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Abstract—This paper considers joint device activity detection
and channel estimation in Internet of Things (IoT) networks,
where a large number of IoT devices exist but merely a random
subset of them become active for short-packet transmission at
each time slot. In particular, to improve the detection perfor-
mance, we propose to leverage the temporal correlation in user
activity, i.e., a device active at the previous time slot is more
likely to be still active at the current time slot. Despite the
appealing temporal correlation feature, it is challenging to unveil
the connection between the estimated activity pattern for the
previous time slot (which may be imperfect) and the true activity
pattern at the current time slot due to the unknown estimation
error. In this paper, we manage to tackle this challenge under the
framework of approximate message passing (AMP). Specifically,
thanks to the state evolution, the correlation between the activity
pattern estimated by AMP at the previous time slot and the real
activity pattern at the previous and current time slot is quantified
explicitly. Based on the well-defined temporal correlation, we
further manage to embed this useful SI into the design of
the minimum mean-squared error (MMSE) denoisers and log-
likelihood ratio (LLR) test based activity detectors under the
AMP framework. Theoretical comparison between the SI-aided
AMP algorithm and its counterpart without utilizing temporal
correlation is provided. Moreover, numerical results are given
which show the significant gain in activity detection accuracy
brought by the SI-aided algorithm.

I. INTRODUCTION

A typical massive Internet of Things (IoT) connectivity

system consists of a large number of low-cost devices, each

of which stays in the silence mode for a long period to save

the energy and becomes active merely when triggered by the

unusual events. Under such a setting, one key challenge lies

in how to jointly identify the randomly active IoT devices

and estimate their channels in a fast and accurate manner [1].

Recently, it was shown that the above job can be accomplished

by utilizing the compressed sensing technique thanks to the

sparse user activity [2]–[7]. In particular, under the framework

of multiple measurement vector (MMV) based approximate

message passing (AMP) [8], [9], it has been shown in [2] that

the activity detection error probability decreases significantly

with the number of antennas at the base station (BS). Such

an exciting result arises from reaping the spatial correlation

in user activity: if one device is active for one antenna, it is

also active for all the other antennas. However, this theoretical

performance gain is achieved at the cost of high computational

complexity in practice: in an IoT system with a large number

of devices and BS antennas, the dimension of the data to be

processed is tremendous. A nature question is: if only a small

number of antennas are utilized to reduce the computational

complexity, is it still possible to achieve high-quality device

activity detection and channel estimation?

This paper provides an affirm answer to the above question.

The core is to utilize the temporal correlation in user activity

to compensate for the spatial correlation gain of the MMV-

based AMP algorithm. In practice, temporally-correlated user

activity may come from the fact that if an abnormal event is

detected by some sensor at a moment, then this device is more

likely to be still activated by this event in the near future. To

fully take advantage of this temporal correlation, this paper

aims to design a side information (SI) aided AMP framework.

Note that at each time slot, the available information at

the BS is the imperfect device activity pattern estimated at the

previous time slot, whose connection to the real device activity

pattern at the previous or current time slot is unclear in general

due to the unknown estimation error. As a result, despite the

existence of temporal correlation in user activity, it is a chal-

lenging task to utilize this as SI to improve the performance

of activity detection. In this work, we point out that under the

framework of AMP, the correlation between the device activity

pattern estimated at the previous time slot and the real one at

the current time slot can be explicitly quantified thanks to the

state evolution. Based on this correlation, we further manage

to design the minimum mean-squared error (MMSE) denoisers

and log-likelihood ratio (LLR) based detectors in AMP with

SI taken into consideration. The impact of using SI in AMP

is illustrated both theoretically and numerically.

In the literature, temporal correlation has been also uti-

lized in [10], [11] to design the AMP algorithm. However,

different from [10] that considers a Turbo extension of the

AMP algorithm [12] based on the idea of factor graph, our

approach provides a framework to incorporate SI into the

MMV-AMP algorithm without needing to craft the graph

model for each new signal. Note that [10] merely works for

the single measurement vector (SMV) case, i.e., the BS has a

single antenna. More importantly, even for the special case of

the SMV problem, our approach can be shown to be Bayes-

optimal, thus yielding improved detection performance. More-

over, compared with [11] whose emphasize is on estimating

the sparse channels, our paper places more focus on device
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activity detection. As a result, dedicated activity detectors are

proposed based on the SI and the LLR test.

