On inverse of permutation polynomials of small degree over finite fields, II^{\Rightarrow}

Yanbin Zheng^a, Yuyin Yu^b

^aSchool of Mathematical Sciences, Qufu Normal University, Qufu 273165, China ^bSchool of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

Abstract

We investigate the permutation property of polynomials of the form $x^r(x^s - a)^t$, and give the expressions of their inverses. In particular, explicit expressions of inverses of permutation polynomials $x(x^3 - a)^2$ and $x(x^2 - a)^3$ on \mathbb{F}_{7^n} are presented. Then, using some known results, we obtain the inverses of all permutation polynomials of degree 6, 7, 8 over finite fields.

Keywords: Finite fields, Permutation polynomials, Inverses 2010 MSC: 11T06, 11T71

1. Introduction

For q a prime power, let \mathbb{F}_q denote the finite field with q elements, $\mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$, and $\mathbb{F}_q[x]$ the ring of polynomials over \mathbb{F}_q . A polynomial $f \in \mathbb{F}_q[x]$ is called a *permutation* polynomial (PP) of \mathbb{F}_q if it induces a bijection from \mathbb{F}_q to itself. For any PP f of \mathbb{F}_q , there exists a polynomial $f^{-1} \in \mathbb{F}_q[x]$ such that $f^{-1}(f(c)) = c$ for each $c \in \mathbb{F}_q$ or equivalently $f^{-1}(f(x)) \equiv x \pmod{x^q - x}$, and the polynomial f^{-1} is unique in the sense of reduction modulo $x^q - x$. Hence f^{-1} is defined as the *composition inverse* of f, and we simply call it the *inverse* of f on \mathbb{F}_q .

A polynomial over \mathbb{F}_q is called an *exceptional polynomial* over \mathbb{F}_q if it is a PP of \mathbb{F}_{q^n} for infinitely many positive integers n. Two polynomials f and g over \mathbb{F}_q are called *affine equivalence* if $g(x) = \alpha f(\beta x + \gamma) + \delta$ for some $\alpha, \beta \in \mathbb{F}_q^*$ and $\gamma, \delta \in \mathbb{F}_q$. Affine equivalent f and g share the same degree, and f is a PP of \mathbb{F}_q if and only if so is g.

The classification of PPs of finite fields has a long history. In 1896, Dickson [9] obtained all normalized PPs of degree ≤ 5 of \mathbb{F}_q for all q, and classified all PPs of degree 6 of \mathbb{F}_q for odd q. In 2010, a complete classification of all PPs of degree 6 or 7 of \mathbb{F}_{2^n} was settled in [15], up to affine equivalence and a special transformation. However, each class of resulting PPs is invariant under the special transformation [10]. For a verification of the classification of normalized PPs of degree 6 of \mathbb{F}_q for all q, see [25]. More recently, under affine equivalence, Fan [10–12] gives a complete classification of all PPs of degree ≤ 8 can be divided into two classes: exceptional and non-exceptional. According to the results in the above literature, a non-exceptional PP of degree ≤ 8 over \mathbb{F}_q exists only if q < 64.

The inverses of all normalized PPs of degree ≤ 5 were listed in [38]. In this paper, we consider the inverses of all PPs of degree 6,7,8. For non-exceptional PPs of degree

Email addresses: zhengyanbin16@126.com (Yanbin Zheng), yuyuyin@163.com (Yuyin Yu)

6,7,8 of \mathbb{F}_q , since q < 64 is very small, one can use the Lagrange interpolation formula to compute their inverses, i.e.,

$$f^{-1}(x) = \sum_{c \in \mathbb{F}_q} c \left(1 - (x - f(c))^{q-1} \right).$$
(1)

But for exceptional PPs of degree 6,7,8 of \mathbb{F}_{q^n} with infinitely many n, finding explicit expressions of their inverses on \mathbb{F}_{q^n} is not an easy problem.

There are several papers on the inverses of some classes of PPs, see for example [24, 32, 34] for linearized PPs, [18, 21, 29, 39] for PPs of the form $x^r h(x^{(q-1)/d})$, [6, 23, 36] for involutions over \mathbb{F}_{2^n} , [30, 39] for generalized cyclotomic mapping PPs, [37, 39, 40] for more general piecewise PPs, [22, 27, 28] for PPs constructed by the AGW criterion. The results in [22, 27, 28] contain some concrete classes such as bilinear PPs [8, 33], linearized PPs of the form L(x) + K(x)[24], and PPs of the form $x + \gamma f(x)$ [14]. For a brief summary of the results concerning the inverses of PPs, we refer the reader to [38] and the references therein.

In this paper, we study the PPs of the form $f(x) = x^r(x^s - a)^t$ on \mathbb{F}_{q^n} , where $a \in \mathbb{F}_{q^n}^*$, $st = q^m - 1$, $r \equiv 1 \pmod{\ell}$ and $\ell = (q^n - 1)/(s, q^n - 1)$. According to the Akbary-Ghioca-Wang (AGW) criterion [1], f is a PP of \mathbb{F}_{q^n} if and only if $(r, s, q^n - 1) = 1$ and another polynomial $g(x) := x(x - a)^{st}$ permutes the subset $(\mathbb{F}_q^*)^s$. By solving the equation g(x) = c for any $c \in (\mathbb{F}_q^*)^s$, we find the inverse g^{-1} of g on $(\mathbb{F}_q^*)^s$, and prove that g permutes $(\mathbb{F}_q^*)^s$ if and only if $a^\ell \neq 1$. Substituting g^{-1} into a slightly modified version of a result in [22] concerning the inverse of more general PP $x^r h(x^s)$, we obtain an expression of the inverse of f on \mathbb{F}_{q^n} .

By considering special cases such as m = n, $q^{(m,n)} - 1 \mid s$, and t = 2 or 3, we get some new classes of PPs and their inverses. In particular, explicit expressions of inverses of exceptional polynomials $x(x^3 - a)^2$ and $x(x^2 - a)^3$ on \mathbb{F}_{7^n} are given. Then, based on the known formulae for the inverses of Dickson PPs and linearized PPs, we find the inverses of all exceptional polynomials of degree 6, 7, 8; see Table 1.

In summary, under affine equivalence, Table 1 and [38, Tabel I] list the inverses of all PPs of degree ≤ 8 over all finite fields, except for the inverses of non-exceptional PPs of degree 6, 7, 8 which can be obtained by (1).

Some notations of this paper are as follows. The sets of integers and positive integers are denoted by \mathbb{Z} and \mathbb{N} respectively. The greatest common divisor of two integers m and n is written as (m, n). For $a \in \mathbb{F}_{q^n}$ and $d \mid n$, the norm of a over \mathbb{F}_{q^d} is defined by $N_{a^n/q^d}(a) = a^{(q^n-1)/(q^d-1)}$.

