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confirming the existence of a non-relativistic rapidity γ with respect to which the

R-matrix must be of difference form. We conjecture that from a massless AdS/CFT

integrable relativistic R-matrix one can obtain the parental massless non-relativistic

R-matrix simply by replacing the relativistic rapidity with γ. We check our conjecture

in ordinary (undeformed) AdSn ×Sn × T 10−2n, n = 2, 3. In the case n = 3, we check

that the matrix part and the dressing factor - up to numerical accuracy for real

momenta - obey our prescription. In the n = 2 case, we check the matrix part and

propose the non-relativistic dressing factor. We then start a programme of classifying

R-matrices in terms of connections on fibre bundles. The conditions obtained for the

connection are tested on a set of known integrable R-matrices.
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1 Introduction

The integrable structures arising in the context of the AdS/CFT correspondence [1, 2]

provide a very rich testing ground for the interplay between quantum groups and the

exact methods of the inverse scattering. This is well demonstrated by superstring

theory on the AdS3 × S3 × S3 × S1 and the AdS3 × S3 × T 4 backgrounds [3–5].

The superconformal algebra underlying the former is the D(2, 1;α)×D(2, 1;α) Lie
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superalgebra, where α controls the relative radii of the two S3’s; the latter is then

obtained by means of an Inönü-Wigner contraction of the former background in the

limit α→ 0, and displays the superconformal algebra psu(1, 1|2)× psu(1, 1|2).
The classical integrability of the string sigma-model on these backgrounds was

shown in [3, 6]. The finite-gap equations describing the semi-classical spectrum were

given in [7]. The excitations are a mixture of massive and massless modes. The

massive-massive S-matrix was constructed in [8–11] based on a vacuum-preserving

algebra composed of a number of centrally-extended psu(1|1) factors. This was suc-
cesfully matched against perturbative results [6, 12–19]. Scattering involving the

massless modes is a more delicate matter [20, 21], and it has taken longer to develop

a complete world-sheet analysis [22–26, 127]. The exact massless scattering theory

has been only recently constructed in [27–29].

At odds with higher dimensional instances of the AdS/CFT correspondence,

the dual conformal field theories are harder to grasp. A candidate for the dual to

the AdS3 × S3 × T 4 model was obtained in [27], where it was shown to reproduce

the predictions of [20], although surviving mismatches with perturbation theory [31]

remain unresolved. Comparison between the counting of BPS states emerging from

the Bethe ansatz and the number expected from a CFT analysis of the symmetric

T 4 orbifold point of moduli space SymN(T 4) [32] was performed in [33]. The AdS3×
S3 × S3 × S1 dual CFT has been proposed in [34], and the BPS analysis has been

revisited in [33, 35]. There, the condition of equal angular momenta on the two

S3’s was seen to arise from both the supergravity and the Bethe-equation analysis

- see further progress made in [36–42]. A host of work on this topic can be found

in [25, 43–63]. In [64], the Berenstein-Maldacena-Nastase (BMN) limit of the S-

matrix was found to be non-trivial for massless particles and involving purely left-left

and right-right scattering. As amply reviewed in [64], scattering theory of left-left

and right-right moving massless particles in 2D is a non-perturbative phenomenon

that Zamolodchikov used in order to describe integrable massless theories at their

conformal points. The Thermodynamic Bethe Ansatz (TBA) was derived for such

a purely conformal problem and exactly solved to obtain the central charge of the

associated CFT to be equal to 6.

1.1 The q-deformed Poincaré superalgebra

One of the questions concerning the AdS3 superstring massless sector is how much

of the relativistic intuition can be transferred to the superstring setting. When con-

sidering the scattering of magnons in the AdS5 setting, [65, 66] reinterpreted the

square-root dispersion relation as the Casimir of a q-deformed Poincaré superalgebra

in 1+1 dimensions. This algebra did not represent the full symmetry of the scatter-

ing matrix, nevertheless a boost generator was defined as external to the algebra, and

utilised to obtain the known expression for the uniformising rapidity [1, 2]. This de-

formation was a re-casting of the ordinary superstring algebra in a form resembling a
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trigonometric quantum group. Other ways in which the q-Poincaré supersymmetries

appeared in the AdS5 can be found for example in [67–70].

Adopting the same spirit, [71] (and also [72]) demonstrated that a similar q-

deformed Poincaré superalgebra can be written down for AdS3, where it becomes

instead a pseudo-invariance of the massless R-matrix: the algebra excluding the

boost is an exact symmetry of the R-matrix, while the boost coproduct annihilates

it. The q-Casimir of this algebra naturally reproduces the massless dispersion re-

lation. This new way of looking at the massless magnons enjoys a series of very

natural traits. It allows a compact reformulation of the comultiplication rule, where

the coproduct of the momentum determines the one of the other central charges.

Interesting connections with phonons and spinons, inspired by [73], became quite

manifest in this setup. Equally, the boost was employed in [71] to derive a nat-

ural uniformising rapidity, capable of reproducing the traditional Zamolodchikov’s

massless variable in the the relativistic limit. This will be brought to full fruition in

this paper and potentially realises the sought-for connection with more traditional

relativistic massless scattering. Another related approach was followed in [74, 75].

Following this path, in [72] a new framework was proposed to describe the AdS3

massless sector in terms of a purely geometric framework. The massless S-matrix

was shown to satisfy a system of differential equations controlled by a flat connection,

which was then used to re-write the S-matrix as a path-ordered exponential. Various

interpretations were advanced for such an emergent geometry, and the open question

of how to connect this to the issue of the dressing phase were left open, although

introducing a dressing phase has been understood as a gauge transformation for the

connection [76].

1.2 AdS2 and Bethe ansatz

The AdS2 × S2 × T 6 background [77–81] is, in this respect, particularly interesting.

The holographic dual should either be a superconformal quantum mechanics or a

chiral 2D CFT [82–102]. The string sigma model is formulated on a PSU(1,1|2)
SO(1,1)×SO(2)

supercoset [103–106], and it has been demonstrated to be classically integrable [3,

107] up to second order in the fermions [108, 109].

The exact quantum S-matrix was conjectured in [110] based on the centrally-

extended psu(1|1)2 residual symmetry of the BMN vacuum [111–116], cf. [117–123].

The S-matrix of massive excitations satisfies crossing and unitarity, but determining

the dressing factor remains an open problem. Perturbation theory gives reasonable

agreement [112–116]. The massive magnon representations are long, while the mass-

less ones are short. The S-matrix for massless modes is obtained as a limit of the

massive one [22, 124, 125], where one has to distinguish between right and left movers.

The Yangian symmetry of the problem was elucidated in [110, 126]. Matching with

perturbation theory is much less clear in the massless sector [112–116, 127], and it

deserves further investigation. Massless scattering is in fact quite different from the
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massive one - see e.g. [29], and it was understood by Zamolodchikov as a way of

describing the renormalisation group flow between critical theories [124, 125].

