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Robust Finite-Time Consensus Subject to Unknown

Communication Time Delays Based on Delay-Dependent Criteria

Maryam Sharifi∗

Abstract

In this paper, robust finite-time consensus of a group of nonlinear multi-agent systems in the
presence of communication time delays is considered. In particular, appropriate delay-dependent
strategies which are less conservative are suggested. Sufficient conditions for finite-time consen-
sus in the presence of deterministic and stochastic disturbances are presented. The communi-
cation delays don’t need to be time invariant, uniform, symmetric, or even known. The only
required condition is that all delays satisfy a known upper bound. The consensus algorithm is ap-
propriate for agents with partial access to neighbor agents’ signals. The Lyapunov-Razumikhin
theorem for finite-time convergence is used to prove the results. Simulation results on a group
of mobile robot manipulators as the agents of the system are presented.

Keywords: Finite-time consensus, communication delays, Lyapunov-Razumikhin theorem, disturbances,

delay dependent consensus.

1 Introduction

Distributed cooperative control of multi-agent systems has been extensively studied in recent
decades due to its applicability in the real physical world. The applications include cooperation
between robots, distributed estimation in sensor networks, cyber physical systems, and communi-
cation network. In these systems, local controllers provide an appropriate group behavior using
information from neighbor agents. Among different types of group coordination problems such
as formation, flocking, coverage, and rendezvous, consensus is more inclusive and often is applied
to other coordination schemes. The objective of consensus control is to achieve an agreement
among agents’ states by designing local distributed controllers (see e.g., [1], [2] on the consensus of
multi-agent systems).

In order to improve the performance of multi-agent systems, some significant challenges should
be resolved. Some examples are the rate of convergence, the presence of time-delays in communi-
cations, and robustness issues.

In many physical systems, the transient performance of the system is important. It is appro-
priate that control objectives are achieved in a finite-time interval which is faster and more precise
comparing to Lyapunov-sense stability. Consider a cooperative robotic system that fulfills several
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tasks from approaching and grasping a given object to some more complicated and precise tasks
like minimally invasive robotic surgeries. In these applications, accomplishing the goal in finite-
time is indispensable. A strategy giving finite settling time can be beneficial as it guarantees that
the task has been performed faster and exactly as commanded [3]. The finite-time stabilization
concept originates from optimal control problems for finite-time operation dynamical systems [4].
Some more recent work in this field include [5], [6], [7]. Finite-time consensus tracking for a class
of uncertain mechanical systems under switching topology is investigated in [8].

In the above references, the problem of the presence of time-delays in communication between
the agents has not been considered. However, many real practical systems are affected with time
delays because of the finite speed information processing and transmission between agents and
limited bandwidth of channels. Time delays often cause undesirable dynamic behaviors such as
oscillation, performance degradation and instability in the system [9]. For instance, in a networked
or tele-operated multi-agent system where agents communicate through a network suffering from
communication delays, the whole stability of the system is influenced and one of the main tasks
is to reduce the adverse effects. In [10], the problem of finite-time consensus of linear multi-agent
systems with input delay by employing on-fragile control scheme under switching network topology
is considered. Communication time-delays, disturbances and nonlinear dynamics are not employed
in their design.
Analysis of the consensus problems of networked manipulators operating on an under-actuated dy-
namic platform in the presence of communication delays is presented in [11]. Finite-time consensus
in the presence of time-delays using an auxiliary approach based on an input to output framework,
is studied in [12]. In our recent work ([13]), the finite-time consensus in the presence of time-delays
was considered. However, the nature of delayed consensus is apparent in these works, and con-
sensus between all agents does not happen synchronously, i.e., the consensus error is defined as
xi(t)− xj(t− τ), where τ is the communication delay and i, j are agent indices.

There are also some few work considering finite-time stabilization of time-delayed linear systems
(see [14], [15]) but none of them are applied for control purposes in nonlinear multi-agent systems.

Another important factor in the performance of a multi-agent system is its robustness against
uncertainties and disturbances. Generally, these can be categorized in two groups; deterministic
and stochastic. Deterministic disturbances are caused by lack of full knowledge from the system
dynamics or external signals and deteriorate the system performance. On the other hand, stochastic
disturbances are often caused by the presence of noise in the measurements, stochastic couplings
in the interconnected systems, etc. Therefore, providing a method which handles these phenomena
is indispensable. In [16], the consensus problem with H∞ bounds for a homogeneous team of
LTI systems in a directed switching topology is studied. The fixed-time consensus problem of
first integrator dynamic agents with input delay and uncertain disturbances via an event-triggered
control is studied in [17]. In another work, [18] achieves finite-time consensus for a class of stochastic
nonlinear multi-agent systems with input delay. However, communication delays and leader-follower
scheme are not considered in them. The distributed estimation for a formation of LTI agents under
stochastic communication topology and Gaussian process noise is investigated in [19]. In [20],
finite-time stochastic synchronization problem for complex networks with noise perturbations is
studied.

In this paper, in order to confront the effects of time-delays and disturbances, two distributed
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robust control schemes are provided. One of them considers deterministic disturbances and the
other takes into account the stochastic ones. There is no necessity for an agent to possess all the
neighbor signals and only a part of them is sufficient under some conditions. Furthermore, there are
no limitations on time-delays. They can be time-varying, non-uniform, non-symmetric and even
unknown but bounded. Establishment of consensus in multi-agent systems is much more difficult
in a finite-time sense especially when there are delays in the transmissions. Because dynamics of
the cooperative system in the presence of delays is more complicated, more restrictive conditions
are needed for finite-time consensus.

The main contributions of this paper are threefold: 1) Design of new distributed control al-
gorithms to guarantee finite-time robust consensus in the presence of communication time-delays
and disturbances. Both deterministic and stochastic disturbances are considered and appropriate
strategies are presented. In the case that deterministic disturbances are involved, an H∞ finite-
time consensus approach is provided. Besides, in the presence of stochastic disturbances, finite-time
stochastic consensus scheme is suggested, which means finite-time convergence of the expected value
of consensus error norm to zero. 2) The consensus algorithms are delay-dependent. Some crite-
ria which are functions of the upper-bound of the delays in the system, guarantee the finite-time
consensus. Therefore, the conservativeness is reduced in comparison to the delay-independent re-
sults. 3) Thanks to a new consensus error definition, the consensus happens synchronously (i.e.,
lim ei(t) = lim xi(t)− xj(t) = 0

t→tf

, where tf is a finite consensus time). In addition, the leader-follower

algorithm is discussed, too.
The paper is organized as follows: In Section 2, some preliminaries including a short description

of graph theory and some relevant lemmas, problem statement, system description and its properties
are presented. H∞ finite-time consensus algorithm for the multi-agent system in the presence of
deterministic disturbances is provided in Section 3. Finite-time stochastic consensus is considered
in Section 4. Furthermore, the simulation results and concluding points are available in Sections 5
and 6, respectively.

