
 ViaPPS: A Mobile Pavement Profiling System 

Henri Giudici1, Boris Mocialov2, Aslak Myklatun3 

ViaTech AS 

 

 

Ensuring safety levels on roads is an imperative task for road authorities. Significant amounts 

of time and money are spent on performing road inspections every year. In order to ensure 

efficiency of road inventories, road practitioners are in need of reliable systems that are fast 

and are designed to comply with high standards at lower costs. To date, the 3D Mobile Mapping 

Systems is the most efficient, productive and accurate system used during evaluation of 

pavement inventories. This paper presents ViaPPS – a 3D Mobile Mapping System from 

ViaTech AS. ViaPPS offers accurate georeferenced data by combining the perception and 

navigation sensors. This paper showcases results from multiple mobile systems after the 

harmonization process which is held once a year to evaluate reliability and repeatability of the 

measurements.    
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1. Introduction 

3D Mobile Mapping Systems are widely used for pavement inventories due to their highly 

accurate georeferenced sensing abilities [1]. Those systems are composed of multiple mobile 

sensors divided into perception and position/navigation sensors [2]. Some of the examples of 

the perception sensors are the laser scanners, laser texture scanners (often called profilometers), 

RGB cameras while the Inertial Measurement Unit (IMU), Global Position Systems (GPS), 

and odometer are members of the navigation-position sensors.  

 

The presented laser scanners are based on LIDAR technology and the laser profilometers are 

based on laser triangulation technology. Both laser scanners and laser profilometers are widely 

adopted in various industries for their ability to capture details of the surroundings in point 

cloud form (laser scanners) and in point by point form (laser profilometers) [3,4,7]. Laser 

profilometers are often used to investigate the roughness of surfaces and factors that affect the 

vehicle pavement interaction at micro, macro and mega scale (e.g. tire-friction, tire-wear, 

hydroplaning, rolling resistance, etc) [5,6,7].  

The laser scanners point cloud is adopted for the evaluation of pavement condition such as: 

road defects (cracks, potholes, ravelling, etc), road markings, pavement cross fall and many 

others. The laser profilometers measurements are used for the pavement texture description 

with the use of two parameters: Mean Profile Depth (MPD), for the characterization of texture’s 

depth and International Roughness Index (IRI) for the longitudinal road profile roughness.  

 

The IMU combines gyro and accelerometers generating accurate motion information of a 3D 

system which can be adopted in various industries [8]. GPS receiver provides position 

information from Global Navigation Satellite System (GNSS). Counting the wheel rotations, 

the odometer sensor measures the vehicle travelled distance. The fusion of IMU, GPS and 

odometer sensors captures the motion of a vehicle in various environments including tunnels 

or sub-urban areas. In case of missing GPS signals, the vehicle position is estimated with the 

combination of IMU and odometer information.   

 

This paper describes ViaPPS - a 3D Mobile Mapping System from ViaTech AS. ViaPPS is a 

multipurpose mobile system designed for, but not limited to, road inventories, complying with 

different international standards which are listed in references: [9-19]. ViaPPS consists of 

multiple light-weight portable sensors mounted on a vehicle as base platform. The multiple 

sensors are: 3 laser scanners, laser profilometer, an IMU, GPS, 4 RGB cameras, and odometer 

mounted on wheel rim (see Figure 1). To check the reliability and repeatability of the systems 

measurements, each year the systems gather in a testing area located in Fredrikstad (Norway) 

in good weather condition for the harmonization process. During the harmonization process 

the systems measurements are compared against each other in order to verify that the deviation 

between systems measurements is within acceptable low threshold levels. Further, this paper 

will describe the harmonization results.  

 

 

 



ViaTech AS R&D 

3 
 

2. ViaPPS 

 

2.1 System Design 

 

The 3 laser scanners are mounted at the back upper side of the platform (1). At the top of (1) a 

360° camera is located (2), while at the bottom of (1) an inclined camera points at the road 

surface (3). The IMU is inside the vehicle (4). A laser profilometer (5) is mounted on the front 

part of the vehicle, next to the right wheel, while an odometer is located next to the front wheel 

rim (6). The two GPS antennas (7) are in front of the vehicle and next to (2). The PC is next to 

the operator, controlling the whole system (8). Two cameras are mounted in front of the vehicle 

next to the operator position (9). Table 1 shows the mobile sensors on the vehicle platform.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Individual components of the ViaPPS system.  
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Table 1 ViaPPS mobile sensors.  