II. SYSTEM MODEL

Baseband Model: This paper considers the uplink com-

munication in a massive IoT connectivity system consisting

of one BS equipped with M antennas and N single-antenna

IoT devices. We assume quasi-static block-fading channels, in

which all user channels remain approximately constant in each

coherence block, but vary independently from block to block.

Let J denote the number of consecutive coherence blocks con-

sidered in this work. At coherence block j, the channel from

device n to the BS is denoted by h(j)
n ∈ CM×1, j = 1, . . . , J ,

n = 1, . . . , N . It is assumed that the user channels follow the

independent and identically distributed (i.i.d.) Rayleigh fading

channel model, i.e., h(j)
n ∈ CN (0, γnI), ∀j, n, where γn is

the path loss of device n. Note that h(j)
n ’s are independent

over n and j.

Due to the sporadic data traffic in IoT networks, only a

small set of devices become active in each coherence block.

We define the user activity indicator functions as follows:

δ(j)n =

{

1, if user n is active at coherence block j,

0, otherwise,
∀j, n,

(1)

so that δ
(j)
n is a Bernoulli random variable with

Pr(δ(j)n = 1) = λ, Pr(δ(j)n = 0) = 1− λ, ∀n, j. (2)

In this work, we consider the grant-free random access

scheme [1] in our interested IoT system, where at the begin-

ning of each coherence block, the active devices transmit their

pilot sequences to the BS to perform joint device activity de-

tection and channel estimation. Let sn = [sn,1, . . . , sn,L]
T ∈

CL×1 denote the pilot sequence with length L assigned to

device n, ∀n. Similar to [1]–[3], it is assumed that all the

entries in sn are generated from i.i.d. complex Gaussian

distribution with zero mean and variance 1/L, ∀n. Then, the

BS received signal at coherence block j is expressed as

Y (j) =

N
∑

n=1

δ(j)n h(j)
n sn +Z(j) = SX(j) +Z(j), ∀j, (3)

where Z(j) ∈ CL×M ∈ CN (0, σ2
zI) is the additive white

Gaussian noise (AWGN) of the BS at coherence block j,

S = [s1, . . . , sN ] ∈ CL×N , and X(j) = [x
(j)
1 , . . . ,x

(j)
N ]T ∈

CN×M with x
(j)
n = δ

(j)
n h(j)

n denoting the effective channel of

device n at coherence block j, ∀j, n. At each coherence block

j, the job of the BS is to jointly detect the active devices

and estimate their channels by estimating X(j) based on its

received signal Y (j) and its knowledge of the user pilots S.

Temporally-Correlated User Activity Model: This paper

considers the case of temporally-correlated user activity, which

is modeled by a Markov chain with the following transition

probabilities:

Pr(δ(j)n = 1 | δ(j−1)
n = 1) = α,

Pr(δ(j)n = 0 | δ(j−1)
n = 1) = 1− α,

Pr(δ(j)n = 1 | δ(j−1)
n = 0) = β,

Pr(δ(j)n = 0 | δ(j−1)
n = 0) = 1− β,

∀j, n. (4)

In other words, if user n is active in coherence block j − 1,

then with probability α, it is still active in coherence block

j; if user n is inactive in coherence block j − 1, then with

probability β, it is active in coherence block j. Given the above

temporal correlation, over two consecutive coherence blocks

j − 1 and j, we have the following four cases to model each

device’s activity:

Case 1: An user is active for both coherence blocks j − 1
and j, i.e., x

(j−1)
n = h(j−1)

n and x
(j)
n = h(j)

n , with probability

αλ.

Case 2: An user is active at coherence block j − 1, but

becomes inactive at coherence block j, i.e., x
(j−1)
n = h(j−1)

n

and x
(j)
n = 0, with probability (1− α)λ.

Case 3: An user is inactive at coherence block j − 1, but

becomes active at coherence block j, i.e., x
(j−1)
n = 0 and

x
(j)
n = h(j)

n , with probability β(1 − λ).
Case 4: An user is inactive for both coherence blocks j− 1

and j, i.e., x
(j−1)
n = 0 and x

(j)
n = 0, with probability (1 −

β)(1 − λ).

