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Abstract Opacity is an information flow property characterizing whether a system reveals
its secret to a passive observer. Several notions of opacity have been introduced in the
literature. We study the notions of language-based opacity, current-state opacity, initial-state
opacity, initial-and-final-state opacity, K-step opacity, and infinite-step opacity. Comparing
the notions is a natural question that has been investigated and summarized by Wu and
Lafortune, who provided transformations among current-state opacity, initial-and-final-state
opacity, and language-based opacity, and, for prefix-closed languages, also between language-
based opacity and initial-state opacity. We extend these results by showing that all the
discussed notions of opacity are transformable to each other. Besides a deeper insight into
the differences among the notions, the transformations have applications in complexity
results. In particular, the transformations are computable in polynomial time and preserve
the number of observable events and determinism, and hence the computational complexities
of the verification of the notions coincide. We provide a complete and improved complexity
picture of the verification of the discussed notions of opacity, and improve the algorithmic
complexity of deciding language-based opacity, infinite-step opacity, and K-step opacity.

Keywords Discrete event systems · Finite automata · Opacity · Transformations ·
Complexity

1 Introduction

Applications often require to keep some information about the behavior of a system secret.
Properties that guarantee such requirements include anonymity [27], noninterference [13],
secrecy [1], security [12], and opacity [21].
In this paper, we are interested in opacity for discrete-event systems (DESs) modeled by

finite automata. Opacity is a state-estimation property that asks whether a system prevents
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an intruder from revealing the secret. The intruder is modeled as a passive observer with the
complete knowledge of the structure of the system, but with only limited observation of the
behavior of the system. Based on the observation, the intruder estimates the behavior of the
system, and the system is opaque if the intruder never reveals the secret. In other words, for
any secret behavior of the system, there is a non-secret behavior of the system that looks the
same to the intruder.
If the secret is modeled as a set of states, the opacity is referred to as state-based. Bryans

et al. [7] introduced state-based opacity for systems modeled by Petri nets, Saboori and
Hadjicostis [23] adapted it to (stochastic) automata, and Bryans et al. [6] generalized it to
transition systems. If the secret is modeled as a set of behaviors, the opacity is referred to as
language-based. Language-based opacity was introduced by Badouel et al. [4] and Dubreil
et al. [11]. For more details, we refer the reader to the overview by Jacob et al. [17].
Several notions of opacity have been introduced in the literature. In this paper, we are

interested in the notions of current-state opacity (CSO), initial-state opacity (ISO), initial-
and-final-state opacity (IFO), language-based opacity (LBO), K-step opacity (K-SO), and
infinite-step opacity (INSO). Current-state opacity is the property that the intruder can never
decide whether the system is currently in a secret state. Initial-state opacity is the property
that the intruder can never reveal whether the computation started in a secret state. Initial-
and-final-state opacity of Wu and Lafortune [31] is a generalization of both, where the secret
is represented as a pair of an initial and a marked state. Consequently, initial-state opacity
is a special case of initial-and-final-state opacity where the marked states do not play a role,
and current-state opacity is a special case where the initial states do not play a role.
While initial-state opacity prevents the intruder from revealing, at any time during the

computation, whether the system started in a secret state, current-state opacity prevents the
intruder only from revealing whether the current state of the system is a secret state. However,
it may happen that the intruder realizes in the future that the system was in a secret state at
some former point of the computation. For instance, if the intruder estimates that the system
is in one of two possible states and, in the next step, the system proceeds by an observable
event that is possible only from one of the states, then the intruder reveals the state in which
the system was one step ago.
This issue has been considered in the literature and led to the notions of K-step opacity

(K-SO) and infinite-step opacity (INSO) introduced by Saboori and Hadjicostis [23,26].
While K-step opacity requires that the intruder cannot ascertain the secret in the current
and 𝐾 subsequent states, infinite-step opacity requires that the intruder can never ascertain
that the system was in a secret state. Notice that 0-step opacity coincides with current-state
opacity by definition, and that an 𝑛-state automaton is infinite-step opaque if and only if it is
(2𝑛 − 2)-step opaque [32].
Comparing different notions of opacity for automatamodels, Saboori andHadjicostis [24]

provided a language-based definition of initial-state opacity, Cassez et al. [9] transformed
language-based opacity to current-state opacity, and Wu and Lafortune showed that current-
state opacity, initial-and-final-state opacity, and language-based opacity can be transformed
to each other. They further provided transformations of initial-state opacity to language-based
opacity and to initial-and-final-state opacity, and, for prefix-closed languages, a transforma-
tion of language-based opacity to initial-state opacity.
In this paper, we extend these results by showing that, for automata models, all the

discussed notions of opacity are transformable to each other. As well as the existing transfor-
mations, our transformations are computable in polynomial time and preserve the number
of observable events and determinism (whenever it is meaningful). In more detail, the trans-
formations of Wu and Lafortune [31] preserve the determinism of transitions, but result in
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Fig. 1 Overview of the transformations among the notions of opacity for automata models.

