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AN OVERVIEW OF (κ, τ)-REGULAR SETS AND THEIR

APPLICATIONS

DOMINGOS M. CARDOSO

Abstract. A (κ, τ )-regular set is a vertex subset S inducing a κ-regular
subgraph such that every vertex out of S has τ neighbors in S. This arti-
cle is an expository overview of the main results obtained for graphs with
(κ, τ )-regular sets. The graphs with classical combinatorial structures,
like perfect matchings, Hamilton cycles, efficient dominating sets, etc,
are characterized by (κ, τ )-sets whose determination is equivalent to the
determination of those classical combinatorial structures. The charac-
terization of graphs with these combinatorial structures are presented.
The determination of (κ, τ )-regular sets in a finite number of steps is
deduced and the main spectral properties of these sets are described.

Key words: perfect matching; Hamilton cycle; efficient dominating set;
maximum k-regular induced subgraph; graph spectra.

1. Introduction

The graphsG considered in this work are simple and undirected with order
(number of vertices) n and size (number of edges) m. The vertex set of G is
denoted by V (G) and its edge set by E(G). An edge with end-vertices i and j
is denoted by ij. In such a case, we say that these vertices are adjacent. The
neighborhood of a vertex u ∈ V (G) is NG(u) = {v ∈ V (G) : uv ∈ E(G)} and
the degree of the vertex u is dG(u) = |NG(u)|. The maximum (minimum)
degree of the vertices of a graph G is ∆(G) (δ(G)). Several other concepts
and notation will be introduced throughout the text and for further basic
notation and basic concepts the reader is referred to [4] and [17].

The concept of (κ, τ)-regular set for general graphs first appeared in [6] as
a particular case of the concept of (X,Y )-set introduced in [26] as a vertex
subset S of a graph G such that

|NG(v) ∩ S| ∈
{

X, if v ∈ S
Y, otherwise,

where X and Y are subsets of {0, 1, · · · , n − 1}. The vertex subset S is
(κ, τ)-regular when the subsets X and Y are the singleton subsets X = {k}
and Y = {τ}, that is, S is (κ, τ)-regular if ∀v ∈ V (G)

|NG(v) ∩ S| =
{

κ, if v ∈ S
τ, otherwise.
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When a graph G is κ-regular, for convenience, its vertex set V (G) is consider
a (κ, 0)-regular set. From now on, for any graph G, it is assumed that a
(κ, τ)-regular set S ⊂ V (G) (that is, S is strictly included in V (G)) is such
that τ > 0.

Example 1.1. The Pertersen graph depicted in Figure 1.1 has several (k, τ)-

regular sets. For instance, S =







{1, 2, 3, 4}, is (0,2)−regular;
{5, 6, 7, 8, 9, 10}, is (1,3)−regular;
{1, 2, 5, 7, 8}, is (2,1)−regular.
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Figure 1.1. The Petersen graph.

The following properties are immediate.

(1) If an arbitrary graph H has a (κ, τ)-regular set S ⊂ V (H), then S
is a (|S| −κ− 1, |S| − τ)-regular set for the complement graph of H.

(2) If a p-regular graph G has a (κ, τ)-regular set S ⊂ V (H), then
V (G) \ S is (p− τ, p− κ)-regular.

Now we recall that the adjacency matrix of a graph G of order n is the
n × n matrix AG whose (i, j)-entry is equal to 1 whether ij ∈ E(G) and
is equal to 0 otherwise. This matrix AG is symmetric and then it has n
real eigenvalues, herein indexed in non increasing order and denoted by
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). These eigenvalues of AG are also called the
eigenvalues of G. The spectrum of G is the multiset

σ(G) = {µ[m1]
1 , µ

[m2]
2 , . . . , µ

[mq ]
q },

where µ1, µ2, . . . , µq are the q distinct eigenvalues of G and mj denotes the
multiplicity of µj, for j = 1, 2, . . . , q. Therefore,

λ1(G) = · · · = λm1
(G)

︸ ︷︷ ︸

µ1

> λm1+1(G) = · · · = λm1+m2
(G)

