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Abstract

We investigate the permutation property of polynomials of the form xr(xs − a)t, and
give the expressions of their inverses. In particular, explicit expressions of inverses of
permutation polynomials x(x3 − a)2 and x(x2 − a)3 on F7n are presented. Then, using
some known results, we obtain the inverses of all permutation polynomials of degree
6, 7, 8 over finite fields.
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1. Introduction

For q a prime power, let Fq denote the finite field with q elements, F∗
q = Fq \ {0}, and

Fq[x] the ring of polynomials over Fq. A polynomial f ∈ Fq[x] is called a permutation
polynomial (PP) of Fq if it induces a bijection from Fq to itself. For any PP f of Fq, there
exists a polynomial f−1 ∈ Fq[x] such that f−1(f(c)) = c for each c ∈ Fq or equivalently
f−1(f(x)) ≡ x (mod xq−x), and the polynomial f−1 is unique in the sense of reduction
modulo xq − x. Hence f−1 is defined as the composition inverse of f , and we simply call
it the inverse of f on Fq.

A polynomial over Fq is called an exceptional polynomial over Fq if it is a PP of Fqn

for infinitely many positive integers n. Two polynomials f and g over Fq are called affine
equivalence if g(x) = αf(βx+ γ) + δ for some α, β ∈ F

∗
q and γ, δ ∈ Fq. Affine equivalent

f and g share the same degree, and f is a PP of Fq if and only if so is g.
The classification of PPs of finite fields has a long history. In 1896, Dickson [9]

obtained all normalized PPs of degree ≤ 5 of Fq for all q, and classified all PPs of
degree 6 of Fq for odd q. In 2010, a complete classification of all PPs of degree 6 or 7 of
F2n was settled in [15], up to affine equivalence and a special transformation. However,
each class of resulting PPs is invariant under the special transformation [10]. For a
verification of the classification of normalized PPs of degree 6 of Fq for all q, see [25].
More recently, under affine equivalence, Fan [10–12] gives a complete classification of all
PPs of degree 7 of Fq for odd q and degree 8 of Fq for all q. All such PPs of degree ≤ 8 can
be divided into two classes: exceptional and non-exceptional. According to the results
in the above literature, a non-exceptional PP of degree ≤ 8 over Fq exists only if q < 64.

The inverses of all normalized PPs of degree ≤ 5 were listed in [38]. In this paper,
we consider the inverses of all PPs of degree 6, 7, 8. For non-exceptional PPs of degree
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6, 7, 8 of Fq, since q < 64 is very small, one can use the Lagrange interpolation formula
to compute their inverses, i.e.,

f−1(x) =
∑

c∈Fq

c
(

1− (x − f(c))q−1
)

. (1)

But for exceptional PPs of degree 6, 7, 8 of Fqn with infinitely many n, finding explicit
expressions of their inverses on Fqn is not an easy problem.

There are several papers on the inverses of some classes of PPs, see for example
[24, 32, 34] for linearized PPs, [18, 21, 29, 39] for PPs of the form xrh(x(q−1)/d), [6, 23, 36]
for involutions over F2n , [30, 39] for generalized cyclotomic mapping PPs, [37, 39, 40]
for more general piecewise PPs, [22, 27, 28] for PPs constructed by the AGW criterion.
The results in [22, 27, 28] contain some concrete classes such as bilinear PPs [8, 33],
linearized PPs of the form L(x) +K(x)[24], and PPs of the form x + γf(x) [14]. For a
brief summary of the results concerning the inverses of PPs, we refer the reader to [38]
and the references therein.

In this paper, we study the PPs of the form f(x) = xr(xs−a)t on Fqn , where a ∈ F
∗
qn ,

st = qm − 1, r ≡ 1 (mod ℓ) and ℓ = (qn − 1)/(s, qn − 1). According to the Akbary-
Ghioca-Wang (AGW) criterion [1], f is a PP of Fqn if and only if (r, s, qn − 1) = 1
and another polynomial g(x) := x(x − a)st permutes the subset (F∗

q)
s. By solving the

equation g(x) = c for any c ∈ (F∗
q)
s, we find the inverse g−1 of g on (F∗

q)
s, and prove

that g permutes (F∗
q)
s if and only if aℓ 6= 1. Substituting g−1 into a slightly modified

version of a result in [22] concerning the inverse of more general PP xrh(xs), we obtain
an expression of the inverse of f on Fqn .