Sensor Model Characteristics 

Laser scanner  Z+F Profiler 9012A / 

  

- Phased based technology 

360 ° field view 

- Protection class IP54 

- 200 profiles/sec 

- Over 1 x 106 pps (points pr second) 

- -10 °C < working temp. < 45 ° C 

- Accuracy < 1mm 

Laser scanner  2 Velodyne Puck Lite 

Supports any laser 

scanner from Velodyne 

Time of flight technology 

360 ° FOV 

330.000 pps 

2 – 3 cm accuracy 

Laser profilometer 

(ViaIRI) 

Riftek - Laser safety class: L – Class 2 

- Shock absorbent 

- -10° C < working temp. < 60° C 

Planar Camera System Cameras from Basler  Maximum 8 cameras 

5 MP MPX 

Image recording by configurable 

distance interval [m] or time interval. 

360 Camera System Ladybug 5+ from FLIR Covers 90% of the sphere 

6 cameras, one pointing upwards 

5 MPX resolution 

15 FMPS 

Image recording by configurable 

distance interval [m] or time interval. 

Navigation System IMU - Applanix POS LV 

GPS – Trimble 

Odometer – Applanix 

- GNSS - integrated inertial technology 

- Solid State MEMS IMU 

- Support Distance Measurement 

Indicator 

- GPS Receivers and Antennas 

  

 

2.2 Data processing 

 

Calibration Perception – Position/navigation sensors  

 

To provide accurate integration of their relative data, perception and position/navigation sensors 

need a common reference system [2]. For this reason, the sensors are adjusted to a common 

reference system. As result each of the perception sensors data (i.e. single scan and/or image) 

provide accurate georeferenced information.  
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 Calibration RGB camera – LIDAR sensors 

 

Calibration between an RGB camera and a LiDAR sensor requires estimation of extrinsic and 

intrinsic parameters of the camera. While linear intrinsic parameters contain information about 

the focal length (𝑓) and the principal point (𝑐) and are encoded in a matrix 𝐾, non-linear 

intrinsic parameters can describe lens distortion coefficients (kn). Similarly, extrinsic 

parameters describe the rotation (𝑅) and translation (𝑡) between the two sensors. Putting the 

individual parts together gives a model that can describe a conceptual pinhole camera [𝑅/𝑡]𝐾, 

where 𝐾 = (
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

). All the sensors are calibrated to a fixed common vehicle reference 

point and adjusted with the GNSS system as well as synchronized in time. Consequently, each 

sensor (scan or image) contain the same timestamp and geo location as follows: Time, fixed 

reference system (X, Y, Z), fixed rotational angles (Yaw, Pitch, Roll). In order to model a real 

camera that contains a lens, distortion parameters should be added to the equation 

(𝑟2𝑘1 + 𝑟4𝑘2 + 𝑟6𝑘3 +⋯), where r is the distance from a point (x, y) to the center of radial 

distortion defined as 𝑟 = √𝑥2 + 𝑦2 [25]. It is common that the intrinsic parameters (𝑓, 𝑐, 𝑘𝑛) 

of a camera are not known a priori, which makes it difficult to estimate the camera matrix [24]. 

Luckily, optimisation algorithms can be used to estimate the intrinsic and/or extrinsic 

parameters, such as RANSAC for the calibration of extrinsic parameters [20, 21] Levenberg-

Marquardt for refinement of the closed-form solution [22], and machine learning for estimating 

the intrinsic and extrinsic transformations of LiDAR to camera [23].  

 

We use the direct linear transform (DLT) [27] optimisation algorithm to find a projection 

matrix (homography) from a known set of point mappings. First, we normalise the data by 

translating by the mean and scaling by the standard deviation to make the algorithm less 

sensitive to the outliers and lens distortion. Then, we turn the homography equation  

 [
𝑥′
𝑦′
1

] = 𝛼𝐻 [
𝑥
𝑦
𝑧
] into homogeneous linear equations. Finally, we solve the homogeneous system 

using the Singular-Value Decomposition method and use the eigenvector corresponding to the 

smallest eigenvalue and perform de-normalisation to obtain the projection matrix H. The 

problem with using the DLT method alone is that it ignores the distortion parameters (kn) that 

are introduced by the camera lens. Another problem with the DLT method is that it estimates 

the homography, but does not directly provide the individual camera parameters [25]. In 

addition to the DLT optimisation, we use the Levenberg-Marquardt (LM) [28, 29] method in 

order to minimise the projection error introduced by the noise in the data used for the 

calibration. The cost of the LM algorithm is the reprojection error (xi' - xi )
2 + (yi'-yi)

2 between 

the projected (x', y') and observed (x, y) points that is minimised using the gradient descent 

method [26]. 
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Figure 2 RGB image from the VPS system with the corresponding LiDAR points from the Velodyne sensor.  