Similar to [10], [11], we assume that each Markov chain

operates in steady-state such that the probability that a device

becomes active is λ over all the J coherence blocks, i.e., (2).

Under this condition, the relation between α and β is given

by αλ+β(1−λ) = λ. Due to this relation, the Markov chains

are completely characterized by two parameters λ and α.

Under the temporal correlation modeled by (4), we should

not detect the user activity over consecutive coherence blocks

in an independent manner as in [2], [3], since the user

activity at the previous coherence block can provide SI for

improving the estimation accuracy at the current coherence

block. However, at each coherence block j, only an imperfect

estimation of the device activity at coherence block j − 1,

denoted by δ̂
(j−1)
n , ∀n, is available at the BS. Despite the

temporal correlation shown in (4), it is non-trivial to model

a precise statistical relation between δ
(j)
n and δ̂

(j−1)
n , ∀n,

since the connection between δ
(j−1)
n and δ̂

(j−1)
n , ∀n, is in

general unknown. Without such a relation characterization,

it is possible that the imperfect estimation at the previous

coherence block is not properly utilized, which may even

degrade the estimation performance at the current coherence

block. This motivates us to study a systematic approach that

is able to always leverage SI to improve the performance of

activity detection and channel estimation.

Note that in the case without using SI, [2] and [3] showed

that the estimation of X(j) based on (3) is a compressed

sensing problem, since many rows in X(j) are zero vectors

due to the sparse user activity. Moreover, the MMV-AMP



algorithm has been used to estimate the row-sparse matrix

X(j) at each coherence block. In the rest of this paper,

we study connection of SI to the current estimation and the

method to embed SI into the AMP algorithm design.

III. LEVERAGING SI IN AMP

This paper adopts the framework proposed in [11] to

integrate SI into the MMV-AMP algorithm. At coherence

block j, the SI-aided MMV-AMP algorithm will generate an

estimation of X(j), denoted by X̂
(j)

= [x̂
(j)
1 , . . . , x̂

(j)
N ]T ,

based on the signal received at the current time slot (3) and

the estimation made by SI-aided MMV-AMP algorithm at

the previous coherence block, i.e., X̂
(j−1)

. Specifically, at

coherence block j, the SI-aided MMV-AMP algorithm starts

from X
(j)
0 = 0 and R

(j)
0 = Y (j) and iterates as follows:

x
(j)
n,t+1 = η

(j)
n,t

(

x
(j)
n,t +

(

R
(j)
t

)H

sn, fn,j

(

x̂(j−1)
n

)

)

, (5)

R
(j)
t+1=Y

(j)− SX
(j)
t+1

+
N

L
R

(j)
t

〈

η
(j)
n,t

′

(

x
(j)
n,t+

(

R
(j)
t

)H

sn,fn,j

(

x̂(j−1)
n

)

)〉

. (6)

In (5) and (6), t = 0, 1, . . . denotes the index of algorithm

iteration, X
(j)
t = [x

(j)
1,t , . . . ,x

(j)
N,t]

T denotes the estimation of

X(j) at the t-th iteration of the AMP algorithm, fn,j(x̂
(j−1)
n )

is a function of x̂(j−1)
n which is used as the SI for device n,

R
(j)
t is the corresponding residual at iteration t, η

(j)
n,t(·, ⋄) ∈

CM×1 is the denoising function for device n, η
(j)
n,t

′

(·, ⋄) is

the first-order derivative of η
(j)
n,t(·, ⋄) with respect to the first

variable ·, and 〈·〉 is the averaging operation over all entries of

η
(j)
n,t

′

(·, ⋄). Let X(j)
∞

= [x
(j)
1,∞, . . . ,x

(j)
N,∞]T and R(j)

∞
denote

the estimation of x
(j)
n and the corresponding residual after

the convergence of the SI-aided MMV-AMP algorithm at

coherence block j. Then, we have x̂
(j−1)
n = x

(j−1)
n,∞ , ∀j, n.

Different from the conventional MMV-AMP algorithm [8],

[9] used in [2], [3], the estimation at the previous coherence

block is utilized for denoiser design as given by (5) under our

considered SI-aided MMV-AMP algorithm. To implement this

algorithm in IoT systems with temporally-correlated activity,

in the following, we introduce what SI should be extracted

from previous estimation, i.e., the design of fn,j(x̂
(j−1)
n ), and

how to design the denoisers based on this SI.