By considering special cases such as m = n, q(m,n)−1 | s, and t = 2 or 3, we get some
new classes of PPs and their inverses. In particular, explicit expressions of inverses of
exceptional polynomials x(x3 − a)2 and x(x2 − a)3 on F7n are given. Then, based on the
known formulae for the inverses of Dickson PPs and linearized PPs, we find the inverses
of all exceptional polynomials of degree 6, 7, 8; see Table 1.

In summary, under affine equivalence, Table 1 and [38, Tabel I] list the inverses of all
PPs of degree ≤ 8 over all finite fields, except for the inverses of non-exceptional PPs of
degree 6, 7, 8 which can be obtained by (1).

Some notations of this paper are as follows. The sets of integers and positive integers
are denoted by Z and N respectively. The greatest common divisor of two integers m
and n is written as (m,n). For a ∈ Fqn and d | n, the norm of a over Fqd is defined by

Nqn/qd(a) = a(q
n−1)/(qd−1).
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Table 1: All exceptional polynomials of degree 6, 7, 8 and their inverses

Exceptional polynomials over Fq Inverses q Reference

x6 x(5q−4)/6 q = 2n, odd n ≥ 3 Lemma 1

x7 x(kq−k+1)/7 with k ≡ (1− q)5 (mod 7) q 6≡ 1 (mod 7) Lemma 1

x7 − ax (a not a sixth power) a
q−1
6 (1 − a

q−1
6 )−1

∑n−1
i=0 a

− 7i+1
−1

6 x7
i

q = 7n, n ≥ 2 [7, 32]

x7 − 2ax4 + a2x (a not a cube) 2x
(

2a
q−1
6 x

q−1
2 + a

q−1
3 + 1

)(
∑n−1
i=0 a

− 7i+1
−1

6 x
7i−1

2

)2
q = 7n, n ≥ 2 Corollary 6

x7 − 3ax5 + 3a2x3 − a3x (a not a square) x
(

3(ax4)
q−1
6 − 3(ax)

q−1
3 − 2

)(
∑n−1

i=0 a
− 7i+1

−1
6 x

7i−1
3

)3
q = 7n, n ≥ 2 Corollary 8

x7 − 7ax5 + 14a2x3 − 7a3x (a 6= 0)
∑⌊m/2⌋

i=0
m
m−i

(

m−i
i

)

(−a7)ixm−2i q ≡ ±2,±3 (mod 7) [18]

where m = (kq2 − k + 1)/7 with k ≡ (1− q2)5 (mod 7) Lemma 1

and ⌊m/2⌋ denotes the largest integer ≤ m/2.

x8 + a2x
4 + a1x

2 + a0x (det(DL))
−1

∑n−1
i=0 āix

qi q = 2n, n ≥ 4 [34]

(if its only root in F2n is 0) where DL and āi are defined as in Lemma 3.

† This list is complete up to affine transformations: g(x) = αf(βx + γ) + δ with α, β, γ, δ ∈ Fq and αβ 6= 0.
‡ All non-exceptional permutation polynomials of degree 6, 7, 8 are listed in [10–12, 15, 25], and all of them are over small fields Fq with
q ≤ 64. Hence their inverses can be obtained by the Lagrange interpolation formula.
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2. Permutation polynomials of small degree and their inverses

Since the inverses of all normalized PPs of degree ≤ 5 were listed in [38], we only
consider the PPs of degree 6, 7, 8 which can be divided into two classes: exceptional and
non-exceptional. Combining the results in [4, 10–12, 15, 25] gives the following theorems.

Theorem 1. A non-exceptional PP of degree m ∈ {6, 7, 8} over Fq exists if and only if
one of the following conditions holds:

(i) m = 6 and q ∈ {8, 9, 11, 16, 27, 32};

(ii) m = 7 and q ∈ {9, 11, 13, 16, 17, 19, 23, 25, 27, 31, 49};

(iii) m = 8 and q ∈ {11, 13, 16, 19, 23, 27, 29, 31, 32, 64}.

Under affine equivalence, all such PPs are explicitly listed in [10–12, 15, 25].

