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ABSTRACT
For proper planning, operation, control and protection of the power system, the development of
suitable steady-state mathematical model of FACTS devices is a key issue. The Fast and Flexible
Holomorphic Embedding (FFHE) method converges faster and provides the flexibility to use any
state as an initial guess. But to investigate the effect and ability of FACTS devices using FFHE
technique, it is necessary to develop an embedded system for these devices. Therefore, this paper
presents FFHE-based embedded system for VSC-based FACTS controllers, such as, SSSC and
IPFC. The embedded system is also proposed for their controlling modes.

The introduced embedded system is flexible which allows to take any state as an initial guess
instead of fixed state, which leads towards the reduced runtime and decrease the required number
of terms, as compared to standard HELM. To demonstrate the effectiveness and practicability,
the proposed FFHE-based models of FACTS devices have been tested for several cases. Further,
the developed recursive formulas for power balance equations, devices’ physical constraints and
their controlling modes are thoroughly investigated and examined. From several tests, it is found
that the proposed FFHE-based FACTS models requires less execution time and reduce the error
at higher rate.

1. Introduction
Load-flow analysis is one of the fundamental approach of numerical analysis in electric power systems. It provides

information regarding the steady-state magnitude and phase angle of voltage at each bus which can be used in power
system planning, operation, protection and control [1]. The outcomes of the load-flow analysis serve as the starting
point in various studies such as dynamic simulation, stability assessment, state-estimation, transfer capability calcula-
tion, control and protection schemes of the power system. The conventional load-flowmethods are based on numerical
iterative techniques such as Gauss-Seidal (GS), Newton-Raphson (NR), Fast Decoupled (FD), and their variants. How-
ever, these iterative techniques are primarily constrained by requirement of a good initial guess and they offer slow
convergence or even divergence in some cases. It is obvious that the aforesaid problems are further aggravated by
the integration of power electronics based control devices and renewable energy [2, 3, 4]. These traditional iterative
load-flow methods can diverge mainly in two sense: (i) solution exists but numerical load-flow method diverges due
to bad initial guess, (ii) solution doesn’t exists but load-flow method converges to a spurious solution i.e. unable to
detect the non-existence. To circumvent these problems, a Holomorphic Embedding Load-Flow Method (HELM) has
been developed in [5].

The considerable work on modeling of slack bus, load bus, and generator bus along-with reactive power limit
constraints of generator bus have been found in [5, 6, 7, 8, 9, 10, 11]; and other significant advancements in the area of
HELM can be found in [12, 13, 14, 15, 16]. The holomorphic embedded equations have been obtained by separating
the shunt and series part of the admittance matrix; and initially the system is assumed to be without load and generation
except the slack bus. The performance of this method has also been investigated for calculating the available voltage
stability margin and it is found that HELM performs at par with the continuation power-flow method [17, 11, 18, 19].
The key benefits of HELM are deterministic initial guess and guarantee of convergence if the solution exists, but, at
the cost of more execution time than NR method [20, 21, 22]. HELM is 10 to 20 times slower than NR method [10].
Therefore, to address this problem, a Fast, Flexible Holomorphic Embedded (FFHE) method has been proposed in
[23]. This developed embedded system is termed as flexible because this method allows to set any state as an initial
guess. In most cases, FFHE is fast because it takes less number of terms to converge if initial guesses are promising.
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Figure 1: Equivalent circuit of a SSSC.

The inherent benefits of HELM encouraged the development of holomorphic embedded models of various Flexible
Alternating Current Transmission System (FACTS) controllers to improve the overall performance of the power system
by their optimal integration [4, 24, 25]. Thyristor-based FACTS controllers are represented as a variable admittance
or impedance in [26]. However, this approach does not accurately exhibit the characteristics of second-generation (i.e.
Voltage Source Converter (VSC)-based) FACTS controllers. A more accurate model of VSC-based FACTS controllers
involves representing it as a variable voltage or current source [24, 25]. The VSC-based FACTS controllers are pre-
ferred because they inject less harmonics, provide independent control, fast dynamic response and higher flexibility as
compared to Thyristor-based FACTS controller.

In the sphere of HELM, no research work has been found on modeling of Voltage Source Converter (VSC)-based
FACTS devices using Holomorphic Embedding (HE) except modeling of Static Synchronous Compensator (STAT-
COM) [27]. Therefore, the main aim of this work is to develop the FFHE based models of VSC-based FACTS
controllers. This paper proposes the FFHE based models of two VSC-based series FACTS devices, namely Static
Synchronous Series Compensator (SSSC) and Interline Power Flow Controller (IPFC).

The remaining part of this paper is organised as follows: Section 2 deals with the methodology used to develop
the FFHE based models of SSSC and IPFC along-with their controlling modes. In Section 3, the key findings and
numerical results of the introduced embedded system have been discussed. Section 4, presents the conclusion of this
study.

2. Proposed Holomorphic Embedding Formulations
In this section, a new embedded system for VSC-based FACTS controllers such as SSSC and IPFC are developed

and the numerical values of all unknown variables along-with their operation bounds are investigated. To develop the
steady-state FFHE based HE models of the FACTS controllers, it is assumed that the stated devices and system are
three-phase balanced and the harmonics generated by them are negligible. Firstly, the holomorphic embedded system
and finally recursive relationships for the stated devices have been developed.
2.1. SSSC Modeling

A SSSC is a series connected FACTS device, and it can generate or inject a series voltage into the transmission
line, which can be regulated to change the reactance of the transmission line. So, the active and reactive power-flows
through the line or the magnitude of bus voltage, where the SSSC is connected can be controlled. The SSSC consists
of a coupling transformer, a AC/DC voltage source converter and a capacitor. A schematic equivalent circuit diagram
of a SSSC is shown in Figure 1, where it is assumed that the transmission line is series connected via the extra bus m.
In other words, a series FACTS device is modelled by assuming a separate branch in the network and this branch is
not considered in the admittance matrix.

