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Abstract: This paper is concerned with robust instability analysis for linear multi-agent dynamical systems
with cyclic structure. This relates to interesting and important periodic oscillation phenomena in biology and
neuronal science, since the nonlinear phenomena often occur when the linearized model around an equilib-
rium point is unstable. We first make a problem setting on the analysis and define the notion of robust in-
stability radius (RIR) as a quantitative measure for maximum allowable stable dynamic perturbation in terms
of the H-infinity norm. After showing lower bounds of the RIR, we derive the exact RIR, which is analytic
and scalable, for first order time-lag agents. Finally, we make a remark on the potential applicability to some
classes of higher order systems.
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1. INTRODUCTION

There are a number of interesting and important
periodic oscillation phenomena in biology such as
Repressilator [2] in synthetic biology, spike-type pe-
riodic signals in neuronal dynamics [3], periodic
pattern generation by Turing instability [8], and so
on. Many of these cases are related to instability of
the linearized model around an equilibrium point,
and it is generally difficult to derive the exact math-
ematical models and reduced order approximate
models are often utilized for the analysis. Hence, ro-
bust instability analysis against dynamic uncertain-
ties is very important to analyze the persistence of
oscillation phenomena theoretically.

Motivated by this, the authors have proposed a
robust instability problem as a new control prob-
lem [5, 6]. It should be emphasized that the robust
instability analysis is similar to but quite different
from the robust stability analysis. Actually, the for-
mer is a strong stabilization problem [11] to find a
minimum norm stable perturbation that stabilizes a
given unstable system when the uncertainty is mod-
eled by a ball measured by the H∞ norm. This
clearly indicates the difficulty of the problem. For
example, the small gain condition in terms of the
L∞ norm provides only a sufficient condition for
the robust instability as seen in e.g., [9, 10]. The rea-
son is as follows. For robust stability analysis, the
system instability can be detected when one of sta-
ble poles reaches the imaginary axis. However, for
the case of robust instability, the system may remain
unstable even if some of unstable poles reach the
imaginary axis. Hence, the infinity norm does not

† Shinji Hara is the presenter of this paper.

work in general for robust instability analysis.
Consequently, our main question here is ”Under

what condition does the infinity-norm work as a mea-
sure even for the robust instability analysis?” There is a
partial answer to the question in [5, 6], where some
exact results on the robust instability radius for lin-
ear systems are shown. Also, the robust instability
margin was investigated by taking into account the
change of the equilibrium point caused by the static
gain change for a class of nonlinear systems, and the
effectiveness of the exact results is confirmed by ap-
plications to FitzHugh-Nagumo model for neuronal
dynamics and Repressilator in synthetic biology.

This paper is concerned with the robust instabil-
ity problem for multi-agent dynamical systems with
cyclic structure. A long-term goal of this type of
research is to establish a new theory for a class of
nonlinear networked systems which covers several
biomolecular systems in synthetic biology [1]. How-
ever, this paper treats only the linear case as an im-
portant fundamental research topic. The main con-
tribution of this paper is a characterization of the
exact value of maximum allowable dynamic pertur-
bation, or the robust instability radius (RIR), for the
persistence of instability for multi-agent dynamical
systems with any number of first order agents. The
result is scalable as well as analytic, and hence we
can handle multi-agent systems with any number
of agents. This is in contrast with the authors’ pre-
vious investigation [5, 6].

The first key for the analysis is to show the equiv-
alence of the classes of heterogeneous and homo-
geneous perturbations in terms of robust instabil-
ity. In other words, we can show that the class of
worst case perturbations includes a subset of homo-
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geneous perturbations. This nice property can make
the problem simpler and yield useful lower bounds
on the RIR. Then, we follow the two-step procedure
of constructing an all-pass perturbation proposed in
[5, 6] to get the exact result for first order time-lag
systems. It should be emphasized that the final RIR
result is the same as the robust stability result in [4]
based on the generalized frequency variable frame-
work [7].