2 Preliminaries

2.1 Communication Graph[21]:

A communication graph G is denoted by G = (V,E,A), where V = {1, ..., N} is a finite nonempty
node set, E ⊆ V × V is the edge set and A is the adjacency matrix. The ordered pair (j, i) ∈ E
shows that node i obtains information from node j. In other words, j is the neighbor of i. The
neighbor set of node i is defined as Ni = {j|(j, i) ∈ E}. We assume that G does not contain any
self loops. The adjacency matrix A = [aij] ∈ R

N×N of G is defined as aij = 1 if (j, i) ∈ E and
aij = 0 otherwise.

The in-degree and out-degree of a node are the number of edges that this node is the termination
and origination point for them, respectively. If the in-degree and out-degree are equal for all the

nodes, the graph is balanced. Assume di =
N
∑

j=1
aij is the in-degree of node i ∈ V and D =

diag{d1, ..., dN} ∈ R
N×N . Then, L = D − A is the Laplacian matrix of the graph G. When the

graph G is undirected, i.e., (i, j) ∈ E ⇔ (j, i) ∈ E, L is symmetric.
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2.2 Lemmas and Definitions

Definition 1. [22] Consider the system below:

{

ẋ(t) = f(x(t), x(t− τ)),
x(θ) = φ(θ),∀θ ∈ [−h, 0],

(1)

where x(t) ∈ Ω ⊆ R
n is the state vector, Ω is a bounded neighborhood of the origin. f(x(t), x(t−τ))

is a continuous vector field which satisfies f(0, 0) = 0 with unique solution in forward time, h > 0
is a constant time-delay and φ(θ) is a vector valued initial condition function. The system is
finite-time stable if

(1) the system (1) is stable, and

(2) there exists δ > 0 such that for any φ ∈ Cδ, there exists 0 ≤ T (φ) < ∞ for which x(t, φ) = 0 for

all t ≥ T (φ), where Cδ :=
{

φ ∈ £n
h : ‖φ‖

£n
h
< δ
}

. Furthermore, T0(φ) = inf{T (φ) ≥ 0 : x(t, φ) =

0,∀t ≥ T (φ)} is a functional called the settling time of the system (1).

Lemma 2. [23] Consider system (1). If there exist real numbers β > 1, k > 0, a class-K function
σ, and a C1 Lyapunov function V (x) for system (1), such that

{

σ(‖x‖) ≤ V (x),

V̇ (x) ≤ −kV
1

β (x), x ∈ Ω
(2)

hold whenever V (x(t+ θ)) ≤ V (x(t)) for θ ∈ [−h, 0], then system (1) is finite-time stable.
Furthermore, if Ω = R

n and σ is a class-K∞ function, then the origin is globally finite-time
stable. In addition, the settling time of the system (1) satisfies the following equation for all t ≥ 0,
with respect to initial condition φ.

T0(φ) ≤
β

k(β − 1)
V

β−1

β (φ) (3)

Lemma 3. [24] Consider real matrices A, B and symmetric positive-definite matrix C and a scalar
ε > 0. It holds that

A⊤B +B⊤A ≤ εA⊤CA+ ε−1B⊤C−1B.

Lemma 4. [25] For xi ∈ R, i = 1, ..., n, 0 < p ≤ 1, the following inequality holds.

(

n
∑

i=1

|xi|

)p

≤
n
∑

i=1

|xi|
p ≤ n1−p

(

n
∑

i=1

|xi|

)p

.

Lemma 5. [26]: Provided that function f : [a, b] → R is convex, the following called Hermite-
Hadamard inequality holds.

f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(x)dx ≤
f(a) + f(b)

2
.
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2.3 Model Description

In this paper, the following class of nonlinear systems is considered for N agents of the multi-agent
system:

ẋi(t) = fi(xi(t)) + ϕi(xi(t))ui(t),
ui(t) = g(xi(t), xj(t− τi,j(t))),

(4)

where i, j = 1, ..., N . The indices i and j represent each agent and its neighbors, respectively.
Moreover, xi(t) ∈ R

n is the state vector and ui(t) ∈ R
n is the vector of control input signals which

is a function of current agent’s signals and the delayed signals of the neighbors. The communication
delay from agent i to j is τi,j(t). In addition, fi(xi(t)) ∈ R

n and ϕi(xi(t)) ∈ R
n×n are nonlinear

functions.
The following assumptions hold for the system (4):

Assumption 6. The agents have the same dynamic structure as (4). However, the nonlinear
functions (i.e., fi(xi(t)), ϕi(xi(t))) can be different.

Assumption 7. The functions ϕi(xi(t)) are invertible.

Assumption 8. Communication delays can be time-varying, non-uniform and asymmetric, pro-
viding that they satisfy τi,j(t) ≤ d, where d is a constant.

Remark 9. Considering Assumption 8, Lemma 2 can be used with d as delay of the system.

In this regard, we can present the complete dynamics of the multi-agent system as follows:

Ẋ(t) = F (X(t)) + Φ(X(t))U(t), (5)

where
X(t) = [x⊤1 (t), ..., x

⊤

N (t)]⊤,

F (X(t)) = [f1(x1(t))
⊤, ..., fN (xN (t))⊤]⊤,

U(t) = [u⊤1 (t), ..., u
⊤

N (t)]⊤,

Φ(X) = diag(ϕ1(x1(t)), ϕ2(x2(t)), ..., ϕN (xN (t))).

3 H∞ Consensus Control

In this section, a H∞ algorithm based on a consensus error is suggested. One great advantage with
this technique is that it allows the designer to tackle the most general form of control architecture
wherein explicit accounting of uncertainties, disturbances, actuator constraints and performance
measures can be accomplished. Furthermore, this method has an optimization property in itself. It
is well known that delay-independent criteria often give more conservative results especially in the
cases of small delays [27]. Therefore, in this paper, delay-dependent finite-time control algorithms
with the sufficient conditions will be presented.