The lack of relativistic invariance one typically experiences in AdS/CFT inte-

grability adds to the complication [22]. If one attempts to take a relativistic (BMN)

limit, this turns out to be trivial for massive modes. Crucially, this is not the case

in the massless sector: the relativistic limit is non-trivial between right-right and

left-left movers [128]. The Lie-algebra reduces to N = 1 supersymmetry [129], but

the S-matrix is rather different. The S-matrix retains the maximum number of non-

zero entries, as in the XYZ/eight-vertex model [130, 131] and in typical relativistic

N = 1 theories [132, 133]. The transfer matrix does not admit a reference state,

making it impossible to apply the algebraic Bethe ansatz [134] to find the spectrum

and test the proposed Bethe equations of [108]. Integrable systems not admitting a

reference state are an area of intense current investigation [135–141]. The approach

of [128] relied on the so-called free-fermion condition [133, 142] combined with the

use of inversion relations [143].

This was further checked in [144], where the eigenvalues of the transfer matrix

were explicitly calculated up to 5 particles, and a conjecture for the complete massless

Bethe ansatz was formulated. Following the ideas of Zamolodchikov, the decoupling

of right and left modes ought to indicate that we are in fact describing a critical theory

[64], whose spectrum should be controlled by the Bethe ansatz we have conjectured1.

Furthermore, the free-fermion condition turns out to be also valid for the massive

AdS2 scattering [110], thanks to a particular u(1) symmetry of the model [112–

116, 145, 146]. Due to a series of remarkable simplifications, and in spite of the

complication of the massive S-matrix entries, the procedure was partially extended to

the massive case in [144], opening the possibility of obtaining manageable expressions

which could be then compared with [108].

1.3 Plan of this paper

This paper is organised as follows. In section 2, we extend the su(1|1)c superalgebra
to the q-deformed Poincaré superalgebra in d = 2, and we study the action of the

boost generator J on the R-matrix governing the massless non-relativistic scattering

in ordinary (undeformed) integrable AdS2 × S2 × T 6 type IIB superstring theory,

which leads us to introduce the new variable γ. In sections 3 and 4, we show that γ

has the meaning of non-relativistic rapidity, and we make the following

Conjecture 1. In AdS/CFT, every massless non-relativistic R-matrix governing the

scattering of right-right (or left-left) modes is obtained from the massless relativistic

one via the substitution

θ → γ , γ ≡ log tan
p

4
.

1We thank Diego Bombardelli, Bogdan Stefański and Roberto Tateo for crucial discussions about

this point.
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In ordinary (undeformed) AdS3×S3×T 4, we show that this conjecture holds for

both the matrix part of the R-matrix and the dressing factor, with numerical evidence

for real momenta. In AdS2 × S2 × T 6, we show that this prescription works for the

matrix part of the R-matrix, and we conjecture the non-relativistic dressing factor.

In section 5, we assume that every R-matrix depending on one real (or complex)

parameter θ can be written as

R(θ) = P exp

(

−
∫ θ

0

dτΓθ(τ)

)

A ,

where A = R(0) is a θ-independent matrix, and we study which equations physical

unitarity, braiding unitarity and the algebra invariance for the R-matrix imply for

(Γ,A). Our approach is reminiscent of the one developed in [147–150], however it

differs from it.

2 q-deformed Poincaré for massless AdS2 × S2 × T 6

The algebra to consider in AdS2 × S2 × T 6 integrable string background is a central

extension of the psu(1|1) superalgebra2, which will be denoted as su(1|1)c. The

non-trivial graded commutation relations are

{Q,Q} = P, {S,S} = K, {Q,S} = H, (2.1)

where P,K and H are central bosonic generators, Q and S are fermionic generators.

We represent the su(1|1)c generators as 2×2 matrices acting on a pair of boson-

fermion (|φ〉, |ψ〉)T as

Q =

(

0 b

a 0

)

, S =

(

0 d

c 0

)

,

H = H

(

1 0

0 1

)

, P = P

(

1 0

0 1

)

, K = K

(

1 0

0 1

)

(2.2)

where a, b, c, d,H, P,K ∈ C are the representation parameters3. The (non-relativistic)

massless representation is given by the following choice of representation parameters

a = α
√

h sin(p/2), b = ± 1

α

√

h sin(p/2) ,

c = ±α
√

h sin(p/2), d =
1

α

√

h sin(p/2) , (2.3)

2We focus here only on one single copy of the algebra and R-matrix (see [110]), which is sufficient

for all our purposes.
3For generic values of the mass, the independent ones are only a, b, c, d.
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and

H = E , P = K = ±2h sin
p

2
, (2.4)

where h is the coupling constant, while E and p stand for the energy and the mo-

mentum of the particle. They are related via the dispersion relation

E = 2h
∣

∣

∣
sin

p

2

∣

∣

∣
, (2.5)

which is a shortening condition. In the formulas above, the upper (lower) sign is

associated with right (left) movers4, and Rep ∈ [0, π] for right movers, or Rep ∈
[−π, 0] for left movers.

The non-relativistic massless R-matrix, invariant under the representation (2.2),

has been found in [110]. For the right-right scattering, the R-matrix is

RRR =





















1 0 0 ± 1
α2

[

tan
p1
4

tan
p2
4

]± 1
2

0 ±1
[

tan
p1
4

tan
p2
4

]± 1
2

0

0
[

tan
p1
4

tan
p2
4

]± 1
2 ∓1 0

±α2
[

tan
p1
4

tan
p2
4

]± 1
2

0 0 −1





















, (2.6)

and for the left-left is

RLL =





















1 0 0 ± 1
α2

[

tan
p1
4

tan
p2
4

]∓ 1
2

0 ∓1
[

tan
p1
4

tan
p2
4

]∓ 1
2

0

0
[

tan
p1
4

tan
p2
4

]∓ 1
2 ±1 0

±α2
[

tan
p1
4

tan
p2
4

]∓ 1
2

0 0 −1





















. (2.7)

The upper (lower) signs in (2.6) and (2.7) correspond to f → +1 ( f → −1) when

considering the limit from the massive R-matrix, as explained in [128]. In order

to understand the dispersion relation (2.5) as the vanishing of a quadratic Casimir,

we extend the superalgebra su(1|1)c to the q-deformed Poincaré superalgebra in

d = 2, Eq(1|1). This requires one to introduce the boost generator J, with non trivial

4For the left movers case, one also needs to account for a global factor of
√
−1 = i according to

our choice of branch, which matters if one considers the mixed right-left and left-right coproducts.
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commutation relations:

{Q,Q} = P , {S,S} = K , {Q,S} = H ,

[J ,Q] =
i

2
√
µ

ei
p
2 + e−i

p
2

2
Q , [J ,S] = i

2
√
µ

ei
p
2 + e−i

p
2

2
S ,

[J ,P] =
i√
µ

ei
p
2 + e−i

p
2

2
P , [J ,K] =

i√
µ

ei
p
2 + e−i

p
2

2
K ,

[J ,H] =
eip − e−ip

2µ
1 , [J , p] = iH , (2.8)

where µ ≡ h−2 and the deformation parameter q is related to the coupling constant

h via

log q =
i

h2
. (2.9)

The representation of the boost on a single particle state is J = iH∂p. The coprod-

ucts for the generators of Eq(1|1) are

∆(Q) = Q⊗ ei
p
4 + e−i p

4 ⊗Q , ∆(S) = S ⊗ ei
p
4 + e−i p

4 ⊗ S ,

∆(P) = P ⊗ ei
p
2 + e−i

p
2 ⊗ P , ∆(K) = K ⊗ ei

p
2 + e−i

p
2 ⊗K ,

∆(H) = H⊗ ei
p
2 + e−i

p
2 ⊗H , ∆(J ) = J ⊗ e−i

p
2 + ei

p
2 ⊗ J . (2.10)

It is very interesting that the commutation relations (2.8) indicate how the boost

operator has a similar action to the one of the outer automorphism D of the centrally-

extended psu(1|1) superalgebra5, although they are not the same. A first difference

partly resides in the momentum-dependent proportionality factor, which effectively

deforms the right hand side of the commutation relations. This is particularly clear

when p is promoted to a generator in a universal (i.e. representation-independent)

reformulation of the Eq(1|1) superalgebra. A second main difference is the non-

standard coproduct for the boost operator, which signals a non-locality in its two-

particle action.