︸ ︷︷ ︸

µ2

> · · · > λn−mq+1(G) = · · · = λn(G)
︸ ︷︷ ︸

µq

and
∑q

j=1mj = n. The associated eigenspace of an eigenvalue λ of a graph

G is denoted by EG(λ).
The (κ, τ)-regular sets were first investigated in [25], in the context of

regular graphs, where a subgraph of a graph G induced by a (κ, τ)-regular
set was called an eigengraph of G. Furthermore, a necessary and sufficient
condition for the existence of a (κ, τ)-regular set in a regular graph was de-
duced. Theorem 1.1 states a slightly different version deduced in [7] also
for regular graphs. From now on, ê denotes the all-one vector with n com-
ponents and the characteristic vector of a vertex subset S of a graph is
x(S) ∈ {0, 1}V (G) such that its i-th component is qual to 1 if i ∈ V (G) and
equal to 0 otherwise.
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Theorem 1.1. [25, 7] A p-regular graph G has a (κ, τ)-regular set, with κ <

p, if and only if κ− τ is an eigenvalue of G and there exists x ∈ {0, 1}V (G)

such that x − τ
p+τ−κ

ê ∈ EG(κ − τ). Furthermore, x is the characteristic

vector of a (κ− τ)-regular set.

More generally, the next theorem states a necessary and sufficient con-
dition for the existence of a (κ, τ)-regular set in an arbitrary graph. This
version is a stronger variant than the one presented in [6].

Theorem 1.2. A graph G has a (κ, τ)-regular set if and only if the linear
system

(1.1) (AG − (κ− τ)In) x = τ ê,

where In is the identity matrix of order n, has a 0−1 solution. Furthermore,
every 0− 1 solution is the characteristic vector of a (κ, τ)-regular set.

Proof. Let S ⊂ V (G) be a (κ, τ)-regular set. Then it is immediate that the
characteristic vector of S, x(S), is a solution of (1.1). Conversely, assuming

that x = (x1, . . . ,xn) ∈ {0, 1}V (G) is a solution of (1.1), its i-th equation,
for i = 1, . . . , n, can be written as follows

∑

j∈NG(i)

xj − (κ− τ)xi = τ ⇔
∑

j∈NG(i):xj=1

xj =

{

κ, if xi = 1
τ, otherwise.

Therefore, the vertex set defined by x as being its characteristic vector is
(κ, τ)-regular. �

Regarding the cardinality of (κ, τ)-regular sets, the next theorem extends
the result obtained in [3] for (0, τ)-regular sets. The graphs with (0, τ)-
regular sets were called τ -regular-stable graphs in [3] .

Theorem 1.3. Let G be graph with a (κ, τ)-regular set S ⊂ V (G), such that
δ(G) + τ > κ. Then

(1.2)
nτ

∆(G) − (κ− τ)
≤ |S| ≤ nτ

δ(G) − (κ− τ)
.

Proof. Since S ⊂ V (G), from the definition of a (κ, τ)-regular set, τ > 0 and
we obtain

|S|(δ(G) − κ) ≤ (n− |S|)τ ≤ |S|(∆(G) − κ).

Therefore, |S| (δ(G) − (κ− τ)) ≤ nτ ≤ |S| (∆(G) − (κ− τ)) and the in-
equalities (1.2) follow. �

As immediate consequence of Theorem 1.3, if G is a p-regular graph with
a (κ, τ)-regular set S ⊂ V (G), then |S| = nτ

p−(κ−τ) .

2. Characterization of graphs with classical combinatorial

structures

There are several classical combinatorial structures which can be charac-
terized by (κ, τ)-regular sets as it is the case of perfect matchings, Hamil-
tonian cycles, efficient dominating sets and dominating induced matchings
(also called efficient edge dominating sets). Furthermore, there are graphs
with particular combinatorial structure that can be characterized by using
(κ, τ)-regular sets, as it is the case of strongly regular graphs.
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The next theorem which appear in [3] (see also [5]) states a necessary and
sufficient condition for the existence of perfect matchings in graphs.

Theorem 2.1. [3] A graph G 6= K2 has a perfect matching if and only if
its line graph L(G) has a (0, 2)-regular set.

It follows a necessary and sufficient condition for Hamiltonian graphs
published in [1] (for the reader convenience the proof is also presented).

Theorem 2.2. [1] A graph G is Hamiltonian if and only if its line graph
has a (2, 4)-regular set inducing a connected subgraph.

