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Abstract

The Algebraic Bethe ansatz for a supersymmetric nineteen vertex-
model constructed from a three-dimensional representation of the twisted
quantum affine Lie superalgebra Uq[osp(2|2)

(2)] is presented in detail. The
eigenvalues and eigenvectors of the row-to-row transfer matrix are calcu-
lated and the corresponding Bethe Ansatz equations are obtained and
analyzed numerically.
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1 Introduction

One-dimensional quantum spin chain Hamiltonians and classical statistical sys-
tems in two spatial dimensions on a lattice (vertex models), share a common
mathematical structure responsible by our understanding of these integrable
models [1, 2]. If the Boltzmann weights underlying the vertex models are ob-
tained from solutions of the Yang-Baxter (YB) equation the commutativity of
the associated transfer matrices immediately follow, leading to their integrabil-
ity.

The Bethe Ansatz (BA) is the powerful method in the analysis of integrable
quantum models. There are several versions: Coordinate BA [3] ,Algebraic BA

[4] , Analytical BA [5] , etc. developed for diagonalization of the corresponding
Hamiltonian.

The simplest version is the Coordinate BA which we can obtain the eigen-
functions and the spectrum of the Hamiltonian from its eigenvalue problem. It
is really simple and clear for the two-state models like the six-vertex models but
becomes awkward for models with a higher number of states.

The Algebraic BA, also proverbial as Quantum Inverse Scattering method,
is an elegant and important generalization of the Coordinate BA. It is based
on the idea of constructing eigenfunctions of the Hamiltonian via creation and
annihilation operators acting on a reference state. Here we use the fact the YB

equation can be recast in the form of commutation relations for the matrix ele-
ments of the monodromy matrix which play the role of creation and annihilation
operators. From this monodromy matrix we get the transfer matrix which, by
construction, commutes with the Hamiltonian. Thus, constructing eigenfunc-
tions of the transfer matrix determines the eigenfunctions of the Hamiltonian.

Imposing appropriate boundary conditions the BA method leads to a system
of equations, the BA equations, which are useful in the thermodynamic limit.
The energy of the ground state and its excitations, velocity of sound, etc., may
be calculated in this limit. Moreover, in recent years we witnessed another very
fruitful connection between the BA method and conformal field theory. Using
the Algebraic BA, Korepin [6] found various representations of correlators in
integrable models. Moreover Babujian and Flume [7] developed a method from
the Algebraic BA which reveals a link to the Gaudin model and render in the
quasiclassical limit solutions of the Knizhnik-Zamolodchikov equations for the
SU(2) Wess-Zumino-Novikov-Witten conformal theory.

Integrable quantum systems containing Fermi fields have been attracting in-
creasing interest due to their potential applications in condensed matter physics.
The prototypical examples of such systems are the supersymmetric general-
izations of the Hubbard and t-J models [8], which play an important role in
condensed matter physics, and also the search for solutions of the graded Yang-

Baxter equations [] which gave origin to important algebraic construction as the
supersymmetric Hopf algebras and quantum groups [9]. More recently, the inte-
grability of supersymmetric models also proved to be important in superstring
theory, more specifically in the AdS/CFT correspondence [10, 11, 12]. They
lead to a generalization of the YB equation associated with the introduction of
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the a Z2- grading [13] in the YB equation.
In the context of the Algebraic BA , the version presented here is based on

the Tarosov approach [14]
The paper is organized as follows: In Section 2 we present the models. In

Section 3 he main steps of the algebraic BA are developed in detail in order to solve
the eigenvalue problem for the row to row transfer matrix with periodic boundary
conditions, where its eigenvectors and eigenvalues are presented to be fixed by the
roots of the Bethe equations. In section 4 we made a numecal analysis with the Bethe
equation, and Section 5 is for our closing remarks.

2 The model

The most powerful and beautiful method to analyze these integrable quantum
systems probably is the Algebraic BA [4]. This technique allows one to diago-
nalize the transfer matrix of a given integrable quantum system in an analytical
way. The aba was originally applied to systems with periodic boundary condi-
tions but after the work of Sklyanin [15], integrable models with non-periodic
boundaries could also be handled.

In this work we will study another graded three-state model with periodic
boundary conditions. The R-matrix associated with this model is constructed
from a three-dimensional free boson representation V of the twisted quantum
affine Lie superalgebra Uq[osp(2|2)(2)] ≃ Uq[C(2)(2)] . We would like to empha-
size that vertex-models described by Lie superalgebras − and, in particular, by
twisted Lie superalgebras − are usually the most complex ones, which is due, of
course, to the high complexity of such Lie superalgebras [16, 17, 18, 19, 20, 21].