The R-matrices RRR and RLL (2.6) and (2.7) are invariant under the action of

Q, S and the central bosonic generators, i.e.

∆op(a)R = R∆(a) , a = Q,S,P,K,H , (2.11)

however, they are not invariant under the boost action ∆(J). Moreover, they are

neither annihilated by ∆(J) nor by ∆op(J), in contrast to the boost action on the

massless R-matrix in AdS3 × S3 × T 4 discussed in [72]. Nevertheless, the R-matrix

RRR satisfies for instance the following condition
(

w∆(J ) + wop∆op(J)

)

R = 0 , (2.12)

5Where the odd elements Q,S have weight 1/2 (e.g. [D,Q] = 1

2
Q) and even elements P ,K,H

have weight 1 (e.g. [D,P ] = P).
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where

w = e−
i
4
(p⊗1−1⊗p) , wop = e−

i
4
(1⊗p−p⊗1) . (2.13)

If we introduce the new variable γ - cf. [71] - as

γ ≡ log tan
p

4
, (2.14)

then equation (2.12) becomes
(

∂

∂γ1
+

∂

∂γ2

)

R = 0 , (2.15)

which implies that R depends only on the difference γ1 − γ2. In the relativistic limit

p→ ǫq ≡ ǫeθ , h→ c

ǫ
, (2.16)

where ǫ → 0, and θ is the rapidity of the particle, we have that equation (2.15)

becomes
(

∂

∂θ1
+

∂

∂θ2

)

Rrel = 0 , (2.17)

which states that the relativistic R-matrix Rrel only depends on θ ≡ θ1 − θ2.

We can provide a second possible choice of coproduct, which is a homomorphism

for the Borel-type subalgebra of the Eq(1|1) superalgebra formed by the generators

Q, P and J where Q is a single real supercharge6 This coproduct satisfies the

coassociativity property, and is given by

∆̂(Q) = Q⊗ ei
p
4 + e−i

p
4 ⊗Q , ∆̂(P) = P ⊗ ei

p
2 + e−i

p
2 ⊗ P ,

∆̂(J ) = J ⊗ ei
p
2 + e−i

p
2 ⊗ J +

1

2
e−i

p
4Q⊗ ei

p
4Q . (2.18)

The coproduct ∆̂ differs from ∆ only for the boost generator J , otherwise they are

the same. We find again that the R-matrices (2.6) and (2.7) are not invariant under

∆̂(J ), and neither are they annihilated by ∆̂(J ) and ∆̂op(J ). However the following

combination annihilates the R-matrix
(

z∆̂(J ) + zop∆̂op(J )

)

R = 0 , (2.19)

where z = w−1, i.e.

z = e
i
4
(p⊗1−1⊗p) , zop = e

i
4
(1⊗p−p⊗1) . (2.20)

One can introduce the variable γ defined as in (2.14) and equation (2.19) becomes

(2.15), which in the relativistic limit reproduces (2.17).

6For our specific choice of representation the generators Q and S coincide in the boson-fermion

representation, so they can be used to think of a very small algebra controlling the scattering

problem where they appear as a unique generator. The same applies to K,P and H.
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We shall comment how the introduction of the dressing factor Φ affects equation

(2.15). In a similar spirit to adding a u(1) part to a would-be connection, as it was

shown for the AdS3 case in [72], we have that the analogous of (2.15) for the dressed

R-matrix, i.e.
(

∂

∂γ1
+

∂

∂γ2

)

R̃ = 0 , R̃ ≡ ΦR . (2.21)

implies that

R

(

∂

∂γ1
+

∂

∂γ2

)

Φ+ Φ

(

∂

∂γ1
+

∂

∂γ2

)

R = 0 (2.22)

and by using (2.15) for the undressed R-matrix, this in turns implies that

(

∂

∂γ1
+

∂

∂γ2

)

Φ = 0 , (2.23)

i.e. the dressing factor must depend only on the difference γ1 − γ2. We shall see in

section 4 that this condition is indeed satisfied by the dressing factor for the AdS3

case. This means that also the dressed R-matrix must only depend on γ1 − γ2.

3 γ as a non-relativistic rapidity

The variable γ defined in (2.14) emerges from the boost action on the R-matrix via

equations (2.12) and (2.19). The domain of γ is (−∞, 0], which is a consequence of

the fact that the domain of p for a right mover particle is [0, π]. The energy (2.5) in

terms of the variable γ is

E =
2h

cosh γ
, (3.1)

and the group velocity vg

vg =
dE
dp

= − h

tanh γ
. (3.2)

In the relativistic limit (2.16), the variable γ tends to

γ → θ + log
ǫ

4
, (3.3)

which diverges logarithmically. However in the context of R-matrices, equation (2.17)

tells us that the R-matrix depends only on the difference γ1 − γ2, which is a well

defined variable in the relativistic limit. From now on, we shall denote γ ≡ γ1 − γ2.

In terms of the variable γ, the R-matrices (2.6) and (2.7) becomes

RRR =











1 0 0 ± 1
α2 e

± γ
2

0 ±1 e±
γ
2 0

0 e±
γ
2 ∓1 0

±α2e±
γ
2 0 0 −1











, (3.4)
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and

RLL =











1 0 0 ± 1
α2 e

∓ γ
2

0 ∓1 e∓
γ
2 0

0 e∓
γ
2 ±1 0

±α2e∓
γ
2 0 0 −1











. (3.5)

The relativistic massless R-matrices to which (3.4) and (3.5) tend in the relativis-

tic limit are encoded in Solution 3 and Solution 5 studied in [128], and they are

respectively7

RRR
rel =











1 0 0 ± 1
α2 e

± θ
2

0 ±1 e±
θ
2 0

0 e±
θ
2 ∓1 0

±α2e±
θ
2 0 0 −1











, (3.6)

and

RLL
rel =











1 0 0 ± 1
α2 e

∓ θ
2

0 ∓1 e∓
θ
2 0

0 e∓
θ
2 ±1 0

±α2e∓
θ
2 0 0 −1











. (3.7)

We notice that, if we knew only the relativistic massless R-matrices, we could con-

struct the parental non-relativistic massless R-matrices simply by replacing

θ ≡ θ1 − θ2 −→ γ ≡ γ1 − γ2 . (3.8)

Interestingly, this prescription also works for the R-matrix in ordinary (undeformed)

AdS3 × S3 × T 4. The relativistic massless R-matrix in this background is [64]

Rrel
AdS3

=











1 0 0 0

0 − tanh θ
2
sech θ

2
0

0 sech θ
2

tanh θ
2

0

0 0 0 −1











, (3.9)

and the non-relativistic massless R-matrix in [22], expressed in terms of the γ vari-

able, is

Rnon−rel
AdS3

=











1 0 0 0

0 − tanh γ

2
sech γ

2
0

0 sech γ

2
tanh γ

2
0

0 0 0 −1











. (3.10)

7We observe that Solution 3 can be rewritten in terms of three 2 × 2 matrices which satisfy the

quaternion algebra, as explained in Appendix A.
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This suggests once again that the non-relativistic R-matrix can be obtained from the

relativistic one simply by the substitution (3.8).