Proof. Let C be a Hamilton cycle of a graph G and let L(C) be the vertex
subset of the line graph L(G) corresponding to the edges in C. Then it is
immediate that L(C) is a (2, 4)-regular set of L(G) inducing a connected
subgraph. Conversely, assume that the line graph L(G) of a graph G has a
(2, 4)-regular set S inducing a connected subgraph. The edges of G corre-
sponding to S form just one cycle C in G. Furthermore, since each vertex
not in S has 4 neighbors in S, the corresponding edges in G have both
end-vertices in the cycle C. Therefore, C is Hamiltonian. �

Example 2.1. The Figure 2.1 depicts a Hamiltonian graph H and its line
graph L(H). The graph H has a Hamiltonian cycle define by the edge set
C = {a, b, c, d, e, f, g} and this edge set corresponds in L(H) to a (2, 4)-
regular set inducing a connected subgraph.
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Figure 2.1. A Hamiltonian graph H and its line graph
L(H) with the (2, 4)-regular set S = {a, b, c, d, e, f, g}.

In [23] it was proved that a graph G is Hamiltonian if and only the subdi-
vision of G (that is, a graph obtained from G after inserting a vertex in the
middle of each edge) has a (2, 2)-regular set inducing a connected subgraph.

Before to proceed, it is worth recall some domination concepts. Given a
graph G and a vertex v ∈ V (G), v dominates itself and all its neighbors.
A vertex set S ⊂ V (G) is dominating if every vertex of G is dominated
by at least one vertex of S. The domination number of a graph G, γ(G),
is the cardinality of a dominating set in G with minimum cardinality. A
dominating set S is efficient dominating (also known as independent perfect
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dominating set) if each vertex of G is dominated by precisely one vertex
of S. Not every graph has an efficient dominating set (for example, C4

has no efficient dominating sets). The problem of determining an efficient
dominating set in a graph (if there exists) is called the efficient dominating
set problem. This problem is known to be NP -complete for general graphs
[2]. A closely related problem is that of determining if G has an efficient edge
dominating set, that is, a set E of edges such that every edge of G shares a
vertex with precisely one edge in E (assuming that an edge shares a vertex
with itself). This edge set is also known as a dominating induced matching
problem and the problem of determining such edge set is also NP -complete
[19]. An instance of a dominating induced matching can be transformed
into an instance of an efficient dominating set by associating to the input
graph G its line graph L(G).

Theorem 2.3. A vertex subset S of a graph G is an efficient dominating
set if and only if S is (0, 1)-regular.

Proof. Taking into account the definitions of a (κ, τ)-regular set and efficient
dominating set, the result follows. �

The (κ, τ)-regular sets are also related with determination of vertex sub-
sets of maximum cardinality inducing a κ-regular subgraph, as it is high-
lighted by the next theorem.

Theorem 2.4. [9] Let G be a graph of order n and let τ = −λn(G). If
S ⊂ V (G) is (κ, κ + τ)-regular, then S is a maximum cardinality vertex
subset of G inducing a κ-regular subgraph.

Example 2.2. Consider the graph G depicted in Figure 2.2 for which σ(G) =

{−2[2], 0[3], 4[1]} and the vertex subset S = {1, 3, 4, 6} is (2, 4)-regular. There-
fore, applying Theorem 2.4, we may conclude that S is a maximum cardi-
nality vertex subset inducing a 2-regular subgraph.
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Figure 2.2. Graph G with the (2, 4)-regular set S =

{1, 3, 4, 6} and σ(G) = {−2[2], 0[3], 4[1]}.

A strongly regular graph with parameters (n, p, a, c) is a p-regular graph
of order n, where each pair of vertices have a common neighbors if they
are adjacent and c common neighbors otherwise. For instance, the Petersen
graph depicted in Figure 1.1 is a strongly regular graph with parameters
(10, 3, 0, 1) and the graph depicted in Figure 2.2 is a strongly regular graph
with parameters (6, 4, 2, 4). A strongly regular graph G is primitive if G
and the complement graph of G are both connected; otherwise it is called
imprimitive. A strongly regular graph with parameters (n, p, a, c) is imprim-
ive if and only if c = p or c = 0 (see [18, p. 178]. The graph depicted in
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Figure 2.2 is an example of an imprimitive strongly regular graph.

As was noticed in [8], if S is a maximum stable set of a primitive strongly
regular graph G with parameters (n, p, a, c), then for all k in S

|S| =
∑

j∈NG(k)

|NG(j) ∩ S|
c

− p− c

c
.