Theorem 2. Each exceptional polynomial of degree 6, 7, 8 is affine equivalent to one of
the following:

(i) x6 over F2n with odd n ≥ 3;

(ii) x7 over Fq with q 6≡ 1 (mod 7);

(iii) x7−ax over F7nwith a not a sixth power in F7n , i.e., a ∈ F
∗
7n such that a(7

n−1)/6 6= 1;

(iv) x(x3 − a)2 over F7n with a not a cube in F7n , i.e., a ∈ F
∗
7n such that a(7

n−1)/3 6= 1;

(v) x(x2−a)3 over F7n with a not a square in F7n , i.e., a ∈ F
∗
7n such that a(7

n−1)/2 6= 1;

(vi) x7 − 7ax5 + 14a2x3 − 7a3x with a ∈ F
∗
q and q ≡ ±2,±3 (mod 7);

(vii) x8 + a2x
4 + a1x

2 + a0x over F2n if its only root in F2n is 0.

The inverses of PPs in Theorem 1 can be obtained directly by the Lagrange interpo-
lation formula (1) due to q < 64. To obtain the inverses of PPs in Theorem 2, we need
the following results.

Lemma 1. Let m, ℓ ∈ N and (m, ℓ) = 1. Then an inverse of m modulo ℓ is (kℓ+ 1)/m,
where k ≡ −ℓφ(m)−1 (mod m) and φ is Euler’s totient function.

Proof. Clearly, kℓ+ 1 ≡ 1 − ℓφ(m) ≡ 0 (mod m) and m(kℓ+ 1)/m− kℓ = 1. Therefore,
(kℓ+ 1)/m is an inverse of m modulo ℓ.

Lemma 2 ([7, 32]). Let L(x) = xq
m

−ax, where a ∈ F
∗
qn and m,n ∈ N. Then L is a PP

of Fqn if and only if Nqn/qd(a) 6= 1, where d = (m,n). In this case, its inverse on Fqn is

L−1(x) =
Nqn/qd(a)

1−Nqn/qd(a)

n/d
∑

i=1

a−
qim−1
qm−1 xq

(i−1)m

.

Lemma 3. Let L(x) =
∑n−1

i=0 aix
qi ∈ Fqn [x]. Then L is a PP of Fqn if and only if

DL :=











a0 a1 · · · an−1

aqn−1 aq0 · · · aqn−2
...

...
...

...

aq
n−1

1 aq
n−1

2 · · · aq
n−1

0











is nonsingular [20, Page 362]. In this case, its inverse was given in [34] by

L−1(x) =
1

det(DL)

n−1
∑

i=0

āix
qi ,

where āi is the (i, 0)-th cofactor of DL, i.e., det(DL) = a0ā0 +
∑n−1

i=1 a
qi

n−iāi.
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The Dickson polynomial Dn(x, a) of degree n with parameter a ∈ Fq is given as

Dn(x, a) =

⌊n/2⌋
∑

i=0

n

n− i

(

n− i

i

)

(−a)ixn−2i,

where ⌊n/2⌋ denotes the largest integer ≤ n/2. For a ∈ F
∗
q , Dn(x, a) is a PP of Fq if and

only if gcd(n, q2 − 1) = 1. Its inverse is determined in [18] by the next lemma.

Lemma 4 ([18, Lemma 4.8]). Let a ∈ F
∗
q andm,n ∈ N be such that mn ≡ 1 (mod q2−1).

Then the inverse of Dn(x, a) on Fq is Dm(x, an).

The PP x7 − 7ax5 +14a2x3 − 7a3x in Theorem 2 is the Dickson polynomial D7(x, a)
and, by Lemma 4, its inverse is Dm(x, a7). By Lemma 1, an inverse m of 7 modulo q2−1
can be written as m = (kq2 − k + 1)/7, where k ≡ (1 − q2)5 (mod 7).

The inverses of PPs x6, x7, x7−ax and x8+
∑2
i=0 aix

i in Theorem 2 can be obtained
directly by Lemmas 1 to 3. The inverses of PPs x(x3 − a)2 and x(x2 − a)3 on F7n are
given by Corollaries 6 and 8 in Section 5 respectively.

In short, the inverses of all the PPs in Theorem 2 are known now. For convenience,
all the PPs in Theorem 2 and their inverses are listed in Table 1.

3. Large class of PPs and its inverse

In this section we slightly modify a known expression of the inverse of PP xrh(xs).
Moreover, we investigate the permutation properties of x(x−a)st on (F∗

qn)
s and xr(xs−a)t

on Fqn , and obtain their inverses. The following lemma will be needed.