The variable γ can be thought of as a non-relativistic rapidity. We are natu-

rally brought to conjecture that this simple relationship between non-relativistic and

relativistic massless AdS/CFT R-matrices, where one simply replaces θ = θ1 − θ2
with

γ = γ1 − γ2 = log tan
p1
4

− log tan
p2
4
, (3.11)

will extend in more generality, as we shall now further confirm.

4 The dressing factor

4.1 AdS3 × S3 × T 4

Our intuition is reinforced by considerations on the dressing factor, which the R-

matrix needs to be equipped with. In [29] this dressing factor was derived by solving

the massless non-relativistic crossing equation, while in [64] the relativistic limit was

obtained and shown to coincide with Zamolodchikov’s dressing factor for Sine-Gordon

theory at a special value of the coupling. According to the expectations developed in

the previous section, the same Zamolodchikov’s analytic form should now hold and

reproduce the expression derived in [29], simply by replacing

θ = θ1 − θ2 by γ = γ1 − γ2. (4.1)

This is in part because the matrix part of the R-matrix determines the r.h.s. of the

crossing equation, which shall therefore be identical to the relativistic one with γ

replacing θ. In particular, this should reveal how the dressing factor of [29] is in fact

of difference form in the variable γ.

We have considered the Hernandez-Lopez (HL) term and we have numerically

verified that this is indeed the case for real momenta, by using the dilogarithm

expression of the HL contribution to the dressing phase provided in [152] evaluated

for massless variables x±i = e±i
pi
2 , i = 1, 2:

χ(x, y) ≡ 1

2π

[

− Li2

√
x− 1√

y√
x−√

y
− Li2

√
x+ 1√

y√
x+

√
y
+ Li2

√
x− 1√

y√
x+

√
y
+ Li2

√
x+ 1√

y√
x−√

y

]

,

Θ = χ(x+1 , x
+
2 ) + χ(x−1 , x

−
2 )− χ(x−1 , x

+
2 )− χ(x+1 , x

−
2 )− (1 ↔ 2),

x±i = e±i
pi
2 , i = 1, 2, γ = γ1 − γ2, γi = log tan

p1
4
, (4.2)
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and (numerically8 up to ∼ 10−15)

(

sin
p1
2

∂

∂p1
+ sin

p2
2

∂

∂p2

)

Θ =
∂

∂(γ1 + γ2)
Θ = 0, (4.3)

(

sin
p1
2

∂

∂p1
− sin

p2
2

∂

∂p2

)

Θ =
d

dγ
Θ =

4γ

sinh γ
. (4.4)

Not only the HL term of the dressing factor only depends in massless kinematics -

with the above numerical proviso - on the difference γ1 − γ2, but it satisfies - again

to the numerical accuracy - the relation (4.14) in [64] - hallmark of the fact that the

factor is provided in fact by expression (5.36) in [64].

It is amusing to notice that a natural consequence of this observation, if cor-

roborated by analytic evidence and extended to complex values of momenta, would

be that the massless non-relativistic dressing factor is meromorphic in the complex

plane γ, with only poles on the imaginary axis and no pole in the region Imγ ∈ [0, π],

and would clearly possess all the attributes of a relativistic phase when considered

in the new variable.

We remark that it would have been rather difficult to spot all these remarkable

facts, had it not been for the realisation that the boost operator in the new form

provided in this paper might act on the dressing factor as well and in fact annihilates

it.

4.2 AdS2 × S2 × T 6

In [128], the dressing factor for the relativistic massless R-matrix, dubbed Solution

3 in that paper, has been found, and an integral representation is given in Appendix

B. Supported by the check that our conjecture works also for the dressing factor in

the AdS3 case, we infer that the dressing factor for the massless non-relativistic AdS2

case is

Ω(γ) = B expA(γ) , (4.5)

where

B =
e−iπ

8√
2
, A(γ) =

γ

4
+

1

2

∫ ∞

0

dx

x

cosh[x(1 − 2γ
iπ
)]− cosh x

cosh x sinh 2x
. (4.6)

We checked that this conjectured solution for the dressing phase satisfies the non-

relativistic crossing equation derived in [144], which reads in terms of the momenta

p1, p2 as follows

Ω(p1, p2)Ω(p̄1, p2) =
sin p1

4
cos p2

4

sin p1+p2
4

. (4.7)

8The numerics is done primarily for real momenta - although we have obtained numerical evi-

dence that there exists a double-sided interval of certain regions of the real line where our statements

do extend to the complex plane - and the functions are highly oscillatory. It would therefore be

highly desirable to have an analytic proof in order to reach a conclusive statement.
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5 Universal R-matrix and Connections

In [72], a geometric interpretation has been found for the R-matrix in AdS3×S3×T 4,

see also [76] for a review. As a consequence of the pseudo-invariance under the boost

generators of Eq(1|1)L⊕Eq(1|1)R, the non-relativistic massless R-matrix (3.10) must

satisfy the following parallel condition

DMR ≡
[

∂

∂pM
+ ΓAdS3

M

]

R = 0, (M = 1, 2) , (5.1)

where

ΓAdS3
1 ≡ −1

4

√

sin p2
2

sin p1
2

Y

sin p1+p2
4

,

ΓAdS3
2 ≡ 1

4

√

sin p1
2

sin p2
2

Y

sin p1+p2
4

, (5.2)

and

Y ≡
[

E12 ⊗ E21 + E21 ⊗ E12

]

, E12 ≡
(

0 1

0 0

)

, E21 ≡
(

0 0

1 0

)

. (5.3)

This is turns implies that the R-matrix (3.10) can be written as

R
[

γ(λ)
]

= Π ◦ P exp

(
∫ γ(λ)

γ(0)

dpMΓAdS3
M

)

, (5.4)

where P exp is the path-ordered exponential, and γ(0) = (p, p) with p generic, such

that for λ = 0 we obtain R(p, p) = Π, as can now be easily seen from (3.10).

The relativistic limit (2.16) of the parallel condition (5.1) has been discussed in

[64]. One obtains that the two equations contained in (5.1) boil down to just one

equation:
(

∂

∂θ
− Y

2 cosh θ
2

)

R(θ) = 0 . (5.5)

This suggests that in the relativistic limit one can make the following replacement

of the connection

DM −→ Dθ

ǫ
, Dθ ≡

∂

∂θ
+ ΓAdS3

θ , ΓAdS3

θ = − Y

2 cosh θ
2

, (5.6)

and the base space T 2 shrinks to S1 for real momenta - while a suitable complex-

ification of the base space needs to be considered for instance to discuss crossing

symmetry. Again, by integrating (5.5) between [0, θ], we obtain

R(θ) = Π ◦ P exp

(
∫ θ

0

dτΓAdS3
θ (τ)

)

. (5.7)
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In the relativistic limit the R-matrix depends only on one parameter θ instead of

two parameters (p1, p2). This suggests to first investigate universal properties of the

connection when the base space of the fibre bundle has only one (real or complex)

dimension.