Exceptional polynomials over \mathbb{F}_q	Inverses	q	Reference
x^6	$x^{(5q-4)/6}$	$q = 2^n$, odd $n \ge 3$	Lemma 1
x^7	$x^{(kq-k+1)/7}$ with $k \equiv (1-q)^5 \pmod{7}$	$q \not\equiv 1 \pmod{7}$	Lemma 1
$x^7 - ax$ (a not a sixth power)	$a^{\frac{q-1}{6}}(1-a^{\frac{q-1}{6}})^{-1}\sum_{i=0}^{n-1}a^{-\frac{7^{i+1}-1}{6}}x^{7^{i}}$	$q=7^n, n\geq 2$	[7, 32]
$x^7 - 2ax^4 + a^2x$ (<i>a</i> not a cube)	$2x \left(2a^{\frac{q-1}{6}}x^{\frac{q-1}{2}} + a^{\frac{q-1}{3}} + 1\right) \left(\sum_{i=0}^{n-1} a^{-\frac{7^{i+1}-1}{6}}x^{\frac{7^{i}-1}{2}}\right)^2$	$q=7^n, n\geq 2$	Corollary 6
$x^7 - 3ax^5 + 3a^2x^3 - a^3x$ (a not a square)	$x \left(3(ax^4)^{\frac{q-1}{6}} - 3(ax)^{\frac{q-1}{3}} - 2 \right) \left(\sum_{i=0}^{n-1} a^{-\frac{7^{i+1}-1}{6}} x^{\frac{7^{i}-1}{3}} \right)^3$	$q=7^n,n\geq 2$	Corollary 8
$x^7 - 7ax^5 + 14a^2x^3 - 7a^3x \ (a \neq 0)$	$\sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m}{m-i} \binom{m-i}{i} (-a^7)^i x^{m-2i}$	$q \equiv \pm 2, \pm 3 \pmod{7}$	[18]
	where $m = (kq^2 - k + 1)/7$ with $k \equiv (1 - q^2)^5 \pmod{7}$		Lemma 1
	and $\lfloor m/2 \rfloor$ denotes the largest integer $\leq m/2$.		
$x^8 + a_2 x^4 + a_1 x^2 + a_0 x$	$(\det(D_L))^{-1} \sum_{i=0}^{n-1} \bar{a}_i x^{q^i}$	$q=2^n, n\geq 4$	[34]
(if its only root in \mathbb{F}_{2^n} is 0)	where D_L and \bar{a}_i are defined as in Lemma 3.		

Table 1: All exceptional polynomials of degree 6, 7, 8 and their inverses

[†] This list is complete up to affine transformations: $g(x) = \alpha f(\beta x + \gamma) + \delta$ with $\alpha, \beta, \gamma, \delta \in \mathbb{F}_q$ and $\alpha \beta \neq 0$. [‡] All non-exceptional permutation polynomials of degree 6,7,8 are listed in [10–12, 15, 25], and all of them are over small fields \mathbb{F}_q with $q \leq 64$. Hence their inverses can be obtained by the Lagrange interpolation formula.

2. Permutation polynomials of small degree and their inverses

Since the inverses of all normalized PPs of degree ≤ 5 were listed in [38], we only consider the PPs of degree 6, 7, 8 which can be divided into two classes: exceptional and non-exceptional. Combining the results in [4, 10–12, 15, 25] gives the following theorems.

Theorem 1. A non-exceptional PP of degree $m \in \{6,7,8\}$ over \mathbb{F}_q exists if and only if one of the following conditions holds:

- (i) m = 6 and $q \in \{8, 9, 11, 16, 27, 32\};$
- (ii) m = 7 and $q \in \{9, 11, 13, 16, 17, 19, 23, 25, 27, 31, 49\};$
- (iii) m = 8 and $q \in \{11, 13, 16, 19, 23, 27, 29, 31, 32, 64\}.$

Under affine equivalence, all such PPs are explicitly listed in [10–12, 15, 25].

Theorem 2. Each exceptional polynomial of degree 6,7,8 is affine equivalent to one of the following:

- (i) x^6 over \mathbb{F}_{2^n} with odd $n \geq 3$;
- (ii) x^7 over \mathbb{F}_q with $q \not\equiv 1 \pmod{7}$;

(iii) $x^7 - ax$ over \mathbb{F}_{7^n} with a not a sixth power in \mathbb{F}_{7^n} , i.e., $a \in \mathbb{F}_{7^n}^*$ such that $a^{(7^n-1)/6} \neq 1$;

- (iv) $x(x^3-a)^2$ over \mathbb{F}_{7^n} with a not a cube in \mathbb{F}_{7^n} , i.e., $a \in \mathbb{F}_{7^n}^*$ such that $a^{(7^n-1)/3} \neq 1$;
- (v) $x(x^2-a)^3$ over \mathbb{F}_{7^n} with a not a square in \mathbb{F}_{7^n} , *i.e.*, $a \in \mathbb{F}_{7^n}^*$ such that $a^{(7^n-1)/2} \neq 1$;
- (vi) $x^7 7ax^5 + 14a^2x^3 7a^3x$ with $a \in \mathbb{F}_q^*$ and $q \equiv \pm 2, \pm 3 \pmod{7}$;
- (vii) $x^8 + a_2 x^4 + a_1 x^2 + a_0 x$ over \mathbb{F}_{2^n} if its only root in \mathbb{F}_{2^n} is 0.

The inverses of PPs in Theorem 1 can be obtained directly by the Lagrange interpolation formula (1) due to q < 64. To obtain the inverses of PPs in Theorem 2, we need the following results.

Lemma 1. Let $m, \ell \in \mathbb{N}$ and $(m, \ell) = 1$. Then an inverse of m modulo ℓ is $(k\ell + 1)/m$, where $k \equiv -\ell^{\phi(m)-1} \pmod{m}$ and ϕ is Euler's totient function.

Proof. Clearly, $k\ell + 1 \equiv 1 - \ell^{\phi(m)} \equiv 0 \pmod{m}$ and $m(k\ell + 1)/m - k\ell = 1$. Therefore, $(k\ell + 1)/m$ is an inverse of m modulo ℓ .