A. Identifying SI from State Evolution

According to [11], with the SI-aided MMV-AMP algorithm

shown in (5) and (6), there exists the state evolution in

the asymptotic regime where N,L → ∞ with fixed N/L.

Specifically, at each iteration t of AMP to estimate X(j),

x
(j)
n,t +

(

R
(j)
t

)H

sn is statistically equivalent to:

x̃
(j)
n,t = x

(j)
n +

(

Σ
(j)
t

)
1
2

v(j)n , ∀n, j, (7)

where v
(j)
n ∈ C

M×1 ∼ CN (0, I) is the noise independent of

x
(j)
n and Σ

(j)
t ∈ CM×M is the state. Define a set of random

vectors X(j)
n ∈ CM×1, V (j)

n ∈ CM×1, and X̂
(j−1)

n ∈ CM×1

which capture the distribution of x
(j)
n , v

(j)
n , and x̂(j−1)

n ,

respectively, ∀j, n. The state evolution is given by:

Σ
(j)
t+1 = σ2

zI+

N

L
E

[

(

η
(j)
n,t

(

X(j)
n +

(

Σ
(j)
t

)
1
2

V (j)
n , fn,j

(

X̂
(j−1)

n

)

)

−X(j)
n

)H

(

η
(j)
n,t

(

X(j)
n +

(

Σ
(j)
t

)
1
2

V (j)
n , fn,j

(

X̂
(j−1)

n

)

)

−X(j)
n

)]

.

(8)

Note that at coherence block j, we already have the estimation

of X(j−1), i.e., x̂(j−1)
n = x

(j−1)
n,∞ , ∀n. According to (7),

x̂(j−1)
n +

(

R(j−1)
∞

)H

sn is statistically equivalent to:

x̃(j−1)
n,∞ = x(j−1)

n +
(

Σ
(j−1)
∞

)
1
2

v(j−1)
n , ∀n, j, (9)

where Σ
(j−1)
∞

denotes the state of the AMP algorithm (8) after

it converges at coherence block j − 1. It is worth noting that

(9) reveals the correlation between x̃(j−1)
n,∞ and x

(j−1)
n , while

(4) reveals the correlation between x
(j−1)
n and x

(j)
n . Thus, the

correlation between x̃(j−1)
n,∞ and x

(j)
n can be built for all the

devices. This motivates us to adopt the following SI to design

the denoisers in the AMP algorithm:

fn,j

(

x̂(j−1)
n

)

= x̂(j−1)
n +

(

R(j−1)
∞

)H

sn, ∀n, j. (10)

The next question is how to utilize the correlation between

x̂(j−1)
n +

(

R(j−1)
∞

)H

sn’s and x
(j)
n ’s to design the denoisers (5).

B. Leveraging SI for MMSE Denoiser Design

In this paper, we adopt the Baysian approach to design

the MMSE denoisers η
(j)
n,t (·, ⋄)’s for signal recovery at each

coherence block. At the (t+1)-th iteration of the AMP algo-

rithm at coherence block j, the available information includes

x
(j)
n,t +

(

R
(j)
t

)H

sn from the current coherence block whose

distribution is modeled by (7) and the SI from the previous

coherence block x̂(j−1)
n +

(

R(j−1)
∞

)H

sn whose distribution is

modeled by (9). Based on the above information, the MMSE

denoisers can be expressed as

E[X
(j)
n |X(j)

n +
(

Σ
(j)
t

)
1
2

V (j)
n = x̃

(j)
n,t,

X(j−1)
n +

(

Σ
(j−1)
∞

)
1
2

V (j−1)
n = x̃(j−1)

n,∞ ], ∀n, j. (11)

Based on the similar approach used in [2, Appendix B],

it can be shown that with the above MMSE denoisers, the

matrix Σ
(j)
t generated by the state evolution (8) always stays

as a scaled version of the identity matrix, i.e.,

Σ
(j)
t =

(

τ
(j)
t

)2

I, ∀t, j. (12)

With this result, the MMSE denoisers (11) can be explicitly

characterized by the following theorem.