Lemma 5 ([1, Proposition 3.1]). Let f(x) = xrh(xs), where h ∈ Fq[x] and r, s ∈ N.
Then f is a PP of Fq if and only if (r, s, q− 1) = 1 and g(x) := xrh(x)s permutes (F∗

q)
s.

The problem that when special classes of g permuting (F∗
q)
s has been extensively

studied, see for example [3, 5, 13, 16, 17, 19, 26, 35]. For a recent survey of this problem,
we refer the reader to [31] and the references therein.

The inverse of f in terms of roots of unity over Fq was given in [29, 39]. Let g1 ∈ Fq[x]
be such that xk1 ◦ g1 = g ◦ xk1 , where k1 = s/(s, q− 1). The inverse of f in terms of the
inverse of g1 on (F∗

q)
s was given in [18] when (r, q−1) = 1, and given in [22] for all r ∈ N.

Using the method in [22], we obtain the following equivalent version of the inverse of f ,
which is expressed in terms of the inverse of g on (F∗

q)
s.

Theorem 3. Let f(x) = xrh(xs), where h ∈ Fq[x] and r, s ∈ N. Let s̄ = (s, q − 1) and
k be an inverse of s/s̄ modulo (q − 1)/s̄. If f is a PP of Fq and g−1 is the inverse of
g(x) := xrh(x)s on (F∗

q)
s. Then the inverse of f on Fq is

f−1(x) = xb
(

h(g−1(xs))
)−b(

g−1(xs)
)ck

,

where b, c ∈ Z satisfy br + cs̄ = 1.

Proof. We prove it by using the method in [22, Theorem 3.2]. Since the theorem holds
for x = 0, we only consider x ∈ F

∗
q . Let φ(x) = (xr, xs) and ψ(y, z) = (yrh(z)r, g(z)). It

is easy to verify that ψ ◦ φ = φ ◦ f , i.e., the following diagram is commutative:

F
∗
q

f
//

φ

��

F
∗
q

φ

��

φ(F∗
q)

ψ
// φ(F∗

q).
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If f is a PP, then, by Lemma 5, (r, s̄) = 1 and g permutes (F∗
q)
s. Assume br+ cs̄ = 1

and k(s/s̄) + v(q − 1)/s̄ = 1 for some b, c, k, v ∈ Z. Then

cs̄ = cs̄(k(s/s̄) + v(q − 1)/s̄) = cks+ cv(q − 1),

and so, for any x ∈ F
∗
q ,

(xr)b(xs)ck = xbr+cksxcv(q−1) = xbr+cks+cv(q−1) = xbr+cs̄ = x. (2)

Hence φ is bijective and φ−1(y, z) = ybzck.
Since f is a PP of Fq and φ is bijective, ψ is also bijective. For (y, z) ∈ φ(F∗

q), assume
that ψ(y, z) = (α, β) for some (α, β) ∈ φ(F∗

q), i.e.,

yrh(z)r = α and g(z) = zrh(z)s = β.

Because z, β ∈ (F∗
q)
s and g permutes (F∗

q)
s, we obtain z = g−1(β). Denote α = xr0 and

β = xs0 for some x0 ∈ F
∗
q . Then αbβck = x0 by (2), and so

(

αbβckh(z)−1
)r
h(z)r = α.

Since ψ is bijective, we have y = αbβckh(z)−1. Hence,

ψ−1(α, β) = (y, z) = (αbβckh(g−1(β))−1, g−1(β)).

Substituting φ, φ−1, ψ−1 into f−1 = φ−1 ◦ ψ−1 ◦ φ gives the desire result.

The key step in Theorem 3 is to find the inverse of g on (F∗
q)
s, which is possible to

be done for special classes of g, as for instance in the following result.

Lemma 6. Let a ∈ F
∗
qn and s | qm − 1. Then g(x) = x(x − a)q

m−1 permutes (F∗
qn)

s if

and only if aℓ 6= 1, where ℓ = (qn − 1)/(s, qn − 1). In this case, its inverse on (F∗
qn)

s is

g−1(x) =
(

(a−1x)
qn−1

qd−1 − 1
)

( n/d
∑

i=1

a−
qim−1
qm−1 x

q(i−1)m
−1

qm−1

)−1

+ a,

where d = (m,n).

Proof. Since the multiplicative group of Fqn is cyclic, we can verify (F∗
qn)

s = (F∗
qn)

(s,qn−1).