Let W=V⊕U be a Z2-graded vector space where V and U denote its even and
odd parts, respectively. In a Z2-graded vector space we associate a gradation
p(i) to each element ǫi of a given basis of V . In the present case, we shall
consider only a three-dimensional representation of the twisted quantum affine
Lie superalgebra Uq[osp(2|2)(2)] with a basis E = {ǫ1, ǫ2, ǫ3} and the grading
p(1) = 0, p(2) = 1 and p(3) = 0. Multiplication rules in the graded vector
space W differ from the ordinary ones by the appearance of additional signs.
For example, the graded tensor product of two homogeneous even elements
A ∈ End(V ) and B ∈ End(V ) turns out to be defined by the formula,

A⊗g B =
d

∑

i,j,k,l=1

(−1)p(i)p(k)+p(j)p(k) AijBkl (eij ⊗ ekl) , (1)

where d (in the present case, d = 3) is the dimension of the vector space V and
eij are the Weyl matrices (eij is a matrix in which all elements are null, except
that element on the [i, j] position, which equals 1). In the same fashion, the
graded permutation operator P g is defined by

P g =

3
∑

i,j=1

(−1)
p(i)p(j)

(eij ⊗ eji) . (2)
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and the graded transposition Atg of a matrix A ∈ End(V ) as well as its inverse
graded transposition, Aτg

, are defined, respectively, by

Atg =

3
∑

i,j=1

(−1)
p(i)p(j)+p(i)

Ajieij , Aτg

=

3
∑

i,j=1

(−1)
p(i)p(j)+p(j)

Ajieij , (3)

so that Atgτg

= Aτgtg = A. Finally, the graded trace of a matrix A ∈ End(V )
is given by

trg(A) =

3
∑

i=1

(−1)
p(i)

Aiieii. (4)

The YB equation [],

R12(x)R13(xy)R23(y) = R23(y)R13(xy)R12(x), (5)

is written in the same way as in in the non-graded case: it is only necessary to
employ graded operations instead of the usual operations

The R-matrix, solution of the graded YB equation (5), associated with the
Yang-Zhang vertex-model [22] can be written, up to a normalizing factor and
employing a different notation, as follows:

R(x) =





























r1(x) 0 0 0 0 0 0 0 0
0 r2(x) 0 r5(x) 0 0 0 0 0
0 0 r3(x) 0 r6(x) 0 r7(x) 0 0
0 s5(x) 0 r2(x) 0 0 0 0 0
0 0 s6(x) 0 r4(x) 0 r6(x) 0 0
0 0 0 0 0 r2(x) 0 r5(x) 0
0 0 s7(x) 0 s6(x) 0 r3(x) 0 0
0 0 0 0 0 s5(x) 0 r2(x) 0
0 0 0 0 0 0 0 0 r1(x)





























,

(6)
where the amplitudes ri (x) and si (x) are given respectively by

r1 (x) = q2x− 1, (7)

r2 (x) = q (x− 1) , (8)

r3 (x) = q (q + x) (x− 1) / (qx+ 1) , (9)

r4 (x) = q (x− 1)− (q + 1)
(

q2 − 1
)

x/ (qx+ 1) , (10)

r5 (x) = q2 − 1, (11)

r6 (x) = −q1/2
(

q2 − 1
)

(x− 1) / (qx+ 1) , (12)

r7 (x) = (q − 1) (q + 1)
2
/ (qx+ 1) , (13)

s5 (x) =
(

q2 − 1
)

x = xr5 (x) , (14)

s6 (x) = −q1/2
(

q2 − 1
)

x (x− 1) / (qx+ 1) = xr6 (x) , (15)

s7 (x) = (q − 1) (q + 1)
2
x2/ (qx+ 1) = x2r7 (x) . (16)
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This R-matrix has the following properties or symmetries [27]:

regularity: R12 (1) = f (1)1/2 P g
12, (17)

unitarity: R12 (x) = f (x)R−1
21

(

x−1
)

, (18)

super PT: R12 (x) = Rtg
1
τg

2

21 (x) , (19)

crossing: R12 (x) = g (x)
[

V1Rtg
2

12

(

η−1x−1
)

V −1
1

]

, (20)

where

f (x) = r1(x)r1

(

1

x

)

=
(

q2x− 1
)

(

q2

x
− 1

)

, g(x) = −qx (x− 1)

(qx+ 1)
. (21)

Here, tg1 and t22 mean graded partial transpositions in the first and second vector
spaces, respectively; τ21 and τ22 the corresponding inverse operations. Besides,
η = −q is the crossing parameter while

M = V tgV = diag (1/q, 1, q) (22)

is the crossing matrix.
Besides R we have to consider matrices R = P gR which satisfy

R12(x)R23(xy)R12(y) = R23(y)R12(xy)R23(x) (23)

Because only R12 and R23 are involved, Eq.(23) written in components looks
the same as in the non graded case.