Lemma 2 ([7, 32]). Let $L(x) = x^{q^m} - ax$, where $a \in \mathbb{F}_{q^n}^*$ and $m, n \in \mathbb{N}$. Then L is a PP of \mathbb{F}_{q^n} if and only if $N_{q^n/q^d}(a) \neq 1$, where d = (m, n). In this case, its inverse on \mathbb{F}_{q^n} is

$$L^{-1}(x) = \frac{N_{q^n/q^d}(a)}{1 - N_{q^n/q^d}(a)} \sum_{i=1}^{n/d} a^{-\frac{q^{im}-1}{q^m-1}} x^{q^{(i-1)m}}.$$

Lemma 3. Let $L(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \in \mathbb{F}_{q^n}[x]$. Then L is a PP of \mathbb{F}_{q^n} if and only if

$$D_L := \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1}^q & a_0^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \vdots & \vdots \\ a_1^{q^{n-1}} & a_2^{q^{n-1}} & \cdots & a_0^{q^{n-1}} \end{pmatrix}$$

is nonsingular [20, Page 362]. In this case, its inverse was given in [34] by

$$L^{-1}(x) = \frac{1}{\det(D_L)} \sum_{i=0}^{n-1} \bar{a}_i x^{q^i},$$

where \bar{a}_i is the (i, 0)-th cofactor of D_L , i.e., $\det(D_L) = a_0 \bar{a}_0 + \sum_{i=1}^{n-1} a_{n-i}^{q^i} \bar{a}_i$.

The Dickson polynomial $D_n(x, a)$ of degree n with parameter $a \in \mathbb{F}_q$ is given as

$$D_n(x,a) = \sum_{i=0}^{\lfloor n/2 \rfloor} \frac{n}{n-i} \binom{n-i}{i} (-a)^i x^{n-2i},$$

where $\lfloor n/2 \rfloor$ denotes the largest integer $\leq n/2$. For $a \in \mathbb{F}_q^*$, $D_n(x, a)$ is a PP of \mathbb{F}_q if and only if $gcd(n, q^2 - 1) = 1$. Its inverse is determined in [18] by the next lemma.

Lemma 4 ([18, Lemma 4.8]). Let $a \in \mathbb{F}_q^*$ and $m, n \in \mathbb{N}$ be such that $mn \equiv 1 \pmod{q^2-1}$. Then the inverse of $D_n(x, a)$ on \mathbb{F}_q is $D_m(x, a^n)$.

The PP $x^7 - 7ax^5 + 14a^2x^3 - 7a^3x$ in Theorem 2 is the Dickson polynomial $D_7(x, a)$ and, by Lemma 4, its inverse is $D_m(x, a^7)$. By Lemma 1, an inverse m of 7 modulo $q^2 - 1$ can be written as $m = (kq^2 - k + 1)/7$, where $k \equiv (1 - q^2)^5 \pmod{7}$. The inverses of PPs x^6 , x^7 , $x^7 - ax$ and $x^8 + \sum_{i=0}^2 a_i x^i$ in Theorem 2 can be obtained directly by Lemmas 1 to 3. The inverses of PPs $x(x^3 - a)^2$ and $x(x^2 - a)^3$ on \mathbb{F}_{7^n} are

given by Corollaries 6 and 8 in Section 5 respectively.

In short, the inverses of all the PPs in Theorem 2 are known now. For convenience, all the PPs in Theorem 2 and their inverses are listed in Table 1.

3. Large class of PPs and its inverse

In this section we slightly modify a known expression of the inverse of PP $x^r h(x^s)$. Moreover, we investigate the permutation properties of $x(x-a)^{st}$ on $(\mathbb{F}_{q^n}^*)^s$ and $x^r(x^s-a)^t$ on \mathbb{F}_{q^n} , and obtain their inverses. The following lemma will be needed.

Lemma 5 ([1, Proposition 3.1]). Let $f(x) = x^r h(x^s)$, where $h \in \mathbb{F}_q[x]$ and $r, s \in \mathbb{N}$. Then f is a PP of \mathbb{F}_q if and only if (r, s, q-1) = 1 and $g(x) := x^r h(x)^s$ permutes $(\mathbb{F}_q^*)^s$.

The problem that when special classes of g permuting $(\mathbb{F}_q^*)^s$ has been extensively studied, see for example [3, 5, 13, 16, 17, 19, 26, 35]. For a recent survey of this problem, we refer the reader to [31] and the references therein.

The inverse of f in terms of roots of unity over \mathbb{F}_q was given in [29, 39]. Let $g_1 \in \mathbb{F}_q[x]$ be such that $x^{k_1} \circ g_1 = g \circ x^{k_1}$, where $k_1 = s/(s, q-1)$. The inverse of f in terms of the inverse of g_1 on $(\mathbb{F}_q^*)^s$ was given in [18] when (r, q-1) = 1, and given in [22] for all $r \in \mathbb{N}$. Using the method in [22], we obtain the following equivalent version of the inverse of f, which is expressed in terms of the inverse of g on $(\mathbb{F}_{q}^{*})^{s}$.

Theorem 3. Let $f(x) = x^r h(x^s)$, where $h \in \mathbb{F}_q[x]$ and $r, s \in \mathbb{N}$. Let $\bar{s} = (s, q-1)$ and k be an inverse of s/\bar{s} modulo $(q-1)/\bar{s}$. If f is a PP of \mathbb{F}_q and g^{-1} is the inverse of $g(x) := x^r h(x)^s$ on $(\mathbb{F}_q^*)^s$. Then the inverse of f on \mathbb{F}_q is

$$f^{-1}(x) = x^{b} \left(h(g^{-1}(x^{s})) \right)^{-b} \left(g^{-1}(x^{s}) \right)^{ck},$$

where $b, c \in \mathbb{Z}$ satisfy $br + c\bar{s} = 1$.

Proof. We prove it by using the method in [22, Theorem 3.2]. Since the theorem holds for x = 0, we only consider $x \in \mathbb{F}_q^*$. Let $\phi(x) = (x^r, x^s)$ and $\psi(y, z) = (y^r h(z)^r, g(z))$. It is easy to verify that $\psi \circ \phi = \phi \circ f$, i.e., the following diagram is commutative:

If f is a PP, then, by Lemma 5, $(r, \bar{s}) = 1$ and g permutes $(\mathbb{F}_q^*)^s$. Assume $br + c\bar{s} = 1$ and $k(s/\bar{s}) + v(q-1)/\bar{s} = 1$ for some $b, c, k, v \in \mathbb{Z}$. Then

$$c\bar{s} = c\bar{s}(k(s/\bar{s}) + v(q-1)/\bar{s}) = cks + cv(q-1)$$

and so, for any $x \in \mathbb{F}_q^*$,

$$(x^{r})^{b}(x^{s})^{ck} = x^{br+cks}x^{cv(q-1)} = x^{br+cks+cv(q-1)} = x^{br+c\bar{s}} = x.$$
(2)

Hence ϕ is bijective and $\phi^{-1}(y, z) = y^b z^{ck}$.