-1.5 -1 -0.5 0 0.5 1 1.5

10-5

-1.5

-1

-0.5

0

0.5

1

1.5
10-5

Fig. 1. Comparison of MMSE denoisers with/without using SI.

Theorem 1: Consider the SI-aided MMV-AMP algorithm

given by (5) and (6) under the temporal correlation model for

user activity shown in (4). Define

∆
(j)
n,t =

(

τ
(j)
t

)

−2

−

(

(

τ
(j)
t

)2

+ γn

)

−1

, ∀n, t, j. (13)

Under the asymptotic regime where N,L → ∞ with fixed

N/L, the MMSE denoisers (11) at coherence block j with

the SI given in (10) are expressed as:

η
(j)
t,n

(

x̃
(j)
n,t, x̃

(j−1)
n,∞

)

=

γn

(

γn +
(

τ
(j)
t

)2
)

−1

x̃
(j)
n,t

1 + 1−λ
λ

µ
(j)
n,t ×

β+(1−β)µ
(j−1)
n,∞

α+(1−α)µ
(j−1)
n,∞

, ∀n, t, j,

(14)

where

µ
(j)
n,t =







(

τ
(j)
t

)2

+ γn
(

τ
(j)
t

)2







M

exp

(

−∆
(j)
n,t

∥

∥

∥x̃
(j)
n,t

∥

∥

∥

2
)

, (15)

and (τ
(j−1)
∞ )2 can be obtained from the state evolution (8) and

(12) after AMP converges in coherence block j − 1.

Proof: Please refer to Appendix A.

To gain insights from Theorem 1, we consider some special

cases. First, if user activity is independent over different

coherence blocks, i.e., α = β = λ such that Pr(δ
(j)
n |

δ
(j−1)
n ) = Pr(δ

(j)
n ), ∀n, j, the denoisers (14) will reduce to

η
(j)
n,t

(

x̃
(j)
n,t, x̃

(j−1)
n,∞

)

=
γn

(

γn+(τ
(j)
t )2

)

−1

x̃
(j)
n,t

1 + 1−λ
λ

µ
(j)
n,t

, ∀n, j, (16)

which are the MMSE denoisers proposed in [2] [3] without

taking SI into account. This is because if there is no temporal

correlation in user activity, SI will have no effect on the MMSE

denoiser design. Second, if (τ
(j−1)
∞ )2 → ∞, it can be shown

from (15) that µ
(j−1)
n,∞ = 1, ∀n. Then, the MMSE denoisers

shown in (14) will also reduce to the MMSE denoisers (16)

proposed in [2] [3] without taking SI into account. This is

because according to (9) and (12), (τ
(j−1)
∞ )2 can be viewed

as the equivalent noise power for estimating X(j−1) by AMP.
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Fig. 2. Comparison of threshold for activity detectors with/without using SI.

If this noise power is infinite but the power of each row in

X(j−1) is finite, then the estimation does not provide any

useful information for the estimation in the next block, despite

the existence of temporal correlation in activity.

Next, we provide a numerical example to compare the

denoisers using SI, i.e., (14), and without using SI, i,e., (16).

In this example, we set M = 1, λ = 0.1, α = 0.91, β = 0.01,

τ (j) = τ (j−1) = 2×10−6, and γ = γ = 1×10−8. Fig. 1 shows

the SI-aided MMSE denoisers when |x̃(j−1)| = 1× 10−3 and

|x̃(j−1)| = 1 × 10−7 as well as the denoiser without using

SI. Compared to the denoiser without using SI, it is observed

that when |x̃(j−1)| is larger/smaller, i.e., the user tends to be

detected as an active/inactive device at the previous block,

the SI-aided MMSE denoiser estimates x(j) as zero over a

smaller/larger range of x̃(j), i.e., the user tends to be detected

as an active/inactive device at the current time slot.

C. Leveraging SI for Activity Detector Design

After the convergence of the SI-aided MMV-AMP

algorithm, the LLR test is applied to conduct device activity

detection. For the hypothesis detection problem H0: user is

inactive; H1: user is active, the LLR-based detector is

LLR
(j)
n,t = log

(

p(x̃
(j)
n,t, x̃

(j−1)
n,∞ | x

(j)
n 6= 0)

p(x̃
(j)
n,t, x̃

(j−1)
n,∞ | x

(j)
n = 0)

)

H1

≷
H0

l, (17)

where l is a common threshold of LLR for all the users over

all the coherence blocks.