3 The Algebraic Bethe Ansatz

In the previous section we have presented the model through its R-matrix
The main problem now is the diagonalization of the transfer matrix of the

lattice system. To do this we recall the formulation of the Algebraic Bethe
ansatz [14].

Let us consider a regular lattice with L columns and L′ rows. A physical
state on this lattice is defined by the assignment of a state variable to each lattice
edge. If one takes the horizontal direction as space and the vertical one as time,
the transfer matrix plays the role of a discrete evolution operator acting on the
Hilbert space H(N) spanned by the row states which are defined by the set of
vertical link variables on the same row. Thus, the transfer matrix elements can
be understood as the transition probability of the one row state to project on
the consecutive one after a unit of time.

The standard row-to-row monodromy matrix for an L- tensor space

V (1) ⊗ V (2) ⊗ · · · ⊗ V (L) (24)

T0(x) = R0L(x)R0N−1(x) · · · R01(x) (25)
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A quantum integrable system is characterized by monodromy matrix T0(x)
satisfying the equation

R00′(x/w)
[

T0(x)
g
⊗ T0′(w)

]

=
[

T0′(w)
g
⊗ T0(x)

]

R00′(x/w) (26)

whose consistency is guaranteed by the YB equation (23). T0(x) is a matrix
in the quantum space ⊗N

j V (j) with matrix elements that are operators on the
states of the quantum system. The space V(0) is called auxiliary space of T0(x).

From the auxiliary space we can see T0(x) as a matrix 3 by 3

T0(x) =





A1(x) B1(x) B2(x)
C1(x) A2(x) B3(x)
C2(x) C3(x) A3(x)



 (27)

where the operators Ai, Bi, Ci are 3Lby 3L matrices.
The transfer matrixτ(x) for periodic boundary condition is defined as the

super-trace of the row-to-row monodromy

τ(x) = StrT0(x) =

3
∑

i=1

(−1)[i] Ai(x) = A1(x)−A2(x) +A3(x) (28)

In particular, the Hamiltonians can also be derived by the well-known relation

H = α
∂

∂x
(ln τ(x))x=1 (29)

In this section we will derive the BA equations of 19-vertex models presented
in Section 2 using the Algebraic BA developed by Tarasov [14]. To do this
we need of the commutation relations for entries of the monodromy matrix
which are derived from the fundamental relation (26). Here these commutation
relations do not share a common structure. Therefore, we only write some of
them in the text and recall (26) to get the remaining ones.

First of all , let us observe that for each row state one can define the magnon
number operator which commutes with the transfer matrix of the models

[τ(x),M ] = 0, M =

L
∑

k=1

Mk, Mk =





0 0 0
0 1 0
0 0 2



 , (30)

This is the analog of the operator Sz
T used in the previous section and the

relation betweenM and the spin total Sz
T is simplyM = L−Sz

T . Once again, the

Hilbert space can be broken down into sectorsH(L)
M . In each of these sectors, the

transfer matrix can be diagonalized independently, τ(x)ΨM = ΛM ({xi}ΨM ,(i =
0, 1, ...,M),x0 = x. We now start to diagonalize τ(x) in every sector:
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3.1 Sector M = 0

Let us consider the highest vector of the monodromy matrix T (u) in a lattice
of L sites as the even (bosonic) completely unoccupied state

Ψ0 ≡ |0〉 = ⊗L
k=1





1
0
0





k

(31)

It is the only state in the sector with M = 0. Using (27) we can compute the
action of the matrix elements of τ(x) on this reference state:

Ak(x) |0〉 = rLk (x) |0〉 ,
Ck(x) |0〉 = 0, Bk(x) |0〉 6= {0, |0〉}, k = 1, 2, 3 (32)

Therefore in the sector M = 0 , Ψ0 is the eigenstate of τ(x) = A1(x)−A2(x) +
A3(x) with eigenvalue

Λ0(x) = rL1 (x) − rL2 (x) + rL3 (x) (33)

Here we observe that the action of the operators Bi(x) on the reference state
will give us new states which lie in sectors with M 6= 0.