The remainder of this paper is organized as fol-
lows. The problem formulation and the preliminary
analysis are presented in Section 2. Section 3 is de-
voted to the analysis of the RIR for cyclic network
structure with multiplicative uncertainties, where
some lower bounds of the RIR are shown. In Sec-
tion 4, we provide the exact RIR analysis for first
order time-lag systems and remark the possible ex-
tensions. Section 5 summarizes the contributions of
this paper and addresses some future research di-
rections.

We use the following notation. The set of proper
stable real rational functions is denoted by RH∞,
and ‖·‖H∞

represents the H∞ norm. ‖·‖L∞
denotes

the L∞ norm for rational functions. Fℓ(H,A) de-
notes the lower linear fractional transformation of
A by H :

z = Fℓ(H,A)w ⇔

[

z
y

]

= H

[

w
u

]

, u = Ay.

The set of integers 1, . . . , n is denoted by In.

2. ROBUST INSTABILITY FOR
MULTI-AGENT DYNAMICAL

SYSTEMS

2.1. Problem formulation

Consider the multi-agent system with n uncer-
tain dynamic SISO agents described by
[

z
y

]

= H(s)

[

w
u

]

,
w = ∆z,
u = Ay,

, (1)

where z(t), w(t), y(t), u(t) ∈ Rn are signals, A ∈
Rn×n is a constant matrix representing the interac-
tion among the agents. We assume that H(s) has a
special form

H(s) := Ho(s)⊗ In

with a 2×2 transfer function Ho(s). This means that
the multi-agent system is nominally homogeneous,
and it is represented by

G(s) := Fℓ(H(s), A).

∆ represents the stable uncertainties in the agents
which are independent among the agents.

We are interested in the condition under which
the system is robustly unstable against ∆ ∈ ∆ ⊂
RH

n×n
∞

with a bound on the norm ‖∆‖H∞
, where

∆ := {diag(δ1, . . . , δn) : δi ∈ RH∞ }. (2)

Since the perturbed system is a feedback system
consisting of G(s) and ∆, the system is said to be
robustly unstable if the characteristic equation

det(I −∆G(s)) = 0 (3)

has at least one root in the closed right half plane
for all ∆ ∈ ∆ with the norm bound. Clearly, the
robust instability condition is violated when there
exists ∆ ∈ ∆ that stabilizes (3) while satisfying the
norm bound. Following the definition of the Robust
Instability Radius (RIR) in [5,6], the dynamic RIR (or
simply RIR) ρ∗ is defined as the smallest magnitude
of the perturbation that stabilizes the system:

ρ∗ := inf
∆∈∆

{ ‖∆‖H∞
:

det(I −∆(s)G(s)) = 0 ⇒ ℜ(s) < 0 }.
(4)

The problem is to find a method for calculating ρ∗.
Let us introduce three related notions of RIRs to

get the lower/upper bounds of the dynamic RIR.
The dynamic RIR against homogeneous uncertainty
ρh. :

ρh := inf
δ∈RH∞

{ ‖δ‖H∞
:

det(I − δ(s)G(s)) = 0 ⇒ ℜ(s) < 0 }.
(5)

The real/complex parametric RIRs, ρr and ρc:

ρr := inf
∆∈∆r

{ ‖∆‖ :

det(I −∆G(s)) = 0 ⇒ ℜ(s) < 0 },
(6)

ρc := inf
∆∈∆c

{ ‖∆‖ :

det(I −∆G(s)) = 0 ⇒ ℜ(s) < 0 },
(7)

where ∆r and ∆c are the set of n × n real diago-
nal matrices and the set of n × n complex diagonal
matrices, respectively.

2.2. Preliminary analysis

Without loss of generality, let us consider the case
where A is diagonalizable.1 Let the spectral decom-
position of A be given by

A = TΛT−1, Λ = diag(λ1, . . . , λn).

