
ar
X

iv
:2

10
1.

12
02

0v
6 

 [
ee

ss
.S

Y
] 

 2
2 

Ju
l 2

02
3

(Stochastic) Model Predictive Control - a Simulation Example

Tim Brüdigam
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Abstract

This brief introduction to Model Predictive Control specifically addresses stochastic Model Pre-

dictive Control, where probabilistic constraints are considered. A simple linear system subject to

uncertainty serves as an example. The Matlab code for this stochastic Model Predictive Control

example is available online.
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1 Introduction

In the following, we provide details on an (S)MPC simulation example. The Matlab code for this simula-
tion example is available at https://github.com/tim283/smpc_example. The main purpose of this doc-
ument is to introduce the idea of considering uncertainty in constraints within Model Predictive Control (MPC).
This document is not necessarily a step-by-step manual, nor does it explain code in detail.

In Section 2, we first introduce the deterministic system, constraints, and MPC optimal control
problem. We then introduce uncertainty into the system dynamics and provide a brief overview of how
to handle constraints subject to uncertainty, also called chance constraints.

Section 3 provides a more elaborate derivation of the chance constraint reformulation, both for nor-
mally distributed uncertainties and general probability distributions.

2 Simulation Example

We consider the system example described in [LDTA17] to illustrate the concept of MPC. Based on the
MPC toolbox of [GP17], the introduced system may then be controlled.

While this example system is considered here without any physical context, the system represents a
linearization of a Buck-Boost DC–DC converter [LHR+08, CKRC11].

2.1 System and Constraints

We first consider the system

xk+1 = Axk +Buk (1)

with states xk = [x1,k, x2,k]
⊤ and input uk. Here, we choose

A =

[

1 0.0075
−0.143 0.996

]

, B =

[

4.798
0.115

]

(2)

for the system and input matrix. In addition, we consider input constraints

−0.2 ≤ uk ≤ 0.2 (3)

and a state constraint limiting the state x1 by

x1,k ≤ x1,lim (4)

where x1,lim = 2.8 is the limit.

2.2 Model Predictive Control

The MPC optimal control problem, solved at each time step, subject to only input constraints is given
by

min
U

N−1
∑

k=0

x⊤

k Qxk + u⊤

k Ruk (5a)

s.t. xk+1 = Axk +Buk, k ∈ {0, ..., N − 1} (5b)

|uk| ≤ 0.2, k ∈ {0, ..., N − 1} (5c)

with U = [u0, ...uN−1], horizon N = 11, and sampling time ∆t = 0.1, where the weighting matrices are

Q =

[

1 0
0 10

]

, R = 1. (6)

If no state constraints are present, starting at the initial state x0 = [2.5, 4.8]⊤ results in a curved
motion towards the origin, where x1 first increases (beyond the value 2.8). By introducing the state
constraint (4), the MPC optimal control problem is extended to

min
U

N−1
∑

k=0

x⊤

k Qxk + u⊤

k Ruk (7a)

s.t. xk+1 = Axk +Buk, k ∈ {0, ..., N − 1} (7b)

|uk| ≤ 0.2, k ∈ {0, ..., N − 1} (7c)

x1,k ≤ 2.8, k ∈ {1, ..., N} (7d)
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causing x1 to increase until the value 2.8 is reached. Then, the states move towards the origin along the
constraint.

2.3 Stochastic MPC for Systems with Uncertainty

Now, uncertainty is introduced into the system, yielding

xk+1 = Axk +Buk +Dwk (8)

with

D =

[

1 0
0 1

]

. (9)

and the Gaussian uncertainty wk ∼ N (0,Σw) with covariance matrix

Σw =

[

0.08 0
0 0.08

]

. (10)

Assuming we now used (5) to control the actual system (8), the MPC would not account for uncer-
tainty and the state constraint may be violated, as the prediction model does not account for the actual
uncertainty. In order to cope with this, an SMPC approach is employed, accounting for the uncertainty
wk. Therefore, the state constraint is transformed into a chance constraint

Pr(x1,k ≤ 2.8) ≥ β (11)

where β is a risk parameter. The constraint (4) is not required to hold always, but only up to a level
specified by the predefined risk parameter. The higher the risk parameter is chosen, the lower the risk
allowed. Sometimes, the risk parameter is defined as β̃ = 1 − β, where β in (11) is replaced with 1 − β̃.
It then holds that increasing the risk parameter β̃ also increases risk.