3.2 Sector M = 1

In this sector we have the states B1 |0〉 and B3 |0〉. Since B3 |0〉 ∝ B1 |0〉, we
seek eigenstate of the form

Ψ1(x1) = B1(x1) |0〉 . (34)

The action of the operator τ(x) on this state can be computed with aid of
the following commutation relations

A1(x)B1(w) = z(w/x)B1(w)A1(x) −
r5(w/x)

r2(w/x)
B1(x)A1(w) (35)

A2(x)B1(w) = − z(x/w)

ω(x/w)
B1(w)A2(x) −

z(x/w)

ω(x/w)

1

y(w/x)
B2(w)C1(x)

+
s5(x/w)

r2(x/w)
B1(x)A2(w) +

s5(x/w)

r2(x/w)

1

y(x/w)
B2(x)C1(w)

+
1

y(x/w)
B3(x)A1(w) (36)

A3(x)B1(w) =
r2(x/w)

r3(x/w)
B1(w)A3(x) +

1

y(x/w)
B3(x)A2(w)

+
r5(x/w)

r3(x/w)
B2(w)C3(x) −

s7(x/w)

r3(x/w)
B2(x)C3(w) (37)
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where we have used Tarasov’s notation[14],for the ratio functions

z(x) =
r1(x)

r2(x)
, ω(x) =

r1(x)r3(x)

−r3(x)r4(x) + r6(x)s6(x)
,

y(x) =
r3(x)

s6(x)
=, y(x−1) =

−r3(x)r4(x) + r6(x)s6(x)

r7(x)s6(x)− r3(x)r6(x)
, (38)

When τ(x) act on Ψ1(x1) , the corresponding eigenvalue equation has two
unwanted terms:

τ(x)Ψ1(x1) = (A1(x) −A2(x) +A3(x)) Ψ1(x1)

= [z(x1/x)r
L
1 (x) +

z(x/x1)

ω(x/x)
rL2 (x) +

r2(x/x1)

r3(x/x1)
rL3 (x)]Ψ1(x1)

−[
r5(x1/x)

r2(x1/x)
rL1 (x1) +

s5(x/x1)

r2(x/x1)
rL2 (x1)]B1(x) |0〉

− 1

y(x/x)
rL1 (x1)−

1

y(x/x1)
rL2 (x1)]B3(x) |0〉 (39)

From the matrix elements (7-16) we can see that r5(x)/r2(x) = −s5(x
−1)/r2(x

−1).
Therefore the unwanted terms vanish and Ψ1(x1) is eigenstate of τ(x) with
eigenvalue

Λ1(x, x1) = z(x1/x)r
L
1 (x) +

z(x/x1)

ω(x/x1)
rL2 (x) +

r2(x/x1)

r3(x/x1)
rL3 (x) (40)

provided
(z(x1))

L
= 1 (41)

3.3 Sector M = 2

In the sector M = 2, we encounter two linearly independent states B1B1 |0〉
and B2 |0〉. (The states B3B3 |0〉 , B1B3 |0〉 and B3B1 |0〉 also lie in the sector
M = 2 but they are proportional to the state B1B1 |0〉). We seek eigenstates in
the form

Ψ2(x1, x2) = B1(x1)B1(x2) |0〉+B2(x1)Γ(x1, x2) |0〉 (42)

where Γ(x1, x2) is an operator-valued function which has to be fixed such that
Ψ2(x1, x2) is unique state in the sector M = 2.

Here we observe that the operator-valued function Γ(x1, x2) is.
It was demonstrated in [?] that Ψ2(x1, x2) is unique provided it is ordered in a

normal way: In general, the operator-valued function Ψn(x1, ..., xn) is composite
of normal ordered monomials. A monomial is normally ordered if in it all
elements of the type Bi(x) are on the left, and all elements of the type Cj(x)
on the right of all elements of the type Ak(x). Moreover, the elements of one
given type having standard ordering: Ti1j1(x1)Ti2j2(x2)...Tinjn(xn). For a given
sector M = n, Ψn(x1, ..., xn) is unique.
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From the commutation relation

B1(x)B1(w) = ω(w/x)[B1(w)B1(x)−
1

y(w/x)
B2(w)A1(x)]

+
1

y(x/w)
B2(x)A1(w) (43)

we can see that (43) will be normally ordered if it satisfies the following swap
condition

Ψ2(x2, x1) = ω(x1/x2)Ψ2(x1, x2) (44)

This condition fixes Γ(x1, x2) in Eq.(42) and the eigenstate of τ(x) in the sector
M = 2 has the form

Ψ2(x1, x2) = B1(x1)B1(x2) |0〉 −
1

y(x1/x2)
B2(x1)A1(x2) |0〉 . (45)