In this paper, the communication between agents could be through a connected undirected
graph or a balanced strongly connected digraph. First, consider the consensus error vector for the
multi-agent system as

e(t) = (M ⊗ In)X(t), (6)
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where ⊗ denotes the Kronecker product and matrix M is consisting of the left eigenvectors of
the Laplacian matrix of multi-agent system corresponding to N − 1 nonzero eigenvalues. In other
words, if the eigenvalues are arranged from smallest value i.e., λ0 = 0 to λN−1 with corresponding
eigenvectors v1 to vN−1, matrix M would be defined as

M =







v⊤1
...

v⊤N−1







(N−1)×N

.

Note that the eigenvectors of the Laplacian matrix of an undirected graph which is symmetric,
are perpendicular to each other. It is also known that the eigenvector corresponding to eigenvalue
λ0 = 0 is 1N×1 = [ 1 · · · 1 ]⊤1×N . Thus, it is concluded that each row of the matrix M is
perpendicular to 1N×1. Therefore, e(t) = 0, (i.e., (M ⊗ In)X(t) = 0) if and only if







X1
...

XN






= k







1
...
1






,

where k is a real number. Thus, consensus condition will be achieved.
For the directed graph topology, consider l = [l1, ..., lN ]⊤ as the left eigenvector of a Laplacian

matrix of a strongly connected directed graph associated with the zero eigenvalue. It is easy to
show that 0 is a simple eigenvalue of the matrix (IN − 1l⊤) with 1 as a right eigenvector and 1 is
the other eigenvalue with multiplicity N − 1. Provided that the digraph is balanced, (IN − 1l⊤) is
symmetric. Therefore, in this case, matrix M is constructed from the matrix (IN − 1l⊤) the same
manner as it was constructed from the Laplacian matrix of the undirected graph.

3.1 H∞ Delay Dependent Consensus Algorithm

In this section, we provide a consensus algorithm in which the closed loop system is robust against
the uncertainties. These uncertainties are either due to model mismatches in the agents’ dynamics
or the presence of external disturbance signals. We consider a generalized model for the system
with disturbances.

Ẋ(t) = F (X(t)) + Φ(X(t))U(t) +G(X)w(t), (7)

where w(t) ∈ R
q, q < nN , is the disturbance signal and G(X) is an appropriately dimensioned

state-dependent weighting matrix.

Remark 10. It should be noted that uncertain nonlinear dynamic systems can be treated using our
approach, too. The uncertain parts of the system dynamics can be modeled by a similar fashion to
(7). Consider the uncertain structure of the dynamic system components as below:

F (X(t)) = Fnom(X(t)) + ∆F (X(t)),

Φ(X(t)) = Φnom(X(t)) + ∆Φ(X(t)),
(8)
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in which, Fnom(X(t)) is the nominal known part of F (X(t)) and ∆F (X(t)) is the unknown bounded
part. A similar definition holds for Φ(X(t)). Therefore, G(X)w(t) = ∆F (X(t)) + ∆Φ(X(t))U(t)
models the uncertain part of the system as a state-dependent disturbance and the system dynamics
is written as

Ẋ(t) = Fnom(X(t)) + Φnom(X(t))U(t) +G(X)w(t). (9)

In this section, the objective is to design a distributed control protocol for the agents of the
system to achieve the consensus while preserving a desirable disturbance rejection performance.
Consider the following consensus control algorithm for the multi-agent system of (7):

U(t) = −Φ−1(X(t))[F (X(t))

+ (IN ⊗K1)
(

X⊤(t)X(t)
)

1−α
2α−1

X(t)

+ (IN ⊗K2)(L⊗ In)
(

X⊤(t− d)X(t− d)
)

1−α
2α−1

X(t− d)],

(10)

in which, L ∈ R
N×N is the Laplacian matrix of the system, K1,K2 ∈ R

n×n are appropriate feedback
matrices which should satisfy some conditions given later. In particular, each agent has a feedback
based on its own states via K1 and its neighbors’ delayed states via K2. In addition, α > 1 is a
real number. According to Remark 10, in the control signal (10), the terms F (X(t)), Φ(X(t)) are
substituted by Fnom(X(t)) and Φnom(X(t)) in the case of uncertain nonlinear dynamic system.

To establish the H∞ consensus for the multi-agent system, consider the following penalty signal
z(t) as the performance variable of the system.

z(t) = e⊤(t)
(

e⊤(t)e(t)
)

1−α
2α−1

. (11)

Definition 11. Given positive scalar γ as the disturbance attenuation level, the consensus control
law of (10) provides global finite-time consensus with a guaranteed H∞ performance γ for the multi-
agent system of (7), if the following requirements hold:

1. The closed-loop multi-agent network with w = 0 reaches finite-time consensus (i.e., lim e(t) = 0
t→Tc

)

for any initial condition.
2. For any non-zero w(t), the zero state response of the closed-loop system satisfies

T
∫

0

‖z(t)‖2dt ≤ γ2
T
∫

0

‖w(t)‖2dt, (12)

for 0 ≤ T < ∞.

Consider the following definitions:

R = −(M ⊗ In)(IN ⊗K1)(M ⊗ In)
+,

S = −(M ⊗ In)(IN ⊗K2)(L⊗ In)(M ⊗ In)
+,

P = (M ⊗ In)
+⊤

(M ⊗ In)
+,

(13)
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in which, (.)+ is the pseudo inverse of a non square matrix (i.e., A+ = A⊤(AA⊤)−1). Since the
matrix M consists of the eigenvectors corresponding to the non zero eigenvalues of the Laplacian
matrix of the connected graph, matrix P will be positive-definite. (Similar explanations hold for
the balanced strongly-connected directed graph topology case).

Theorem 12. Consider the multi-agent system defined in (7) with the consensus error definition
of (6) satisfying the Assumptions 6-8 and disturbance attenuation γ > 1. Utilizing the control
algorithm of (10), H∞ finite-time consensus (Definition 11) in the presence of communication
time-delays is achieved if there exist a matrix Q ≥ 0 and positive scalars a, b, such that that the
following inequalities hold.