Furthermore, if S is (0, τ)-regular, then

|S| = p(τ − 1) + c

c
.

The next theorem gives a necessary and sufficient condition for a regular
graph be strongly regular, based on the existence of (κ, τ)-regular sets.

Theorem 2.5. [11] A p-regular graph G is strongly regular with parameters
(n, p, a, c) if and only if for every vertex v ∈ V (G), the vertex subset S =
NG(v) is (a, c)-regular in G−v (the graph obtained from G after the deletion
of the vertex v).

Example 2.3. Consider the strongly regular graphG with parameters (10, 3, 0, 1)
depicted in Figure 1.1. Deleting the vertex 1 (for instance), the vertex subset
NG(1) = {5, 7, 9} is (0, 1)-regular in the graph G−1. A similar (0, 1)-regular
set is determined deleting any other vertex of G.

3. Determination of (κ, τ)-regular sets

As a consequence of the results obtained in [20], in general, the recog-
nition of graphs with a (κ, τ)-regular set is NP -complete. However, there
are families of graphs for which such recognition and the determination of
(κ, τ)-regular sets can be done in polynomial time, in particular for the
graphs whose maximum multiplicity of the eigenvalues is small. This sec-
tion is devoted to the results and algorithmic techniques developed for the
determination of (κ, τ)-regular sets.

The next theorem is a variant of a theorem which appears in [12].

Theorem 3.1. Let G be a graph with at least one edge and let x be a
particular solution of the linear system (1.1). The graph G has a (κ, τ)-
regular set if and only if there is a 0− 1 vector x such that

(3.1) x = x+ û,

where û = 0 if κ− τ is not an eigenvalue of G and û ∈ EG(κ− τ) otherwise.
Furthermore, every 0 − 1 solution x in (3.1) is the characteristic vector of
a (κ, τ)-regular set S ⊂ V (G).

Proof. It is immediate that every solution of the linear system (1.1) can
be obtained from the equation (3.1). Therefore, applying Theorem 1.2, the
result follows. �

Corollary 3.2. [12] If a graph G has a (κ, τ)-regular set S ⊆ V (G) and x

is a particular solution of the linear system (1.1), then |S| = êTx.
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Note that the determination of a (κ, τ)-regular set of a graph G (if there
exists) or the conclusion that such vertex subset does not exists is easy to
check, when κ−τ is not an eigenvalue of G. Indeed, in such a case the linear
system (1.1) has an unique solution which if it is 0− 1, is the characteristic
vector of the unique (κ, τ)-regular set of G; otherwise there is no (κ, τ)-
regular set in G. Furthermore, from Corollary 3.2, considering a particular
solution of the linear system (1.1), x, if êTx is not a positive integer, then
G has no (κ, τ)-regular sets.

Theorem 3.3. [13] Let G be a graph with a (κ, τ)-regular set S ⊂ V (G)
and let x be a particular solution of the linear system (1.1). Assuming that
κ− τ is an eigenvalue of G with multiplicity t, then the characteristic vector
of S, x, is determined by the equality

(3.2) x = x+

t
∑

j=1

δij v̂j ,

where δij ∈ {−xij , 1−xij}, for j = 1, . . . , t, the vectors v̂1, . . . , v̂t ∈ EG(κ−τ)
and are such that the matrix V whose columns are v̂1, . . . , v̂t has a t×t iden-
tity submatrix defined by the t rows of V with indices in I = {i1, i2, . . . , it} ⊂
V (G).

Proof. Let U be a matrix whose columns are t linear independent eigenvec-
tors, û1, . . . , ût, associated to the eigenvalue κ− τ . Since these vectors are
linear independent, the matrix U has a subset of t rows indexed by i1, . . . , it,
defining a nonsingular t× t submatrix T . Then, we can replace each column
of U by a linear combination of columns of U to obtain a matrix V whose
columns v̂1, . . . , v̂t remain as linear independent eigenvectors associated to
κ − τ and the corresponding t × t submatrix T ′ of V defines the identity
matrix of order t. Therefore, considering that x is the characteristic vector
of S, from the system (3.1), where u is replaced by

∑t
j=1 δijvj , it follows

that

xi1 = xi1 + δi1 ⇔ δi1 = xi1 − xi1

xi2 = xi2 + δi2 ⇔ δi2 = xi2 − xi2

...
...