The action of transfer matrix on the states of the form (45) is more laborious.
In addition to (35-37) and (43) we need appeal to (26) to derive more eight
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commutation relations

A1(x)B2(w) =
r1(w/x)

r3(w/x)
B2(w)A1(x)−

r7(w/x)

r3(w/x)
B2(x)A1(w)

+
r6(w/x)

r3(w/x)
B1(x)B1(w) (46)

A2(x)B2(w) = z(x/w)z(w/x)B2(w)A2(x)

+
s5(x/w)

r2(x/w)
[B1(x)B3(w) +B3(x)B1(w) +

s5(x/w)

r2(x/w)
B2(x)A2(w)]

(47)

A3(x)B2(w) =
r1(x/w)

r3(x/w)
B2(w)A3(x)−

s7(x/w)

r3(x/w)
B2(x)A3(w)

+
1

y(x/w)
B3(x)B3(w) (48)

C1(x)B1(w) = −B1(w)C1(x) +
s5(x/w)

r2(x/w)
[A1(w)A2(x)−A1(x)A2(w)] (49)

C3(x)B1(w) = −r4(x/w)

r3(x/w)
B1(w)C3(x)−

r7(x/w)

r3(x/w)
B1(x)C3(w)

+
1

y(x/w)
[A1(w)A3(x)−A2(x)A2(w)] +

r6(x/w)

r3(x/w)
B2(w)C2(x)

(50)

B1(x)B2(w) =
1

z(x/w)
B2(w)B1(x) +

s5(x/w)

r1(x/w)
B1(w)B2(x) (51)

B1(x)B3(w) = −B3(w)B1(x) −
s5(x/w)

r2(x/w)
B2(w)A2(x) +

r5(x/w)

r2(x/w)
B2(x)A2(w)

(52)

B2(x)B1(w) =
1

z(x/w)
B1(w)B2(x) +

r5(x/w)

r1(x/w)
B2(w)B1(x) (53)

Here we obserwe that in this approach the final action of τ(x) on normally
ordered states must be normal ordered. This implies in an increasing use of
commutation relations needed for the diagonalization of τ(x). For example, the
action of the operator A1(x) on Ψ2(x1, x2) has the form

A1(x)Ψ2(x1, x2) = z(x10)z(x20)r
L
1 (x) Ψ2(x1, x2)

−r5(x10)

r2(x10)
z(x21)r

L
1 (x1) B1(x)B1(x2) |0〉

−r5(x20)

r2(x20)

z(x12)

ω(x12)
rL1 (x2) B1(x)B1(x1) |0〉

+

(

z(x10)

ω(x10)

r5(x20)

r2(x20)

1

y(x01)
+

r7(x10)

r3(x10)

1

y(x12)

)

×rL1 (x1)r
L
1 (x2) B2(x) |0〉 (54)
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where xab = xa/xb, a 6= b = 0, 1, 2, with x0 = x. Here we have used the
following identities satisfied by the matrix elements of this 19-vertex model:

z(xab)

ω(xab)

r5(xcb)

x2(xcb)
+

r6(xab)

r3(xab)

1

y(xac)
=

r5(xab)

r2(xab)

r5(xca)

r2(xca)
+

z(xac)

ω(xac)

r5(xcb)

r2(xcb)
,

z(xab)
r5(xcb)

r2(xcb)

1

y(xab)
+

r1(xab)

r3(xab)

1

y(xac)
= z(xab)z(xcb)

1

y(xac)
,

ω(xab)ω(xba) = 1, (a 6= b 6= c) (55)

Similarly, for the operator A2(x) we have

A2(x)Ψ2(x1, x2) =
z(x01)

ω(x01)

z(x02)

ω(x02)
rL2 (x) Ψ2(x1, x2)

−s5(x02)

r2(x02)
z(x21)r

L
2 (x2) B1(x)B1(x1) |0〉

−s5(x01)

r2(x01)

z(x12)

ω(x12)
rL2 (x1) B1(x)B1(x2) |0〉

+z(x21)
1

y(x01)
rL1 (x1) B3(x)B1(x2) |0〉

+
z(x12)

ω(x12)

1

y(x02)
rL1 (x2) B3(x)B1(x1) |0〉

+
s5(x01)

r2(x01)

(

s5(x21)

r2(x21)

1

y(x01)
+

z(x01)

ω(x01)

1

y(x02)
− s5(x01)

r2(x01)

1

y(x12)

)

×rL1 (x2)r
L
2 (x1) B2(x) |0〉

+
1

y(x01)

(

z(x01)
s5(x02)

r2(x02)
− s5(x01)

r2(x01)

s5(x02)

r2(x02)