In Figure 1, ymj = yij + ySE is the admittance between bus m and bus j; ySE is the admittance of the series
coupling transformer, VSE is the injected series voltage phasor, and ISE is the current flowing through SSSC. From
Figure 1, the power balance equation (PBE) for buses i and m can be expressed as follows:

V ∗i

N
∑

k=1
YikVk + V ∗i ISE = S

∗
i (1)

V ∗m

N
∑

k=1
YmkVk − V ∗mISE = S

∗
m (2)

where, ′ ∗′ represents conjugation, Vi and Yik are the voltage phasor of bus i and (i, k)tℎ entry of the bus admittance
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matrix. Si = (PGi + jQGi) − (PLi + jQLi) is the injected complex power at bus i. PGi and QGi are the active andreactive power generation, where as PLi andQLi are active and reactive power load at bus i respectively. The symbols
N ,NPV , andNPQ denotes the set of total, generator and load buses respectively.

Now, to establish the recurrence relationship for (1) and (2), these equations must be embedded with a complex
parameter � in such a way that the resultant equations should satisfy the requirement of embedding i.e. at � = 1, the
holomorphic embedding formulation must be equal to the original equation and at � = 0, the solution of the system
is already known or can be obtained trivially. In (1) and (2), the current through SSSC is treated as a free variable
function of � and the following new embedded system is introduced for (1) and (2):

V ∗i (�
∗)

N
∑

k=1
YikVk(�) + V ∗i (�

∗)ISE(�) = C∗i
N
∑

k=1
YikCk + C∗i DSE + �

[

S∗i − C
∗
i

N
∑

k=1
YikCk − C∗i DSE

]

(3)

V ∗m (�
∗)

N
∑

k=1
YmkVk(�) − V ∗m (�

∗)ISE(�) = C∗m
N
∑

k=1
YmkCk − C∗mDSE + �

[

S∗m − C
∗
m

N
∑

k=1
YmkCk + C∗mDSE

]

(4)

Note that the equation (3) and (4) satisfy the requirement of embedding at reference state �0 = 0 and the target
state �1 = 1. The constant Ck ∈ ℂ ⧵ {0} and DSE ∈ ℂ ⧵ {0} are adjustable and can be of any pre-specified values.
The constant Ck andDSE are used to represent the initial value of voltages and SSSC’s current respectively. At � = 0,
the solution of (3) and (4) gives Vk[0] = Ck and ISE[0] = DSE .The integration of an SSSC into transmission line introduces a complex variable ISE = ISEre+ jISEim into power
balance equation, which adds two unknown variables (i.e. ISEre and ISEim). Therefore, two supplementary equations
are required to find out the unique solution of unknown variables. These supplementary equations are related to the
SSSC real power injection constraint and reference quantity to be controlled by the SSSC. In steady-state, the ideal
SSSC can only inject the reactive power but can’t inject real power into AC system unless there is a connected energy
source. Mathematically, from Figure 1 it can be expressed as:

ℜ
[

(Vm − Vi)I∗SE
]

= 0 (5)
ℜ(∙) and ℑ(∙) are the real and imaginary operators. Equation (5) can be embedded as follows:

ℜ
[

{

Vm(�) − Vi(�)
}

I∗SE(�
∗)
]

= ℜ
[

{Cm − Ci}D∗SE
]

− �ℜ
[

{Cm − Ci}D∗SE
] (6)

It has been recognised that the SSSC has the ability to control various parameters but only one variable can be controlled
independently as the degree of freedom of SSSC is one [2]. The proposed model of SSSC has been tested with the
following control modes.
2.1.1. Case 1: Active power-flow control

In this case, the injected series voltage VSE is regulated in such a manner that the specified active power-flow
through transmission line can be achieved. Mathematically, it can be expressed as follows:

ℜ
[

ViI
∗
SE

]

= P SPim (7)
where, P SPim is the specified real power-flow between bus i and m. The proposed embedding for (7) is as follows:

ℜ
[

Vi(�)I∗SE(�
∗)
]

= ℜ(CiD∗SE) + �
[

P SPim −ℜ(CiD∗SE)
] (8)

2.1.2. Case 2: Reactive power-flow control
In this case, the SSSC is used to control transmission line reactive power-flow to a specified reactive power reference

by adjusting the SSSC injected voltage phasor. Mathematically, it can be written as follows:
ℑ
[

ViI
∗
SE

]

= QSPim (9)
where, QSPim is the specified reactive power-flow between bus i and m. The proposed embedding for (9) is as follows:

ℑ
[

Vi(�)I∗SE(�
∗)
]

= ℑ(CiD∗SE) + �
[

QSPim −ℑ(CiD∗SE)
] (10)
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2.1.3. Case 3: Reactive power injection control
In this case, reactive power injected by the SSSC is regulated to the target value of reactive power injection by

adjusting the SSSC injected voltage phasor and it can be expressed as follows:
ℑ
[

(Vm − Vi)I∗SE
]

= QSPSE (11)
where, QSPSE is the specified reactive power injected by the SSSC. The proposed embedding for (11) is as follows:

ℑ
[

{

Vm(�) − Vi(�)
}

I∗SE(�
∗)
]

= ℑ
[

(Cm − Ci)D∗SE
]

+ �
[

QSPim −ℑ
{

(Cm − Ci)D∗SE
}

]

(12)

2.1.4. Case 4: Bus voltage magnitude control
The local or remote bus voltage magnitude is controlled to a specified reference value by regulating the SSSC

output voltage phasor. Mathematically, the bus voltage magnitude constraint for bus i can be expressed as follows:
|Vi| = V SP

i (13)
where, V SP

i is the specified value of itℎ bus voltage magnitude. The mathematical expression of this control mode is
identical to PV bus voltage magnitude constraint expression, therefore, it is embedded in the similar fashion as in [23]
and it can be expressed as follows:

Vi(�)V ∗i (�
∗) = CiC∗i + �

[

(V SP
i )2 − CiC∗i

] (14)
2.1.5. Case 5: Control of SSSC’s injected voltage magnitude

SSSC can be used to regulate the magnitude of VSE to a specified reference and this control constraint can be
expressed as follows:

|VSE| = V SP
SE (15)

where, V SP
SE is the specified value of injected voltage. The SSSC’s injected voltage can be expressed in terms of

reactive power injected by the source as follows:

ℑ
[

(Vm − Vi)|ISE|
ISE

]

= V SP
SE (16)

The proposed embedding for (16) can be expressed as follows:

ℑ
[

(Vm(�) − Vi(�))|ISE(�)|FSE(�)
]

= ℑ
{

(Cm − Ci)|DSE|

DSE

}

+ �
[

V SP
SE −ℑ

{

(Cm − Ci)|DSE|

DSE

}]

(17)

where, FSE(�) is the reciprocal of ISE(�).
2.1.6. Case 6: Control of equivalent series reactance

A SSSC can also be viewed as a equivalent imaginary impedance. In this case, SSSC’s injected voltage phasor
is adjusted to control the equivalent imaginary impedance to a specified impedance reference value. Mathematically,
such a constraint can be written as follows:

ℑ

[

Vm − Vi
ISE

]

= XSP
eq(SE) (18)

where, XSP
eq(SE) is the specified equivalent imaginary reactance. The proposed embedding for (18) is as follows:

ℑ

[

Vm(�) − Vi(�)
ISE(�)

]

= �

[

XSP
eq(SE) −ℑ

(

Cm − Ci
DSE

)]

+ℑ

(

Cm − Ci
DSE

)

(19)
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The system of equations (3), (4), (6) and any one equation from the set of (8), (10), (12), (14), (17), and (19) can
describe the behaviour of SSSC.

Generally, a system of linear equations is derived to evaluate the unknown variables (i.e. Vkre, Vkim, ISEre and
ISEim) and the coefficient matrix which has the entries of products and sums. The formulation of the coefficient is
more complex and less efficient as compared to the coefficient matrix formulation in basic HELM because the later one
doesn’t involve the products of coefficient of voltages and currents. This shortcoming is outweighed by the reduced
number of steps required to evaluate unknown variables. In other words, it is faster than the basic HELM.

To obtain the system of linear equations, all known and unknown variables aremoved to RHS and LHS respectively.
For this purpose, variables are separated into real and imaginary parts as follows: Yik = Gik+ jBik, Vk = Vkre+ jVkimand ISE = ISEre + jISEim. The system of linear equations can be viewed as [ASC ](Υ×Υ)[XSC ](Υ×1) = [BSC ](Υ×1),
where Υ = 2(N + nSC ) and nSC is the number of SSSCs connected into the system. The coefficient matrix [ASC ],
unknown vector [XSC ] and known vector [BSC ] when SSSC is incorporated in the system are given by (20), (22) and
(23) respectively (shown at the bottom of this page). Here, subscripts  ,  ∈ NPV ,  ∈ NPQ, i, and m denote the
slack bus, PV bus, load bus, SSSC sending end and receiving end connected bus respectively. Equation (21) represents
the different control modes of SSSC in linear matrix form. Note that for calculating the ntℎ coefficients of the unknown
vector, the maximum required degree of known vector is n− 1, but for representation purpose n− 1 index are omitted
from known vector throughout this paper. The holomorphic embedded system for slack bus, generator buses and load
buses are adopted from [23]. At � = 1, the numerical values of unknown variables are evaluated using determinant
method as discussed in [23]. The entries of coefficient matrix and known vector are given in Appendix A.
2.2. IPFC Modeling

An IPFCmay be constructed by combining two or more series connected converters, which extends the philosophy
of power-flow control beyond what is achievable with one converter series-connected FACTS device i.e. SSSC. IPFC
can enhance power transfer capability of transmission line andmaximize the use of existing transmission infrastructure.

The simplest IPFC can be configured with two series connected converters with two transmission lines via series
coupling transformers. Figure 2 shows the equivalent circuit of IPFC with two controllable voltage source. Note that
the magnitude of series injected voltages are independent of the magnitude of the bus voltages because it is injected
by voltage source converters. So, the controllable parameter of each IPFC branch is series injected voltage phasor.

[ASC ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
� � � � � � �i �i �m �m 0 0
0 0 Cre Cim 0 0 0 0 0 0 0 0
� � � � � � �i �i �m �m 0 0
−� � −� � �★

 �★ −�i �i −�m �m 0 0
�i �i �i �i �i �i �ii +DSEre �ii +DSEim �im �im Cire Ciim
−�i �i −�i �i −�i �i �★

ii +DSEim �★ii −DSEre −�im �im −Ciim Cire
�m �m �m �m �m �m �mi �mi �mm −DSEre �mm −DSEim −Cmre −Cmim
−�m �m −�m �m −�m �m −�mi �mi �★

mm −DSEim �★mm +DSEim Cmim −Cmre
0 0 0 0 0 0 −DSEre −DSEim DSEre DSEim Cmre − Cire Cmim − Cmim

⋯Entries related to selected control mode from (21)⋯

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 DSEre DSEim 0 0 Cire Ciim
0 0 0 0 0 0 −DSEim DSEre 0 0 Ciim −Cire
0 0 0 0 0 0 DSEim −DSEre −DSEim DSEre Cmim − Ciim Cmre − Cire
0 0 0 0 0 0 Cire Ciim 0 0 0 0
0 0 0 0 0 0 −ℑ

(

|DSE |
DSE

)

−ℜ
(

|DSE |
DSE

)

ℑ
(

|DSE |
DSE

)

ℜ
(

|DSE |
DSE

)