Then condition (3) is equivalent to

det(I − ∆̂(s)Ĝ(s)) = 0, (8)

where

Ĝ(s) := Fℓ(H(s),Λ), ∆̂(s) := T−1∆(s)T,

because G(s) = T Ĝ(s)T−1 holds. Note that

Ĝ(s) := diag(g1(s), . . . , gn(s))

with gi(s) := Fℓ(Ho(s), λi), i ∈ In. Moreover, we

have ∆̂ = ∆ if the perturbation is homogeneous,
i.e. ∆ = δI , if A is normal and T is unitary. These

1When A is not diagonalizable, an infinitesimal perturbation of
A will make it diagonalizable without altering the robust insta-
bility radius due to continuous dependence of the characteristic
roots on A.



special cases in combination with the small gain ar-
gument give the following result.

Proposition 1: Consider the robust instability ra-
dius in (4) for system (1). Suppose G(s) is unstable and
define

ρ̄ := inf
δ∈RH∞

{ ‖δ‖H∞
: 1− δ(s)gi(s) = 0

⇒ ℜ(s) < 0, ∀ i ∈ In }
(9)

̺p := min
i∈In

1/‖gi‖L∞
. (10)

(a) ρ∗ ≤ ρ̄ and ρh = ρ̄.
(b) ̺p ≤ ρ∗ if A is normal, and ̺p ≤ ρh if A is diago-
nalizable.

Proof: Statement (a) follows by noting that ρ̄ is
the robust instability radius with respect to homo-
geneous perturbation ∆ = δI . The former part of
statement (b) is from Inoue et al. [9].

3. CYCLIC NETWORK WITH
MULTIPLICATIVE UNCERTAINTIES

This section provides some lower bounds on the
RIRs for the case of cyclic network structure with
multiplicative uncertainties.

3.1. Equivalence of homogeneous and heteroge-
neous perturbations

Consider a set of uncertain n agents (1 +
δi(s))h(s), i = 1, . . . , n, with cyclic connections. This
is a special case of (1) where G(s) belongs to

Gc := {G(s) = Fℓ(Ho(s)⊗ In, A) |

Ho(s) =

[

0 h(s)
1 h(s)

]

, A =

[

oT −µ
−µIn−1 o

]

}, (11)

where µ ∈ R is a positive scalar representing the
strength of the interaction and o ∈ Rn−1 is a zero
vector. Note that the characteristic equation for the
feedback system of G(s) ∈ Gc and ∆ ∈ ∆ is given
by

1 + µnh(s)n
n
∏

i=1

(1 + δi(s)) = 0. (12)

The following result is instrumental for reducing
the instability analysis of the interconnected system
into that of individual subsystems.

Lemma 1: Let an integer n > 0 and a real number
r > 0 be given and consider the following sets of complex
numbers:
W := { (1 + δ)n : δ ∈ δc },

V := {

n
∏

i=1

(1 + δi) : δi ∈ δc },

δc := {δ ∈ C : |δ| ≤ r }.
Then W = V.

Proof: The inclusion relationship W ⊆ V is obvi-
ous. We prove V ⊆ W by showing that, for arbitrar-
ily chosen δi ∈ δc, i = 1, 2, . . . , n, there exist δ ∈ δc

such that

(1 + δ)n =

n
∏

i=1

(1 + δi), (13)

or equivalently,

log(1 + δ) =
1

n

n
∑

i=1

log(1 + δi).

This is the case because the average of arbitrary n el-
ements of the set Θ := log(1+ δc) belongs to the set
Θ due to its convexity from Lemma 2 shown below
without proof.

Lemma 2: Let r ∈ R be given such that 0 < r < 1,
and consider2

Θ := log(1+ δ), δ := {δ ∈ C : |δ| ≤ r }.
The set Θ is convex.