)

rL1 (x1)r
L
2 (x2) B2(x) |0〉(56)

In this case we have xsed more two identities:

z(xab)

ω(xab)

1

y(xac)
+

s5(xbc)

r2(xbc)

1

y(xab)
=

s5(xab)

r2(xab)

1

y(xbc)
+

z(xbc)

ω(xbc)

1

y(xac)

z(xcb)
s5(xac)

r2(xac)
+

s5(xab)

r2(xab)

s5(xbc)

r2(xbc)
=

z(xab)s5(xac)

r2(xac)

a 6= b 6= c (57)

Finally, for A3(x) we get

A3(x)Ψ2(x1, x2) =
r2(x01)

r3(x01)

r2(x02)

r3(x02)
rL3 (x) Ψ2(x1, x2)

−ω(x12)
1

y(x01)
rL2 (x1) B3(x)B1(x2) |0〉 − z(x21)

1

y(x02)
rL2 (x2) B3(x)B1(x1) |0〉

+

(

s7(x01)

r3(x01)

1

y(x12)
− s5(x01)

r3(x01)

1

y(x02)

)

rL2 (x1)r
L
2 (x2) B2(x) |0〉 (58)

Here we also have xsed the identities (55) and (57).
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From these relations one can see that all unwanted terms of τ(x)Ψ2(x1, x2)
vanish. It means that Ψ2(x1, x2) is an eigenstate of the transfer matrix τ(x)
with eigenvalue

Λ2(x, x1, x2) = z(x10)z(x20)r
L
1 (x)−

z(x01)

ω(x01)

z(x02)

ω(x02)
rL2 (x)+

r2(x01)

r3(x01)

r2(x02)

r3(x02)
rL3 (x)

(59)
provided the rapidities x1 and x2 satisfy the BA equations

(z(xa))
L = −z(xab)

z(xba)
ω(xba) , a 6= b = 1, 2. (60)

3.4 General Sector

The generalization of the above results to sectors with more than two particles
proceeds through the factorization properties of the higher order phase shifts
discussed in the previous section. Therefore, at this point we shall present the
general result: In a generic sector M = n , we have n− 1 swap conditions

Ψn(x1, · · · , xi−1, xi+1, xi, · · · , xn) = ω(xi−xi+1)Ψn(x1, · · · , xi−1, xi, xi+1, · · · , xn)
(61)

which yield the n−1 operator-valued functions Γi(x1, · · · , xn) . The correspond-
ing normal ordered state Ψn(x1, · · · , xn) can be written with aid of a recurrence
formula [?]:

Ψn(x1, ..., xn) = Φn(x1, ..., xn) |0〉 (62)

where

Φn(x1, ..., xn) = B1(x1)Φn−1(x2, ..., xn)

−B2(x1)

n
∑

j=2

1

y(x1/xj)

n
∏

k=2,k 6=j

Z(xk/xj)Φn−2(x2, ...,
∧
xj , ..., xn)A1(xj)(63)

with the initial condition Φ0 = 1, Φ1(x) = B1(x).
The scalar function Z(xk − xj) is defined by

Z(xk/xj) =

{

z(xk/xj) if k > j
z(xk/xj)ω(xj − /x) if k < j

(64)

The action of the operators Ai(x), i = 1, 2, 3 on the operators Φn have the
following normal ordered form
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A1(x)Φn(x1, ..., xn) =
n
∏

k=1

z(xk/x)Φn(x1, ..., xn)A1(x)

−B1(x)

n
∑

j=1

x5(xj/x)

x2(xj/x)

n
∏

k=1,k 6=j

Z(xk/xj)Φn−1(x1, ...,
∧
xj , ..., xn)A1(xj)

+B2(x)

n
∑

j=2

j−1
∑

l=1

Gjl(x, xl, xj)

n
∏

k=1,k 6=j,l

Z(xk/xl)Z(xk/xj)

×Φn−2(x1, ...,
∧
xl, ...,

∧
xj , ..., xn)A1(xl)A1(xj) (65)

where Gjl(x, xl, xj) are scalar functions defined by

Gjl(x, xl, xj) =
r7(xl/x)

r3(xl/x)

1

y(xl/x)
+

z(xl/x)

ω(xl/x)

r5(xj/x)

r2(xj/x)

1

y(x/xl)
(66)

For the action of A3(x) we have a similar expression

A3(x)Φn(x1, ..., xn) =

n
∏

k=1

r2(x/x)

r3(x/xk)
Φn(x1, ..., xn)A3(x)