ℑ
(

2DSEre(Cm−Ci)
2DSE |DSE |

)

−ℑ
(

(Cm−Ci)|DSE |
D2SE

)

ℑ
(

2DSEim(Cm−Ci)
2DSE |DSE |

)

−ℜ
(

(Cm−Ci)|DSE |
D2SE

)

0 0 0 0 0 0 DSEim
|D|2

−DSEre
|D|2

−DSEim
|D|2

DSEre
|D|2

ℑ
(

Ci−Cm
D2SE

)

ℜ
(

Ci−Cm
D2SE

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

XSC
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ΓSCM1
ΓSCM2
ΓSCM3
ΓSCM4
ΓSCM5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)

[XSC ] =
[

Vre[n] V im[n] Vre[n] Vim[n] Vre[n] Vim[n] Vire[n] Viim[n] Vmre[n] Vmim[n] ISEre[n] ISEim[n]
]′ (22)

[BSC ] =
[

ℜ[Γ ] ℑ[Γ ] Γ Γ ℜ[Γ] ℑ[Γ] ℜ[ΓSCi ] ℑ[ΓSCi ] ℜ[ΓSCm ] ℑ[ΓSCm ] ΓSCPBE ΓSCMi

]′ (23)
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Figure 2: Equivalent circuit of a IPFC.

Therefore, other parameters (e.g. line active power-flow, line reactive power-flow etc.) of the system can be controlled
by regulating the series injected voltage phasor. The injected reactive power into system is provided by the VSC, but
injection of real power into the system has to be provided by other voltage source converters via a common DC link.
Therefore, an IPFC with nIP branches can independently control 2nIP −1 parameters as one parameters is responsible
for real power balance of the device. Therefore, this configuration can simultaneously control three quantities of power
system independently. The detailed descriptions of the IPFC and its features may be found in [28, 29].

From Figure 2, the PBE for buses i, m and t can be expressed as follows:

V ∗i

N
∑

k=1
YikVk + V ∗i ISE1 + V

∗
i ISE2 = S

∗
i (24)

V ∗m

N
∑

k=1
YmkVk − V ∗mISE1 = S

∗
m (25)

V ∗t

N
∑

k=1
YtkVk − V ∗t ISE2 = S

∗
t (26)

The active power can be exchanged amongst the converters via a common DC link, but the sum of active power
exchanged must be equal to zero. Mathematically, it can be expressed as follows:

ℜ
[

(Vm − Vi)I∗SE1
]

+ℜ
[

(Vt − Vi)I∗SE2
]

= 0 (27)
The following new embedded system is introduced for (24)-(27):

V ∗i (�
∗)

N
∑

k=1
YikVk(�)+V ∗i (�

∗)
{

ISE1(�)+ISE2(�)
}

= C∗i
N
∑

k=1
YikCk+C∗i

(

DSE1+DSE2
)

+�

[

S∗i −C
∗
i

N
∑

k=1
YikCk

− C∗i
(

DSE1 + DSE2
)

]

(28)

V ∗m (�
∗)

N
∑

k=1
YmkVk(�) − V ∗m (�

∗)ISE1(�) = C∗m
N
∑

k=1
YmkCk −C∗mDSE1 + �

[

S∗m −C
∗
m

N
∑

k=1
YmkCk +C∗mDSE1

]

(29)
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V ∗t (�
∗)

N
∑

k=1
YtkVk(�) − V ∗t (�

∗)ISE2(�) = C∗t
N
∑

k=1
YtkCk − C∗t DSE2 + �

[

S∗t − C
∗
t

N
∑

k=1
YtkCk + C∗t DSE2

]

(30)

ℜ
[

{

Vm(�) − Vi(�)
}

I∗SE1(�
∗) +

{

Vt(�) − Vi(�)
}

I∗SE2(�
∗)
]

= ℜ
[

(Cm − Ci)D∗SE1 + (Ct − Ci)D
∗
SE2

]

− �ℜ
[

(Cm − Ci)D∗SE1 + (Ct − Ci)D
∗
SE2

] (31)

The incorporation of a IPFC introduces two new complex variables ISE1 and ISE2 into the system, which adds four
unknown variables. Therefore, four supplementary equations are required to find out the unique solution of unknown
variables. One equation is based on the real power exchange constraint of the device and other three equations are
related to the three quantities which are to be controlled. An IPFC can operate in various control modes as suggested
in [29]. The mathematical formulation of different control modes are similar to the control modes of SSSC, only
subscript needs to be changed.

By comparing the coefficient of �n, the general recurrence relationship for n ≥ 1 can be obtained. Further, the
system of linear equations for IPFC [AIP ](Υ×Υ)[XIP ](Υ×1) = [BIP ](Υ×1) has been obtained by shifting all the unknown
and known variables to the LHS and RHS respectively and Υ = 2(N + nIP ). The coefficient matrix [AIP ], unknown
vector [XIP ] and known vector [BIP ] are presented in (32), (33) and (34) respectively (shown at the bottom of this
page). The control modes presented in (21) have been adopted with necessary subscript changes and investigated in
numerical studies. The entries of known vector [BIP ] are presented in Appendix A.