Theorem 2: Consider the SI-aided MMV-AMP algorithm

given by (5) and (6) under the temporal correlation model for

user activity shown in (4). Under the asymptotic regime where

N,L → ∞ with fixed N/L, the LLR-based decision rule (17)

can be expressed as:

‖x̃
(j)
n,t‖

2
H1

≷
H0

l
(j)
n,t ,

1

∆
(j)
n,t

(

l+M log

(

(τ
(j)
t )2+γn

(τ
(j)
t )2

)

+

log

(

β + (1 − β)µ
(j−1)
n,∞

α+ (1 − α)µ
(j−1)
n,∞

))

, ∀n, t, j,

(18)

where ∆
(j)
n,t and µ

(j−1)
n,∞ are given by (13) and (15), respectively.

Proof: Please refer to Appendix B.



Theorem 2 states that a device is detected to be active if

‖x̃
(j)
n,t‖

2 is larger than a threshold, which depends on the SI

from the previous block. Similar to the MMSE denoisers in

Theorem 1, if α = β = λ, or if τ
(j−1)
∞ → ∞, then the LLR-

based detectors (18) will reduce to:

‖x̃
(j)
n,t‖

2
H1

≷
H0

l +M log

(

(

τ
(j)
t

)2
+γn

(

τ
(j)
t

)2

)

∆
(j)
n,t

, ∀n, t, j, (19)

which are the detectors without using SI [3].

Next, we provide a numerical example to compare the LLR-

based activity detectors using SI, i.e., (18), and those without

using SI, i.e., (19). The setup is the same as that for Fig. 1.

Moreover, we set l = 0. Fig. 2 shows the threshold in the

activity detectors, i.e., l(j), versus different values of |x̃(j−1)|,
which is the SI from the previous time slot. Compared to

the case without using SI, it is observed that if |x̃(j−1)|
is larger/smaller, i.e., the user tends to be detected as an

active/inactive user previously, the threshold in the SI-aided

detectors (18) becomes smaller/larger, i.e., this user tends to

be detected as an active/inactive user at the current time slot.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to evaluate the

performance of the proposed SI-aided MMV-AMP algorithm

in massive IoT connectivity systems. We assume that there are

N = 4000 devices randomly located in a cell of radius R =
1000m. The path loss model is −128.1 − 36.7 log10(dn) in

dB, where dn in km denotes the distance from device n to the

BS. We consider the communication over J = 10 coherence

blocks, while at each time slot, we have λ = 0.1, α = 0.46,

and β = 0.06. Next, the user transmit power is 23 dBm. Last,

the power spectrum density of the noise is -169 dBm/Hz, while

the bandwidth of the channel is assumed to be 10 MHz.

First, we consider the case when the BS is equipped with

one antenna, i.e., M = 1. In this case, we call our proposed

algorithm as SMV-AMP with SI. In Fig. 3, we show the

tradeoff between the probabilities of false alarm PFA and

missed detection PMD , which is obtained by varying the value

of l in the activity detectors. In this numerical example, we

set L = 600. Moreover, we consider the Dynamic Compressed

Sensing via Approximate Message Passing (DCS-AMP) algo-

rithm proposed in [10] as the benchmark scheme. The DCS-

AMP is implemented in filtering mode to match our setting.

It is observed from Fig. 3 that under our proposed SMV-

AMP algorithm with SI, the activity detection performance

improves over time. This shows that the proposed algorithm

is capable of intelligently exploiting the SI obtained in the

previous time slots for improving the detection performance.

Moreover, at time slot 5, our proposed scheme can achieve

much lower detection error probability than the conventional

AMP algorithm without utilizing SI. It is also observed

that the proposed SI-aided SMV-AMP algorithm outperforms

the DCS-AMP algorithm significantly at time slots 3 and 5

because our proposed scheme is built on the true statistical
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Fig. 3. Activity detection under SMV-AMP algorithm with SI.
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Fig. 4. Activity detection under MMV-AMP algorithm with SI.

correlation between the estimated activity in the last time slot

and true activity in the current time slot.