+(−1)nB3(x)

n
∑

j=1

1

y(x/xj)

n
∏

k=1,k 6=j

Z(xj/xk)Φn−1(x1, ...,
∧
xj , ..., xn)A2(xj)

+B2(x)

n
∑

j=2

j−1
∑

l=1

Hjl(x, xl, xj)

n
∏

k=1,k 6=j,l

Z(xj/xk)Z(xl/xk)

×Φn−2(x1, ...,
∧
xl, ...,

∧
xj , ..., xn)A2(xl)A2(xj) (67)

where the scalar fxnctions Hjl(x, xl, xj) are given by

Hjl(x, xl, xj) =
s7(x/xl)

r3(x/x)

1

y(xl/x)
− s5(x/xl)

r3(x/xl)

1

y(x/xj)
(68)
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The action of the operator A2(x) is more cumbersome

A2(x)Φn(x1, ..., xn) = (−1)n
n
∏

k=1

z(x/x)

ω(x/x)
Φn(x1, ..., xn)A2(x)

+(−1)nB1(x)

n
∑

j=1

s5(x/xj)

r2(x/xj)

n
∏

k=1,k 6=j

Z(xj/xk)Φn−1(x1, ...,
∧
xj , ..., xn)A2(xj)

+B3(x)
n
∑

j=1

1

y(x/xj)

n
∏

k=1,k 6=j

Z(xk/xj)Φn−1(x1, ...,
∧
xj , ..., xn)A1(xj)

+εnB2(x)







n
∑

j=2

j−1
∑

l=1

Yjl(x, xl, xj)
n
∏

k=1,k 6=j,l

Z(xk/x)Z(xj/x) ×

Φn−2(x1, ...,
∧
xl, ...,

∧
xj , ..., xn)A1(xl)A2(xj) +

n
∑

j=2

j−1
∑

l=1

Fjl(x, xl, xj)
n
∏

k=1,k 6=j,l

Z(xl/xk)Z(xk/xj) ×

Φn−2(x1, ...,
∧
xl, ...,

∧
xj , ..., xn)A1(xj)A2(xl)

}

(69)

where we have more two scalar functions

Fjl(x, xl, xj) =
s5(x/xl)

r2(x− xl)

{

s5(xl/xj)

r2(xl/xj)

1

y(x/xl)
+

z(x/xl)

ω(x/xl)

1

y(x/xj)

−s5(x/xl)

r2(x/xl)

1

y(xl/xj)

}

(70)

Yjl(x, xl, xj) =
1

y(x/xl)

{

z(x/xl)
s5(x/xj)

r2(x/xj)
− s5(x/x)

r2(x/xl)

s5(xl/xj)

r2(xl/xj)

}

(71)

From these relations immediately follows that Ψn(x1, ..., xn) are the eigen-
states of τ(x) with eigenvalues

ΛM (x) = r1(x)
L

n
∏

a=1

z(xa/x)− (−1)nr2(x)
L

n
∏

a=1

z(x/xa)

ω(x/xa)
+ r3(x)

L
n
∏

a=1

r2(x/xa)

r3(x/xa)

(72)
provided their rapidities xi, i = 1, ...,M satisfy the BA equations

(z(xa))
L
= (−1)n+1

n
∏

b6=a=1

z(xa/xb)

z(xb/xa)
ω(xb − xa), a = 1, 2, ..., n (73)

To conclude this section we remark that equations (72) and (73) reproduce the
known results in the literature for the graded nineteen vertex models
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4 Numerical analysis

For a small-length chain, the results above can be checked numerically. As an
example, let us consider a chain with three sites, that is, let us assume that
L = 2. In this case, both the monodromy as the transfer matrix defined at ()
can be explicitly constructed without difficult:

The monodromy becomes an operator with values in End (V0 ⊗ V1 ⊗ V2)
and, therefore, consists in an 27-by-27 matrix. Using the graded permutation
operators P g

01 = P g ⊗ I3 and P g
12 = I3 ⊗ P g we have R01 = R ⊗ I3 and

R02 = P g
12R01P

g
12. Therefore for two quantum spaces the monodromy (25) is

reduced to
T0 = R02R01 (74)

Hence, the graded transfer matrix (28) consists in a 9-by-9 matrix.
In the framework of the aba, on the other hand, we usually divide the

spectrum of the transfer matrix into sectors, according to the magnon number M
associated with the possible chain configurations. (We say that a spin pointing
to up (1), to center (2), or to down (3) has a magnon number equal to 0, 1
or 2, respectively, and that the total magnon number of the chain is given by
the sum of the magnon numbers associated with all its sites.) In this way, the
reference state corresponds to the sectorM = 0, which physically corresponds to
a configuration in which all spins point up, while the n-particle states correspond
to the configurations in which M = n, that is, they are physically formed by
any combination of k spins pointing down and l spins pointing to the center, in
such a way that 2k + l = n. Therefore, for a chain of length N = 2, we have in
total 5 sectors, corresponding to the values of M ranging from 0 to 4.