3. Results and Discussions
The proposedmodels of the stated devices and their multi-control capabilities have been tested on IEEE 30 and 118-

bus test systems [30]. But for demonstration purpose, only selected numerical results on IEEE 118-bus test system
have been presented in this paper. In this paper, the impedances of series coupling transformers are assumed to be
0.01 + j0.01 p.u. To validate the proposed models, investigation has been done by incorporating the SSSC or IPFC
at different locations and by changing the target values of quantities. All the quantities are in p.u. and the base power
being is 100 MVA. The proposed FFHE based models have been tested and examined for all the control modes as
discussed in Section 2. The proposed FFHE and NR based models were modelled in MATLAB environment and
simulated on Intel(R) Core(TM) i3-4150 CPU 3.50 GHz processor with 4-GB RAM. For all the investigations, the

[AIP ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
� � � � � � �i �i �m �t �t �t 0 0 0 0
0 0 Cre Cim 0 0 0 0 0 0 0 0 0 0 0 0
� � � � � � �i �i �m �m �t �t 0 0 0 0
−� � −� � �★

 �★ −�i �i −�m �m −�t �t 0 0 0 0
�i �i �i �i �i �i �ii +DSE1re +DSE2re �ii +DSE1im +DSE2im �im �im �it �it Cire Ciim Cire Ciim
−�i �i −�i �i −�i �i �★

ii +DSE1im +DSE2im �★ii −DSE1re −DSE2re −�im �im −�it �it −Ciim Cire −Ciim Cire
�m �m �m �m �m �m �mi �mi �mm −DSE1re �mm −DSE1im �mt �mt −Cmre −Cmim 0 0
−�m �m −�m �m −�m �m −�mi �mi �★

mm −DSE1im �★mm +DSE1im −�mt �mt Cmim −Cmre 0 0
�t �t �t �t �t �t �ti �ti �tm �tm �tt −DSE2re �tt −DSE2im 0 0 −Ctre −Ctim
−�t �t −�t �t −�t �t −�ti �ti −�tm �tm �★

tt −DSE2im �★tt +DSE2re 0 0 Ctim −Cmre
0 0 0 0 0 0 −DSE1re −DSE2re −DSE1im −DSE2im DSE1re DSE1im DSE2re DSE2im Cmre − Cire Cmim − Ciim Ctre − Cire Ctim − Ciim

⋯Entries related to selected control mode from (21)⋯

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

[XIP ] =
[

Vre[n] V im[n] Vre[n] Vim[n] Vre[n] Vim[n] Vire[n] Viim[n] Vmre[n] Vmim[n] Vtre[n] Vtim[n] ISE1re[n] ISE1im[n] ISE2re[n] ISE2im[n]
]′ (33)

[BIP ] =
[

ℜ[Γ ] ℑ[Γ ] Γ Γ ℜ[Γ] ℑ[Γ] ℜ[ΓIPi ] ℑ[ΓIPi ] ℜ[ΓIPm ] ℑ[ΓIPm ] ℜ[ΓIPt ] ℑ[ΓIPt ] ΓIPPBE ΓSCMi ΓSCMi ΓSCMi

]′ (34)
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Table 1
Selected numerical results of IEEE 118-bus test system without any FACTS device

V49 = 1.0250∠ − 8.97° S49−50 = 0.5367 + j0.1343
V100 = 1.0170∠ − 1.91° S49−51 = 0.6664 + j0.2044
V101 = 0.9928∠ − 0.35° S100−104 = 0.5642 + j0.1062
S101−102 = −0.0535 + j0.0245 S100−106 = 0.6058 + j0.0909

Table 2
Numerical results when SSSC in the IEEE 118-bus test system (location: 49-50)

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Specified Parameters P SP

49−50 = 0.75 QSP
49−50 = 0 QSP

SE = 0.3 V SP
49 = 1 V SP

SE = 0.2 XSP
eq(SE) = −0.2

P
ow

er
-fl
ow

re
su
lt
s

V49 1.0385∠ − 9.38° 1.0438∠ − 8.88° 1.0101∠ − 9.20° 1∠ − 9.24° 1.0060∠ − 9.03° 1.0161∠ − 8.59°
VSE 0.0873∠72.75° 0.2162∠ − 270.01° 0.2702∠109.27° 0.2696∠112.54° 0.2∠100.26° 0.0705∠ − 115.49°
ISE 0.7251∠ − 17.25° 0 1.1103∠19.27° 1.1113∠22.54° 0.9617∠10.26° 0.3524∠ − 25.49°
S49−50 0.75 + j0.1036 0 0.9859 − j0.5346 0.9447 − j0.5853 0.9132 − j0.3196 0.3426 + j0.1042
SSE 0 + j0.0637 0 − j0 0 + j0.3 0 + j0.2996 0 + j0.1923 0 − j0.1042
Xeq(SE) 0.1198 inf 0.2434 0.2426 0.2080 −0.2
% ▵ E 26.42 16.21 22.22 21.56 19.69 21.32
%T 8.02 7.14 8.56 6.25 5.83 6.34

mismatch tolerance of 10−8 is considered for maximum bus power mismatch. The percentage reduction in mismatch
and runtime are calculated using (35) and (36) respectively.

% ▵ E =
|log10(max(▵ SFFHE)) − log10(max(▵ SNR))|

|log10(max(▵ SNR))|
× 100 (35)

% ▵ T =
TNR − TFFHE

TNR
× 100 (36)

where, ▵ SFFHE and ▵ SNR are the bus power mismatch obtained using FFHE and NR method respectively; and
TNR and TFFHE are the runtime of NR and FFHE method to converge respectively.

Note that the proposed embedding may not guarantee to satisfactory performance for all initial guesses of the
variables. The selection of promising initial guess still remains an issue. But [23] suggest the integration of FFHE
method with traditional iterative load-flowmethods as it takes lesser number of terms to converge as compared to basic
HELM. The values of unknown variables obtained after 3 iterations of NRmethod have been used as initial guesses for
the FFHE load-flow method throughout this paper. The numerical results of IEEE 118-bus test system in the absence
of FACTS devices are presented in Table 1.

Now to investigate the proposed embedding for SSSC and its six different controlling modes, tests have been
considered for different locations and specified references. For examining cases 1-6, a SSSC is incorporated in the
transmission line between buses 49 and 50 at the location of bus 49; and the results are presented in Table 2. Specified
values of quantities, selected power-flow results, SSSC’s parameters, percentage reduction in error and run-time are
also presented in Table 2. The calculated values of specified parameters for different cases are shown in bold letters.
From Table 1, it can be observed that the normal active and reactive power-flow between the buses 49 and 50 are 0.5367
p.u. and 0.1343 p.u. respectively. In case 1, the desired value of the active power-flow through the transmission is set
to 0.75 p.u., which is about 40% higher than the natural power-flow. To increase the real power-flow from 0.5367 to
0.75 p.u., SSSC injects the voltage of 0.0873 p.u. The FFHE based model reduces error 26.42% more as compared to
NR based model and it takes 8.02% less runtime.