Lemma 1 essentially establishes the equivalence
between the heterogeneous and homogeneous per-
turbations. Replacing V by W, the characteristic
equation in (12) becomes

(−µ)nh(s)n(1 + δ(s))n = 1.

Recalling that n is odd and taking the (1/n)th power,

λih(s)(1 + δ(s)) = 1, λi := µej(2i−1)π/n, i ∈ In.

Rearranging,

1− δ(s)gi(s) = 0, gi(s) :=
λih(s)

1− λih(s)
, i ∈ In,

which is the characteristic equation in (9) obtained
by assuming that the perturbation is homogeneous,
i.e., ∆ = δI and noting that λi are the eigenvalues of
A. A subtle issue is that δ(s) satisfying (13) is not ra-
tional in general even if δi ∈ RH∞. Thus, Lemma 1
establishes the equivalence of homogeneous and
heterogeneous perturbations in the context of ro-
bust instability analysis when the class of perturba-
tions is extended to include irrational transfer func-
tions. For the rational case of our interest, Lemma 1
is useful for characterizing a lower bound on the ro-
bust instability radius.

3.2. Lower bound on robust instability radius

We here present some lower bounds on the RIRs
based on the convexity property shown in the pre-
vious subsection for multi-agent dynamical systems
for G(s) ∈ Gc.

Theorem 1: Consider the cyclic multi-agent dy-
namical systems G(s) ∈ Gc with ∆ ∈ ∆. We assume
the system is nominally strictly unstable3, and the num-
ber of subsystems n is odd. We consider the following
three classes of perturbations: (i) dynamic heterogeneous
uncertainty ∆ ∈ ∆ with (2), (ii) dynamic homogeneous

2The function log(z) for z ∈ C, not negative real, is the principal
logarithm defined as
log(z) := log(a) + jθ
where a, θ ∈ R are uniquely determined from

z = aejθ , a > 0, θ ∈ (−π, π).

3A system is called strictly unstable if it is unstable with at least
one characteristic root in the open right half plane.



uncertainty ∆ = δI with δ ∈ RH∞, and (iii) paramet-
ric complex uncertainty ∆ ∈ ∆c. Define the correspond-
ing RIRs ρ∗, ρh, and ρc, by (4), (5), and (7), respectively.
Then ̺+ is a lower bound on ρ∗, ρh, and ρc, i.e.,
̺+ ≤ ρ∗, ̺+ ≤ ρh, ̺+ ≤ ρc, (14)
where

̺+ := max
k∈U

1

‖gk‖L∞

, (15)

gk(s) :=
λkh(s)

1− λkh(s)
, λk := µej(2k−1)π/n, k ∈ In.

and U ⊆ In is the set of indices k such that gk(s) is
unstable.

Although the detailed proof is omitted due to the
page limitation, the proof is done by contradiction
using Lemma 1.

4. EXACT RIR ANALYSIS

This section will show that we can get the RIR for
first order time-lag systems by a constructive way
proposed in [5, 6], where the first step is to find a
marginally stabilizing all-pass function and the sec-
ond step is a technique of ǫ perturbation for the
complete stabilization.

4.1. First order time-lag systems

Consider the first order time-lag system repre-
sented by

h(s) :=
K

τs + 1
, K > 0, τ > 0. (16)

Fortunately, we can get the exact RIR for the system
as follows.

Proposition 2: Consider the cyclic multi-agent dy-
namical systems G(s) ∈ Gc with the first order h(s) in
(16) and ∆ ∈ ∆. We assume the system is nominally
strictly unstable, i.e., K < µ cos θn; θn := π/n and the
number of subsystems n is odd. Then, the robust insta-
bility radius ρ∗ is given by
ρ∗ = ̺+ = 1/‖g1‖L∞

= 1−K/(µ cos θn). (17)

The proof is omitted due to the page limitation.

We here illustrate the situation by using the in-
verse Nyquist plot of h(s), i.e., φ(jω) = 1/h(jω),
and its perturbed version.