(M ⊗ In)G(X)G(X)⊤(M ⊗ In)
⊤ ≤ Q, (14)

q = λmax

[

α
2α−1λmin(P )

1−α
2α−1 (R +R⊤) + a−1S⊤S

]

+(γ2 − 1)−1λmax(Q) + bd
2

(

[n(N − 1)]
α−1

α + 1
)

+a
(

α
2α−1λmax(P )

1−α
2α−1

)2
[n(N − 1)]

α−1

α + 1 < 0,

(15)

λmin(P )(R +R⊤)−bIn(N−1) +Q ≤ 0. (16)

Furthermore, the finite consensus time Tc, is bounded by

Tc ≤
α

|q| (α− 1)
V (0)

α−1

α , (17)

where |·| defines the absolute value.

Proof. Consider the following Lyapunov function for the system using the mentioned consensus
error.

V (t) =
(

e⊤(t)e(t)
)

α
2α−1

. (18)

By taking the derivative of (18) one can reach

V̇ (t) =
α

2α− 1

(

e⊤(t)e(t)
)

1−α
2α−1

(

e⊤(t)ė(t) + ė⊤(t)e(t)
)

, (19)

in which

ė(t) =(M ⊗ In)Ẋ(t) = (M ⊗ In)[(F (X(t))

+ Φ(X(t))U(t)) +G(X)w(t)].
(20)

Substitution of (10) in (20) gives

ė(t) = −(M ⊗ In)(IN ⊗K1)
(

X⊤(t)X(t)
)

1−α
2α−1

X(t)

− (M ⊗ In)(IN ⊗K2)(L⊗ In)
(

X⊤(t− d)X(t− d)
)

1−α
2α−1

×X(t− d) + (M ⊗ In)G(X)w(t).

(21)
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By replacing X(t) and X(t− d) with e(t) and e(t− d) using (6), we get

ė(t) = −(M ⊗ In)(IN ⊗K1)(M ⊗ In)
+e(t)

×
(

eT (t)(M ⊗ In)
+⊤

(M ⊗ In)
+e(t)

)
1−α
2α−1

−
[

(M ⊗ In)(IN ⊗K2)(L⊗ In)(M ⊗ In)
+] e(t− d)

× (e⊤(t− d)(M ⊗ In)
+⊤

(M ⊗ In)
+

× e(t− d))
1−α
2α−1 + (M ⊗ In)G(X)w(t).

(22)

Substituting (22) in (19) and utilizing the definitions in (13), one obtains

V̇ =
α

2α− 1
[e⊤(t)

(

e⊤(t)e(t)
)

1−α
2α−1

Re(t)
(

e⊤(t)Pe(t)
)

1−α
2α−1

+ e⊤(t)
(

e⊤(t)Pe(t)
)

1−α
2α−1

R⊤e(t)
(

e⊤(t)e(t)
)

1−α
2α−1

+ e⊤(t)
(

e⊤(t)e(t)
)

1−α
2α−1

Se(t− d)(e⊤(t− d)Pe(t− d))
1−α
2α−1

+ e⊤(t− d)
(

e⊤(t− d)Pe(t− d)
)

1−α
2α−1

S⊤e(t)

×
(

e⊤(t)e(t)
)

1−α
2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)

× (M ⊗ In)G(X)w(t) + w(t)⊤G(X)⊤(M ⊗ In)
⊤e(t))].

(23)

By using Lemma 3 for third and fourth terms of (23), the following inequality is acquired.

V̇ (t) ≤
α

2α− 1
λmin(P )

1−α
2α−1 e⊤(t)(e⊤(t)e(t))

1−α
2α−1

× (R+R⊤)e(t)(e⊤(t)e(t))
1−α
2α−1 +

2α

2α− 1
e⊤(t)(e⊤(t)e(t))

1−α
2α−1S

× e(t− d)(e⊤(t− d)(M ⊗ In)
+⊤

(M ⊗ In)
+e(t− d))

1−α
2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)(M ⊗ In)G(X)w(t)

+ w(t)⊤G(X)⊤(M ⊗ In)
⊤e(t))

≤ e⊤(t)(e⊤(t)e(t))
1−α
2α−1

[

α

2α− 1
λmin(P )

1−α
2α−1 (R+R⊤) + a−1S⊤S

]

× e(t)(e⊤(t)e(t))
1−α
2α−1 + a(

α

2α− 1
λmax(P )

1−α
2α−1 )2e⊤(t− d)

× (e⊤(t− d)e(t − d))
1−α
2α−1 e(t− d)(e⊤(t− d)e(t− d))

1−α
2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)(M ⊗ In)G(X)w(t)

+ w(t)⊤G(X)⊤(M ⊗ In)
⊤e(t)).

(24)
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Finally, V̇ (t) can be written as

V̇ (t) ≤ λmax[
α

2α− 1
λmin(P )

1−α
2α−1 (R+R⊤) + a−1(S⊤S)]

×
(

e⊤(t)e(t)
)

1

2α−1

+ a

(

α

2α− 1
λmax(P )

1−α
2α−1

)2

×
(

e⊤(t− d)e(t− d)
)

1

2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)

× (M ⊗ In)G(X)w(t) + w(t)⊤G(X)⊤(M ⊗ In)
⊤e(t)).

(25)

Furthermore, (22) can be written as below by moving all terms to one side.

ė(t)−Re(t)
(

e⊤(t)Pe(t)
)

1−α
2α−1

− Se(t− d)

×
(

e⊤(t− d)Pe(t− d)
)

1−α
2α−1

− (M ⊗ In)G(X)w(t) = 0.

(26)

Multiplying (26) by 2
∫ t

t−d
e⊤(s)

(

e⊤(s)e(s)
)

1−α
2α−1 ds and adding it to the right side of (25) and after

some manipulations, V̇ can be expressed as

V̇ (t) ≤ λmax

[

α

2α− 1
λmin(P )

1−α
2α−1 (R+R⊤) + a−1S⊤S

]

× (e⊤(t)e(t))
1

2α−1 + a

(

α

2α− 1
λmax(P )

1−α
2α−1

)2

×
(

e⊤(t− d)e(t− d)
)

1

2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)

× (M ⊗ In)G(X)w(t) + w(t)⊤G(X)⊤(M ⊗ In)
⊤e(t))

+ 2

∫ t

t−d

e⊤(s)
(

e⊤(s)e(s)
)

1−α
2α−1

[

Re(s)(e⊤(s)Pe(s))
1−α
2α−1

+Se(s− d)(e⊤(s− d)Pe(s − d))
1−α
2α−1

]

ds

+ 2

∫ t

t−d

e⊤(s)
(

e⊤(s)e(s)
)

1−α
2α−1

Q
(

e⊤(s)e(s)
)

1−α
2α−1

e(s)ds

+ w(t)⊤w(t)−
2α− 1

α
(V (t)− V (t− d)) .