Since f is a PP of \mathbb{F}_q and ϕ is bijective, ψ is also bijective. For $(y, z) \in \phi(\mathbb{F}_q^*)$, assume that $\psi(y, z) = (\alpha, \beta)$ for some $(\alpha, \beta) \in \phi(\mathbb{F}_q^*)$, i.e.,

$$y^r h(z)^r = \alpha$$
 and $g(z) = z^r h(z)^s = \beta$.

Because $z, \beta \in (\mathbb{F}_q^*)^s$ and g permutes $(\mathbb{F}_q^*)^s$, we obtain $z = g^{-1}(\beta)$. Denote $\alpha = x_0^r$ and $\beta = x_0^s$ for some $x_0 \in \mathbb{F}_q^*$. Then $\alpha^b \beta^{ck} = x_0$ by (2), and so $(\alpha^b \beta^{ck} h(z)^{-1})^r h(z)^r = \alpha$. Since ψ is bijective, we have $y = \alpha^b \beta^{ck} h(z)^{-1}$. Hence,

$$\psi^{-1}(\alpha,\beta) = (y,z) = (\alpha^b \beta^{ck} h(g^{-1}(\beta))^{-1}, g^{-1}(\beta)).$$

Substituting $\phi, \phi^{-1}, \psi^{-1}$ into $f^{-1} = \phi^{-1} \circ \psi^{-1} \circ \phi$ gives the desire result.

The key step in Theorem 3 is to find the inverse of g on $(\mathbb{F}_q^*)^s$, which is possible to be done for special classes of g, as for instance in the following result.

Lemma 6. Let $a \in \mathbb{F}_{q^n}^*$ and $s \mid q^m - 1$. Then $g(x) = x(x-a)^{q^m-1}$ permutes $(\mathbb{F}_{q^n}^*)^s$ if and only if $a^\ell \neq 1$, where $\ell = (q^n - 1)/(s, q^n - 1)$. In this case, its inverse on $(\mathbb{F}_{q^n}^*)^s$ is

$$g^{-1}(x) = \left(\left(a^{-1}x\right)^{\frac{q^n-1}{q^d-1}} - 1 \right) \left(\sum_{i=1}^{n/d} a^{-\frac{q^{im}-1}{q^m-1}} x^{\frac{q^{(i-1)m}-1}{q^m-1}} \right)^{-1} + a,$$

where d = (m, n).

Proof. Since the multiplicative group of \mathbb{F}_{q^n} is cyclic, we can verify $(\mathbb{F}_{q^n}^*)^s = (\mathbb{F}_{q^n}^*)^{(s,q^n-1)}$. Thus $a \in (\mathbb{F}_{q^n}^*)^s$ if and only if $a^{\ell} = 1$. If $a^{\ell} = 1$, then $a \in (\mathbb{F}_{q^n}^*)^s$, and so g has root in $(\mathbb{F}_{q^n}^*)^s$. Hence g does not permute $(\mathbb{F}_{q^n}^*)^s$. Next we only consider $a^{\ell} \neq 1$ and $x \in (\mathbb{F}_{q^n}^*)^s$.

Since g introduces a mapping from $(\mathbb{F}_{q^n}^*)^s$ to itself, we need only show that, for any $y \in (\mathbb{F}_{q^n}^*)^s$, the equation g(x) = y has exactly one solution x and $x = g^{-1}(y)$.

Since $a^{\ell} \neq 1$, we have $x - a \neq 0$ for any $x \in (\mathbb{F}_{q^n}^*)^s$. Let $z = (x - a)^{-1}$. Then $x - a = z^{-1}$ and $x = z^{-1} + a$. Substituting them into g(x) = y yields

$$(z^{-1} + a)z^{1-q^m} = y$$
, i.e., $z^{q^m} - (a/y)z = 1/y$. (3)

Recall that d = (m, n) and $\ell = (q^n - 1)/(s, q^n - 1)$. Let $q^m - 1 = st$. Then

$$\begin{aligned} q^d - 1 &= q^{(m,n)} - 1 = (q^m - 1, q^n - 1) = (st, q^n - 1) \\ &= (s, q^n - 1)(t, (q^n - 1)/(s, q^n - 1)) \\ &= (s, q^n - 1)(t, \ell), \end{aligned}$$

and so $\frac{q^n-1}{q^d-1}(t,\ell) = \ell$. Since $a^\ell \neq 1$ and $y \in (\mathbb{F}_{q^n}^*)^s$, we have

$$\left(N_{q^n/q^d}(a/y)\right)^{(t,\ell)} = (a/y)^{\frac{q^n-1}{q^d-1}(t,\ell)} = (a/y)^\ell = a^\ell \neq 1.$$

Therefore,

$$N_{q^n/q^d}(a/y) \neq 1. \tag{4}$$

It follows from Lemma 2 and (3) that

$$z = \frac{N_{q^n/q^d}(a/y)}{1 - N_{q^n/q^d}(a/y)} \sum_{i=1}^{n/d} (a/y)^{-\frac{q^{im}-1}{q^m-1}} (1/y)^{q^{(i-1)m}}$$

$$= \left(N_{q^n/q^d}(y/a) - 1\right)^{-1} \sum_{i=1}^{n/d} a^{-\frac{q^{im}-1}{q^m-1}} y^{\frac{q^{(i-1)m}-1}{q^m-1}}.$$
(5)

Substituting (5) into $x = z^{-1} + a$ gives $x = g^{-1}(y)$.

After these preparations, we can now give the main theorem.

Theorem 4. Let $f(x) = x^r(x^s - a)^t$, where $a \in \mathbb{F}_{q^n}^*$ and $r, s, t \in \mathbb{N}$ are such that $st = q^m - 1$ and $r \equiv 1 \pmod{\ell}$ with $\ell = (q^n - 1)/(s, q^n - 1)$. Then f is a PP of \mathbb{F}_{q^n} if and only if $(r, q^n - 1) = 1$ and $a^{\ell} \neq 1$. In this case, the inverse of f on \mathbb{F}_{q^n} is

$$f^{-1}(x) = x^u (G(x)H(x))^{tu},$$
(6)

where u is an inverse of r modulo $q^n - 1$,

$$G(x) = \left(\left(a^{-1} x^s \right)^{\frac{q^n - 1}{q^d - 1}} - 1 \right)^{-1},\tag{7}$$

$$H(x) = \sum_{i=1}^{n/a} a^{-\frac{q^{im}-1}{q^m-1}} x^{\frac{q^{(i-1)m}-1}{t}}, \text{ and } d = (m,n).$$
(8)

Proof. From Lemma 5, f is a PP if and only if $(r, s, q^n - 1) = 1$ and $g(x) := x^r(x - a)^{st}$ permutes $(\mathbb{F}_q^*)^s$. Since $r \equiv 1 \pmod{\ell}$, we have $x^r = x$ and so $g(x) = x(x - a)^{st}$ for any $x \in (\mathbb{F}_q^*)^s$. By Lemma 6, g permutes $(\mathbb{F}_q^*)^s$ if and only if $a^{\ell} \neq 1$. It follows from $r \equiv 1 \pmod{\ell}$ that $(r, \ell) = 1$, and so $(r, s, q^n - 1) = 1$ if and only if $(r, q^n - 1) = 1$.