Next, we consider the case when the BS is equipped

with multiple antennas. In this case, we term our proposed

algorithm as MMV-AMP with SI. Fig. 4 shows the tradeoff

between the false alarm probability PFA and missed detection

probability PMD when M = 2 and L = 500. It is observed

that the proposed algorithm with SI achieves significant per-

formance gain over the one without using SI; moreover, the

performance improves as the time slot index increases. These

results in Fig. 3 and Fig. 4 show that by smartly leveraging SI,

the proposed algorithm is able to achieve satisfactory detection

performance with only a small number of BS antennas (e.g.,

even 1 or 2), thus being a promising cost-effective solution

for future massive IoT systems.



V. CONCLUSION

In this paper, we utilized the temporal correlation in user

activity for device activity detection in IoT systems. The main

motivation is to achieve satisfactory detection performance

with a smaller number of BS antennas and thus lower compu-

tational complexity. Along this line, we designed a framework

of SI-aided MMV-AMP, where the estimation at the previous

time slot was leveraged as SI to devise better MMSE denoisers

and activity detectors at the current time slot.

APPENDIX A

PROOF OF THEOREM1

In this proof, for simplicity, we omit the subscripts t and n
in the all the notations. Then, in the MMSE denoisers (11),

the conditional expectation can be given by

E[X(j) | x̃(j), x̃(j−1)
∞

]

(a)
=E[X(j) | x̃(j), x̃(j−1)

∞
, Case 1]p

(

Case 1 | x̃(j), x̃(j−1)
∞

)

+ E[X(j) | x̃(j), x̃(j−1)
∞

, Case 3]p
(

Case 3 | x̃(j), x̃(j−1)
∞

)

,

(20)

where (a) is because X(j) = 0 for Case 2 and Case 4

according to Section II. In the following, we focus on Case 1

and Case 3 to characterize (20).

Case 1: According to Section II, under Case 1, it follows

that x
(j−1)
n = h(j−1)

n and x
(j)
n = h(j)

n . Based on (7), (9),

and (12), we have x̃(j) = h(j) + τ (j)v(j), x̃(j−1)
∞

= h(j−1) +

τ
(j−1)
∞ v(j−1). Thus, E[X(j) | x̃(j), x̃(j−1), Case 1] in (20)

can be given by

E[h(j) |x̃(j) = h(j) + τ (j)v(j),

x̃(j−1)
∞

= h(j−1) + τ (j−1)
∞

v(j−1)].
(21)

Because h(j), h(j−1), v(j), and v(j−1) are independent with

each other, we have

E[h(j) | x̃(j) = h(j) + τ (j)v(j),

x̃
(j−1)
∞

= h(j−1) + τ (j−1)
∞

v(j−1)]

=E[h(j) | x̃(j) = h(j) + τ (j)v(j)] (22)

=γ

(

γ +
(

τ (j)
)2
)

−1

x̃(j). (23)

Next, we calculate p
(

Case 1 | x̃(j), x̃(j−1)
∞

)

in (20) as

follows

p
(

Case 1 | x̃(j), x̃(j−1)
∞

)

=
p(x̃(j), x̃(j−1)

∞
, Case 1)

p(x̃(j), x̃(j−1)
∞

)
(24)

=
P (Case 1)p(x̃(j), x̃(j−1)

∞
| Case 1)

p(x̃(j), x̃(j−1)
∞

)
(25)

=

αλψ
γ+(τ (j))

2(x̃(j))ψ
γ+

(

τ
(j−1)
∞

)2(x̃(j−1)
∞

)

p(x̃(j), x̃(j−1)
∞

)
, (26)

where

ψσ2(x) =
1

π |(σ2I)|
exp

(

−
xHx

σ2

)

, (27)

is the power density function (pdf) of a complex Gaussian

random vector with zero mean and covariance σ2I . We will

derive the joint pdf p(x̃(j), x̃(j−1)
∞

) in (26) later.