5.1 System of equations for (Γ,A)

We assume that a generic R-matrix, which depends only on one rapidity-difference

variable, can be written as follows

R(θ) = P exp

(

−
∫ θ

0

dτΓθ(τ)

)

A , (5.8)

where

A ≡ R(0) . (5.9)

We shall not assume any property for Γθ and A, but we shall find a set of constraints

by imposing some of the fundamental equations for the R-matrix. Note that the

parallel condition
(

∂

∂θ
+ Γθ

)

R(θ) = 0 , (5.10)

where Γθ is now a generic connection, is automatically satisfied by (5.8) with our

choice of ordering of the path-ordering exponential.

5.1.1 Physical unitarity

The R-matrix must satisfy physical unitarity, which reads

R(θ)R†(θ) = 1⊗ 1 , (5.11)

and it is valid for any real value of θ. If R is represented in terms of matrices, † is

the standard matrix transposition and complex conjugation of its entries. For θ = 0,

equation (5.11) reads

AA† = 1⊗ 1 . (5.12)

Differentiating equation (5.11) with respect to θ, we obtain

Γ(θ) = −Γ†(θ) , (5.13)

i.e. Γ must be anti-hermitian.

5.1.2 Braiding unitarity

Fist we shall derive the parallel equations which Rop(−θ) must satisfy. We recall that

Rop ≡ ΠRΠ, where in this picture Π acts on states of the representation, and the
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momenta of the two particles 1 and 2 must be exchanged by hand. We first apply

the operator Π to (5.10) and obtain

(

∂

∂θ
+ΠΓθ(θ) Π

)

ΠR(θ) Π = 0 . (5.14)

Then we exchange θ → θ̃ ≡ −θ and obtain

(

∂

∂θ̃
+ΠΓθ(θ̃) Π

)

Rop(θ̃) = 0 , (5.15)

which can be integrated between 0 and θ̃ to obtain

Rop(θ̃) = P exp

(

−
∫ θ̃

0

dτΠΓθ(τ) Π

)

ΠAΠ , (5.16)

where we imposed the initial condition

Rop(0) = ΠR(0) Π = ΠAΠ . (5.17)

Finally, we exchange τ → −τ and obtain

Rop(−θ) = P exp

(
∫ θ

0

dτΠΓθ(−τ) Π
)

ΠAΠ . (5.18)

The braiding unitarity equation

R(θ)Rop(−θ) = 1⊗ 1 , (5.19)

imposes a condition on A and Γθ, which reads

P exp

(

−
∫ θ

0

dτΓθ(τ)

)

AP exp

(
∫ θ

0

dτΓop
θ (−τ)

)

Aop = 1⊗ 1 , (5.20)

where we have defined

Γop
θ (θ) ≡ ΠΓθ(θ) Π , Aop ≡ ΠAΠ . (5.21)

For θ = 0, equation (5.20) reduces to

AAop = 1⊗ 1 . (5.22)

Two obvious solutions to equation (5.22) are9

A = Π , A = 1 . (5.23)

9All the R-matrices we are aware of do follow A = Π, cf. condition (1.15) in [156].
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Comparing physical unitarity (5.11) with braiding unitarity (5.19), we also have that

Rop(−θ) = R†(θ) , Aop = A† . (5.24)

• Case A = Π

Equation (5.20) becomes

P exp

(

−
∫ θ

0

dτΓθ(τ)

)

P exp

(
∫ θ

0

dτΓθ(−τ)
)

= 1⊗ 1 , (5.25)

The theorem in Appendix E, with A(τ) = iΓθ(τ) and B(τ) = iΓθ(−τ), implies that

Γθ(θ) = Γθ(−θ) , (5.26)

i.e. Γθ(θ) must be an even function. We also have the following:

Theorem 1. Continuous deformations of the solution A = Π are not solutions.

Proof. Suppose that continuous deformations of the solution A = Π are still solutions

to (5.22). We write the generic deformed solution as

A = Π+ ǫ δA+O(ǫ2) , (5.27)

where ǫ ∈ R is an arbitrary small real parameter, and δA ∈ U [g] ⊗ U [g] is the

deformation. We shall neglect terms which are higher order powers in ǫ. If we

impose (5.27) to be a solution to (5.22), we obtain

[

Π+ ǫ δA+O(ǫ2)
]

Π
[

Π+ ǫ δA+O(ǫ2)
]

Π = 1⊗ 1 , (5.28)

which at zeroth order in ǫ gives us

Π4 = 1⊗ 1 , (5.29)

and at first order in ǫ

2δAΠ = 0 , (5.30)

After multiplying the equation above on the right by Π, we obtain

δA = 0 , (5.31)

i.e. a continuous deformation of the solution A = Π is not a solution to (5.22).

• Case A = 1

Equation (5.20) becomes

P exp

(

−
∫ θ

0

dτΓθ(τ)

)

P exp

(
∫ θ

0

dτΓop
θ (−τ)

)

= 1⊗ 1 , (5.32)
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Using the theorem in Appendix E with A(τ) = iΓθ(τ) and B(τ) = iΓop
θ (−τ), we have

that

Γθ(θ) = Γop
θ (−θ) . (5.33)

A continuous deformation of the type

A = 1+ ǫδA+O(ǫ2) , (5.34)

is still a solution of (5.12) and (5.22), provided that the deformation δA satisfies the

following conditions

δA = −δAop = −δA† . (5.35)

5.1.3 Algebra invariance

The algebra invariance condition is

∆op(a)R(θ) = R(θ)∆(a) , ∀ a ∈ K , (5.36)

where K is a generic superalgebra. By taking the derivative with respect to θ on

both sides of (5.36), we obtain

d∆op(a)

dθ
− R

d∆(a)

dθ
R−1 = ∆op(a)Γθ − Γθ∆

op(a) . (5.37)

In the case where the coproduct satisfy the following property

d∆(a)

dθ
= ca∆(a) , ∀ a ∈ K , (5.38)

then (5.37) implies

[∆op(a),Γθ] = 0 . (5.39)

This happens for instance for the relativistic massless scattering in AdS2 and AdS3

integrable string backgrounds.

The algebra invariance (5.36) evaluated at θ = 0 gives

∆op(a)|θ=0A = A∆(a)|θ=0 . (5.40)

For A = Π, (5.40) becomes

∆op(a) = Π∆(a)Π , (5.41)

which is simply the definition of the opposite coproduct. However for A = 1, (5.40)

becomes

∆op(a) = ∆(a) , (5.42)

which occours for instance in the AdS2 and AdS3 cases in the relativistic limit, when

all braiding factors trivialise. For a generic integrable system, if the given algebra

does not satisfy (5.42), even in a particular regime, than the solution A = 1 must

be discarded.
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Equation for A Equation for Γ

Physical unitarity AA† = 1⊗ 1 Γ(θ) = −Γ†(θ)

Braiding unitarity AAop = 1⊗ 1

case A = Π Γ(θ) = Γ(−θ)

case A = 1 Γ(θ) = Γop(−θ)

Algebra invariance, ∆op(a)|θ=0A = A∆(a)|θ=0 [∆op(a),Γ] = 0

coproduct (5.38)

Table 1. Summary of the conditions for (Γ,A).