Let $ru + (q^n - 1)v = 1$ for some $u, v \in \mathbb{Z}$. Then $ru + (\ell v)\bar{s} = 1$, where $\bar{s} = (s, q^n - 1)$. For any $x \in \mathbb{F}_{q^n}^*$, we have $g^{-1}(x^s) \in (\mathbb{F}_q^*)^s$, and so $(g^{-1}(x^s))^\ell = 1$. Substituting b := u, $c := \ell v$ and g^{-1} in Lemma 6 into Theorem 3 gives the expression of f^{-1} .

The following are two examples of Theorem 4 where $r^2 \equiv 1 \pmod{q^n - 1}$.

Example 1. Let $f(x) = x^r (x^3 + a)^5$, where $a \in \mathbb{F}_{2^8}^*$ and $r \equiv 1 \pmod{85}$. Then f is a PP of \mathbb{F}_{2^8} if and only if (r, 3) = 1 and $a^{85} \neq 1$. In this case, its inverse on \mathbb{F}_{2^8} is

$$f^{-1}(x) = x^r (x^{51} + a^{17})^{-5r} (x^3 + a^{16})^{5r}.$$

Example 2. Let $f(x) = x^r (x^{16} - a)^5$, where $a \in \mathbb{F}_{3^6}^*$ and $r \equiv 1 \pmod{91}$. Then f is a PP of \mathbb{F}_{3^6} if and only if (r, 8) = 1 and $a^{91} \neq 1$. In this case, its inverse on \mathbb{F}_{3^6} is

$$f^{-1}(x) = (1 - a^{91})^{-5r} x^r \left(a^{90} + a^9 x^{16} + x^{584} \right)^{5r}.$$

4. Simplified versions of the main theorem

In this section we aim to simplify the expressions of G and H in Theorem 4. On the one hand, we consider small n/(m, n) which is the number of the terms of H. On the other hand, we study the cases $q^d - 1 | s$ and $q^d - 1 | t$, in which G and G^t are reduced to constants respectively.

4.1. The case H is a constant

Applying Theorem 4 to m = n, we obtain that $G(x) = a(x^s - a)^{-1}$ and $H(x) = a^{-1}$. Hence we arrive at the following result.

Corollary 1. Let $f(x) = x^r(x^s - a)^t$, where $a \in \mathbb{F}_q^*$, st = q - 1 and $r \equiv 1 \pmod{t}$. Then f is a PP of \mathbb{F}_q if and only if (r, q - 1) = 1 and $a^t \neq 1$. If f is a PP of \mathbb{F}_q and u is an inverse of r modulo q - 1, then its inverse on \mathbb{F}_q is

$$f^{-1}(x) = x^u (x^s - a)^{-tu}$$

The binomial $x^s - a$ in Corollary 1 can be generalized to $H(x^s)$ which has no nonzero root in \mathbb{F}_q ; see the next theorem.

Theorem 5. Let $f(x) = x^r (h(x^s))^t$, where $h \in \mathbb{F}_q[x]$ and st = q - 1. Then f is a PP of \mathbb{F}_q if and only if (r, q-1) = 1 and $h(x^s)$ has no nonzero root in \mathbb{F}_q (see [2, Corollary 3.2]). If f is a PP of \mathbb{F}_q and $r \equiv 1 \pmod{t}$, then its inverse on \mathbb{F}_q is

$$f^{-1}(x) = x^u (h(x^s))^{-tu},$$

where u is an inverse of r modulo q - 1.

Proof. The permutation part is [2, Corollary 3.2]. Let r = kt + 1 for some $k \in \mathbb{Z}$. Then

$$rs = (kt+1)s = kst + s \equiv s \pmod{q-1}.$$

Now it is easy to verify that $f^{-1}(f(e)) = e$ for any $e \in \mathbb{F}_q$. This completes the proof. \square

4.2. The case G or G^t is a constant

If f in Theorem 4 is a PP, then (4) holds, and so $G(c) \in \mathbb{F}_{q^d}^*$ for any $c \in \mathbb{F}_{q^n}$. Hence $G(x)^t = 1$ when $q^d - 1 \mid t$. Moreover, if $q^d - 1 \mid s$, then $N_{q^n/q^d}(c^s) = 1$ for any $c \in \mathbb{F}_{q^n}^*$. Thus G is reduced to a constant. The argument above gives the following theorem.

Theorem 6. With the same notation and hypothese as in Theorem 4, let f be a PP of \mathbb{F}_{q^n} .

- (i) If $q^d 1 \mid t$, then $f^{-1}(x) = x^u (H(x))^{tu}$.
- (ii) If $q^d 1 \mid s$, then $f^{-1}(x) = x^u (AH(x))^{tu}$, where $A = \left(a^{-\frac{q^n 1}{q^d 1}} 1\right)^{-1}$.

Recall that d = (m, n) and $q^m - 1 = st$. The conditions $q^d - 1 | s$ or $q^d - 1 | t$ in Theorem 6 are easy to satisfied, because

$$st = q^m - 1 = (q^d - 1)(1 + q^d + q^{2d} + \dots + q^{m-d}).$$
(9)

For instance, taking t = 1 and n = 2m leads to $q^d - 1 = q^m - 1 = s$ and n/d = 2. Hence $H(x) = a^{-1} + a^{-(q^m+1)}x^{q^m-1}$. Then substituting q for q^m yields the following result.

Corollary 2. Let $f(x) = x^r(x^{q-1} - a)$, where $a \in \mathbb{F}_{q^2}^*$ and $r \equiv 1 \pmod{q+1}$. Then f is a PP of \mathbb{F}_{q^2} if and only if $(r, q^2 - 1) = 1$ and $a^{q+1} \neq 1$. If f is a PP of \mathbb{F}_{q^2} and u is an inverse of r modulo $q^2 - 1$, then its inverse on \mathbb{F}_{q^2} is

$$f^{-1}(x) = (1 - a^{q+1})^{-u}(a^q x + x^q)^u$$

Next we give another example of the case $q^d - 1 = s$ over \mathbb{F}_{2^n} .