Case 3: Similar to (23) in Case 1, under Case 3, it can be

shown that

E[X(j) | x̃(j), x̃(j−1)
∞

, Case 3]

=γ

(

γ +
(

τ (j)
)2
)

−1

x̃(j). (28)

Moreover, similar to (26), it follows that

p
(

Case 3 | x̃(j), x̃(j−1)
∞

)

=
p(x̃(j), x̃(j−1)

∞
, Case 3)

p(x̃(j), x̃(j−1)
∞

)
(29)

=

β(1 − λ)ψ
γ+(τ (j))

2(x̃(j))ψ(

τ
(j−1)
∞

)2(x̃(j−1)
∞

)

p(x̃(j), x̃(j−1)
∞

)
. (30)

To derive p
(

Case 1 | x̃(j), x̃(j−1)
∞

)

in (26) and

p
(

Case 3 | x̃(j), x̃(j−1)
)

in (30), the last step is to char-

acterize p(x̃(j), x̃(j−1)
∞

). Similar to p(x̃(j), x̃(j−1)
∞

, Case 1)
shown in (26) and p(x̃(j), x̃(j−1)

∞
, Case 3) shown in (30), it

can be shown that

p(x̃(j), x̃(j−1)
∞

, Case 2)

=(1 − α)λψ(τ (j))
2(x̃(j))ψ

γ+
(

τ
(j−1)
∞

)2(x̃(j−1)
∞

), (31)

p(x̃(j), x̃(j−1)
∞

, Case 4)

=(1 − β)(1− λ)ψ(τ (j))2(x̃
(j))ψ(

τ
(j−1)
∞

)2(x̃(j−1)
∞

). (32)

Thus, it follows that

p(x̃(j), x̃(j−1))

=p(x̃(j), x̃(j−1), Case 1) + p(x̃(j), x̃(j−1), Case 2)

+ p(x̃(j), x̃(j−1), Case 3) + p(x̃(j), x̃(j−1), Case 4)
(33)

=αλψ
γ+(τ (j))2(x̃

(j))ψ
γ+

(

τ
(j−1)
∞

)2(x̃(j−1)
∞

)

+ (1− α)λψ(τ (j))
2(x̃(j))ψ

γ+
(

τ
(j−1)
∞

)2(x̃(j−1)
∞

)

+ β(1 − λ)ψ
γ+(τ (j))

2(x̃(j))ψ(

τ
(j−1)
∞

)2(x̃(j−1)
∞

)

+ (1− β)(1 − λ)ψ(τ (j))
2(x̃(j))ψ(

τ
(j−1)
∞

)2(x̃(j−1)
∞

). (34)

By plugging (23), (26), (28), (30), and (34) into (20), it can

be shown that the MMSE denoisers by taking SI into account

are expressed by (14). Theorem 1 is thus proved.



APPENDIX B

PROOF OF THEOREM2

It can be shown that

p(x̃
(j)
n,t, x̃

(j−1)
n,∞ | x(j)

n 6= 0)

=
p(x̃

(j)
n,t, x̃

(j−1)
n,∞ , Case 1) + p(x̃

(j)
n,t, x̃

(j−1)
n,∞ , Case 3)

p(x
(j)
n 6= 0)

(35)

=
p(x̃

(j)
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(j−1)
n,∞ | Case 1)p(Case 1)

p(x
(j)
n 6= 0)

+
p(x̃

(j)
n,t, x̃

(j−1)
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n 6= 0)

(36)

=ψ
γn+(τ

(j)
t )2

(
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(j)
n,t

)

×
(

αψ
γn+(τ

(j−1)
∞ )2

(

x̃(j−1)
n,∞

)

+(1− α)ψ
(τ

(j−1)
∞ )2

(

x̃(j−1)
n,∞

))

,

(37)

where (37) is due to (26) and (30). Similarly, it can be shown

that

p(x̃
(j)
n,t, x̃

(j−1)
n,∞ | x(j)

n = 0) = ψ
(τ

(j)
t )2

(

x̃
(j)
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)

×
(
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(

x̃(j−1)
n,∞

)

+(1− β)ψ
(τ

(j−1)
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(

x̃(j−1)
n,∞

))

.

(38)

Therefore, by taking (37) and (38) into (17), it follows that

LLR
(j)
n,t = log





ψ
γn+(τ

(j))2

t

(

x̃
(j)
n,t

)

ψ
(τ

(j)
t )2

(

x̃
(j)
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)





+ log
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∞
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(
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









. (39)

With (39), it can be shown that the detection rule (17) is

equivalent to (18). Theorem 2 is thus proved.
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