...

xit = xit + δit ⇔ δit = xit − xit .

Since xij ∈ {0, 1}, for j = 1, . . . , t, the result follows. �

As immediate consequence of Theorem 3.3, the Algorithm 1 decides in a
finite number of steps whether or not a graph G, having an eigenvalue κ− τ
with multiplicity t, has a (κ, τ)-regular set, determining such vertex subset
when it exists.
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Algorithm 1 for the recognition whether a graph G has a (κ, τ) regular set
and its determination when it exists.

Require: AG, κ, τ , t and the n × t matrix U whose columns are linear
independent vectors of EG(κ− τ) when t > 0.

Ensure: a (κ, τ)-regular set S or the conclusion that it does not exists.
1: COMPUTE a particular solution x of the linear system (1.1).
2: SET x := x.
3: IF t = 0, THEN GOTO Step 11
4: DETERMINE the matrix V , with columns v̂1, . . . , v̂t, obtained from

U as in Theorem 3.3 and the index subset I = {i1, . . . it} ⊂ {1, . . . , n}.
5: SET Λ := {(δi1 , . . . , δit) : δij ∈ {−xij , 1− xij}, ij ∈ I}.
6: WHILE x is not 0− 1 and Λ 6= ∅
7: CHOOSE (δi1 , . . . , δit) ∈ Λ and SET Λ := Λ \ {(δi1 , . . . , δit)}.
8: IF x+

∑t
j=1 δij v̂j is a 0−1 vector THEN SET x := x+

∑t
j=1 δij v̂j.

9: END If

10: END WHILE

11: IF x is 0− 1 THEN return x as the characteristic vector of S.
12: ELSE G has no (κ, τ)-regular sets.
13: END IF

Example 3.1. Let us apply Algorithm 1 repeatedly (updating Λ in each run
of step 5, removing the t-tuples already determined which are 0-1 solutions)
to the determination of all (0, 2)-regular sets S1 and all (1, 3)-regular sets
S2 in the graph G depicted in Figure 1.1. Note that the adjacency matrix
AG has three distinct eigenvalues: 3 with multiplicity 1, 1 with multiplicity
5 and −2 with multiplicity 4. Since 0 − 2 = 1 − 3 = −2, in both cases we
can consider the matrix

UT =









−1 −1 −1 0 1 0 1 0 0 1
−3 −1 −1 −1 2 0 2 0 2 0
1 −1 1 −1 0 0 −2 2 0 0
1 1 −1 −1 −2 2 0 0 0 0









,

where the rows of UT are linear independent eigenvectors belonging to
EG(κ− τ). The matrix V obtained from the matrix U in step 4 can take the
form

V =

































1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−2/3 −2/3 1/3 1/3
1/3 1/3 −2/3 −2/3

−2/3 1/3 −2/3 1/3
1/3 −2/3 1/3 −2/3

−2/3 1/3 1/3 −2/3
1/3 −2/3 −2/3 1/3

































and then I = {1, 2, 3, 4}. For each case, consider a particular solution x of
the linear system (1.1).
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(1) For (κ, τ) = (0, 2), using the particular solution of (1.1) x = 2
5 ê, by

Corollary 3.2 |S1| = 4 and by Theorem 3.3 δ1, δ2, δ3, δ4 ∈ {−2
5 ,

3
5}.

The 0 − 1 solutions x in (3.2) (and consequently the characteris-
tic vectors of the (0, 2)-regular sets) are obtained for each tuple
(δ1, δ2, δ3, δ4) of the table (in each row, δ1, . . . , δ4 appear in the first
4 entries and the corresponding vertices of S1 appear in the last 4
entries):

δ1 δ2 δ3 δ4
−2/5 −2/5 −2/5 3/5 4 5 7 10
−2/5 −2/5 3/5 −2/5 3 5 8 9
−2/5 3/5 −2/5 3/5 2 6 7 9
3/5 −2/5 −2/5 −2/5 1 6 8 10
3/5 3/5 3/5 3/5 1 2 3 4

(2) For (κ, τ) = (1, 3), using the particular solution of (1.1) xT =
(3/2, 3/2, 3/2, 3/2, 0, 0, 0, 0, 0, 0), by Corollary 3.2 |S2| = 6 and by
Theorem 3.3 δ1, δ2, δ3, δ4 ∈ {−3