Corollary 3. Let $f(x) = x^r (x^3 + a)^5$ where $a \in \mathbb{F}_{2^n}^*$, n is even, $r \equiv 1 \pmod{\ell}$ and $\ell = (2^n - 1)/3$. Then f is a PP of \mathbb{F}_{2^n} if and only if $(r, 2^n - 1) = 1$ and $a^{\ell} \neq 1$. If f is a PP of \mathbb{F}_{2^n} and $n \equiv 2 \pmod{4}$, then its inverse on \mathbb{F}_{2^n} is

$$f^{-1}(x) = a^{\ell u} x^u \left(\sum_{i=1}^{n/2} a^{-\frac{16^i - 1}{15}} x^{\frac{16^i - 1}{5}} \right)^{5u},$$

where u is an inverse of r modulo $2^n - 1$.

Proof. The permutation part is a direct consequence of Theorem 4. Let $\omega = a^{\ell}$. Then $\omega^3 = 1$ and, by $\omega \neq 1$, $\omega^2 + \omega + 1 = 0$. Thus $\omega/(1 + \omega) = \omega^{-1}$ and $\omega^{-5} = \omega$. Inserting them into Theorem 6 gives the above expression of f^{-1} .

The next corollary is an example of the case $q^d - 1 = t$ and 2n = 3m.

Corollary 4. Let $f(x) = x(x^{q+1} - a)^{q-1}$, where $a \in \mathbb{F}_{q^3}^*$ and q is odd. Then f is a PP of \mathbb{F}_{q^3} if and only if $a^{(q^3-1)/2} = -1$. In this case, its inverse on \mathbb{F}_{q^3} is

$$f^{-1}(x) = x \left(a^{q^2+q} + a^q x^{q+1} + x^{q^2+q+2} \right)^{q-1}.$$

5. Permutation trinomials and tetranomials

Applying the main theorem to t = 2, 3, we can obtain some permutation trinomials and tetranomials and their inverses, which contain two classes of exceptional polynomials in Theorem 2. First, we give a simple lemma.

Lemma 7. Let a be odd, $m, n \in \mathbb{N}$ and d = (m, n). Then $(a^m - 1)/(a^d - 1)$ and m/d have the same parity, and

$$((a^m - 1)/2, a^n - 1) = \begin{cases} a^d - 1 & \text{if } m/d \text{ is even,} \\ (a^d - 1)/2 & \text{if } m/d \text{ is odd.} \end{cases}$$

Proof. Since $(a^m - 1)/(a^d - 1) = \sum_{i=1}^{m/d} (a^d)^{i-1}$ and a is odd, $(a^m - 1)/(a^d - 1)$ is an integer with the same parity as m/d. Then

$$2((a^{m}-1)/2, a^{n}-1) = (a^{m}-1, 2(a^{n}-1))$$

= $(a^{m}-1, a^{n}-1) \left(\frac{a^{m}-1}{(a^{m}-1, a^{n}-1)}, \frac{2(a^{n}-1)}{(a^{m}-1, a^{n}-1)}\right)$
= $(a^{m}-1, a^{n}-1) \left(\frac{a^{m}-1}{(a^{m}-1, a^{n}-1)}, 2\right)$
= $(a^{d}-1) \left(\frac{a^{m}-1}{a^{d}-1}, 2\right)$
= $(a^{d}-1)(m/d, 2).$

Applying Theorem 4 to r = 1 and t = 2, we derive the following result.

Theorem 7. Let $f(x) = x^{q^m} - 2ax^{\frac{q^m+1}{2}} + a^2x$, where $a \in \mathbb{F}_{q^n}^*$, q is odd and $m, n \in \mathbb{N}$. Let d = (m, n), $c = a^{(q^n-1)/(q^d-1)}$ and

$$H_2(x) = x \left(\sum_{i=1}^{n/d} a^{-\frac{q^{im}-1}{q^m-1}} x^{\frac{q^{(i-1)m}-1}{2}}\right)^2.$$

(i) If m/d is even, then f is a PP of \mathbb{F}_{q^n} if and only if $c \neq 1$. In this case,

$$f^{-1}(x) = c^2 (1-c)^{-2} H_2(x).$$

(ii) If m/d is odd, then f is a PP of \mathbb{F}_{q^n} if and only if $c^2 \neq 1$. In this case,

$$f^{-1}(x) = c^2 (1 - c^2)^{-2} \left(2cx^{\frac{q^n - 1}{2}} + c^2 + 1 \right) H_2(x).$$
(10)

Proof. Note that $f(x) = x(x^{\frac{q^m-1}{2}} - a)^2$. In the notation of Theorem 4, we have t = 2 and $s = (q^m - 1)/2$. If m/d is even, then $(s, q^n - 1) = q^d - 1$ by Lemma 7, and $\ell = (q^n - 1)/(q^d - 1)$. According to Theorem 4, f is a PP of \mathbb{F}_{q^n} if and only if $c \neq 1$. It is easy to verify $f^{-1}(f(0)) = 0$. Next we only consider $x \in \mathbb{F}_{q^n}^*$ for computing $f^{-1}(x)$. Since $q^d - 1 \mid s$, we have

$$(x^s)^{\frac{q^n-1}{q^d-1}} = (x^{q^n-1})^{\frac{s}{q^d-1}} = 1$$
(11)

for any $x \in \mathbb{F}_{q^n}^*$. Substituting (11) into (7), we obtain

$$G(x) = c(1-c)^{-1}.$$
(12)

If m/d is odd, then $(s, q^n - 1) = (q^d - 1)/2$ by Lemma 7, and $\ell = 2(q^n - 1)/(q^d - 1)$. According to Theorem 4, f is a PP of \mathbb{F}_{q^n} if and only if $c^2 \neq 1$. If m/d is odd, then $(q^m - 1)/(q^d - 1)$ is also odd by Lemma 7, and so

$$(x^s)^{\frac{q^n-1}{q^d-1}} = x^{\frac{q^m-1}{2} \cdot \frac{q^n-1}{q^d-1}} = x^{\frac{q^n-1}{2} \cdot \frac{q^m-1}{q^d-1}} = x^{\frac{q^n-1}{2}}$$

for any $x \in \mathbb{F}_{q^n}^*$. Since

$$1 - c^{2} = \left(x^{\frac{q^{n}-1}{2}}\right)^{2} - c^{2} = \left(x^{\frac{q^{n}-1}{2}} + c\right)\left(x^{\frac{q^{n}-1}{2}} - c\right).$$

We have

$$\left(x^{\frac{q^n-1}{2}}-c\right)^{-1} = \left(1-c^2\right)^{-1} \left(x^{\frac{q^n-1}{2}}+c\right).$$
(13)

Note that $c = a^{(q^n-1)/(q^d-1)}$. Inserting (13) into (7), we obtain

$$G(x) = c(1 - c^2)^{-1} (x^{\frac{q^n - 1}{2}} + c).$$
(14)

Then, for any $x \in \mathbb{F}_{q^n}^*$,

$$\left(x^{\frac{q^n-1}{2}}+c\right)^2 = 2cx^{\frac{q^n-1}{2}}+c^2+1.$$
(15)

Substituting (12), (14) and (15) into Theorem 4 gives the desire result.