automata with a set of initial states. This issue can, however, be easily fixed by adding a
new initial state, connecting it to the original initial states by new unobservable events, and
making the original initial states non-initial. We summarize our results, together with the
existing results, in Fig. 1.
There are two immediate applications of the transformations. First, the transformations

provide a deeper understanding of the differences among the opacity notions from the
structural point of view. For instance, the reader may deduce from the transformations
that, for prefix-closed languages, the notions of language-based opacity, initial-state opacity,
and current-state opacity coincide, or that to transform current-state opacity to infinite-step
opacity means to add only a single state and a few transitions.
Second, the transformations provide a tool to obtain the complexity results for all the

discussed opacity notions by studying just one of the notions. For an illustration, consider, for
instance, our recent result showing that deciding current-state opacity for systems modeled
by DFAs with three events, one of which is unobservable, is PSpace-complete [5]. Since
we can transform the problems of deciding current-state opacity and of deciding infinite-
step opacity to each other in polynomial time, preserving determinism and the number of
observable events, we obtain that deciding infinite-step opacity for systemsmodeled byDFAs
with three events, one of which is unobservable, is PSpace-complete as well. In particular,
combining the transformations with known results [5,17], we obtain a complete complexity
picture of the verification of the discussed notions of opacity as summarized in Table 1.
The fact that checking opacity for DESs is PSpace-complete was known for some of the

considered notions [17]. In particular, deciding current-state opacity, initial-state opacity,
and language-based opacity were known to be PSpace-complete, deciding K-step opacity
was known to be NP-hard, and deciding infinite-step opacity was known to be PSpace-hard.
Complexity theory tells us that any two PSpace-complete problems can be transformed
to each other in polynomial time. In other words, it gives the existence of polynomial
transformations between the notions of opacity forwhich the verification isPSpace-complete.
However, the theory and the PSpace-hardness proofs presented in the literature do not give
a clue how to obtain these transformations. Therefore, from the complexity point of view,
our contribution is not the existence of the transformations, but the construction of specific
transformations. Since the presented transformations preserve determinism and the number
of observable events, they allow us to present stronger results than those known in the
literature [17] that we summarize in Table 1.
The transformations further allow us to improve the algorithmic complexity of deciding

language-based opacity, infinite-step opacity, and K-step opacity, although we do not use the
transformations themselves, but rather the deeper insight into the problems they provide. For
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Opacity notion |Σ𝑜 | = 1 |Σ𝑜 | ≥ 2 Order

CSO coNP-complete [5] PSpace-complete [5] 𝑂 (ℓ2𝑛) [22]
LBO coNP-complete PSpace-complete 𝑂 ( (𝑛 +𝑚ℓ)2𝑛) (Thm 3)
ISO NL-complete (Thm 2) PSpace-complete 𝑂 (ℓ2𝑛) [31]
IFO coNP-complete PSpace-complete 𝑂 (ℓ22𝑛) [31]
K-SO coNP-complete PSpace-complete 𝑂 ( (𝐾 + 1)2𝑛 (𝑛 +𝑚ℓ2)) (Sec 4.3.4)
INSO coNP-complete PSpace-complete 𝑂 ( (𝑛 +𝑚ℓ)2𝑛) (Sec 4.2.4)

Table 1 Complexity of verifying the notions of opacity for DESs with Σ𝑜 being the set of observable events
following from the transformations and known results; 𝑛 stands for the number of states of the input automaton,
ℓ for the number of observable events of the input automaton, and 𝑚 ≤ ℓ𝑛2 for the number of transitions in
the projected automaton of the input automaton.

language-based opacity, Lin [20] suggested an algorithm with complexity 𝑂 (22𝑛), where 𝑛
is the number of states of the input automaton. In this paper, we improve this complexity
to 𝑂 ((𝑛 + 𝑚ℓ)2𝑛), where ℓ = |Σ𝑜 | is the number of observable events and 𝑚 ≤ ℓ𝑛2 is the
number of transitions in the projected automaton of the input automaton. For infinite-step
opacity and K-step opacity, the latest results are by Yin and Lafortune [32] who designed an
algorithm for checking infinite-step opacity with complexity 𝑂 (ℓ22𝑛), and an algorithm for
checking K-step opacity with complexity𝑂 (min{ℓ22𝑛, ℓ𝐾+12𝑛}). In this paper, we suggest a
new algorithm for deciding infinite-step opacity with complexity 𝑂 ((𝑛 +𝑚ℓ)2𝑛), and a new
algorithm for checking K-step opacity with complexity 𝑂 ((𝐾 + 1)2𝑛 (𝑛 +𝑚ℓ2)). Notice that
𝐾 is bounded by 2𝑛 − 2, since an 𝑛-state automaton is infinite-step opaque if and only if it
is (2𝑛 − 2)-step opaque [32]. Consequently, our algorithm improves the complexity if 𝐾 is
either very large (larger than 2𝑛 − 2) or polynomial with respect to 𝑛; otherwise, the two-way
observer technique of Yin and Lafortune [32] is more efficient, and it is a challenging open
problem whether its complexity can be further improved. All our results are summarized in
Table 1.