Thus a ∈ (F∗
qn)

s if and only if aℓ = 1. If aℓ = 1, then a ∈ (F∗
qn)

s, and so g has root in

(F∗
qn)

s. Hence g does not permute (F∗
qn)

s. Next we only consider aℓ 6= 1 and x ∈ (F∗
qn)

s.
Since g introduces a mapping from (F∗

qn)
s to itself, we need only show that, for any

y ∈ (F∗
qn)

s, the equation g(x) = y has exactly one solution x and x = g−1(y).

Since aℓ 6= 1, we have x − a 6= 0 for any x ∈ (F∗
qn)

s. Let z = (x − a)−1. Then
x− a = z−1 and x = z−1 + a. Substituting them into g(x) = y yields

(z−1 + a)z1−q
m

= y, i.e., zq
m

− (a/y)z = 1/y. (3)

Recall that d = (m,n) and ℓ = (qn − 1)/(s, qn − 1). Let qm − 1 = st. Then

qd − 1 = q(m,n) − 1 = (qm − 1, qn − 1) = (st, qn − 1)

= (s, qn − 1)(t, (qn − 1)/(s, qn − 1))

= (s, qn − 1)(t, ℓ),

and so qn−1
qd−1

(t, ℓ) = ℓ. Since aℓ 6= 1 and y ∈ (F∗
qn)

s, we have

(

Nqn/qd(a/y)
)(t,ℓ)

= (a/y)
qn−1

qd−1
(t,ℓ)

= (a/y)ℓ = aℓ 6= 1.

6



Therefore,
Nqn/qd(a/y) 6= 1. (4)

It follows from Lemma 2 and (3) that

z =
Nqn/qd(a/y)

1−Nqn/qd(a/y)

n/d
∑

i=1

(a/y)−
qim−1
qm−1 (1/y)q

(i−1)m

=
(

Nqn/qd(y/a)− 1
)−1

n/d
∑

i=1

a−
qim−1
qm−1 y

q(i−1)m
−1

qm−1 .

(5)

Substituting (5) into x = z−1 + a gives x = g−1(y).

After these preparations, we can now give the main theorem.

Theorem 4. Let f(x) = xr(xs − a)t, where a ∈ F
∗
qn and r, s, t ∈ N are such that

st = qm − 1 and r ≡ 1 (mod ℓ) with ℓ = (qn − 1)/(s, qn − 1). Then f is a PP of Fqn if
and only if (r, qn − 1) = 1 and aℓ 6= 1. In this case, the inverse of f on Fqn is

f−1(x) = xu(G(x)H(x))tu, (6)

where u is an inverse of r modulo qn − 1,

G(x) =
(

(a−1xs)
qn−1

qd−1 − 1
)−1

, (7)

H(x) =

n/d
∑

i=1

a−
qim−1
qm−1 x

q(i−1)m
−1

t , and d = (m,n). (8)

Proof. From Lemma 5, f is a PP if and only if (r, s, qn − 1) = 1 and g(x) := xr(x− a)st

permutes (F∗
q)
s. Since r ≡ 1 (mod ℓ), we have xr = x and so g(x) = x(x − a)st for any

x ∈ (F∗
q)
s. By Lemma 6, g permutes (F∗

q)
s if and only if aℓ 6= 1. It follows from r ≡ 1

(mod ℓ) that (r, ℓ) = 1, and so (r, s, qn − 1) = 1 if and only if (r, qn − 1) = 1.
Let ru+ (qn − 1)v = 1 for some u, v ∈ Z. Then ru+ (ℓv)s̄ = 1, where s̄ = (s, qn− 1).

For any x ∈ F
∗
qn , we have g−1(xs) ∈ (F∗

q)
s, and so (g−1(xs))ℓ = 1. Substituting b := u,

c := ℓv and g−1 in Lemma 6 into Theorem 3 gives the expression of f−1.

The following are two examples of Theorem 4 where r2 ≡ 1 (mod qn − 1).

Example 1. Let f(x) = xr(x3 + a)5, where a ∈ F
∗
28 and r ≡ 1 (mod 85). Then f is a

PP of F28 if and only if (r, 3) = 1 and a85 6= 1. In this case, its inverse on F28 is

f−1(x) = xr(x51 + a17)−5r(x3 + a16)5r .

Example 2. Let f(x) = xr(x16 − a)5, where a ∈ F
∗
36 and r ≡ 1 (mod 91). Then f is a

PP of F36 if and only if (r, 8) = 1 and a91 6= 1. In this case, its inverse on F36 is

f−1(x) = (1− a91)−5rxr
(

a90 + a9x16 + x584
)5r
.