6 Conclusions

In this paper, we have studied whether the R-matrix governing massless non-relativistic

scatterings in AdS2×S2×T 6 is invariant under the action of the q-deformed Poincaré

superalgebra in d = 2. Despite the behaviour of the boost action on the mass-

less and massive R-matrices in the context of other integrable AdS backgrounds

[71, 72, 74, 75], we found that the R-matrix is neither invariant nor annihilated by

the boost action. Nevertheless, we found that a linear combination of the boost co-

product and its opposite annihilates the R-matrix. This condition can be naturally

expressed in terms of a new variable γ, in the sense that the R-matrix must only

depend on the difference γ1 − γ2 associated with the two particles.

In the relativistic limit, γ tends to the rapidity θ modulo a logarithmically di-

vergent term, which disappears when considering the difference γ1 − γ2. We found

that the non-relativistic massless R-matrices describing right-right and left-left scat-

terings written in the γ variable are exactly reproduced by the relativistic massless

R-matrices with θ replaced by γ. This feature is also confirmed in AdS3 × S3 × T 4,

where we also have numerical evidence that for real momenta the non-relativistic

dressing factor is correctly reproduced from the relativistic one via the minimal pre-

scription above, with the numerical accuracy given in the text. We have checked that

the non-relativistic crossing equation reduces, in terms of the variable γ, to the one

satisfied by the Sine-Gordon dressing phase at a special value of the coupling, which

is relevant in the relativistic case. It would be desirable to show in a purely analytic

fashion, without relying on numerical computations, that the expression available in

the literature [29] for the non-relativistic dressing phase does indeed only depend on

the difference of the γ variables, and attains the precise Sine-Gordon form without
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the contribution from any CDD factors. Progress in this direction has recently been

made in [30], where the property of being of difference form in the γ variables was

derived purely analytically for the massless non-relativistic AdS3 dressing phase con-

structed in [29], and the absence of CDD factors was motivated. This has shown that

(2.15) is indeed satisfied exactly also by the dressing factor as well, and therefore no

modifications to that equation occur as a consequence of introducing such factor.

Supported by this evidence, we conjectured the non-relativistic dressing factor

of the R-matrix in AdS2 × S2 × T 6, which it is still unknown, and we checked that

the conjectured solution satisfies the non-relativistic crossing equation.

Motivated by the geometric interpretation of the boost action on the R-matrix in

[72], we started the program of classifying all possible R-matrices associated with a

given integrable model with a certain (super)algebra. The conjectured expression for

the most general R-matrix is given in terms of a connection Γ on a fibre bundle and a

constant matrix A, which is fixed by initial conditions. The R-matrix must satisfy a

set of equations (e.g. physical unitarity, brading unitarity, crossing symmetry, Yang-

Baxter equation, algebra invariance) and this in turns implies a set of equations for

the pair (Γ,A). In this paper, we made some progress towards the understanding of

physical unitarity, braiding unitarity and the algebra invariance in terms of (Γ,A).

The conditions obtained from this set of equations are listed in table 1 and we checked

that they are satisfied for the set of known integrable systems in Appendix C.

Studying the Yang-Baxter and crossing equations turns out to be more involved.

The Yang-Baxter equation involves the scattering with a third particle, and po-

tentially this might be implemented via extending the base space with an extra

coordinate. A representation-dependent formulation of crossing symmetry involves

to implement the notion of supertransposition on one particle subspace. This proce-

dure however turns out to be quite involved. We plan to investigate further on this

in the future.

One of the implication of our conjecture in the context of AdS/CFT massless

scatterings is that one can safely restrict to classify only R-matrices which depend

only on one (real or complex) variable, i.e. the rapidity θ. Once the classification is

done in this simpler context, one immediately obtains also the classification of the

massless non-relativistic R-matrices, simply via the substitution θ → γ. We leave

for future work the task of exploring whether this minimal prescription can also be

applied in the context of the Bethe ansatz.
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A Quaternionic notation

Let us focus for definiteness on the R-matrix Solution 3 of [128] for the right-right

scattering and for the choice α = 1. It turns out that there is a compact quaternionic-

type notation one can introduce to rewrite this matrix, i.e.

R3 = 1⊗ σ3 + µ σ1 ⊗ σ̌1 , µ ≡ e−
θ
2 , θ ≡ θ1 − θ2 , (A.1)

where θi is the rapidity of the i-th particle, with dispersion relation

Ei = pi = eθi , (A.2)

and

σ3 = E11 − E22 , σ1 = E12 + E21 , σ̌1 = E12 − E21 , (A.3)

where

|1〉 = |φ〉 , |2〉 = |ψ〉 , (A.4)

and |φ〉 is a boson, |ψ〉 a fermion. The matrices {σ3, σ1, σ̌3} satisfy the quaternion

algebra,

σ2
1 = σ2

3 = 1 , σ̌2
1 = −1 , σ1 σ3 = −σ3 σ1 = −σ̌1 ,

σ̌1 σ3 = −σ3 σ̌1 = −σ1 , σ1 σ̌1 = −σ̌1 σ1 = −σ3 . (A.5)

Expression (A.1) is reminiscent of spin-chain R-matrices of Yangian-type, and it does

indeed possess a very special Yangian symmetry [144].
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B Integral representation of the dressing factor

In this appendix we show that the dressing factor for the R-matrix Solution 3 of

[128] admits an integral representation.

The R-matrix we shall focus on initially, dubbed Solution 3 in [128], is provided

by the following formula, valid for arbitrary values of α:

R3(θ) =











1 0 0 ∓α−2e−
θ
2

0 −1 e−
θ
2 0

0 e−
θ
2 1 0

∓α2e−
θ
2 0 0 −1











, (B.1)

where the upper sign is for right-right, the lower sign for left-left. It satisfies cross-

unitarity [29] (cf. also [151]), but does not satisfy braiding-unitarity by itself. Rather,

it satisfies a mixed braiding unitarity relation with the R-matrix dubbed Solution 5

in [128]:

R5 =











1 0 0 ±α−2e
θ
2

0 1 e
θ
2 0

0 e
θ
2 −1 0

±α2e
θ
2 0 0 −1











, (B.2)

for arbitrary values of α, with the upper sign for right-right scattering, the lower sign

for left-left. If we set α2 = 1 for simplicity, and focus on right-right for definiteness,

the mixed braiding unitarity condition, already anticipated in [110], is given by:

Rop
5 (−θ)R3(θ) = (1 + e−θ)1⊗ 1. (B.3)

This relation allows to determine the dressing factor to associate with the Solution

5, say, Ω5(θ), from the knowledge of the one associated with the Solution 3:

Ω5(−θ)Ω3(θ) =
1

1 + e−θ
, (B.4)

which can be trivially solved for Ω5(θ).

Because of this relationship, in what follows, we will simply write Ω instead of

Ω3.