The eigenvalues(λi and the eigenvectors (vi) of the transfer matrix can be nu-
merically calculated as we give numerical values for the parameters x, q,. In this
example, we shall consider the (randomly generated) values, x = 1.2970895172
and q = 0.3438435138.

Here we notice that for two sites there are nine configurations of spin−1,
given by

ci,j = ei ⊗ ej i, j = 1, 2, 3 (75)

where

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 (76)
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For this example we find the following eigenvectors their eigenvalues

v1 =c1,1, λ1 =0.719147295 (n = 0)

v2 =
1√
2
(c2,1 − c1,2) , λ2 =− 1.1875382707 (n = 1)

v3 =
1√
2
(c2,1 + c1,2) , λ3 =0.80021448548 (n = 1)

v4 =− 1√
2
(c3,1 + c1,3) , λ4 =0.9231082366 (n = 2)

v5 =− 1√
2
(c3,1 − c1,3) , λ5 =− 1.3365641154 (n = 2)

v6 =
1√
2
(c3,2 − c2,3) , λ6 =λ2 (n = 3)

v7 =
1√
2
(c3,2 + c2,3) , λ7 =λ3 (n = 3)

v8 =c2,2, λ8 =λ5 (n = 2)

v9 =c3,3, λ9 =λ1 (n = 4) (77)

Now we can look at the results given by the aba

The equation (33) for N=2

Λ0 = r1(x)
2 − r2(x)

2 + r3(x)
2 (78)

Substituiting the numerical values

r1(x) =− 0.84664472310

r2(x) =0.1021523034

r3(x) =0.1159236333 (79)

to obtain
Λ0 = 0.7198147295 (80)

which is equal the value λ1 the a=eigenvalue obtained from the transfer
matrix in the sector n = 0.

For the sector n = 1 we recall the equations (40) and (41). Now we solve
(41) to find x1 in order to find the eigenvalue from Λ1(x, x1) from (40). For
N = 2, the numeric solution is

x1 =− 2.9082997350

and
Λ1(x, x1) = 0.8002148543

which can be identified with the eigenvalue λ3 of the symmetric eigenvector v3
of the transfer matrix for the sector n = 1.
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For the sector n = 2, we recall the equations (59) and (60) with L = 2.
The two equations supplied by (60) can be numerical solved to find x1 and

x2 and then we can find Λ2(x, x1, x2) from (59).
The numerical results are

x1 = −2.9082997360

x2 = −2.9082997340

and
Λ2(x, x1, x2) = 0.9231082388

which is the eigenvalue λ4 of the symmetric eigenvectorv4 of the transfer matrix.
we hope these few examples should be suffice to pave the way for L ≥ 3 .
We remark however that only 5 of the 9 eigenvalues of the transfer matrix

are actually distinct, which is due to the symmetry of the system regarding
inversion of the spins.

In order to compute the eigenvalues of the transfer matrix in the framework
of the aba, we need to solve the bae, since the eigenvalues given by (59) depend
implicitly on the rapidities – i.e., on the solutions of the bae. Here we remark
as well that for L = 2 is not necessary to go up to n = 4, as we could expect
from (76). The solutions for n = {3, 4} provide the same eigenvalues as that
obtained from the cases n = {2, 1}, respectively, which is due to the above
mentioned symmetry of the system regarding the inversion of the spins. This
is very welcome, since the bae are very difficult to solve, even numerically. In
fact, the bae are highly ill-conditioned: their roots are very close to each other,
which requires a high accuracy in the computations; there are solutions which
are not physical (for instance, in the present case when case some root equals
0, ±1, ±1/q2, or when two or more roots are equal to each other etc.) and
they should be discarded. Different solutions may lead to the same eigenvalue,
for example those solutions differing only by a permutation of the Bethe roots,
or, sometimes, roots differing only by a complex conjugation. For more details
about the complexity bae, (see [23]).

5 Conclusion

In this work we derived the periodic algebraic ba for the supersymetric nineteen
vertex model constructed from a three-dimensional free boson representation V
of the twisted quantum affine Lie superalgebra Uq[osp(2|2)(2)] ≃ Uq[C(2)(2)].
Explicit results and a numerical analysis were also presented.
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