2 ,−1
2}. The 0− 1 solutions x in (3.2)

(and consequently the characteristic vectors of the (1, 3)-regular sets)
are obtained for the tuples (δ1, δ2, δ3, δ4) of the table:

δ1 δ2 δ3 δ4
−3/2 −3/2 −3/2 −3/2 5 6 7 8 9 10
−3/2 −1/2 −1/2 −1/2 2 3 4 5 7 9
−1/2 −3/2 −1/2 −1/2 1 3 4 5 8 10
−1/2 −1/2 −1/2 −3/2 1 2 3 6 8 9
−1/2 −1/2 −3/2 −1/2 1 2 4 6 7 10

Note that in both cases, among the 24 = 16 possible tuples (δ1, δ2, δ3, δ4),
we found 5 tuples producing 0− 1 solutions.

Note that in Theorem 3.3, despite the set of possible tuples (δi1 , δi2 , . . . , δit)
is finite, its cardinality is the exponential number 2t. Therefore, when the
multiplicity t of the eigenvalue κ− τ is larger, the determination of a tuple
of scalers (δi1 , δi2 , . . . , δit) producing a 0− 1 solution in (3.2) or the recogni-
tion that there is no such solution, can not be computationally effective by
checking all possible tuples. Considering the inequality (see, for instance,
[17])

max
µ∈σ(G)\{0}

mG(µ) ≤ n− γ(G),

wheremG(µ) is the multiplicity of the eigenvalue µ of the graph G, it follows
that the graphs with higher domination number have smaller upper bound
for the maximum multiplicity of the nonzero eigenvalues of G. Thus, for
those graphs the determination of (κ, τ)-regular sets with κ − τ 6= 0 or the
recognition that none of them there exist is computationally effective. Any-
way, with the same purpose, the development of computationally effective
techniques for particular graph families remains an open problem and it is
an interesting research line.

4. Spectral properties

The presence of (κ, τ)-regular sets in graphs has deep influence on their
spectrum. From Theorem 1.1 it is immediate that a regular graph with
a (κ, τ)-regular set has κ − τ as an eigenvalue. However, in the case of
non-regular graphs, the presence of a (κ, τ)-regular set does not imply that
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κ− τ is an eigenvalue. For instance, the graph G depicted in Figure 4.1 has
the (1, 1)-regular set {b, e} but 0 is not an eigenvalue of G. The graph G

s
a

s
b

s
c

sdsesf

Figure 4.1. A graph G with a (1, 1)-regular set and spec-
trum σ(G) = {−1−

√
2,−1, 1−

√
2,−1 +

√
2, 1, 1 +

√
2}

of Figure 4.1 has also the (2, 1)-regular sets {a, b, e, f} and {b, c, d, e}, the
(1, 2)-regular set {a, c, d, f} and the (0, 1)-regular sets {a, d} and {c, f}.

The next theorem establishes a sufficient condition for arbitrary graphs
with (κ, τ)-regular sets to have κ− τ as an eigenvalue.

Theorem 4.1. [10] Let λ be an integer and let G be a graph with a (κ1, τ1)-
regular set S1, with τ1 > 0, and a (κ2, τ2)-regular set S2, such that S1 6= S2

and k1 − τ1 = κ2 − τ2 = λ. Then λ ∈ σ(G) and û = τ2
τ1
x−y ∈ EG(λ), where

x is the characteristic vector of S1 and y is the characteristic vector of S2.

Example 4.1. Consider the graph G depicted in Figure 4.1. Since the ver-
tex subsets S1 = {a, b, e, f} and S2 = {b, c, d, e} are both (2, 1)-regular and
the vertex subsets T1 = {a, d} and T2 = {c, f} are both (0, 1)-regular, ap-
plying Theorem 4.1, it follows that 1 and −1 are both eigenvalues of G.
Furthermore,
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∈ EG(−1).

Now, it is worth mention the concepts of main and non-main eigenvalues.
An eigenvalue µ of a graph G, which has an associated eigenspace EG(µ)
not orthogonal to the all-one vector ê, is said to be main. When EG(µ) is
orthogonal to ê the eigenvalue µ is referred as non-main. The concept of
main (non-main) eigenvalue was introduced in 1970 by Cvetković [14] (see
also [15, 16]) and further investigated in many papers since then. For every
graph G, its largest eigenvalue λ1(G) is a main eigenvalue. In particular,
it is well known that a graph is regular if and only if it has only one main
eigenvalue (see [22], where a survey on main (non-main) eigenvalues was
published).