The fact that we have a non-trivial massless right-right and left-left scattering

(surviving the BMN limit, which is the regime we are effectively taking the string

theory to) is a non-perturbative effect, in agreement with Zamolodchikov’s picture

of massless scattering, outlined for instance in [29, 124, 125]. The mixed right-left

scattering is instead trivial, which signals that what we are actually describing via

this scattering problem is a critical theory possessing scale invarance.
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Focusing on Solution 3 for right-right scattering, we notice that crossing sym-

metry is implemented as follows.We define the supertranspose of a matrix M to

be

Mstr
ij = (−)ij+iMji, (B.5)

and the charge conjugation matrix to be

C = diag(i, 1), (B.6)

such that

−Qq = C−1Qstr
−q C, −Sq = C−1Sstr

−q C,

(B.7)

where the crossing transformation is defined by

q → −q, θ → iπ + θ. (B.8)

The R-matrix satisfies a combined crossing - braiding unitarity condition:

R(θ)
[

C−1 ⊗ 1
]

Rstr1(iπ + θ)
[

C ⊗ 1
]

= 1⊗ 1 . (B.9)

In order to fulfil (B.9), we will equip the solution with an appropriate dressing factor:

R = Ω(θ)R3. (B.10)

Eq. (B.9) implies that this factor has to satisfy

Ω(θ)Ω(θ + iπ) =
e

θ
2

2 cosh θ
2

≡ f(θ). (B.11)

As a consistency check, it is easy to verify that the dressing factor of the Solution 5

S-matrix satisfies a similar condition:

Ω5(θ)Ω5(θ + iπ) =
e

−θ
2

2 cosh θ
2

= f(−θ), (B.12)

which reduces to (B.11) upon using (B.4). Furthermore, using these equations one

can deduce that

Ω5(θ) = Ω3(iπ − θ). (B.13)

In [128], a minimal dressing factor was proposed:

Ω(θ) =
e

γEM

2
− iπ

8
+ θ

4√
2π

∞
∏

j=1

e−
1
2j j

Γ
(

j − 1
2
+ θ

2πi

)

Γ
(

j − θ
2πi

)

Γ
(

j + 1
2
− θ

2πi

)

Γ
(

j + θ
2πi

) , (B.14)
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with γEM being the Euler-Mascheroni constant. The “minimal” nature of Ω(θ) is due

to the fact that it displays neither poles nor zeroes in the physical strip Imθ ∈ (0, π).

From the representation (B.14) one can see that the function Ω(θ) is meromorphic

in the entire complex plane, with poles occurring at the following points on the

imaginary axis:

θ = −iπ(1 + 2n), n = 0, 1, 2, ... −→ pole of order n+ 1 ,

θ = 2iπm, m = 1, 2, ... −→ pole of order m , (B.15)

and zeroes at the following points on the imaginary axis:

θ = iπ(1 + 2n), n = 1, 2, ... −→ zero of order n ,

θ = −2iπm, m = 1, 2, ... −→ zero of order m . (B.16)

The factor Ω(θ) is actually analytic, with neither zeroes nor poles, in the strip Imθ ∈
(−π, 2π).

Using the property z Γ(z) = Γ(z + 1) one can show

Ω(θ) Ω(−θ) = e−iπ
4

2 cosh θ
2

≡ g(θ). (B.17)

By combining (B.11) and (B.17) one obtains

Ω(θ) =
f(θ)

Ω(θ + iπ)
= f(θ)

Ω(−θ − iπ)

g(θ + iπ)
=

f(θ)

g(θ + iπ)

f(−θ − iπ)

f(−θ) Ω(iπ − θ), (B.18)

where at the last stage we have used

Ω(iπ − θ) =
f(−θ)
Ω(−θ) =

f(−θ)
f(−θ − iπ)

Ω(−θ − iπ). (B.19)

Altogether, this implies

Ω(θ)

Ω(iπ − θ)
=

f(θ)

g(θ + iπ)

f(−θ − iπ)

f(−θ) = e
θ
2
−iπ

4 (B.20)

Finally, the condition of physical unitarity of the S-matrix

S(θ)S†(θ) = 1⊗ 1 θ real, (B.21)

reads for the Solution 3 as follows10:

R3(θ)R
†
3(θ) = (1 + e−θ) 1⊗ 1 θ real. (B.22)

10Since the S-matrix can be related to the R-matrix via S = PRP , where P is the matrix

implementing the permutation on two-particle states, and P is a unitary matrix - being real,

symmetric and self-inverse - we see that unitarity of R is equivalent to unitarity of S.
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This implies that the dressing factor ought to satisfy

Ω(θ)Ω∗(θ) =
1

1 + e−θ
θ real. (B.23)

Using the explicit solution (B.14) we have verified numerically that this is indeed

the case: the expression (B.14) satisifes (B.23), hence the S-matrix associated to

Solution 3 is a unitary matrix for real momenta, i.e. it satisfies physical unitarity.

Taking inspiration from [153], we now manipulate the dressing factor Ω(θ) into an

alternative form, which is traditionally more suitable for instance in the calculation

of form factors. To this purpose, we can use the so-called Malmstén representation

of the Gamma function: integral representation

Γ(z) = exp

∫ ∞

0

e−t

t

[

(z − 1)− 1− e−(z−1)t

1− e−t

]

, (B.24)

valid for Rez > 0 - see also [154, 155]. It is clear that we can use this representation

only if the intersection of all the domains of the gamma functions appearing in (B.14)

is non-empty, namely if, ∀ j = 1, ...,∞,

Re
(

j − 1

2
+

θ

2πi

)

> 0 and Re
(

j − θ

2πi

)

> 0

and Re
(

j +
1

2
− θ

2πi

)

> 0 and Re
(

j +
θ

2πi

)

> 0 .

Since these real parts are all monotonically increasing with j, the intersection is

dictated by the lowest value which is j = 1, which produces

Imθ ∈ (−π, 2π) . (B.25)

Notice that the physical strip Imθ ∈ (0, π) is entirely contained in the domain of

validity (B.25). Working in the domain (B.25), bringing all contributions under one

integral, after a series of simplifications, one gets

Ω(θ) =
e

γ
2
−πi

8
+ θ

4√
2π

∞
∏

j=1

e−
1
2j j exp

∫ ∞

0

e−t

t

[

− 1 +
cosh

(

t
4
− tθ

2πi

)

cosh t
4

et
[

3
2
−j

]

]

. (B.26)

We cannot simply transform the infinite product of exponentials into the exponent of

an infinite sum, because the resulting expression does not converge. Differentiating

w.r.t. θ the log of (B.26) allows to get rid of the diverging piece, at which point

bringing the sum over j inside the integral produces a simple geometric series. One

then gets

K(θ) ≡ d log Ω(θ)

dθ
=

1

4
+
i

π

∫ ∞

0

dx
sinh

[

x
(

1− 2θ
iπ

)

]

cosh x sinh 2x
, Imθ ∈ (−π, 2π) .(B.27)
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Now we have the task of reconstructing Ω(θ) from its logarithmic derivative,

namely

Ω(θ) = B exp

∫ θ

0

dβ K(β) = B expA(θ) , (B.28)

where

A(θ) =
θ

4
+

1

2

∫ ∞

0

dx

x

cosh[x(1 − 2θ
iπ
)]− cosh x

cosh x sinh 2x
, (B.29)

and B is a constant. At the last step, we have swapped the integral over β with the

one over x. We have also chosen to leave the constant term inside the integral to

ensure convergence near x = 0.