4. Simplified versions of the main theorem

In this section we aim to simplify the expressions of G and H in Theorem 4. On the
one hand, we consider small n/(m,n) which is the number of the terms of H . On the
other hand, we study the cases qd − 1 | s and qd − 1 | t, in which G and Gt are reduced
to constants respectively.
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4.1. The case H is a constant

Applying Theorem 4 to m = n, we obtain that G(x) = a(xs − a)−1 and H(x) = a−1.
Hence we arrive at the following result.

Corollary 1. Let f(x) = xr(xs − a)t, where a ∈ F
∗
q, st = q − 1 and r ≡ 1 (mod t).

Then f is a PP of Fq if and only if (r, q − 1) = 1 and at 6= 1. If f is a PP of Fq and u
is an inverse of r modulo q − 1, then its inverse on Fq is

f−1(x) = xu(xs − a)−tu.

The binomial xs−a in Corollary 1 can be generalized to H(xs) which has no nonzero
root in Fq; see the next theorem.

Theorem 5. Let f(x) = xr(h(xs))t, where h ∈ Fq[x] and st = q− 1. Then f is a PP of
Fq if and only if (r, q−1) = 1 and h(xs) has no nonzero root in Fq (see [2, Corollary 3.2]).
If f is a PP of Fq and r ≡ 1 (mod t), then its inverse on Fq is

f−1(x) = xu(h(xs))−tu,

where u is an inverse of r modulo q − 1.

Proof. The permutation part is [2, Corollary 3.2]. Let r = kt+ 1 for some k ∈ Z. Then

rs = (kt+ 1)s = kst+ s ≡ s (mod q − 1).

Now it is easy to verify that f−1(f(e)) = e for any e ∈ Fq. This completes the proof.

4.2. The case G or Gt is a constant

If f in Theorem 4 is a PP, then (4) holds, and so G(c) ∈ F
∗
qd for any c ∈ Fqn . Hence

G(x)t = 1 when qd − 1 | t. Moreover, if qd − 1 | s, then Nqn/qd(c
s) = 1 for any c ∈ F

∗
qn .

Thus G is reduced to a constant. The argument above gives the following theorem.

Theorem 6.With the same notation and hypothese as in Theorem 4, let f be a PP of Fqn .

(i) If qd − 1 | t, then f−1(x) = xu(H(x))tu.

(ii) If qd − 1 | s, then f−1(x) = xu(AH(x))tu, where A =
(

a
− qn−1

qd−1 − 1
)−1

.

Recall that d = (m,n) and qm − 1 = st. The conditions qd − 1 | s or qd − 1 | t in
Theorem 6 are easy to satisfied, because

st = qm − 1 = (qd − 1)(1 + qd + q2d + · · ·+ qm−d). (9)

For instance, taking t = 1 and n = 2m leads to qd − 1 = qm− 1 = s and n/d = 2. Hence
H(x) = a−1 + a−(qm+1)xq

m−1. Then substituting q for qm yields the following result.

Corollary 2. Let f(x) = xr(xq−1 − a), where a ∈ F
∗
q2 and r ≡ 1 (mod q + 1). Then f

is a PP of Fq2 if and only if (r, q2 − 1) = 1 and aq+1 6= 1. If f is a PP of Fq2 and u is
an inverse of r modulo q2 − 1, then its inverse on Fq2 is

f−1(x) = (1− aq+1)−u(aqx+ xq)u.

Next we give another example of the case qd − 1 = s over F2n .
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Corollary 3. Let f(x) = xr(x3 + a)5 where a ∈ F
∗
2n , n is even, r ≡ 1 (mod ℓ) and

ℓ = (2n − 1)/3. Then f is a PP of F2n if and only if (r, 2n − 1) = 1 and aℓ 6= 1. If f is
a PP of F2n and n ≡ 2 (mod 4), then its inverse on F2n is

f−1(x) = aℓuxu
( n/2
∑

i=1

a−
16i−1

15 x
16i−1

−1
5

)5u

,

where u is an inverse of r modulo 2n − 1.

Proof. The permutation part is a direct consequence of Theorem 4. Let ω = aℓ. Then
ω3 = 1 and, by ω 6= 1, ω2 + ω + 1 = 0. Thus ω/(1 + ω) = ω−1 and ω−5 = ω. Inserting
them into Theorem 6 gives the above expression of f−1.