Taking $q^m = 5, 7, 9$ in Theorem 7 leads to the following corollaries.

Corollary 5. Let $f(x) = x^5 - 2ax^3 + a^2x$, where $a \in \mathbb{F}_{5^n}^*$ and $n \in \mathbb{N}$. Then f is a PP of \mathbb{F}_{5^n} if and only if $a^{(5^n-1)/2} = -1$. In this case, the inverse of f on \mathbb{F}_{5^n} is

$$f^{-1}(x) = 2a^{\frac{5^n - 1}{4}} x^{\frac{5^n + 1}{2}} \left(\sum_{i=0}^{n-1} a^{-\frac{5^{i+1} - 1}{4}} x^{\frac{5^i - 1}{2}}\right)^2.$$

Corollary 5 is essentially [38, Theorem 8] or [18, Lemma 4.9].

Corollary 6. Let $f(x) = x^7 - 2ax^4 + a^2x$, where $a \in \mathbb{F}_{7^n}^*$ and $n \in \mathbb{N}$. Then f is a PP

of \mathbb{F}_{7^n} if and only if $a^{(7^n-1)/3} \neq 1$. In this case, the inverse of f on \mathbb{F}_{7^n} is

$$f^{-1}(x) = 2x \left(2a^{\frac{7^n - 1}{6}} x^{\frac{7^n - 1}{2}} + a^{\frac{7^n - 1}{3}} + 1 \right) \left(\sum_{i=0}^{n-1} a^{-\frac{7^i + 1 - 1}{6}} x^{\frac{7^i - 1}{2}} \right)^2.$$

Proof. The permutation part is a direct consequence of Theorem 7. Let $\omega = a^{(7^n-1)/3}$. Then $\omega^3 = 1$ and $\omega \neq 1$ if f is a PP. Hence $\omega^2 + \omega + 1 = 0$, and so $(1 - \omega)^2 = -3\omega$. Inserting them into (10) gives the above expression of f^{-1} .

Corollary 7. Let $f(x) = x^9 + ax^5 + a^2x$, where $a \in \mathbb{F}_{3^n}^*$ and $n \in \mathbb{N}$.

(i) If n is odd, then f is a PP of \mathbb{F}_{3^n} if and only if $a^{(3^n-1)/2} = -1$. In this case, the inverse of f on \mathbb{F}_{3^n} is

$$f^{-1}(x) = x \left(\sum_{i=0}^{n-1} a^{-\frac{9^{i+1}-1}{8}} x^{\frac{9^{i}-1}{2}}\right)^{2}.$$

(ii) If n is even, then f is a PP of \mathbb{F}_{3^n} if and only if $c^2 \neq 1$, where $c = a^{(3^n-1)/8}$. In this case, the inverse of f on \mathbb{F}_{3^n} is

$$f^{-1}(x) = x \left(c^5 x^{\frac{3^n - 1}{2}} + c^2 + 1 \right) \left(\sum_{i=1}^{n/2} a^{-\frac{9^i - 1}{8}} x^{\frac{9^i - 1}{2}} \right)^2.$$
(16)

Proof. We only verify (16), because the rest parts are direct consequences of Theorem 7. Let $\omega = c^2 = a^{(3^n-1)/4}$. Then $\omega^4 = 1$ and $\omega \neq 1$ if f is a PP. Thus $\omega^3 + \omega^2 + \omega + 1 = 0$, and so $(1 - \omega)^2 = 1 + \omega + \omega^2 = -\omega^3$ in \mathbb{F}_{3^n} . Then $\omega/(-\omega^3) = -\omega^{-2} = -\omega^2$ and $-\omega^2(\omega+1) = \omega + 1$. Inserting them into (10) gives (16).

Applying Theorem 4 to r = 1, t = 3 and $q^m = 7$ gives the following corollary.

Corollary 8. Let $f(x) = x^7 - 3ax^5 + 3a^2x^3 - a^3x$, where $a \in \mathbb{F}_{7^n}^*$ and $n \in \mathbb{N}$. Then f is a PP of \mathbb{F}_{7^n} if and only if $a^{(7^n-1)/2} = -1$. In this case, its inverse on \mathbb{F}_{7^n} is

$$f^{-1}(x) = x \left(3(ax^4)^{\frac{7^n - 1}{6}} - 3(ax)^{\frac{7^n - 1}{3}} - 2 \right) \left(\sum_{i=0}^{n-1} a^{-\frac{7^{i+1} - 1}{6}} x^{\frac{7^i - 1}{3}} \right)^3.$$

Proof. Clearly, $f(x) = x(x^2 - a)^3$, and so s = 2, t = 3, $\ell = (7^n - 1)/2$, m = d = 1. From Theorem 4, f is a PP of \mathbb{F}_{q^n} if and only if $a^{(7^n - 1)/2} = -1$. It is easy to verify that $f^{-1}(f(0)) = 0$. Next we only consider $x \in \mathbb{F}_{q^n}^*$ for computing $f^{-1}(x)$. Note that

$$2 = 1 - a^{\frac{7^n - 1}{2}} = \left(x^{\frac{7^n - 1}{3}}\right)^3 - \left(a^{\frac{7^n - 1}{6}}\right)^3 = \left(x^{\frac{7^n - 1}{3}} - a^{\frac{7^n - 1}{6}}\right)\lambda(x),$$

where

$$\lambda(x) = x^{\frac{2(7^n - 1)}{3}} + a^{\frac{7^n - 1}{6}} x^{\frac{7^n - 1}{3}} + a^{\frac{7^n - 1}{3}}.$$

Therefore,

$$\left(x^{\frac{7^n-1}{3}} - a^{\frac{7^n-1}{6}}\right)^{-1} = 4\lambda(x).$$
(17)

Inserting (17) into (7) yields $G(x) = 4a^{\frac{7^n-1}{6}}\lambda(x)$. Then, for any $x \in \mathbb{F}_{q^n}^*$,

$$G(x)^{3} = -\lambda(x)^{3} = 3(ax^{4})^{\frac{7^{n}-1}{6}} - 3(ax)^{\frac{7^{n}-1}{3}} - 2.$$
 (18)

Substituting (18) into Theorem 4 gives the desire result.