In case 2, the desired value of the reactive power-flow through the transmission line was set to 0 p.u. and from Table
2, it can be verified that the reactive power-flow through the transmission line is equal to the specified control reference
value. In the next case, the reactive power injected by the SSSC was selected as a control variable. Investigation of
case 3 verifies that the injected reactive power is equal to the target value of 0.3 p.u..

As discussed earlier, a SSSC can also regulate the magnitude of bus voltage to the desired value. From Table 2,
it can be observed that the SSSC is able to regulate the voltage of bus 49 to the specified reference 1 p.u. But in this
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case, the convergence characteristic is poor. The probable reason for this is the poor coupling between the bus voltage
magnitude and series compensation (generally, shunt-connected FACTS devices such as STATCOM and SVC are used
for bus voltage magnitude control). In case 5, the target value of the magnitude of SSSC’s injected voltage is set to 0.2
p.u. and it can be verified that the proposed model is able to control the output voltage of SSSC to a specified value.
This mode is the logical choice as it directly represents the SSSC’s limitations. As discussed in Section 2, a SSSC
can also operate like an imaginary controllable impedance and it can be verified from results of case 6. In this case, a
SSSC regulates its output voltage phasor in such a manner that the SSSC’s imaginary equivalent reactance is equal to
the specified reference −0.2 p.u.

The efficacy of the proposed model was further validated by inserting a SSSC at bus 101 in the transmission line
101-102. From Table 3, it can be clearly observed that all the target values have been achieved when the limit of
injected voltage was not considered. The decrement in error ranges from 18.46% to 29.45% and reduction in runtime
ranges from 5.15% to 7.63%. Therefore, it can be concluded that the suggested NR-assisted FFHEmethod based SSSC
model converges and performs faster.

To validate the proposed embedding for an IPFC, numerical studies has been carried out for various location of an
IPFC along-with different controlling modes. Some selected results on IEEE 118-bus test system for two cases have
been presented in Table 4 and 5 when a generic IPFC consisting of two branches is connected in the system. The
reference quantities being the real and reactive power-flows through the transmission line, as these are the practice
for the series devices in the literature. For examining both the cases an IPFC of two branches (branch 1 is connected
between buses 49 and 50; and branch 2 is connected between buses 49-51) is integrated into the system and the results
are presented in Table 4. In case 1, the active power flowing through the lines 49-50 and 49-51 were set to 0.75 p.u.,

Table 3
Numerical results when SSSC in the IEEE 118-bus test system (location: 101-102)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Specified Parameters P SP

101−102 = 0.9 QSP
101−102 = 0 QSP

SE = 0.3 V SP
49 = 0.9 V SP

SE = 0.1 XSP
eq(SE) = 0.1

P
ow

er
-fl
ow

re
su
lt
s

V101 0.9208∠ − 12.96° 0.9936∠ − 3.98° 0.9551∠ − 10.59° 0.9∠3.4903° 0.9749∠1.49° 0.9845∠0.0522°
VSE 0.5114∠63.82° 0.1518∠89.30° 0.4161∠71.67° 0.3009∠ − 39.07° 0.1∠ − 64.33° 0.0522∠ − 69.97°
ISE 1.0040∠ − 26.18° 0 0.7209∠ − 18.3297° 1.1335∠ − 129.07° 0.6406∠ − 154.33° 0.5218∠ − 159.97°
S101−102 0.9 + j0.2115 0 0.6823 + j0.0927 −0.69 + j0.7514 −0.5697 + j0.2557 −0.4844 + j0.1709
SSE 0 + j0.5134 0 − j0 0 + j0.3 0 + j0.3411 0 + j0.0641 0 + j0.0272
Xeq(SE) 0.5093 inf 0.5773 0.2655 0.1561 0.1
% ▵ E 29.45 18.46 28.32 19.72 27.05 21.76
%T 7.63 7.21 8.49 6.52 5.15 5.56

Table 4
Numerical results when IPFC in the IEEE 118-bus test system (location: 495051)

Case 1 Case 2

Specified
Parameters

P SP
49−50 = 0.75 P SP

49−50 = 0.75
P SP
49−51 = 0.75 QSP

49−50 = 0.01
QSP
49−51 = 0.03 QSP

49−51 = −0.03

P
ow

er
-fl
ow

re
su
lt
s

V49 1.0613∠ − 9.77° 1.0427∠ − 10.32°
VSE1 0.1149∠19.47° 0.1487∠85.88°
VSE2 0.0886∠125.05° 0.2596∠78.74°
ISE1 0.8347∠ − 41.93° 0.7193∠ − 11.08°
ISE2 0.7072∠ − 12.06° 1.2936∠ − 9.05°
S49−50 0.75 + j0.4716 0.75+j0.01
S49−51 0.75+j0.03 1.3485-j0.03
SSE1 0.0459 + j0.00842 −0.0130 + j0.1062
SSE2 −0.0459 + j0.0426 0.0130 + j0.3355
Xeq(SE1) 0.1208 0.2052
Xeq(SE2) 0.0852 0.2005

% ▵ E 24.53 21.46
%T 4.41 6.56
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Table 5
Numerical results when IPFC in the IEEE 118-bus test system (location: 100104106)