This chance constraint is required to be reformulated in order to be used within the optimal control
problem, yielding

x1,k ≤ 2.8− γ (12a)

γ =
√

2[1, 0]⊤Σe
k[1, 0] erf−1(2β − 1) (12b)

which is an approximation of (11) [FGS16]. In other words, the state constraint is tightened by the
tightening parameter γ, which itself depends on the risk parameter β and the error covariance matrix Σe

k

that is derived in the following. The vector [1, 0] is required as only the error affecting x1 is important.
A more extensive derivation of the chance constraint reformulation is provided in Section 3. In short, the
term

√

[1, 0]⊤Σe
k[1, 0] considers the uncertainty (and the resulting error) variance and

√
2 erf−1(2β − 1)

follows from the uncertainty distribution (here the normal distribution) and the risk parameter.
The state of the system dynamics (8) may be split into a deterministic and a probabilistic part

xk = zk + ek (13)

and the input is adapted to

uk = −Kxk + vk (14)

where K is a stabilizing state feedback matrix obtained by an LQR approach. Here, Kxk controls the
deterministic part of the system dynamics, while the new decision variable vk accounts for uncertainty.

MPC requires propagating the error for the prediction, yielding the error covariance matrix

Σe
k+1 = (A−BK)Σe

k (A−BK)
⊤
+DΣwD

⊤ (15)

for every prediction step with

Σe
0 = diag(0, 0). (16)

Therefore, the error covariance matrix depends on the previous error propagated through the system, as
well as the covariance of the uncertainty additionally added at each step. Note the difference between
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the uncertainty covariance matrix Σw and the error covariance matrix Σe
k, which is computed for every

prediction step k, based on the prediction model and on Σw.
The full SMPC optimal control problem is

min
V

N−1
∑

k=0

x⊤

k Qxk + (vk −Kxk)
⊤R(vk −Kxk) (17a)

s.t. xk+1 = Axk +B(vk −Kxk), k ∈ {0, ..., N − 1} (17b)

|vk −Kxk| ≤ 0.2, k ∈ {0, ..., N − 1} (17c)

x1,k ≤ 2.8− γk, k ∈ {1, ..., N} (17d)

γk =
√

2[1, 0]Σe
k[1, 0]⊤ erf−1(2β − 1), k ∈ {1, ..., N} (17e)

where V = [v0, ...vN−1] replaces the decision variables U .
If (17) is applied to control the actual system (8), the states do not exactly reach the state constraint,

but a margin is established, providing space to account for uncertainty (the constraint is tightened). In-
creasing the risk parameter β increases the required distance towards the state constraint, again resulting
in less constraint violation.

min
U

N−1
∑

k=0

x⊤

k Qxk + u⊤

k Ruk (18a)

s.t. xk+1 = Axk +Buk, k ∈ {0, ..., N − 1} (18b)

|uk| ≤ 0.2, k ∈ {0, ..., N − 1} (18c)

x1,k ≤ 2.8, k ∈ {1, ..., N} (18d)

3 Details on SMPC with Chance Constraints

In the following, a brief derivation of chance constraints in SMPC is provided. First, the system, con-
straint, and chance constraint setup are introduced.

We consider a linear system with additive uncertainty wk , i.e.,

xk+1 = Axk +Buk +Dwk. (19)

The system state is split into a deterministic state zk and a probabilistic error ek. The input is
also split into two parts, a feedback law stabilizing the deterministic system, as well as a new input vk

accounting for uncertainty. These considerations yield

xk= zk + ek (20a)

uk= Kxk + vk (20b)

Splitting the system state results in the new system models

zk+1= Φzk +Bvk (21a)

ek+1= Φek +Dwk (21b)

with Φ = A+BK.
We consider the linear constraint

g⊤

k xk ≤ hk. (22)

Comparing (22) to the simulation example in Section 2, we obtain g⊤

k = [1, 0]⊤ and hk = 2.8.
As the system state is subject to (unbounded) uncertainty, it is not possible to guarantee constraint

satisfaction in all cases. Therefore, we introduce a probabilistic constraint (chance constraint), which
bounds the constraint violation probability depending on a risk parameter β, yielding

Pr
(

g⊤

k xk ≤ hk

)

≥ β. (23)

With the deterministic and error states, we obtain

Pr
(

g⊤

k zk + g⊤

k ek ≤ hk

)

≥ β. (24)
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The chance constraint (24) is not a deterministic expression. It is necessary to reformulate the chance
constraint, such that a tractable expression is obtained, which is then used to solve the optimization
problem. For zero uncertainty, the deterministic part of the state must satisfy the state constraint.
However, if uncertainty is present, the constraint must be tightened by a tightening parameter γk. This
tightening parameter is determined depending on the uncertainty and the risk parameter β. We therefore
reformulate the chance constraint (24) into

g⊤

k zk≤ hk − γk (25a)

Pr
(

g⊤

k ek ≤ γk
)

= β (25b)

where (25b) ensures that the tightening parameter is chosen in such a way, that the uncertainty only
causes constraint violations as allowed by the risk parameter.