2 Preliminaries

We assume that the reader is familiar with the basic notions of automata theory [8]. For a
set 𝑆, |𝑆 | denotes the cardinality of 𝑆, and 2𝑆 the power set of 𝑆. Let N denote the set of all
non-negative integers. An alphabet Σ is a finite nonempty set of events. A string over Σ is a
sequence of events from Σ. Let Σ∗ denote the set of all finite strings over Σ; the empty string
is denoted by 𝜀. A language 𝐿 over Σ is a subset of Σ∗. The set of all prefixes of strings of
𝐿 is the set 𝐿 = {𝑢 | there is 𝑣 ∈ Σ∗ such that 𝑢𝑣 ∈ 𝐿}. For a string 𝑢 ∈ Σ∗, |𝑢 | denotes the
length of 𝑢, and 𝑢 denotes the set of all prefixes of 𝑢.
A nondeterministic finite automaton (NFA) over an alphabet Σ is a structure G =

(𝑄,Σ, 𝛿, 𝐼, 𝐹), where 𝑄 is a finite set of states, 𝐼 ⊆ 𝑄 is a set of initial states, 𝐹 ⊆ 𝑄

is a set of marked states, and 𝛿 : 𝑄 × Σ → 2𝑄 is a transition function that can be ex-
tended to the domain 2𝑄 × Σ∗ by induction. To simplify our proofs, we use the notation
𝛿(𝑄, 𝑆) = ∪𝑠∈𝑆 𝛿(𝑄, 𝑠), where 𝑆 ⊆ Σ∗. For a set of states 𝑄0 ⊆ 𝑄, the language marked by
G from the states of 𝑄0 is the set 𝐿𝑚 (G, 𝑄0) = {𝑤 ∈ Σ∗ | 𝛿(𝑄0, 𝑤) ∩ 𝐹 ≠ ∅}, and the lan-
guage generated by G from the states of 𝑄0 is the set 𝐿 (G, 𝑄0) = {𝑤 ∈ Σ∗ | 𝛿(𝑄0, 𝑤) ≠ ∅}.
The language marked by G is then 𝐿𝑚 (G) = 𝐿𝑚 (G, 𝐼), and the language generated by G is
𝐿 (G) = 𝐿 (G, 𝐼). The NFA G is deterministic (DFA) if |𝐼 | = 1 and |𝛿(𝑞, 𝑎) | ≤ 1 for every
𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. An automaton G is non-blocking if 𝐿𝑚 (G) = 𝐿 (G).
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A discrete-event system (DES) 𝐺 over Σ is an NFA together with the partition of the
alphabet Σ into two disjoint subsets Σ𝑜 and Σ𝑢𝑜 = Σ \ Σ𝑜 of observable and unobservable
events, respectively. In the case where all states of the automaton are marked, we simply
write 𝐺 = (𝑄,Σ, 𝛿, 𝐼) without specifying the set of marked states.
When discussing the state estimation properties, the literature often studies deterministic

systems with a set of initial states. Such systems are known as deterministic DES and
defined as a DFA with several initial states; namely, a deterministic DES is an NFA G =

(𝑄,Σ, 𝛿, 𝐼, 𝐹), where |𝛿(𝑞, 𝑎) | ≤ 1 for every 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ.
The opacity property is based on partial observations of events described by projection

𝑃 : Σ∗ → Σ∗
𝑜. The projection is a morphism defined by 𝑃(𝑎) = 𝜀 for 𝑎 ∈ Σ𝑢𝑜, and 𝑃(𝑎) = 𝑎

for 𝑎 ∈ Σ𝑜. The action of 𝑃 on a string 𝜎1𝜎2 · · ·𝜎𝑛, with 𝜎𝑖 ∈ Σ for 1 ≤ 𝑖 ≤ 𝑛, is to erase
all events that do not belong to Σ𝑜, that is, 𝑃(𝜎1𝜎2 · · ·𝜎𝑛) = 𝑃(𝜎1)𝑃(𝜎2) · · · 𝑃(𝜎𝑛). The
definition can be readily extended to languages.
Let𝐺 be a NFA over Σ, and let 𝑃 : Σ∗ → Σ∗

𝑜 be a projection. By the projected automaton
of 𝐺, we mean the automaton 𝑃(𝐺) obtained from 𝐺 by replacing every transition (𝑝, 𝑎, 𝑞)
by the transition (𝑝, 𝑃(𝑎), 𝑞), and by eliminating the 𝜀-transitions. In particular, if 𝛿 is the
transition function of 𝐺, then the transition function 𝛾 of the automaton 𝑃(𝐺) is defined as
𝛾(𝑞, 𝑎) = 𝛿(𝑞, 𝑎), where 𝛿 : 𝑄 ×Σ∗ → 2𝑄 is the extension of 𝛿 to the domain𝑄 ×Σ∗, that is,
𝛿(𝑞, 𝜀) = {𝑞} and 𝛿(𝑞, 𝑤𝑎) = ⋃