Consider an example with n = 9 , µ = 3, K = 1,

and τ = 1. The Nyquist plot of φ̃o(s) (see the ap-
pendix for its definition) is plotted as the red curve

in Fig. 1. The stability region for φ̃o(s) is given by

the region to the left of the Nyquist plot φ̃o(jω) indi-
cated by the red curve. The yellow region indicates
the value set

{φ(jω)/(1 + δ) : ω ∈ R, δ ∈ C, |δ| ≤ ̺+ }.

The point λ1 = 3ejπ/9 lies on the right boundary

of the yellow region (blue star). The gain |φ̃o(jω)|
monotonically increases with ω > 0. This property

implies that if µejπ/n is on the Nyquist plot φ̃o(jω),
then all the points µej(k/n)π for odd 1 < k ≤ n

lie to the left of the Nyquist plot (i.e. the stabil-
ity region). To see this, note that the portion of
the Nyquist plot for ω > ωp is outside of the circle
µejθ , where the lower bound frequency is defined

by µejπ/n = φ̃o(jωp). Likewise, the low frequency
portion ω < ωp is inside the circle. This implies that

the inverse Nyquist plot φ̃ε(s) satisfies the stability
condition meaning that the perturbed network with

h̃ε(s) := 1/φ̃ε(s) is stable.
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Fig. 1 Nyquist plots: φ(jω) is blue, φ̃o(jω) is red.

4.2. Possible Extension

The idea for the derivation of the exact RIR for
first order time-lag systems has a potential to be ap-
plicable to some classes of higher order systems in-
cluding second order time-lag systems. To show
this, we give a numerical example with h(s) =
3/(s+ 1)(s+ 3) and µ = 5.

We only consider the case of odd n, where the
eigenvalues of A are at λk = 5ej(k/n)π for k =
1, 3, . . . , 2n − 1. From Proposition 1, the upper and
lower bounds on the robust instability radius are
given by ρ̄ and ̺p with

gi(s) :=
λih(s)

1− λih(s)
=

3λi

(s+ 1)(s+ 3)− 3λi
.

Numerical results of robust instability radius for
odd n are plotted in Fig. 2. The lower bound ̺p de-
fined by (10) is shown by the blue curve. The ex-
act values for the dynamic RIR ρ∗ as well as for the
complex parametric RIR ρc are computable for this
example based on the results presented later, and
are indicated by the red and green curves. In fact,
ρ∗ = ρh = ρ̄ for this example. The exact values
are based on the eigenvalue λ1 that is the closest
to the real axis. The lower bound ̺p is based on
the eigenvalue λk closest to the Nyquist plot φ(jω).
Although complex parametric uncertainty and real
rational dynamic uncertainty are equivalent for ro-
bust stability, they turned out not to be equivalent
for robust instability as shown by the gap in the red
and green curves. The property that ρc is an upper
bound on ρ∗ is not a coincidence for this example.
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5. CONCLUSION

This paper proposed a robust instability prob-
lem for multi-agent dynamical systems with cyclic
structure. It has been shown that we can get the
exact robust instability radius (RIR) for first order
time-lag systems. The main contribution is that we
can get the exact value of maximum allowable dy-
namic perturbation for the persistence of instability
for multi-agent dynamical systems with any num-
ber of agents. This is a clear contrast with the previ-
ous result in [6], which is difficult to apply to large-
scale network systems. Although this paper only
provided the first step results, the approach has a
potential to apply to the wider class of subsystems
h(s) as briefly explained in Subsection 4.2.

The future work along this research direction in-
cludes (i) a characterization of class of systems for
which the RIR can be analyzed exactly, (ii) an exten-
sion to the robust instability margin analysis for a
class of nonlinear systems by taking the change of
the equilibrium point into account, and (iii) appli-
cations to a more general type of biomolecular sys-
tems than Repressilator investigated in [6].
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