Regarding graphs with just two main eigenvalues we may use (κ, τ)-
regular sets for the determination of particular families using a graph oper-
ation introduced in [11] and herein described as follows:

Consider the graph operation H = G1
⊕τ

s G2, where G1 is a κ1-regular
graph, G2 is a κ2-regular graph and H is obtained from G1 and G2 by
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connecting each vertex of V (G1) = {x1, . . . , xn1
} to τ > 0 vertices in

V (G2) = {y1, . . . , yn2
}, such that Bi = NH(xi) ∩ V (G2), i = 1, . . . , n1, is

a 1− (n2, τ, s) combinatorial design [24] (that is,
⋃n1

i=1 Bi = V (G), |Bi| = τ ,
for i = 1, . . . , n1 and each vertex v ∈ V (G2) belongs to exactly s blocks
Bi). Therefore, the vertex subsets V (G1) and V (G2) are (κ1, s)-regular and
(κ2, τ)-regular, respectively.

Theorem 4.2. [11] Considering a κ1-regular graph G1 and a κ2-regular
graph G2, let H = G1

⊕τ
s G2 be the graph obtained as above described. If µ

is a main eigenvalue of H, then

(4.1) µ =
κ1 + κ2 ±

√

(κ2 − κ1)2 + 4sτ

2
.

The particular case of unicyclic graphs with just two main eigenvalues
was investigated in [21].

Theorem 4.3. [21] The graphs attained from a cycle Cn by attaching s > 0
pendent vertices are all unicyclic graphs with exactly two main eigenvalues.

Note that any unycliclic graph H as referred in Theorem 4.3 is such that
H = snK1

⊕1
s Cn and by Theorem 4.2 its main eigeinvalues are

µ = 1±
√
1 + s.

Since the largest eigenvalue of a graph is main, it follows that µ = 1+
√
1 + s

is the largest eigenvalue of H.

Theorem 4.4. [11] Let S be a (κ, τ)-regular set of a graph G, with charac-
teristic vector x(S) and let µ be an eigenvalue of G. Then µ is non-main if
and only if

µ = κ− τ or x(S) ∈ (EG(µ))⊥ ,

where (EG(µ))⊥ denotes the vector space orthogonal to EG(µ).
From the above theorem we have the following corollary.

Corollary 4.5. [11] Let κ, τ ∈ Z
+ ∪ {0}, with τ > 0, where Z

+ denotes the
set of positive integers. If µ = κ− τ is a main eigenvalue of G, then G does
not have a (κ, τ)-regular set.

Now we present the following theorem.

Theorem 4.6. Let G be a graph with a (κ, τ)-regular set S ⊂ V (G) and
let x be a particular solution of (1.1). If µ is a main eigenvalue of G and
û ∈ EG(µ) is not orthogonal to ê, then

(4.2) ûTx 6= 0 and µ = τ
ûT ê

ûTx
+ (κ− τ).

Proof. Since µ is a main eigenvalue of G, by Theorem 4.4, µ 6= k−τ . Taking
into account that x is a particular solution of (1.1), multiplying both sides
of (1.1) on the left by ûT , we obtain

(4.3) (µ− (κ− τ))ûTx = τ ûT ê.

Therefore, ûTx 6= 0 and from (4.3) it follows µ = τ û
T
ê

û
T
x
+ (κ− τ). �
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A result not much different from (4.2) but more restrictive appear in [11].

Considering a graph G, a star set for an eigenvalue µ ∈ σ(G), with
multiplicity mG(µ), is a vertex subset X such that |X| = mG(µ) and the
graph G − X does not have µ as an eigenvalue. The vertex complement
subset V (G) \X is called a co-star set and the graph G−X is called a star
complement for µ. The main properties of star sets and star complements
appear in [17].

Theorem 4.7. [1] Let G be a graph and X ⊂ V (G) a star (or co-star) set
for the eigenvalue µ ∈ σ(G). If X or V (G) \X is (κ, τ)-regular in G, then
µ is non-main if and only if µ = κ− τ .
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