𝑝∈𝛿 (𝑞,𝑤) 𝛿(𝑝, 𝑎). Then 𝑃(𝐺) is an NFA over Σ𝑜, with the
same set of states as 𝐺, that recognizes the language 𝑃(𝐿𝑚 (𝐺)) and can be constructed in
polynomial time [15]. The DFA constructed from 𝑃(𝐺) by the subset construction is called
an observer [8]. In the worst case, the observer has exponentially many states compared with
the automaton 𝐺 [18,30].
A decision problem is a yes-no question. A decision problem is decidable if there is an al-

gorithm that solves it. Complexity theory classifies decidable problems into classes based on
the time or space an algorithmneeds to solve the problem. The complexity classeswe consider
are L, NL, P, NP, and PSpace denoting the classes of problems solvable by a deterministic
logarithmic-space, nondeterministic logarithmic-space, deterministic polynomial-time, non-
deterministic polynomial-time, and deterministic polynomial-space algorithm, respectively.
The hierarchy of classes is L ⊆ NL ⊆ P ⊆ NP ⊆ PSpace. Which of the inclusions are
strict is an open problem. The widely accepted conjecture is that all are strict. A decision
problem isNL-complete (resp.NP-complete, PSpace-complete) if (i) it belongs toNL (resp.
NP, PSpace) and (ii) every problem from NL (resp. NP, PSpace) can be reduced to it by
a deterministic logarithmic-space (resp. polynomial-time) algorithm. Condition (i) is called
membership and condition (ii) hardness.

3 Notions of Opacity

In this section, we recall the definitions of the notions of opacity we discuss. The notion of
initial-and-final-state opacity is recalled to make the paper self-contained.
Current-state opacity asks whether the intruder cannot decide, at any instance of time,

whether the system is currently in a secret state.

Definition 1 (Current-state opacity (CSO)) Given a DES 𝐺 = (𝑄,Σ, 𝛿, 𝐼), a projection
𝑃 : Σ∗ → Σ∗

𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, and a set of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄. System
𝐺 is current-state opaque if for every string 𝑤 such that 𝛿(𝐼, 𝑤) ∩ 𝑄𝑆 ≠ ∅, there exists a
string 𝑤′ such that 𝑃(𝑤) = 𝑃(𝑤′) and 𝛿(𝐼, 𝑤′) ∩𝑄𝑁𝑆 ≠ ∅.
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The definition of current-state opacity can be reformulated as a language inclusion as
shown in the following lemma. This result is similar to that of Wu and Lafortune [31] used to
transform current-state opacity to language-based opacity. We use this alternative definition
to simplify proofs.

Lemma 1 ([5]) Let𝐺 = (𝑄,Σ, 𝛿, 𝐼) be a DES, 𝑃 : Σ∗ → Σ∗
𝑜 a projection, and𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄

sets of secret and non-secret states, respectively. Let 𝐺𝑆 = (𝑄,Σ, 𝛿, 𝐼, 𝑄𝑆) and 𝐺𝑁𝑆 =

(𝑄,Σ, 𝛿, 𝐼, 𝑄𝑁𝑆), then𝐺 is current-state opaque if and only if 𝐿𝑚 (𝑃(𝐺𝑆)) ⊆ 𝐿𝑚 (𝑃(𝐺𝑁𝑆)).

The second notion of opacity under consideration is language-based opacity. Intuitively,
a system is language-based opaque if for any string 𝑤 in the secret language, there exists
a string 𝑤′ in the non-secret language with the same observation 𝑃(𝑤) = 𝑃(𝑤′). In this
case, the intruder cannot conclude whether the secret string 𝑤 or the non-secret string 𝑤′ has
occurred. We recall the most general definition by Lin [20].

Definition 2 (Language-based opacity (LBO))Given a DES𝐺 = (𝑄,Σ, 𝛿, 𝐼), a projection
𝑃 : Σ∗ → Σ∗

𝑜, a secret language 𝐿𝑆 ⊆ 𝐿 (𝐺), and a non-secret language 𝐿𝑁𝑆 ⊆ 𝐿 (𝐺).
System 𝐺 is language-based opaque if 𝐿𝑆 ⊆ 𝑃−1𝑃(𝐿𝑁𝑆).

It is worth mentioning that the secret and non-secret languages are often considered to
be regular; and we consider it as well. The reason is that, for non-regular languages, the
inclusion problem is undecidable; see Asveld and Nĳholt [3] for more details.
The third notion is the notion of initial-state opacity. Initial-state opacity asks whether

the intruder can never reveal whether the computation started in a secret state.

Definition 3 (Initial-state opacity (ISO)) Given a DES 𝐺 = (𝑄,Σ, 𝛿, 𝐼), a projection
𝑃 : Σ∗ → Σ∗

𝑜, a set of secret initial states 𝑄𝑆 ⊆ 𝐼, and a set of non-secret initial states
𝑄𝑁𝑆 ⊆ 𝐼. System 𝐺 is initial-state opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 and 𝑃 if for every
𝑤 ∈ 𝐿 (𝐺,𝑄𝑆), there exists 𝑤′ ∈ 𝐿 (𝐺,𝑄𝑁𝑆) such that 𝑃(𝑤) = 𝑃(𝑤′).