It is to note that (25) is still not a deterministic expression. In the following, we derive how (25b) is
reformulated into a deterministic approximation, based on the underlying uncertainty distribution.

3.1 Normally Distributed Uncertainty

First, we analyze the chance constraint reformulation for an uncertainty wk subject to a normal distri-
butions with zero mean, i.e, wk ∼ N (0,Σ). Similar reformulations are also used in [BOW11, OW08,
FGMS15, CGLB14, BOLW18].

Given the normal distribution with zero mean, the error is also normally distributed according to

ek ∼ N (0,Σe
k) (26)

with Σe
0 = 0I and

Σe
k+1 = ΦΣe

kΦ
⊤ +DΣwD

⊤. (27)

It follows that the constraint state expression is also normally distributed according to

g⊤ek ∼ N
(

0, g⊤Σe
kg

)

(28)

where we assume that g⊤ek is scalar and abbreviate the variance with σ2 = g⊤Σe
kg

3.1.1 Chance constraint reformulation

Based on the cumulative distribution function (cdf) of a normal distribution

Pr
(

g⊤

k ek ≤ γk
)

=
1

2

[

1 + erf

(

γk

σ
√
2

)]

= β (29)

it is possible to find a deterministic expression for the tightening parameter γk with the following refor-
mulation:

1

2

[

1 + erf

(

γk

σ
√
2

)]

= β (30a)

erf

(

γk

σ
√
2

)

= 2β − 1 (30b)

γk

σ
√
2
= erf−1(2β − 1) (30c)

γk=
√
2σ erf−1(2β − 1) (30d)

Details on the cdf of a normal distribution are found in Appendix A.1.
Inserting the variance σ2 = g⊤Σe

kg, we obtain the tightening parameter

γk=
√
2
√
σ2 erf−1(2β − 1) (30e)

=
√
2
√

g⊤Σe
kg erf−1(2β − 1) (30f)

=
√

2g⊤Σe
kg erf−1(2β − 1). (30g)
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3.1.2 Discussion

In general, the risk parameter is bounded by 0.5 ≤ β < 1. If the state is exactly on the constraint, given
the normal distribution, the probability of violating the constraint in the next step without tightening the
constraint is exactly 50%. Therefore, no constraint tightening corresponds to a risk parameter of β = 0.5.
A risk parameter β = 1 would guarantee constraint satisfaction. Given the unbounded uncertainty due to
the normal distribution, it would follow that γk = ∞ (as erf−1(1) = ∞). Obviously, this is not practical.
While it is mathematically possible to choose β < 0.5, this does not make sense, as this equals loosening
the original hard constraint (constraint loosening instead of constraint tightening).

Furthermore, it is to note that the resulting constraint satisfaction may by larger than specified by the
risk parameter, depending on the system and constraints. At first glance, this is surprising, as a normal
distribution allows finding an exact reformulation of the chance constraint. However, the tightening
parameter γk increases with increasing prediction steps. To account for this, the realized tightening (due
to predicting multiple MPC steps) may be larger than the tightening γ1 required to hold for the next
step. The chance constraint satisfaction considers only individual prediction steps, not the probability of
violating the constraint over an entire trajectory.

3.2 General Probability Distributions

A chance constraint reformulation is also possible for general probability distributions. Here, we consider
univariate distributions with zero mean and variance σ2

w. While a normal distribution allows an exact
reformulation, chance constraints for general distributions may only be approximated. An overview is
found in [FGS16].

Based on the Cantelli’s inequality, see Appendix A.2, it is possible to determine a bound on the cdf,
yielding

Pr (ek < γk) ≥ 1− σ2

γ2
k + σ2

= β (31)

where the risk parameter represents the required bound and σ represents the variance of the error, similar
to Σe before.