(27)

Furthermore, due to Lemma 5, we get

b

∫ t

t−d

e⊤(s)
(

e⊤(s)e(s)
)

1−α
2α−1

(

e⊤(s)e(s)
)

1−α
2α−1

e(s)

≤
bd

2

[

(

e⊤(t)e(t)
)

1

2α−1

+
(

e⊤(t− d)e(t − d)
)

1

2α−1

]

,

(28)

where b is a positive real number.
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In addition, utilizing Lemma 4 and meeting the required condition of Lemma 2, one obtains

(e⊤(t− d)e(t − d))
1

2α−1 =

n(N−1)
∑

i=1

[(ei(t− d)2)
α

2α−1 ]
1

α

≤ [n(N − 1)]
α−1

α





n(N−1)
∑

i=1

(ei(t− d)2)
α

2α−1





1

α

= [n(N − 1)]
α−1

α

[

(eT (t− d)e(t − d))
α

2α−1

]
1

α

= [n(N − 1)]
α−1

α V (t− d)
1

α ≤ [n(N − 1)]
α−1

α V (t)
1

α .

(29)

Hence,

− b

∫ t

t−d

e⊤(s)
(

e⊤(s)e(s)
)

1−α
2α−1

(e⊤(s)e(s))
1−α
2α−1 e(s)

+
bd

2

(

[n(N − 1)]
α−1

α + 1
)

V (t)
1
α ≥ 0.

(30)

By adding the left side of (30) to the right side of (27), using and (29) and rewriting the integral
terms in quadratic form, we get

V̇ (t) ≤ {λmax

[

αλmin(P )
1−α
2α−1

2α− 1
(R+R⊤) + a−1S⊤S

]

+
bd

2

(

[n(N − 1)]
α−1

α + 1
)

+ a

(

α

2α− 1
λmax(P )

1−α
2α−1

)2

× [n(N − 1)]
α−1

α }V (t)
1

α + w(t)⊤w(t) +
(

e⊤(t)e(t)
)

1−α
2α−1

× (e⊤(t)(M ⊗ In)G(X)w(t) + w(t)⊤G(X)⊤(M ⊗ In)
⊤

× e(t)) +

∫ t

t−d

ζ(s)⊤Eζ(s)ds,

(31)

where
ζ(s) =

[

Ξ(s) Ξ(s− d)
]⊤

,

E =

[

E1 λmax(P )S
λmax(P )S⊤ 0

]

,
(32)

in which E1 = λmin(P )(R +R⊤)−bIn(N−1) + Q and Ξ(s) = e⊤(s)(e⊤(s)e(s))
1−α
2α−1 . By considering

the Schur complement Lemma, we have

E ≤ 0 ↔ λmin(P )(R +R⊤)−bIn(N−1) +Q ≤ 0.

11



We will prove the following inequality to establish the required robustness for the multi-agent
system.

J =

∫ T

0
[z(t)⊤z(t)− γ2w(t)⊤w(t) + V̇ (t)]dt

+ V (0) − V (T ) ≤ 0.

(33)

Substituting (31) in (33) and assuming all inequalities of (14)-(16) are satisfied, results in

J ≤

∫ T

0
[
(

e⊤(t)e(t)
)

1

2α−1

− (γ2 − 1)w(t)⊤w(t)

+ {λmax

[

αλmin(P )
1−α
2α−1

2α− 1
(R+R⊤) + a−1S⊤S

]

+
bd

2

(

[n(N − 1)]
α−1

α + 1
)

+ a

(

αλmax(P )
1−α
2α−1

2α− 1

)2

× [n(N − 1)]
α−1

α }V (t)
1

α +
(

e⊤(t)e(t)
)

1−α
2α−1

(e⊤(t)

× (M ⊗ In)G(X)w(t) + w(t)⊤G(X)⊤(M ⊗ In)
⊤

× e(t))]dt + V (0)− V (T ).

(34)

The above inequality can be written as

J ≤

∫ T

0
[{λmax

[

αλmin(P )
1−α
2α−1

2α− 1
(R+R⊤) + a−1S⊤S

]

+
bd

2

(

[n(N − 1)]
α−1

α + 1
)

+ a

(

αλmax(P )
1−α
2α−1

2α− 1

)2

× [n(N − 1)]
α−1

α + 1}V (t)
1

α +
(

e⊤(t)e(t)
)

2−2α
2α−1

× (e⊤(t)(γ2 − 1)−1Qe(t))− (
√

γ2 − 1w(t)− e⊤(t)

×
(

e⊤(t)e(t)
)

1−α
2α−1 (M ⊗ In)G(X)

√

γ2 − 1
)⊤(
√

γ2 − 1w(t)− e⊤(t)

×
(

e⊤(t)e(t)
)

1−α
2α−1 (M ⊗ In)G(X)

√

γ2 − 1
)]dt+ V (0) − V (T ).

(35)

therefore, we obtain

J ≤

∫ T

0
qV (t)

1

αdt+ V (0) − V (T ). (36)

Using the state zero response and if (15) is satisfied, it is concluded that J ≤ 0. Therefore, the
global H∞ finite-time consensus is obtained. Note that q depends on the upper-bound of delays
(i.e., d). Hence, the control criterion is delay-dependent.
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Remark 13. As has been mentioned, the disturbance matrix G(X) is assumed to satisfy the in-
equality (14). This condition includes the constant disturbance matrices and the state-dependent
bounded ones. A physical example for G(X) will be introduced in simulations, which depends on
the states and models the friction.

Remark 14. Whenever accessibility to all states of the neighbor agents is not possible, the control
signal can be changed to the following:

U(t) = −Φ−1(X(t))[F (X(t)) + (IN ⊗K1)

× (X⊤(t)X(t))
1−α
2α−1X(t) + (IN ⊗K3)(L⊗ Il)(X

⊤(t− d)

× (IN ⊗ C⊤C)X(t− d))
1−α
2α−1 (IN ⊗ C)X(t− d)],

(37)

where we employ a new control gain K3 ∈ R
n×l with l as the number of accessible neighbor

outputs. In addition, C ∈ R
l×n is the output matrix of agents. In this case, the matrix S in (13)

should be substituted by S1 = −(M ⊗ In)(IN ⊗K3)(L ⊗ Il)(IN ⊗ C)(M ⊗ In)
+ and the P matrix

in the third and forth terms of (23) is as P1 = (M ⊗ In)
+⊤

(IN ⊗C⊤C)(M ⊗ In)
+ . With these

changes, Theorem 12 holds.