Case 1 Case 2

Specified
Parameters

P SP
100−104 = 0.8 P SP

100−104 = 0.9
P SP
100−106 = 1 QSP

100−104 = 0
QSP
100−106 = 0 QSP

100−106 = 0

P
ow

er
-fl
ow

re
su
lt
s

V100 1.0184∠−8.47° 1.0170∠ -5.04°
VSE1 0.0742∠150.96° 0.0516∠84.55°
VSE2 0.2612∠69.90° 0.0223∠86.66°
ISE1 0.7933∠ − 0.42° 0.8850∠ − 5.04°
ISE2 0.9819∠ − 8.47° 0.4864∠ − 5.04°
S100−104 0.8 − j0.1132 0.9+j0
S100−106 1-j0 0.4947 + j0
SSE1 −0.0517 + j0.0282 0.0003 + j0.0456
SSE2 0.0517 + j0.2512 −0.0003 + j0.0109
Xeq(SE1) 0.0448 0.0583
Xeq(SE2) 0.2605 0.0459

% ▵ E 21.69 23.64
%T 3.02 4.86

Table 6
Power-flow results when device limit constraints are imposed

Device Specified Parameter (p.u.) Limit Violated Power-flow results

SSSC P SP
101−102 = 0.9 Yes

V101 = 0.9891∠ − 7.68°
VSE = 0.3∠82°
ISE = 0.3902∠ − 8°
S101−102 = 0.3860 + j0.0021
SSE = 0 + j0.1171
Xeq(SE) = 0.7687
% ▵ E = 21.99
%T = 4.31

which is higher than the natural power flow; and the reactive power-flow through the line 49-51 was set to 0.03 p.u.
In case 2, the active power flowing through the line 49-50 was set to 0.75 p.u., and the reactive power-flow through
the lines 49-50 and 49-51 were set to 0.01 p.u. and −0.03 p.u. respectively. From Table 4, it can be observed that
the specified reference values in both cases are met. From this table, it can also be observed that the active power
exchanged between two series converters through common DC link is 0.0459 p.u. and 0.0130 p.u. in case 1 and 2
respectively. Table 5 presents the results for two cases when the IPFC is assumed to be connected between buses
100-104 and 100-106. From Tables 4 and 5, it can be observed that the error reduction is higher and run-time is lesser
for FFHE based model. Note that in all the cases, convergence has been achieved; and the proposed models exhibited
very good convergence and also converge at faster rate as compared to models based on standard NR method.

The introduced embedding system has also been investigated with device limit constraints. To demonstrate the
handling of constraints, one case from Table 3 was chosen. The maximum value of injected voltage by SSSC was
selected as 0.3 p.u. From Table 3, it can be observed that when the active power-flow through transmission line
101-102 is chosen as 0.9 p.u. and no limits were set on the injected voltage, the SSSC is able to control the active
power-flow to the specified reference. But, when the limits are imposed, SSSC is not able to control the same because
higher VSE is required to maintain the same. Therefore, whenever the limit constraints are violated, existing control
mode is relaxed; and SSSC will acts as a constant voltage source (i.e. injected voltage magnitude mode is triggered)
and the specified reference value of injected voltage magnitude is set equal to the value of violated limit. From Table 6,
it can be observed that the active-power flow through the line 101-102 is not equal to the specified reference value but
it is equal to 0.3860 p.u. while the injected voltage magnitude is maintained to 0.3 p.u. Therefore, it can be concluded
that the proposed FFHE based models are also suitable when limit constraints of the devices are imposed.

P. Singh et al.: Preprint submitted to Elsevier Page 10 of 14



Leveraging social media news

The NR and FFHE based model of SSSC and IPFC have been tested on same platform for comparison, although
the derived inferences may not be general due to various differences in simulation structure, programming skills etc. It
is observed that the percentage reduction in error and runtime are different for each case. Because there is no particular
choice of the initial guess for the proposed models to ensure fast convergence in all cases. Briefly, the runtime and rate
of convergence of the proposed models will vary for different initial guess. Although, the performance of proposed
FFHE based model of SSSC and IPFC are sensitive to the initial guess, but the proposed models perform better than
basic HELM based models. Moreover, for most of cases, FFHE based models outperforms NR based models in context
of error reduction. A common conclusion for the stated devices and their controlling modes is that the proposed
embedding for the devices are reliable and have good convergence characteristics. Further, the proposed formulation
reduces the mismatch error at faster rate and therefore, converges slightly faster than the NR method based FACTS
devices models. Therefore, the proposed FFHE based models offers a good alternative to the NR based models when
promising initial guesses are available.

4. Conclusion
The purpose of this research work is to develop fast and flexible HELM models of SSSC and IPFC. To do the

same, the power balance equations and devices’ controlling modes are embedded with a complex variable � in such a
manner that the embedded equations satisfy the requirement of embedding. Afterwards, the unknown variables were
represented by power series and recursive formulas have been obtained for n ≥ 1. Lastly, at � = 1 numerical values
of unknown variables are calculated using determinant method. The proposed embedded system of stated devices
provides flexibility because any state can serve as an initial guess.

From the numerical results, it is observed that the results of FFHE based models are similar to results obtained
by NR based model of devices in perspective of the final calculated values of devices parameters, system variables
and operational bounds. The comparison of runtime for FFHE based models with NR based models showed that later
one took more time. Although the performance of FFHE based models is sensitive to the initial guess but the NR
assisted FFHE based models outperform the NR based models in error reduction. The numerous results showed that
the FFHE based models represents a step forward compared to the NR based models. So, the proposed models may
be very useful at the planning stage of the power system. Therefore, the proposed FFHE based models offers a good
alternative to the NR based models when promising initial guesses are available.

In this paper, no sophisticated technique is used during implementation of FFHE based models, therefore, possi-
bility of reducing runtime further is still large via parallel computing, code optimization etc.