The next corollary is an example of the case qd − 1 = t and 2n = 3m.

Corollary 4. Let f(x) = x(xq+1 − a)q−1, where a ∈ F
∗
q3 and q is odd. Then f is a PP

of Fq3 if and only if a(q
3−1)/2 = −1. In this case, its inverse on Fq3 is

f−1(x) = x
(

aq
2+q + aqxq+1 + xq

2+q+2
)q−1

.

5. Permutation trinomials and tetranomials

Applying the main theorem to t = 2, 3, we can obtain some permutation trinomials
and tetranomials and their inverses, which contain two classes of exceptional polynomials
in Theorem 2. First, we give a simple lemma.

Lemma 7. Let a be odd, m,n ∈ N and d = (m,n). Then (am − 1)/(ad − 1) and m/d
have the same parity, and

(

(am − 1)/2, an − 1
)

=

{

ad − 1 if m/d is even,

(ad − 1)/2 if m/d is odd.

Proof. Since (am − 1)/(ad − 1) =
∑m/d
i=1 (a

d)i−1 and a is odd, (am − 1)/(ad − 1) is an
integer with the same parity as m/d. Then

2
(

(am − 1)/2, an − 1
)

=
(

am − 1, 2(an − 1)
)

= (am − 1, an − 1)

(

am − 1

(am − 1, an − 1)
,

2(an − 1)

(am − 1, an − 1)

)

= (am − 1, an − 1)

(

am − 1

(am − 1, an − 1)
, 2

)

= (ad − 1)

(

am − 1

ad − 1
, 2

)

= (ad − 1)(m/d, 2).

Applying Theorem 4 to r = 1 and t = 2, we derive the following result.

Theorem 7. Let f(x) = xq
m

− 2ax
qm+1

2 + a2x, where a ∈ F
∗
qn , q is odd and m,n ∈ N.

Let d = (m,n), c = a(q
n−1)/(qd−1) and

H2(x) = x

( n/d
∑

i=1

a−
qim−1
qm−1 x

q(i−1)m
−1

2

)2

.
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(i) If m/d is even, then f is a PP of Fqn if and only if c 6= 1. In this case,

f−1(x) = c2(1 − c)−2H2(x).

(ii) If m/d is odd, then f is a PP of Fqn if and only if c2 6= 1. In this case,

f−1(x) = c2(1− c2)−2
(

2cx
qn−1

2 + c2 + 1
)

H2(x). (10)

Proof. Note that f(x) = x(x
qm−1

2 − a)2. In the notation of Theorem 4, we have t = 2
and s = (qm − 1)/2. If m/d is even, then (s, qn − 1) = qd − 1 by Lemma 7, and
ℓ = (qn − 1)/(qd − 1). According to Theorem 4, f is a PP of Fqn if and only if c 6= 1. It
is easy to verify f−1(f(0)) = 0. Next we only consider x ∈ F

∗
qn for computing f−1(x).

Since qd − 1 | s, we have

(xs)
qn−1

qd−1 = (xq
n−1)

s

qd−1 = 1 (11)

for any x ∈ F
∗
qn . Substituting (11) into (7), we obtain

G(x) = c(1− c)−1. (12)

If m/d is odd, then (s, qn − 1) = (qd − 1)/2 by Lemma 7, and ℓ = 2(qn− 1)/(qd− 1).
According to Theorem 4, f is a PP of Fqn if and only if c2 6= 1. If m/d is odd, then
(qm − 1)/(qd − 1) is also odd by Lemma 7, and so

(xs)
qn−1

qd−1 = x
qm−1

2 · q
n
−1

qd−1 = x
qn−1

2 · q
m

−1

qd−1 = x
qn−1

2

for any x ∈ F
∗
qn . Since

1− c2 =
(

x
qn−1

2

)2
− c2 =

(

x
qn−1

2 + c
)(

x
qn−1

2 − c
)

.

We have
(

x
qn−1

2 − c
)−1

=
(

1− c2
)−1(

x
qn−1

2 + c
)

. (13)

Note that c = a(q
n−1)/(qd−1). Inserting (13) into (7), we obtain

G(x) = c(1 − c2)−1(x
qn−1

2 + c). (14)

Then, for any x ∈ F
∗
qn ,

(

x
qn−1

2 + c
)2

= 2cx
qn−1

2 + c2 + 1. (15)

Substituting (12), (14) and (15) into Theorem 4 gives the desire result.