3.2 Leader-Follower Finite-Time Consensus

If the agents are being determined to make consensus on tracking a specific path, the problem
can be considered in a leader-follower topology in which, the leader agent has the accessibility to
the tracking target and other agents’ goal is to track the leader in finite-time. Without loss of
generality, consider the first agent as the leader. Therefore, the target tracking error for the leader
can be considered as

el(t) = x1(t)− r(t), (38)

in which, r(t) is the tracking reference of the multi-agent system. In addition consider the control
input signal of the leader as

u1(t) = −Φ−1(X(t))[F (X(t))

−K3λmin(P )
1−α
2α−1 el(t)(el(t)

⊤el(t))
1−α
2α−1 + ṙ(t)],

(39)

where K3 ∈ R
n×n is the control gain for the leader. Therefore, the consensus error vector for the

leader-follower case can be defined as

ξ(t) =
[

el(t)
⊤ ef (t)

⊤

]⊤

. (40)

In the above definition, ef (t) is defined the same as (6). By this definition and considering the
same control signal for the follower agents as (10), the dynamics of each parts of the new consensus
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error vector is achieved as

ėl(t) = −K3λmin(P )
1−α
2α−1 el(t)

(

el(t)
⊤el(t)

)
1−α
2α−1

+(In ⊗
[

1 0 · · · 0
]

)G(X)w(t),

ėf (t) = −(M ⊗ In)((K3λmin(P )
1−α
2α−1 )

⊗
[

1 0 · · · 0
]⊤

)el(t)
(

el(t)
⊤el(t)

)
1−α
2α−1

+(M ⊗ In)(ṙ(t)⊗
[

1 0 · · · 0
]⊤

)− (M ⊗ In)

×(Dū ⊗K1)(M ⊗ In)
+ef (t)

(

e⊤f (t)Pef (t)
)

1−α
2α−1

−
[

(M ⊗ In)(Dū ⊗K2)(L⊗ In)(M ⊗ In)
+] ef (t− d)

×
(

e⊤f (t− d)Pef (t− d)
)

1−α
2α−1

+ (M ⊗ In)G(X)w(t),

in which, Dū = diag(0, 1, ..., 1).
In addition, using (38) and (6), ṙ(t) can be computed as

ṙ(t) = (In ⊗
[

1 0 · · · 0
]

)(M ⊗ In)
+ėf (t)

+K3λmin(P )
1−α
2α−1 el(t)

(

el(t)
⊤el(t)

)
1−α
2α−1

−
(

In ⊗
[

1 0 · · · 0
])

G(X)w(t).

After a few simplifications, ξ̇(t) is obtained as

ξ̇(t) = A





λmin(P )
1−α
2α−1 el(t)(el(t)

⊤el(t))
1−α
2α−1

ef (t)
(

e⊤f (t)Pef (t)
)

1−α
2α−1





+B





el(t− d)(el(t− d)⊤el(t− d))
1−α
2α−1

ef (t− d)
(

e⊤f (t− d)Pef (t− d)
)

1−α
2α−1





+ TG(X)w(t).

(41)

In the above expression, A =

[

−K3 0
0 A1

]

, B =

[

0 0
0 B1

]

, T =

[

T1

T2

]

,

where

A1 = (In(N−1) − (M ⊗ In)(Du ⊗ In)(M ⊗ In)
+)−1

× (M ⊗ In)[−(Dū ⊗K1) + (Du ⊗ In)](M ⊗ In)
+,

B1 = (In(N−1) − (M ⊗ In)(Du ⊗ In)(M ⊗ In)
+)−1

×
[

−(M ⊗ In)(Dū ⊗K2)(L⊗ In)(M ⊗ In)
+] ,

T1 = In ⊗
[

1 0 · · · 0
]

,

T2 = (In(N−1) − (M ⊗ In)(Du ⊗ In)(M ⊗ In)
+)−1

× (M ⊗ In)[InN − (Du ⊗ In)],

and Du = diag(1, 0, ..., 0).
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By using the same Lyapunov function as (18) with the variable ξ(t) instead of e(t) in the
leader-less case, we get

V̇ (t) ≤ ξ⊤(t)(ξ⊤(t)ξ(t))
1−α
2α−1 [

α

2α− 1
λmin(P )

1−α
2α−1 (A+A⊤)

+ a−1B⊤B]ξ(t)(ξ⊤(t)ξ(t))
1−α
2α−1 + a(

α

2α− 1
λmax(P )

1−α
2α−1 )2

× ξ⊤(t− d)(ξ⊤(t− d)ξ(t− d))
1−α
2α−1 ξ(t− d)(ξ⊤(t− d)ξ(t− d))

1−α
2α−1

+
(

ξ⊤(t)ξ(t)
)

1−α
2α−1

(ξ⊤(t)TG(X)w(t) + w(t)⊤G(X)⊤T⊤ξ(t)).

From now on, the previous section proof can be followed.

4 Finite-Time Stochastic Consensus

In this section, a multi-agent system subject to stochastic disturbances is considered. Due to
the random uncertainties such as stochastic forces on physical systems, noisy measurements or
stochastic couplings in the interconnected systems, this approach provides more applicability in real
world. A complex network exhibits complicated dynamics which may be absolutely different from
those of a single node. Since the whole multi-agent system becomes a coupled system influenced by
stochastic perturbations, a stochastic differential equation should be considered for that, instead
of a deterministic one. By finite-time stochastic consensus, we mean the expected value of the
consensus error norm converges to zero in finite-time. Consider the stochastically perturbed model
of the nonlinear multi-agent system as

dX(t) =(F (X(t)) + Φ(X(t))U(t))dt +H(X)dρ(t), (42)

where ρ(t) = [ρ1(t), ..., ρN (t)] is a vector Wiener process and H(X) is a bounded matrix. This
model considers a generic coupling with the disturbance and provides a sufficiently general and real
representation for the system, which can also include the interconnected network systems subject
to stochastic couplings. In addition, the Wiener process satisfies the following properties.

E [H(X)dρ] = 0,

E
[

(H(X)dρ)⊤(H(X)dρ)
]

= trace
[

H(X)⊤H(X)
]

dt.
(43)

Assumption 15. It is assumed that H(X) for X(t) ∈ Ω ⊆ R
nN satisfies

trace
[

H(X)⊤H(X)
]

≤ ‖X‖
α

2α−1

2 .