A. Entries of Coefficient matrix and Known Vector
The entries of coefficient matrix [ASC ] are as follows:
�ik = GikCire + BikCiim ; k ≠ i (37)

�ik = GikCiim − BikCire ; k ≠ i (38)

�ii = GiiCire + BiiCiim +
N
∑

k=1

(

GikCkre − BikCkim
) (39)

�ii = GiiCiim − BiiCire +
N
∑

k=1

(

GikCkim + BikCkre
) (40)

�★ii = −GiiCiim + BiiCire +
N
∑

k=1

(

GikCkim + BikCkre
) (41)
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�★ii = GiiCire + BiiCiim +
N
∑

k=1

(

BikCkim − GikCkre
) (42)

The entries of known vector [BSC ] are as follows:
Γ = �n1(V SP

 − C ) (43)

Γ =
�n1
2

[

2P −ℜ
{

C

N
∑

k=1
Y ∗kC

∗
k

}

]

−ℜ

[ N
∑

k=1

n−1
∑

d=1
Y ∗kV

∗
 [d]Vk[n − d]

]

(44)

Γ =
�n1
2
[

(V SP
 )2 − CC

∗

]

− 1
2

n−1
∑

d=1
V[d]V ∗ [n − d] (45)

Γ = �n1

[

S∗ − C
∗


N
∑

k=1
YkCk

]

−
N
∑

k=1

n−1
∑

d=1
YkV

∗
 [d]Vk[n − d] (46)

ΓSCi = �n1

[

S∗i − C
∗
i

N
∑

k=1
YikCk − C∗i DSE

]

−
N
∑

k=1

n−1
∑

d=1
YikV

∗
i [d]Vk[n − d] −

n−1
∑

d=1
V ∗i [d]ISE[n − d] (47)

ΓSCm = �n1

[

S∗m − C
∗
m

N
∑

k=1
YmkCk + C∗mDSE

]

−
N
∑

k=1

n−1
∑

d=1
YmkV

∗
m [d]Vk[n − d] +

n−1
∑

d=1
V ∗m [d]ISE[n − d] (48)

ΓSCPBE = −�n1ℜ
[

(Cm − Ci)D∗SE
]

−ℜ

[ n−1
∑

d=1

(

Vm[d]I∗SE[n − d] − Vi[d]I
∗
SE[n − d]

)

]

(49)

ΓSCM1 = �n1
[

P SPim −ℜ(CiD∗SE)
]

−ℜ

[ n−1
∑

d=1
Vi[d]I∗SE[n − d]

]

(50)

ΓSCM2 = �n1
[

QSPim −ℑ(CiD∗SE)
]

−ℑ

[ n−1
∑

d=1
Vi[d]I∗SE[n − d]

]

(51)

ΓSCM3 = �n1
[

QSPSE −ℑ
{

(Cm − Ci)D∗SE
}]

−ℑ

[ n−1
∑

d=1

{

Vm[d]I∗SE[n − d] − Vi[d]I
∗
SE[n − d]

}

]

(52)

ΓSCM4 can be calculated using (45) by replacing subscript  by i. As discussed earlier, FSE(�) and |ISE(�)| are the
inverse and magnitude of ISE(�), so, the general recurrence relationship between these can be expressed as given in
(53) and (54).

FSE[n] =
−1
DSE

n−1
∑

d=0
FSE[d]ISE[n − d] (53)
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|

|

|

ISE[n]
|

|

|

= 1
2||
|

DSE
|

|

|

{ n
∑

d=0
ISE[d]I∗SE[n − d] −

n−1
∑

d=1

|

|

|

ISE[d]
|

|

|

|

|

|

ISE[n − d]
|

|

|

}

(54)

ΓSCM5 = �n1

[

V SP
SE −ℑ

{

(Cm − Ci)|DSE|

DSE

}]

+ℑ
[

(Cm − Ci)
2DSE|DSE|

n−1
∑

d=1

{

|ISE[d]||ISE[n−d]|−ISE[d]I∗SE[n−d]
}]

+ℑ
[

(Cm − Ci)|DSE|

D2SE

n−1
∑

d=1
FSE[d]ISE[n − d]

]

−ℑ
[ n−1
∑

d

d
∑

l

{

Vm[l]FSE[d − l]|ISE[n − d]|

− Vi[l]FSE[d − l]|ISE[n − d]|
}]

(55)

ΓSCM6 = �n1

[

XSP
eq(SE) −ℑ

{

Cm − Ci
DSE

}

]

−ℑ

[ n−1
∑

d=1

{

Vm[d]FSE[n − d] − Vi[d]FSE[n − d]
}

]

(56)

The entries of known vector [BIP ] are as follows:

ΓIPi = �n1

[

S∗i − C
∗
i

N
∑

k=1
YikCk − C∗i (DSE1 +DSE2)

]

−
n−1
∑

d=1

{

V ∗i [d]ISE1[n − d] + V
∗
i [d]ISE2[n − d]

}

−
N
∑

k=1

n−1
∑

d=1
YikV

∗
i [d]Vk[n − d] (57)

ΓIPm = �n1

[

S∗m + C
∗
mDSE1 − C∗m

N
∑

k=1
YmkCk

]

−
N
∑

k=1

n−1
∑

d=1
YmkV

∗
m [d]Vk[n − d] +

n−1
∑

d=1
V ∗m [d]ISE1[n − d] (58)

ΓIPt = �n1

[

S∗t + C
∗
t DSE2 − C∗t

N
∑

k=1
YtkCk

]

−
N
∑

k=1

n−1
∑

d=1
YtkV

∗
t [d]Vk[n − d] +

n−1
∑

d=1
V ∗t [d]ISE2[n − d] (59)

ΓIPPBE = −�n1ℜ
[

(Cm − Ci)D∗SE1 + (Ct − Ci)D
∗
SE2

]

−ℜ

[ n−1
∑

d=1

(

Vm[d]I∗SE1[n − d] − Vi[d]I
∗
SE1[n − d]

+ Vt[d]I∗SE2[n − d] − Vi[d]I
∗
SE2[n − d]

)

]

(60)
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