References

- A. Akbary, D. Ghioca, Q. Wang, On constructing permutations of finite fields, Finite Fields Appl. 17 (2011) 51–67.
- [2] A. Akbary, Q. Wang, On polynomials of the form $x^r f(x^{(q-1)/l})$, Int. J. Math. Math. Sci. 2007 (2007) 1–7, article ID 23408, doi:10.1155/2007/23408.
- [3] D. Bartoli, Permutation trinomials over \mathbb{F}_{q^3} , Finite Fields Appl. 61 (2020) 101597.
- [4] D. Bartoli, M. Giulietti, L. Quoos, G. Zini, Complete permutation polynomials from exceptional polynomials, J. Number Theory 176 (2017) 46–66, doi:10.1016/j.jnt.2016.12.016.
- [5] X. Cao, X.-D. Hou, J. Mi, S. Xu, More permutation polynomials with Niho exponents which permute \mathbb{F}_{q^2} , Finite Fields Appl. 62 (2020) 101626.
- [6] P. Charpin, S. Mesnager, S. Sarkar, Involutions over the Galois Field 𝔽_{2ⁿ}, IEEE Trans. Inf. Theory 62 (4) (2016) 2266–2276.
- [7] R. Coulter, M. Henderson, A note on the roots of trinomials over a finite field, Bull. Aust. Math. Soc. 69 (2004) 429–432.
- [8] R. S. Coulter, M. Henderson, The compositional inverse of a class of permutation polynomials over a finite field, Bull. Aust. Math. Soc. 65 (2002) 521–526.
- [9] L. E. Dickson, The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group, Part I, Ann. Math. 11 (1896) 65-120, https://www.jstor.org/stable/1967217.
- [10] X. Fan, A classification of permutation polynomials of degree 7 over finite fields, Finite Fields Appl. 59 (2019) 1–21.
- [11] X. Fan, Permutation polynomials of degree 8 over finite fields of characteristic 2, Finite Fields Appl. 64 (2020) 101662.
- [12] X. Fan, Permutation polynomials of degree 8 over finite fields of odd characteristic, Bull. Aust. Math. Soc. 101 (1) (2020) 40–55.
- [13] X.-D. Hou, Z. Tu, X. Zeng, Determination of a class of permutation trinomials in characteristic three, Finite Fields Appl. 61 (2020) 101596.
- [14] G. M. Kyureghyan, Constructing permutations of finite fields via linear translators, J. Combin. Theory Ser. A 118 (2011) 1052–1061.
- [15] J. Li, D. B. Chandler, Q. Xiang, Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2, Finite Fields Appl. 16 (2010) 406–419.
- [16] K. Li, L. Qu, C. Li, H. Chen, On a conjecture about a class of permutation quadrinomials, Finite Fields Appl. 66 (2020) 101690.
- [17] K. Li, L. Qu, Q. Wang, New constructions of permutation polynomials of the form $x^r h(x^{q-1})$ over \mathbb{F}_{q^2} , Des. Codes Cryptogr. 86 (2018) 2379–2405.
- [18] K. Li, L. Qu, Q. Wang, Compositional inverses of permutation polynomials of the form $x^r h(x^s)$ over finite fields, Cryptogr. Commun. 11 (2019) 279–298.
- [19] N. Li, T. Helleseth, New permutation trinomials from Niho exponents over finite fields with even characteristic, Cryptogr. Commun. 11 (1) (2019) 129–136.
- [20] R. Lidl, H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.
- [21] A. Muratović-Ribić, A note on the coefficients of inverse polynomials, Finite Fields Appl. 13 (2007) 977–980.

- [22] T. Niu, K. Li, L. Qu, Q. Wang, A general method for finding the compositional inverses of permutations from the AGW criterion, arXiv:2004.12552, https://arxiv.org/abs/2004.12552v1, 2020.
- [23] T. Niu, K. Li, L. Qu, Q. Wang, New constructions of involutions over finite fields, Cryptogr. Commun. 12 (2020) 165–185, doi:10.1007/s12095-019-00386-2.
- [24] L. Reis, Nilpotent linearized polynomials over finite fields and applications, Finite Fields Appl. 50 (2018) 279–292.
- [25] C. J. Shallue, I. M. Wanless, Permutation polynomials and orthomorphism polynomials of degree six, Finite Fields Appl. 20 (2013) 84–92.
- [26] Z. Tu, X. Liu, X. Zeng, A revisit to a class of permutation quadrinomials, Finite Fields Appl. 59 (2019) 57–85.
- [27] A. Tuxanidy, Q. Wang, On the inverses of some classes of permutations of finite fields, Finite Fields Appl. 28 (2014) 244–281.
- [28] A. Tuxanidy, Q. Wang, Compositional inverses and complete mappings over finite fields, Discrete Appl. Math. 217 (2017) 318–329.
- [29] Q. Wang, On inverse permutation polynomials, Finite Fields Appl. 15 (2009) 207–213.
- [30] Q. Wang, A note on inverses of cyclotomic mapping permutation polynomials over finite fields, Finite Fields Appl. 45 (2017) 422–427.
- [31] Q. Wang, Polynomials over finite fields: an index approach, in: K.-U. Schmidt, A. Winterhof (Eds.), Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, 319–346, doi:10.1515/9783110642094-015, 2019.
- [32] B. Wu, The compositional inverses of linearized permutation binomials over finite fields, arXiv:1311.2154v1, https://arxiv.org/abs/1311.2154, 2013.
- [33] B. Wu, Z. Liu, The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2, Finite Fields Appl. 24 (2013) 136–147.
- [34] B. Wu, Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013) 79–100.
- [35] Z. Zha, L. Hu, Z. Zhang, Permutation polynomials of the form $x + \gamma \operatorname{Tr}_q^{q^n}(h(x))$, Finite Fields Appl. 60 (2019) 101573.
- [36] D. Zheng, M. Yuan, N. Li, L. Hu, X. Zeng, Constructions of involutions over finite fields, IEEE Trans. Inf. Theory 65 (12) (2019) 7876–7883, doi:10.1109/TIT.2019.2919511.
- [37] Y. Zheng, F. Wang, L. Wang, W. Wei, On inverses of some permutation polynomials over finite fields of characteristic three, Finite Fields Appl. 66 (2020) 101670, doi: 10.1016/j.ffa.2020.101670.
- [38] Y. Zheng, Q. Wang, W. Wei, On inverses of permutation polynomials of small degree over finite fields, IEEE Trans. Inf. Theory 66 (2) (2020) 914–922, doi:10.1109/TIT.2019.2939113.
- [39] Y. Zheng, Y. Yu, Y. Zhang, D. Pei, Piecewise constructions of inverses of cyclotomic mapping permutation polynomials, Finite Fields Appl. 40 (2016) 1–9.
- [40] Y. Zheng, P. Yuan, D. Pei, Piecewise constructions of inverses of some permutation polynomials, Finite Fields Appl. 36 (2015) 151–169.