The fourth notion is the notion of initial-and-final-state opacity ofWu and Lafortune [31].
Initial-and-final-state opacity is a generalization of both current-state opacity and initial-state
opacity, where the secret is represented as a pair of an initial and amarked state. Consequently,
initial-state opacity is a special case of initial-and-final-state opacity where the marked states
do not play a role, and current-state opacity is a special case where the initial states do not
play a role.

Definition 4 (Initial-and-final-state opacity (IFO)) Given a DES 𝐺 = (𝑄,Σ, 𝛿, 𝐼), a pro-
jection 𝑃 : Σ∗ → Σ∗

𝑜, a set of secret state pairs𝑄𝑆 ⊆ 𝐼 ×𝑄, and a set of non-secret state pairs
𝑄𝑁𝑆 ⊆ 𝐼 ×𝑄. System 𝐺 is initial-and-final-state opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 and 𝑃 if
for every secret pair (𝑞0, 𝑞 𝑓 ) ∈ 𝑄𝑆 and every 𝑤 ∈ 𝐿 (𝐺, 𝑞0) such that 𝑞 𝑓 ∈ 𝛿(𝑞0, 𝑤), there
exists (𝑞′0, 𝑞

′
𝑓
) ∈ 𝑄𝑁𝑆 and 𝑤′ ∈ 𝐿 (𝐺, 𝑞′0) such that 𝑞

′
𝑓
∈ 𝛿(𝑞′0, 𝑤

′) and 𝑃(𝑤) = 𝑃(𝑤′).

The fifth notion is the notion of K-step opacity. K-step opacity is a generalization of
current-state opacity requiring that the intruder cannot reveal the secret in the current and
𝐾 subsequent states. By definition, current-state opacity is equivalent to 0-step opacity. We
slightly generalize and reformulate the definition of Saboori and Hadjicostis [26].

Definition 5 (K-step opacity (K-SO)) Given a system 𝐺 = (𝑄,Σ, 𝛿, 𝐼), a projection
𝑃 : Σ∗ → Σ∗

𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, a set of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄, and a
non-negative integer 𝐾 ∈ N. System 𝐺 is K-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if
for every string 𝑠𝑡 ∈ 𝐿 (𝐺) such that |𝑃(𝑡) | ≤ 𝐾 and 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, there exists a
string 𝑠′𝑡 ′ ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑠′), 𝑃(𝑡) = 𝑃(𝑡 ′), and 𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡 ′) ≠ ∅.
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Finally, the last notion we consider is the notion of infinite-step opacity. Infinite-step
opacity is a further generalization of K-step opacity by setting 𝐾 being infinity. Actually, Yin
and Lafortune [32] have shown that an 𝑛-state automaton is infinite-step opaque if and only
if it is (2𝑛 − 2)-step opaque. Again, we slightly generalize and reformulate the definition of
Saboori and Hadjicostis [25].

Definition 6 (Infinite-step opacity (INSO)) Given a system 𝐺 = (𝑄,Σ, 𝛿, 𝐼), a projection
𝑃 : Σ∗ → Σ∗

𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, and a set of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄. System
𝐺 is infinite-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 and 𝑃 if for every string 𝑠𝑡 ∈ 𝐿 (𝐺)
such that 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, there exists a string 𝑠′𝑡 ′ ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑠′),
𝑃(𝑡) = 𝑃(𝑡 ′), and 𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡 ′) ≠ ∅.

4 Transformations

Although some of the transformations were previously known in the literature,Wu and Lafor-
tune [31] were first who studied the transformations systematically. In particular, they pro-
vided polynomial-time transformations among current-state opacity, language-based opacity,
initial-state opacity, and initial-and-final-state opacity, see Fig. 1. Inspecting the reductions,
it can be seen that after eliminating the unnecessary Trim operations, the transformations
use only logarithmic space, preserve the number of observable events, and determinism
(whenever it is meaningful). As we already pointed out, the transformations of Wu and
Lafortune [31] preserve the determinism of transitions, but they admit a set of initial states.
This issue can, however, be easily eliminated by adding a new initial state, connecting it to the
original initial states by new unobservable events, and making the original initial states non-
initial. However, their transformation from language-based opacity to initial-state opacity is
restricted only to the case where the secret and non-secret languages of the language-based
opacity problem are prefix closed.
We complete the polynomial-time transformations among all the discussed notions of

opacity. In particular, we provide a general transformation from language-based opacity
to initial-state opacity in Section 4.1.1, transformations between infinite-step opacity and
current-state opacity in Section 4.2, and transformations between K-step opacity and current-
state opacity in Section 4.3. All the transformations preserve the number of observable events
and determinism. Except for a few exceptions, the transformations need only logarithmic
space. Our results are summarized in Fig. 1 with references to the corresponding sections.
The following auxiliary lemma states that we can reduce the number of observable

events in DESs with at least three observable events without affecting current-state opacity
and initial-state opacity of the DES. We make use of this lemma to preserve the number
of observable events in cases where we introduce new observable events in our reductions,
namely in Sections 4.1.1, 4.2.2, and 4.3.2.