Definition 16. The stochastic multi-agent system (42) is said reach consensus stochastically in
finite-time if, for a suitable control signal, there exists a constant Tc1 > 0 such that limE‖e(t)‖2

t→Tc1

= 0

and E‖e(t)‖2 = 0 for t > Tc1.
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Theorem 17. Consider the nonlinear stochastically perturbed multi-agent system (42) with the con-
sensus error vector (6), satisfying Assumptions 6, 7, 8, 15. Stochastic finite-time delay-dependent
consensus is obtained utilizing the control algorithm (10), provided that there exist positive scalars
a, b such that the following conditions are satisfied.

q1 = λmax

[

α

2α− 1
λmin(P )

1−α
2α−1 (R +R⊤) + a−1S⊤S

]

+
λmax(M

⊤M)

[λmin(M+⊤M+)]
α

2α−1

+
bd

2

(

[n(N − 1)]
α−1

α + 1
)

+ a

(

α

2α− 1
λmax(P )

1−α
2α−1

)2

[n(N − 1)]
α−1

α < 0,

(44)

λmin(P )(R +R⊤)−bIn(N−1) ≤ 0. (45)

Moreover, the finite consensus time Tc1 is bounded by

Tc1 ≤
α

|q1| (α− 1)
V (0)

α−1

α . (46)

Proof. Consider the system dynamics (42) and consensus error definition of (6). Consider the
Lyapunov function mentioned in (18). Taking into account the properties of the Wiener process
and differentiating the Lyapunov function, we obtain

dV (t) =
α

2α− 1

(

e⊤(t)e(t)
)

1−α
2α−1

(

e⊤(t)de(t)

+de⊤(t)e(t) + de⊤(t)de(t)
)

.

(47)

Substituting the control signal and getting the expectations of both sides, gives

E [dV (t)] = E[
α

2α − 1
(e⊤(t)

(

e⊤(t)e(t)
)

1−α
2α−1

Re(t)

×
(

e⊤(t)Pe(t)
)

1−α
2α−1

+ e⊤(t)
(

e⊤(t)Pe(t)
)

1−α
2α−1

R⊤e(t)

×
(

e⊤(t)e(t)
)

1−α
2α−1

+ e⊤(t)
(

e⊤(t)e(t)
)

1−α
2α−1

Se(t− d)

× (e⊤(t− d)Pe(t− d))
1−α
2α−1 + e⊤(t− d)

×
(

e⊤(t− d)Pe(t− d)
)

1−α
2α−1

S⊤e(t)
(

e⊤(t)e(t)
)

1−α
2α−1

+
(

e⊤(t)e(t)
)

1−α
2α−1

trace{H⊤(M ⊗ In)
⊤(M ⊗ In)H})]dt.

(48)

Considering H(X) satisfying Assumption 15 and utilizing the Wiener process properties and the
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results of previous sections, (48) can be written as

E
[

V̇ (t)
]

≤ {λmax

[

α

2α− 1
λmin(P )

1−α
2α−1 (R+R⊤)

+a−1S⊤S
]

+
λmax(M

⊤M)

[λmin(M+⊤M+)]
α

2α−1

+
bd

2

×
(

[n(N − 1)]
α−1

α + 1
)

+ a

(

α

2α − 1
λmax(P )

1−α
2α−1

)2

× [n(N − 1)]
α−1

α }E[V (t)]
1

α + E[

∫ t

t−d

ζ(s)⊤Dζ(s)ds],

(49)

where

ζ(s) =
[

Ξ(s) Ξ(s− d)
]⊤

,

D =

[

λmin(P )(R +R⊤)−bIn(N−1) λmax(P )S

λmax(P )S⊤ 0

]

,

and Ξ(s) = e⊤(s)(e⊤(s)e(s))
1−α
2α−1 .

Therefore, provided that the sufficient conditions of (44) and (45) are satisfied, finite-time
convergence of E [V (t)] to zero and consequently limE‖e(t)‖2

t→Tc1

= 0 is guaranteed. Again in (44), a

dependency to the parameter d is apparent which makes the algorithm delay dependent.

5 Simulation Results

In this section, to evaluate the effectiveness of the presented approach, simulations are performed
on a group of four identical nonholonomic mobile robots as the agents (Figure 1). The mobile
robots consist of a vehicle with two driving wheels on the same axis and a front free wheel. The
motion and orientation are achieved by independent actuators, e.g., dc motors which provide the
necessary torques to the rear wheels. The nonlinear dynamics of each robot in an n dimensional
configuration space with coordinates (q1, ..., qn) and subject to c constraints are described as

Mc(q)q̈ + Vc(q, q̇)q̇ + Fc(q̇) + τd = Bc(q)τc −A⊤
c (q)µ, (50)

with

Mc(q) =





m 0 mp sin θ
0 m −mp cos θ

mp sin θ −mp cos θ 1



 ,

Vc(q, q̇) =





0 0 mpθ̇ cos θ

0 0 mpθ̇ sin θ
0 0 0



 , τc =

[

τ1
τ2

]

,

Bc(q) =
1
r





cos θ cos θ
sin θ sin θ
R −R



 , A⊤
c (q) =





− sin θ
cos θ
−p



 ,

µ = −m(ẋc cos θ + ẏc sin θ)θ̇,

(51)
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where Mc(q) ∈ R
n×n is a symmetric positive definite inertia matrix, Vc(q, q̇) ∈ R

n×n is the coriolis
and centripetal matrix, Fc(q̇) ∈ R

n stands for the surface friction, τd is the bounded unknown
disturbance, Bc(q) ∈ R

n indicates the input transformation matrix, τc ∈ R
n is the input vector and

Ac(q) ∈ R
c×n, µ ∈ R

c are the constraint associated matrix and vector force, respectively.
Furthermore, kinematic equality constraints can be expressed as

Ac(q)q̇ = 0. (52)

There is a full rank matrix S(q) ∈ R
n×(n−c) constituting of a set of smooth linearly independent

vector fields that spans the null space of Ac(q), i.e.,

S⊤(q)A⊤

c (q) = 0. (53)

According to (52) and (53), a vector time function ν(t) ∈ R
n−c could be found such that for all t

q̇ = S(q)ν(t).