Reformulating results in

1− σ2

γ2
k + σ2

= β (32a)

σ2

γ2
k + σ2

= 1− β (32b)

σ2= (1− β)(γ2
k + σ2) (32c)

σ2= γ2
k(1− β) + σ2(1− β) (32d)

σ2 + σ2(β − 1)= γ2
k(1− β) (32e)

σ2(1 + β − 1)= γ2
k(1− β) (32f)

γ2
k= σ2 β

1− β
(32g)

γk= σ

√

β

1− β
(32h)

representing a constraint tightening parameter for general probability distributions. We can rewrite this
expression as

γk = σQ(β) (33)

where the quantile function Q(β) may be considered as the inverse cdf.
Unlike the reformulation for the norm constraint, the risk parameter here may take values 0 ≤ β < 0.
A comparison between constraint tightening based on (30g), i.e,

√
2erf−1(2β − 1), and (32h), i.e.,

√

β/(1− β), is shown in Figure 1. Note that the constraint tightening in Figure 1 is not γk, as variance is
not considered. It is obvious that the constraint tightening for general probability distributions according
to (32h) is more conservative.
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Figure 1: Constraint tightening comparison

3.3 Normal Distributions with Non-zero Mean

For non-zero mean probability distributions, the chance constraint must be reformulated slightly.
For a normal distribution with non-zero mean µ, (25) must be adapted to

g⊤

k zk≤ hk − E
(

g⊤

k ek
)

− γk (34a)

Pr
(

g⊤

k ek − E
(

g⊤

k ek
)

≤ γk
)

= β (34b)

where the scalar expectation value E
(

g⊤

k ek
)

represents an additional constraint tightening to account
for the non-zero mean µ.

A Probability Theory Basics

A.1 Normal Distributions

A normal distribution (also known as a Gaussian distribution) is characterized by its mean µ and its
covariance Σ, abbreviated by N ∼ (µ,Σ). A special case is given by the standard normal distribution
where µ = 0 and Σ = I with identity matrix I. In the following, we consider the univariate normal
distribution with mean µ, variance σ2, and standard deviation σ.

The probability density function (pdf) is given by

f(x) =
1

σ

1√
2π

exp

(

−1

2

(

x− µ

σ

))

(35)

where it holds that
∫

∞

−∞

f(x)dx = 1. (36)

The factor 1

σ
accounts for the adjusted variance compared to the standard normal distribution.

For a continuous distribution, the pdf at a specific point x does not yield a probability. Therefore, we
introduce the cdf with random variable X

Pr(X ≤ x) = Φ(x) =

∫ x

−∞

f(x)dx=
1

2

[

1 + erf

(

x− µ

σ
√
2

)]

(37a)

=
1

2
+

1

2
erf

(

x− µ

σ
√
2

)

. (37b)

For x = µ, the cumulative probability is exactly 0.5.
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In the cdf, only one side of the distribution is considered. If we consider both sides, we obtain

Pr(−x ≤ X ≤ x)=

∫ x

−x

f(x)dx (38a)

=

∫ 0

−x

f(x)dx+

∫ x

0

f(x)dx (38b)

= 2

∫ x

0

f(x)dx (38c)

= 2

(
∫ x

−∞

f(x)dx−
∫ 0

−∞

f(x)dx

)

(38d)

= 2

((

1

2
+

1

2
erf

(

x− µ

σ
√
2

))

− 1

2

)

(38e)

= erf

(

x− µ

σ
√
2

)

. (38f)

A.2 Chebyshev’s Inequality

Chebyshev’s inequality provides a bound for probability distributions. Chebyshev’s inequality indicates
how likely it is that a random variable differs from the mean given a certain threshold c.

For zero mean distributions, i.e., µ = 0, and variance σ2, it holds that

Pr (|X | ≥ c) ≤ σ2

c2
(39)

where c > 0. Complementary, it holds that

Pr (|X | < c) ≥ 1− σ2

c2
. (40)

Note the change from ≥ to <.
The zero mean results may be extended to distributions with mean µ 6= 0, yielding

Pr (|X − µ| ≥ c)≤ σ2

c2
(41a)

Pr (|X − µ| < c)≥ 1− σ2

c2
. (41b)

Cantelli’s Inequality The one-sided Chabyshev’s inequality is also known as the Cantelli’s inequality
where only a single tail of the distribution is considered. Cantelli’s inequality for zero mean and non-zero
mean distributions is given by

Pr (X ≥ c)≤ σ2

σ2 + c2
(42a)

Pr (X − µ ≥ c)≤ σ2

σ2 + c2
. (42b)

from which it follows that

Pr (X < c) = 1− Pr (X − µ ≥ c) ≥ 1− σ2

σ2 + c2
(43a)

Pr (X − µ < c) = 1− Pr (X − µ ≥ c) ≥ 1− σ2

σ2 + c2
. (43b)

Note that a ≤ b ⇐⇒ −a ≥ −b.
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