Lemma 2 Let 𝐺 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be an NFA, and let Γ𝑜 ⊆ Σ𝑜 contain at least three
events. Let 𝐺 ′ = (𝑄 ′, (Σ − Γ𝑜) ∪ {0, 1}, 𝛿′, 𝐼, 𝐹) be an NFA obtained from 𝐺 as follows. Let
𝑘 = dlog2 ( |Γ𝑜 |)e, and let 𝑒 : Γ𝑜 → {0, 1}𝑘 be a binary encoding of the events of Γ𝑜. We
replace every transition (𝑝, 𝑎, 𝑞) with 𝑎 ∈ Γ𝑜 by 𝑘 transitions

(𝑝, 𝑏1, 𝑝𝑏1 ), (𝑝𝑏1 , 𝑏2, 𝑝𝑏1𝑏2 ), . . . , (𝑝𝑏1 · · ·𝑏𝑘−1 , 𝑏𝑘 , 𝑞)

where 𝑒(𝑎) = 𝑏1𝑏2 · · · 𝑏𝑘 ∈ {0, 1}𝑘 , and 𝑝𝑏1 , . . . , 𝑝𝑏1 · · ·𝑏𝑘−1 are states that are added to the
state set of 𝐺 ′. Notice that these states are neither secret nor non-secret and that, to preserve
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Fig. 2 The replacement of three observable events {𝑎1, 𝑎2, 𝑎3 } with the encoding 𝑒 (𝑎1) = 00, 𝑒 (𝑎2) = 01,
and 𝑒 (𝑎3) = 10, and new states 𝑝0 and 𝑝1.

determinism, they are newly created when they are needed for the first time, and reused
when they are needed later during the replacements, cf. Fig. 2 illustrating a replacement
of three observable events {𝑎1, 𝑎2, 𝑎3} with the encoding 𝑒(𝑎1) = 00, 𝑒(𝑎2) = 01, and
𝑒(𝑎3) = 10. Then 𝐺 is current-state (initial-state) opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and
𝑃 : Σ∗ → Σ∗

𝑜 if and only if𝐺 ′ is current-state (initial-state) opaque with respect to𝑄𝑆 ,𝑄𝑁𝑆 ,
and 𝑃′ : [(Σ − Γ𝑜) ∪ {0, 1}]∗ → [(Σ𝑜 − Γ𝑜) ∪ {0, 1}]∗.

Proof To show that 𝐺 is current-state opaque if and only if 𝐺 ′ is current-state opaque,
we define the languages 𝐿𝑆 = 𝐿𝑚 (𝑄,Σ, 𝛿, 𝐼, 𝑄𝑆), 𝐿𝑁𝑆 = 𝐿𝑚 (𝑄,Σ, 𝛿, 𝐼, 𝑄𝑁𝑆), 𝐿 ′

𝑆
=

𝐿𝑚 (𝑄 ′, (Σ−Γ𝑜)∪{0, 1}, 𝛿′, 𝐼, 𝑄𝑆), and 𝐿 ′
𝑁𝑆

= 𝐿𝑚 (𝑄 ′, (Σ−Γ𝑜)∪{0, 1}, 𝛿′, 𝐼, 𝑄𝑁𝑆). Using
Lemma 1, we now need to show that 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) if and only if 𝑃′(𝐿 ′

𝑆
) ⊆ 𝑃′(𝐿 ′

𝑁𝑆
). To

this end, we define a morphism 𝑓 : Σ∗ → ((Σ−Γ𝑜)∪{0, 1})∗ so that 𝑓 (𝑎) = 𝑒(𝑎) for 𝑎 ∈ Γ𝑜,
and 𝑓 (𝑎) = 𝑎 for 𝑎 ∈ Σ−Γ𝑜. By the definition of 𝑒 and the construction of 𝐺 ′, for any string
𝑤, we have that 𝑤 ∈ 𝐿 (𝐺) if and only if 𝑓 (𝑤) ∈ 𝐿 (𝐺 ′). In particular, 𝑃(𝑤) ∈ 𝑃(𝐿𝑆) if
and only if 𝑃′( 𝑓 (𝑤)) ∈ 𝑃′(𝐿 ′

𝑆
), and 𝑃(𝑤) ∈ 𝑃(𝐿𝑁𝑆) if and only if 𝑃′( 𝑓 (𝑤)) ∈ 𝑃′(𝐿 ′

𝑁𝑆
),

which completes this part of the proof.
To show that 𝐺 is initial-state opaque if and only if 𝐺 ′ is initial-state opaque, we define

the languages 𝐿𝑆 = 𝐿 (𝑄,Σ, 𝛿, 𝑄𝑆), 𝐿𝑁𝑆 = 𝐿 (𝑄,Σ, 𝛿, 𝑄𝑁𝑆), 𝐿 ′
𝑆

= 𝐿 (𝑄 ′, (Σ − Γ𝑜) ∪
{0, 1}, 𝛿′, 𝑄𝑆), and 𝐿 ′

𝑁𝑆
= 𝐿 (𝑄 ′, (Σ − Γ𝑜) ∪ {0, 1}, 𝛿′, 𝑄𝑁𝑆). Since this transforms initial-

state opacity to language-based opacity [31], it is sufficient to show that 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆)
if and only if 𝑃′(𝐿 ′

𝑆
) ⊆ 𝑃′(𝐿 ′

𝑁𝑆
). However, this can be shown analogously as above. ut

Notice that this binary encoding can be done in polynomial time, and that it preserves
determinism.