The nonholonomic constraint states that the robot can only move in the direction normal to the
axis of the driving wheels. If r = n− c, after transformation from q coordinates to ν configuration,
the new input matrix B̄c is constant and nonsingular. In this case, the mentioned matrices and
transformed dynamics can be described as

ν =

[

ν1
ν2

]

=

[

v
ω

]

,

q̇ =





ẋc
ẏc
θ̇



 =





cos θ −p sin θ
sin θ p cos θ
0 1





[

v
ω

]

,

B̄c = S⊤Bc =
1
r

[

1 1
R −R

]

,

(S⊤McS)ν̇ + S⊤(McṠ + VcS)ν + F̄ (ν) + τ̄d = S⊤Bcτc,

where v and w are the linear and angular velocities of the mobile robot. Besides, xc and yc are
indications of its position and θ the orientation of that. The agents communicate with each other
via the specified directed graph in Figure 2. The Laplacian matrix of the communication topology
is

L =









1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1









.

In this regard, the eigenvalues of the Laplacian matrix and the resulting matrix M which has been
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Figure 1: A nonholonomic mobile platform

Figure 2: directed communication graph

used to construct the consensus error vector are as

λ = 0, 1 + i, 1 − i, 2;
l = [0.25, 0.25, 0.25, 0.25]⊤ ;

M =





0.0771 0.2992 −0.3927 0.0164
0.1178 0.1751 0.1386 −0.4316
−0.4095 0.2594 0.1185 0.0316



 .

Therefore, it is concluded that P = 4 × I6. The nominal parameters of the model are taken as
mi = 10 kg as the mass of vehicle, Ri = 0.5 m for the distance between driving wheels, ri = 0.05
m for the radius of wheels and pi = 0.04 m as the distance between the center of mass of the
vehicle and wheels (i = 1, ..., 4). The initial conditions of agents are set as ν(1) = [0.5, 0.5]⊤, ν(2) =
[0.3, 0.2]⊤ , ν(3) = [0.8, 0.1]⊤, ν(4) = [0.1, 0.7]⊤. In addition, the delay between all the connected
agents has been chosen as (0.1 + 0.25e−t)s.
To obtain control signal parameters, the consensus conditions in (14)-(16) were solved as LMI
using CVX toolbox. We choose α = 1.2, a = 10, b = 0.1, µ = 0.9, r = 2 and G(X) = diag(gi(xi)),

i = 1, ..., 4, where gi(xi) = (
xi

2

1

1+xi
2

1

;
xi

2

2

1+xi
2

2

), which is a function of velocities modeling the friction

and w(t) = 1. We also choose K2 =

[

−5.14 5.12
3.55 −2.71

]

, since it is not a linear parameter in

the inequalities. We obtain γmin = 1.5, K1 =

[

−28.36 25.6
25.32 12.47

]

, K3 =

[

−32.15 26.21
23.54 14.77

]

,

Tc ≤ 8.05 s for the H∞ consensus. Figure 3 shows the results for two cases of leaderless and non-
stationary targets in which the fourth agent has been chosen as the reference of consensus scheme

19



0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
in

ea
r 

V
el

oc
it

y 
C

on
se

ns
us

(m
/s

)

v1
v2
v3
v4

(a) (

a) Consensus of linear
velocities

0 0.5 1 1.5 2 2.5 3 3.5 4

Time(sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
A

ng
ul

ar
 V

el
oc

it
y 

C
on

se
ns

us
(r

ad
/s

ec
)

w1
w2
w3
w4

(b) (

b) Consensus of angular
velocities

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

-4

-3

-2

-1

0

1

2

3

4

5

C
on

se
ns

us
 C

on
tr

ol
 S

ig
na

l 

u
1
(1)

u
1
(2)

u
2
(1)

u
2
(2)

u
3
(1)

u
3
(2)

u
4
(1)

u
4
(2)

(c) (

c) Consensus control signals

0 1 2 3 4 5 6 7

Time (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

L
in

ea
r 

V
el

oc
it

 C
on

se
ns

us
 (

m
/s

)

Ref
v1
v2
v3
v4

(d) (

d) Non-stationary target
consensus of linear velocities

0 1 2 3 4 5 6 7

Time (sec)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
ng

ul
ar

 V
el

oc
it

y 
C

on
se

ns
us

 (
ra

d/
se

c)

Ref
w1
w2
w3
w4

(e) (

e) Non-stationary target
consensus of angular

velocities

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (sec)

0

1

2

3

4

5

6

7

8

9

H
∞

 P
er

fo
rm

an
ce

T∫

0

‖z(t)‖2dt

γ
2

T∫

0

‖w(t)‖2dt

0 0.1 0.2
0

0.1

0.2

0.3

(f) (

f) H∞ performance
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and 0.7 cos(2t−π/8), 0.4 sin(2t+π/12) are the targets for linear and angular velocities, respectively.

For the stochastic consensus, H(X) = diag(hi(xi)), i = 1, ..., 4 with hi(xi) = (xi
α

2α−1

1 ;xi
α

2α−1

2 ),

K2 =

[

−2.13 3.86
3.52 −1.15

]

and a white noise with power of 0.1 are chosen and control parameters

are obtained as K1 =

[

−32.15 29.22
20.31 17.94

]

, K3 =

[

−34.54 24.16
21.41 27.12

]

. In addition, Tc1 ≤ 9.2 s.

Figure 4 presents the stochastic consensus results. The reference 0.5 cos(2t) has been considered
for the tracking scenario. It is worth noting that the leader-follower case formulation for stochastic
consensus is similar to Section 4, in which H(X)dρ in (42) is substituted for G(X)w in (41).

Remark 18. In comparison to other works, this paper gives a synchronous consensus which is
lim xi(t)− xj(t) = 0 and was not be achieved before in the presence of communication delays in
a finite-time interval (see e.g., [12], [13]). This result is more promising, especially when the
delays are long. Besides, providing the specific robust algorithms for deterministic and stochastic
disturbances allows to confront them more effectively.

6 CONCLUSIONS

In this paper, the problem of robust finite-time consensus of a class of nonlinear systems in the
presence of communication delays is considered. In order to compensate for the adverse effects of
time-delays and uncertainties in a finite time interval, novel delay-dependent consensus algorithms
have been suggested. In this regard, deterministic and stochastic uncertainties are considered and
appropriate strategies to come up with them are proposed. The algorithms can be used for cases
with partial access of agents to their neighbor signals. In addition, there are not strong limitations
on communication time-delays. Future works include the robust finite-time consensus strategy for
time-varying graph topologies.
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