f (k)(Z0)

∥∥∥
B
≤ k!

2π
‖f‖B,Γ LB(Γ) max

1≤j≤m

∥∥∥∥ 1

ϕ(γj(t))− ϕ(Z0)

∥∥∥∥k+1

B,I
, (6.24)

where LB(Γ) :=
∑m
j=1 |nj |LB(γj) is the total length of the 1-cycle Γ.

Proof: By Proposition 6.5.4 we have∥∥∥f (k)(Z0)
∥∥∥
B
≤ k!

2π

m∑
j=1

|nj |
∫ 1

0

‖f(γj(t))‖B
∥∥ϕ(γ′j(t))

∥∥
B

∥∥∥∥ 1

ϕ(γj(t)− Z0)

∥∥∥∥k+1

B
dt

≤ k!

2π
‖f‖B,Γ

( m∑
j=1

|nj |LB(γj)

)
max

1≤j≤m

∥∥∥∥ 1

ϕ(γj(t))− ϕ(Z0)

∥∥∥∥k+1

B,I
,

since ∀t ∈ I : ‖f(γj(t))‖B ≤ ‖f‖B,Γ. �

19see [MSE02]



50 MARIN GENOV

Acknowledgements

I would like to thank Prof. Emil Horozov for giving me the opportunity and freedom to work and present on this topic,
for his moral support and the numerous conversations concerning different fields of mathematics. I want to thank Prof.
Azniv Kasparian for her patience, for the countless discussions on algebra, topology, and geometry, as well as for proof-
reading various parts and suggesting several improvements of the present manuscript. Finally, I wish to thank Prof.
Stefan Ivanov for his moral support and the various conversations on differential-geometric issues directly or indirectly
related to this topic. All mistakes are mine and mine only.

References on Standard Complex Analysis Stuff

[AF03] M. J. Ablowitz and A. S. Fokas, Complex Variables, Introduction and Applications, 2nd ed., CUP, 2003.

[Ahl79] L. V. Ahlfors, Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex
Variable, 3rd ed., McGraw-Hill, 1979.

[BG91] C. A. Berenstein and R. Gay, Complex Variables, An Introduction, Springer, 1991 (cit. on p. 30).

[FB09] E. Freitag and R. Busam, Complex Analysis, 2nd ed., Springer, 2009.

[Gam01] T. W. Gamelin, Complex Analysis, Springer, 2001.

[Gon01] S. Gong, Concise Complex Analysis, World Scientific, 2001.

[HE96] L. Hahn and B. Epstein, Classical complex analysis, Jones and Bartless Publishers, 1996.

[Lan99] S. Lang, Complex Analysis, 4th ed., Springer, 1999.

[Mar65] A. I. Markushevich, Theory of Functions of a Complex Variable, vol. I-II-III, Prentice-Hall, 1965.

[NN01] R. Narasimhan and Y. Nievergelt, Complex Analysis in One Variable, 2nd ed., Springer, 2001.

[Rem98] R. Remmert, Theory of Complex Functions, Springer, 1998.

[Rud87] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, 1987.

[SS03] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003.

References on A-differentiability

[Blu55] E. K. Blum, “A Theory of Analytic Functions in Banach Algebras”, Trans. Amer. Math. Soc. 78 (1955),
pp. 343–370, url: http://www.ams.org/journals/tran/1955-078-02/S0002-9947-1955-0069405-2/.

[CFG96] V. Cruceano, P. Fortuny, and P. Gadea, “A Survey on Paracomplex Geometry”, Rocky Mountain J. Math.
26.1 (1996), pp. 83–115, url: https://projecteuclid.org/euclid.rmjm/1181072105.

[DeKM01] R. Delanghe, R. S. Kraußhar, and H. R. Malonek, “Differentiability of Functions with Values in some Real
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