4.1 Transformations between LBO and ISO

In this section, we discuss the transformations between language-based opacity and initial-
state opacity. The transformation from initial-state opacity to language-based opacity has
been provided by Wu and Lafortune [31], as well as the transformation from language-based
opacity to initial-state opacity for the case where both the secret and the non-secret language
of the language-based opacity problem are prefix closed. We now extend the transformation
from language-based opacity to initial-state opacity to the general case.

4.1.1 Transforming LBO to ISO

The language-based opacity problem consists of a DES𝐺𝐿𝐵𝑂 over Σ, a projection 𝑃 : Σ∗ →
Σ∗
𝑜, a secret language 𝐿𝑆 ⊆ 𝐿 (𝐺), and a non-secret language 𝐿𝑁𝑆 ⊆ 𝐿 (𝐺). We transform it



Comparing the Notions of Opacity for Discrete-Event Systems 9

p

q

r

AS

s

t

v

ANS

GLBO

=⇒

p

q

r

xS

Q′
S

s

t

v

xNS

Q′
NS

GISO
@

@

@

@

Fig. 3 Transforming LBO to ISO.

to a DES 𝐺 𝐼 𝑆𝑂 in such a way that 𝐺𝐿𝐵𝑂 is language-based opaque if and only if 𝐺 𝐼 𝑆𝑂 is
initial-state opaque.
Assume that the languages 𝐿𝑆 and 𝐿𝑁𝑆 are represented by the non-blocking automata

𝐴𝑆 = (𝑄𝑆 ,Σ𝑆 , 𝛿𝑆 , 𝐼𝑆 , 𝐹𝑆) and 𝐴𝑁𝑆 = (𝑄𝑁𝑆 ,Σ𝑁𝑆 , 𝛿𝑁𝑆 , 𝐼𝑁𝑆 , 𝐹𝑁𝑆), respectively. Without
loss of generality, we may assume that their sets of states are disjoint, that is,𝑄𝑆 ∩𝑄𝑁𝑆 = ∅.
Our transformation proceeds in two steps:

1. We construct a DES 𝐺 𝐼 𝑆𝑂 with one additional observable event@.
2. We use Lemma 2 to reduce the number of observable events of 𝐺 𝐼 𝑆𝑂 by one.

Since the second step follows from Lemma 2, we only describe the first step, that is, the
construction of 𝐺 𝐼 𝑆𝑂 over Σ∪ {@}, and the specification of the sets of secret states 𝑄 ′

𝑆
and

non-secret states 𝑄 ′
𝑁𝑆
. From the automata 𝐴𝑆 and 𝐴𝑁𝑆 , we construct the automata 𝐺𝑆 =

(𝑄𝑆∪{𝑥𝑆},Σ𝑆 , 𝛿𝑆 , 𝐼𝑆 , 𝑄𝑆∪{𝑥𝑆}) and𝐺𝑁𝑆 = (𝑄𝑁𝑆∪{𝑥𝑁𝑆},Σ𝑁𝑆 , 𝛿𝑁𝑆 , 𝐼𝑁𝑆 , 𝑄𝑁𝑆∪{𝑥𝑁𝑆})
by adding two new states 𝑥𝑆 and 𝑥𝑁𝑆 , and the following transitions, see Fig. 3 for an
illustration of the construction:

– for every state 𝑞 ∈ 𝐹𝑆 , we add a new transition (𝑞,@, 𝑥𝑆) to 𝛿𝑆 ;
– for every state 𝑞 ∈ 𝐹𝑁𝑆 , we add a new transition (𝑞,@, 𝑥𝑁𝑆) to 𝛿𝑁𝑆 .

Let 𝑄 ′
𝑆
= 𝐼𝑆 denote the set of secret initial states of 𝐺 𝐼 𝑆𝑂, and let 𝑄 ′

𝑁𝑆
= 𝐼𝑁𝑆 denote

the set of non-secret initial states of 𝐺 𝐼 𝑆𝑂. We extend projection 𝑃 to 𝑃′ : (Σ ∪ {@})∗ →
(Σ𝑜 ∪ {@})∗. Finally, let 𝐺 𝐼 𝑆𝑂 denote the automata 𝐺𝑆 and 𝐺𝑁𝑆 considered as a single
NFA. Before we show that𝐺𝐿𝐵𝑂 is language-based opaque if and only if𝐺 𝐼 𝑆𝑂 is initial-state
opaque, notice that the transformation can be done in polynomial time and that it preserves
determinism.

Theorem 1 The DES 𝐺𝐿𝐵𝑂 is language-based opaque with respect to 𝐿𝑆 , 𝐿𝑁𝑆 , and 𝑃 if
and only if the DES 𝐺 𝐼 𝑆𝑂 is initial-state opaque with respect to 𝑄 ′

𝑆
, 𝑄 ′

𝑁𝑆
, and 𝑃′.