 

Obtained 3D point cloud is used to detect the presence of various defects in the pavement with 

the help of a road distress adaptive algorithm. For example: Figure 3 shows the detection of a 

cracks on road while Figure 4 shows the detection of road edges and road markings.     

 

2.3 System operation 

 

The operator activates the system using a graphical user interface. Once the system has been 

activated, the operator inspects the pavement by driving on its surface and collecting the data 

using all the sensors available on the ViaPPS system. At the end of the inspection, the operator 

terminates the data collection. The collected data is then analysed, and a report is generated. 

Figures 3 and 4 show the interface with a generated report. The data analysis includes discovery 

of interesting features for pavement inventory (e.g. cracks, potholes, ravelling, etc).   

 

Figure 3 a) 3D pavement point cloud with crack detection; b) pavement profile from single scan; c) positions of 

the inspected pavement. 
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Figure 3a shows the resulting 3D point cloud of the road surface with a detected crack (in red), 

figure 3b shows a single profile scan (in red) together with the relative light intensity of the 

scan (in blue). Figure 3c shows the reported latitude and longitude mapped data while operating 

the system.  Figures 4a and b show the detection of road edges and road markings from point 

clouds. 

 

Figure 4 3D point cloud with: a) road edge detection; b) road marking detection.  

 

3 System reliability: Harmonization process 

 

To check the reliability and repeatability between the different 3D Mobile Mapping Systems, 

every year the systems gather together in a specific testing area in Norway for the 

harmonization process. During the harmonization process, the systems measurements are 

compared against each other in order to verify that the deviation between systems 

measurements is within acceptable low threshold levels. At the end of the harmonization 

process all the units provide the same degree of trust while performing pavement inventories 

at the same surface conditions. After a short description of the testing location and the 

harmonization methodology, harmonization results (IRI, MPD and crossfall) are illustrated. 

 

3.1 Testing location and Methodology 

The harmonization process takes place every year in Fredrikstad (Norway) typically in May. 

The test area is a county road approximately 4 km long and present different surface conditions.   

Multiple operators drive at approximately 60 km/h over a stretch of road measuring such 

parameters as roughness, pavement condition, and geometry. Figure 5 shows the unfiltered 

results of IRI, MPD and crossfall of 6 different harmonized systems driving over the same 

testing road. 
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Figure 5 System results after harmonization process a) IRI; b) MPD; c) crossfall (tverfall).). 
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Here we illustrate how well the systems correlate after the harmonization process. Figure 6 

shows the correlation on the harmonized IRI measurement for different systems. Similarly, 

Figures 7 and 8 show the harmonized MPD and the harmonized crossfall measurements system 

comparison. 

 Figure 6 Harmonized IRI measurement for different system comparison. 

 

Figure 7 Harmonized MPD measurement for different system comparison. 
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Figure 8 Harmonized crossfall measurement for different system comparison. 

 

Figure 6 shows for the harmonized IRI measurement an R2 scored ranged from 0.73 to 0.80 

while Figure 7 shows for the harmonized MPD an R2 ranged between 0.85 and 0.9. Figure 8 

shows for the harmonized crossfall measurements an R2 ranged between 0.99 and 1. 

It has to be noted that different operators driving over the testing road in different road 

conditions is most likely to introduce variance in the measurements, which negatively affect 

the correlation results. Nevertheless, the results show high positive correlations between the 

different systems providing confidence in different measurements systems.  

 

4 Conclusions 

This paper introduced ViaPPS – a 3D Mobile Mapping System from ViaTech AS. The ViaPPS 

is recognized internationally for its robust, reliable, and accurate georeferenced 3D point cloud 

solution in applications to pavement inventories. For pavement inventories purposes, ViaPPS 

is able to detect and geotag according to multiple standards, listed in the reference [9-19], for 

road defects (cracks, potholes, ravelling, etc) as well as road parameters such as road markings, 

curve radius, longitudinal and transversal profile, rut depth (area and volume), pavement cross 

fall, local longitudinal deflection, speed bumps, lane width, vertical height to bridges/crossings 

or in tunnels, maximum local cross fall in lane and joints. Today the system is adopted 

worldwide from road practitioners and industrial partners. 
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