The initial integration value is now fixed by reproducing any specific value of Ω

obtained from the original expression (B.14), for instance

Ω(0) =
e

γ
2
−πi

8√
2π

∞
∏

j=1

e−
1
2j j

Γ
(

j − 1
2

)

Γ
(

j + 1
2

) =
e−iπ

8√
2
. (B.30)

This means that we have to set

B =
e−iπ

8√
2
. (B.31)

C (Γ,A) for various relativistic models

• Sine-Gordon model (non supersymmetric, fully bosonic)

R =

















1 0 0 0

0
sinh(πθ

ξ
)

sinh(
π(iπ−θ)

ξ
)

sin(π
2

ξ
)

sin(
π(π+iθ)

ξ
)
0

0
sin(π

2

ξ
)

sin(
π(π+iθ)

ξ
)

sinh(πθ
ξ
)

sinh(
π(iπ−θ)

ξ
)
0

0 0 0 1

















, (C.1)

A =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











= Π , (C.2)

Γθ = −
iπ sin(2π

2

ξ
)

ξ cos(2π
2

ξ
)− ξ cosh(2πθ

ξ
)
E11 ⊗ E22 −

2iπ cosh(πθ
ξ
) sin(π

2

ξ
)

ξ cos(2π
2

ξ
)− ξ cosh(2πθ

ξ
)
E21 ⊗ E12

−
2iπ cosh(πθ

ξ
) sin(π

2

ξ
)

ξ cos(2π
2

ξ
)− ξ cosh(2πθ

ξ
)
E12 ⊗ E21 −

iπ sin(2π
2

ξ
)

ξ cos(2π
2

ξ
)− ξ cosh(2πθ

ξ
)
E22 ⊗ E11 .

(C.3)
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where Eij are the matrices wit all 0s, but 1 in row i and column j. Γθ is an

even function of θ.

• Non-relativistic Heisenberg XXX spin chain (non supersymmetric, fully bosonic)

R =
u

u− 1

(

1+
Π

u

)

, u ≡ u1 − u2 , (C.4)

A = Π , Γu =
1

u2 − 1

(

1− Π

)

. (C.5)

Γu is an even function of u.

• Integrable superstring in AdS5 × S5. Forcing the massless and subsequently

the relativistic limit for the choice of right-right kinematics, i.e.

x± = e±i
p
2 , p→ ǫ eθ, ǫ→ 0, (C.6)

on the massive R-matrix [117] - written having eliminated all explicit coupling-

constant dependence using the x± constraint - we obtain































































−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −A2 0 0 C 0 0 0 0 0 0 AB 0 0 −AB 0

0 0 A 0 0 0 0 0 −B 0 0 0 0 0 0 0

0 0 0 A 0 0 0 0 0 0 0 0 −B 0 0 0

0 −C 0 0 −A2 0 0 0 0 0 0 −AB 0 0 AB 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 A 0 0 −B 0 0 0 0 0 0

0 0 0 0 0 0 0 A 0 0 0 0 0 −B 0 0

0 0 −B 0 0 0 0 0 −A 0 0 0 0 0 0 0

0 0 0 0 0 0 −B 0 0 −A 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 −AB 0 0 AB 0 0 0 0 0 0 A2 0 0 B2 0

0 0 0 −B 0 0 0 0 0 0 0 0 −A 0 0 0

0 0 0 0 0 0 0 −B 0 0 0 0 0 −A 0 0

0 AB 0 0 −AB 0 0 0 0 0 0 B2 0 0 A2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1































































(C.7)

where

A = tanh
θ

2
, B =

1

cosh θ
2

, C = − 2

1 + cosh θ
. (C.8)
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Γθ = − 1

2 cosh θ
2































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0































































(C.9)

Γθ is even in θ.

In all three cases described above, as well as in AdS3 and AdS2 if we disregard

parts proportional to the identity, one has that Γθ anticommutes with Π.

D Geometric interpretation of Γop
M

We recall that

Γop
M = ΠΓM Π . (D.1)

We notice that in the massless non-relativistic cases in AdS3×S3×T 4 and AdS5×S5

superstring backgrounds, the following relations hold

Γop
1 (p2, p1) = Γ2(p1, p2) , Γop

2 (p2, p1) = Γ1(p1, p2) , (D.2)

or equivalently, in a vector notation
(

Γ1(p1, p2)

Γ2(p1, p2)

)op

=

(

Γ2(p2, p1)

Γ1(p2, p1)

)

. (D.3)

Here we show that the RHS term of (D.3) can be generated as a consequence of a

rotation of π/2 anticlockwise of the axes (p1, p2) followed by an inversion of the new

p2 axis.

For an anticlockwise rotation of angle θ = π/2 of the axes (p1, p2), we have that
(

p′1
p′2

)

=

(

0 1

−1 0

)(

p1
p2

)

=

(

p2
−p1

)

. (D.4)
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The inversion of the p′2 axis can be written as

(

p′′1
p′′2

)

=

(

1 0

0 −1

)(

p′1
p′′2

)

=

(

p′1
−p′2

)

. (D.5)

The corresponding transformation of the connection ΓM is

(

Γ′′
1

Γ′′
2

)

(p′′1, p
′′
2) =

(

1 0

0 −1

)(

0 1

−1 0

)(

Γ1

Γ2

)

(p1(p
′′
1, p

′′
2), p2(p

′′
1, p

′′
2)) , (D.6)

where we have that

p1(p
′′
1, p

′′
2) = p′′2 , p2(p

′′
1, p

′′
2) = p1 , (D.7)

and
(

1 0

0 −1

)(

0 1

−1 0

)(

Γ1

Γ2

)

=

(

Γ2

Γ1

)

. (D.8)

This implies that
(

Γ′′
1

Γ′′
2

)

(p′′1, p
′′
2) =

(

Γ2

Γ1

)

(p′′2, p
′′
1) , (D.9)

and therefore, by using (D.3), we have

(

Γ′′
1

Γ′′
2

)

(p′′1, p
′′
2) =

(

Γ1

Γ2

)op

(p′′1, p
′′
2) . (D.10)

This argument shows that whenever (D.3) is satisfied, the op operation can be in-

terpreted as an anticlockwise rotation of π/2 of the frame of the fibre bundle base

space, followed by an axis inversion.

E A useful theorem

Theorem 2. Suppose that the following equation holds for any θ

P exp

(

i

∫ θ

0

dτA(τ)

)

P exp

(

i

∫ 0

θ

dτB(τ)

)

= 1⊗ 1 , (E.1)

for generic operators A and B. Then

A(θ) = B(θ) . (E.2)

Proof. We shall first recall the following property

[

P exp

(

i

∫ θ

0

dτA(τ)

)]−1

= P exp

(

− i

∫ θ

0

dτA(τ)

)

. (E.3)
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Then equation (E.1) can be rewritten as

P exp

(

− i

∫ θ

0

dτA(τ)

)

= P exp

(

− i

∫ θ

0

dτB(τ)

)

. (E.4)

Differentiating both members of (E.4) with respect to θ, we obtain

− iA(θ)P exp

(

− i

∫ θ

0

dτA(τ)

)

= −iB(θ)P exp

(

− i

∫ θ

0

dτB(τ)

)

, (E.5)

and by using (E.4), this in turns implies

A(θ) = B(θ) . (E.6)
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