Taking qm = 5, 7, 9 in Theorem 7 leads to the following corollaries.

Corollary 5. Let f(x) = x5 − 2ax3 + a2x, where a ∈ F
∗
5n and n ∈ N. Then f is a PP

of F5n if and only if a(5
n−1)/2 = −1. In this case, the inverse of f on F5n is

f−1(x) = 2a
5n−1

4 x
5n+1

2

( n−1
∑

i=0

a−
5i+1

−1
4 x

5i−1
2

)2

.

Corollary 5 is essentially [38, Theorem 8] or [18, Lemma 4.9].

Corollary 6. Let f(x) = x7 − 2ax4 + a2x, where a ∈ F
∗
7n and n ∈ N. Then f is a PP

10



of F7n if and only if a(7
n−1)/3 6= 1. In this case, the inverse of f on F7n is

f−1(x) = 2x
(

2a
7n−1

6 x
7n−1

2 + a
7n−1

3 + 1
)

( n−1
∑

i=0

a−
7i+1

−1
6 x

7i−1
2

)2

.

Proof. The permutation part is a direct consequence of Theorem 7. Let ω = a(7
n−1)/3.

Then ω3 = 1 and ω 6= 1 if f is a PP. Hence ω2 + ω + 1 = 0, and so (1 − ω)2 = −3ω.
Inserting them into (10) gives the above expression of f−1.

Corollary 7. Let f(x) = x9 + ax5 + a2x, where a ∈ F
∗
3n and n ∈ N.

(i) If n is odd, then f is a PP of F3n if and only if a(3
n−1)/2 = −1. In this case, the

inverse of f on F3n is

f−1(x) = x

( n−1
∑

i=0

a−
9i+1

−1
8 x

9i−1
2

)2

.

(ii) If n is even, then f is a PP of F3n if and only if c2 6= 1, where c = a(3
n−1)/8. In

this case, the inverse of f on F3n is

f−1(x) = x
(

c5x
3n−1

2 + c2 + 1
)

( n/2
∑

i=1

a−
9i−1

8 x
9i−1

−1
2

)2

. (16)

Proof. We only verify (16), because the rest parts are direct consequences of Theorem 7.
Let ω = c2 = a(3

n−1)/4. Then ω4 = 1 and ω 6= 1 if f is a PP. Thus ω3 + ω2 + ω + 1 = 0,
and so (1 − ω)2 = 1 + ω + ω2 = −ω3 in F3n . Then ω/(−ω3) = −ω−2 = −ω2 and
−ω2(ω + 1) = ω + 1. Inserting them into (10) gives (16).

Applying Theorem 4 to r = 1, t = 3 and qm = 7 gives the following corollary.

Corollary 8. Let f(x) = x7 − 3ax5 + 3a2x3 − a3x, where a ∈ F
∗
7n and n ∈ N. Then f

is a PP of F7n if and only if a(7
n−1)/2 = −1. In this case, its inverse on F7n is

f−1(x) = x
(

3(ax4)
7n−1

6 − 3(ax)
7n−1

3 − 2
)

( n−1
∑

i=0

a−
7i+1

−1
6 x

7i−1
3

)3

.

Proof. Clearly, f(x) = x(x2 − a)3, and so s = 2, t = 3, ℓ = (7n − 1)/2, m = d = 1.
From Theorem 4, f is a PP of Fqn if and only if a(7

n−1)/2 = −1. It is easy to verify that
f−1(f(0)) = 0. Next we only consider x ∈ F

∗
qn for computing f−1(x). Note that

2 = 1− a
7n−1

2 =
(

x
7n−1

3

)3
−
(

a
7n−1

6

)3
=

(

x
7n−1

3 − a
7n−1

6

)

λ(x),

where
λ(x) = x

2(7n−1)
3 + a

7n−1
6 x

7n−1
3 + a

7n−1
3 .

Therefore,
(

x
7n−1

3 − a
7n−1

6

)−1
= 4λ(x). (17)

Inserting (17) into (7) yields G(x) = 4a
7n−1

6 λ(x). Then, for any x ∈ F
∗
qn ,

G(x)3 = −λ(x)3 = 3(ax4)
7n−1

6 − 3(ax)
7n−1

3 − 2. (18)

Substituting (18) into Theorem 4 gives the desire result.
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