Proof We need to show that 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) if and only if 𝑃′(𝐿 (𝐺𝑆)) ⊆ 𝑃′(𝐿 (𝐺𝑁𝑆)).
However, by construction, 𝐿 (𝐺𝑆) = 𝐿𝑆 ∪ 𝐿𝑆@ and 𝐿 (𝐺𝑁𝑆) = 𝐿𝑁𝑆 ∪ 𝐿𝑁𝑆@, and hence
𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) if and only if 𝑃′(𝐿 (𝐺𝑆)) ⊆ 𝑃′(𝐿 (𝐺𝑁𝑆)), which is if and only if 𝐺 𝐼 𝑆𝑂 is
initial-state opaque. ut

We now provide an illustrative example.
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Fig. 4 An example of the transformation of the LBO problem (left) to the ISO problem (right).

Example 1 Let 𝐺1 over Σ = {𝑎, 𝑏, 𝑐} depicted in Fig. 4 (left) be the instance of the LBO
problem with the secret language 𝐿𝑆 = 𝑎𝑏𝑏∗ and the non-secret language 𝐿𝑁𝑆 = 𝑎𝑐𝑏∗. Our
transformation of LBO to ISO then results in the DES 𝐺 ′

1 depicted in Fig. 4 (right) with a
new observable event@, a single secret initial state 1, and a single non-secret initial state 4.
We distinguish two cases depending on whether event 𝑐 is observable or not.
In the first case, we assume that event 𝑐 is unobservable. In this case,𝐺1 is language-based

opaque, because 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆), and the reader can see that 𝑃(𝐿 (𝐺 ′
1, 1)) = 𝑎𝑏𝑏∗@ ⊆

𝑎𝑏∗@ = 𝑃(𝐿 (𝐺 ′
1, 4)). Therefore, 𝐺

′
1 is initial-state opaque.

In the second case, we assume that event 𝑐 is observable. In this case,𝐺1 is not language-
based opaque, because 𝑎𝑏 ∈ 𝑃(𝐿𝑆) whereas 𝑎𝑏 ∉ 𝑃(𝐿𝑁𝑆), and we can see that 𝑎𝑏 ∈
𝐿 (𝐺 ′

1, 1) and 𝑎𝑏 ∉ 𝐿 (𝐺 ′
1, 4). Therefore, 𝐺

′
1 is not initial-state opaque.

4.1.2 The case of a single observable event

The second step of our construction, Lemma 2, requires that 𝐺 𝐼 𝑆𝑂 has at least three observ-
able events or, equivalently, that 𝐺𝐿𝐵𝑂 has at least two observable events. Consequently,
our transformation does not preserve the number of observable events if 𝐺𝐿𝐵𝑂 has a single
observable event. In fact, we show that there does not exist such a transformation unless P
= NP, which is a longstanding open problem of computer science. Deciding language-based
opacity for systems with a single observable event is coNP-complete [14,28]. We show that
deciding initial-state opacity for systems with a single observable event is NL-complete, and
hence efficiently solvable on a parallel computer [2]. In particular, the problem can be solved
in polynomial time.

Theorem 2 Deciding initial-state opacity for DESs with a single observable event is NL-
complete.

Proof Deciding initial-state opacity is equivalent to checking the inclusion of two prefix-
closed languages. Namely, a DES 𝐺 with Σ𝑜 = {𝑎} is initial-state opaque with respect to
secret states 𝑄𝑆 and non-secret states 𝑄𝑁𝑆 if and only if 𝐾𝑆 ⊆ 𝐾𝑁𝑆 for 𝐾𝑆 = 𝑃(𝐿 (𝐺,𝑄𝑆))
and 𝐾𝑁𝑆 = 𝑃(𝐿 (𝐺,𝑄𝑁𝑆)). Since the languages 𝐾𝑆 and 𝐾𝑁𝑆 are prefix-closed, they are
either finite, consisting of at most |𝑄 | strings, or equal to {𝑎}∗.
To show that the problem belongs to NL, we show how to verify 𝐾𝑆 * 𝐾𝑁𝑆 in nondeter-

ministic logarithmic space. Then, since NL is closed under complement [16,29], 𝐾𝑆 ⊆ 𝐾𝑁𝑆
belongs to NL. Thus, to check that 𝐾𝑆 * 𝐾𝑁𝑆 in nondeterministic logarithmic space, we
guess 𝑘 ∈ {0, . . . , |𝑄 |} in binary, store it in logarithmic space, and verify that 𝑎𝑘 ∈ 𝐾𝑆 and
𝑎𝑘 ∉ 𝐾𝑁𝑆 . To verify 𝑎𝑘 ∈ 𝐾𝑆 , we guess a path in 𝐺 step by step, storing only the current
state, and counting the number of steps by decreasing 𝑘 by one in each step; logarithmic space
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is sufficient for this. Since 𝑎𝑘 ∉ 𝐾𝑁𝑆 belongs to the complement of NL, which coincides
with NL, we can check 𝑎𝑘 ∉ 𝐾𝑁𝑆 in nondeterministic logarithmic space as well.
To show that deciding initial-state opacity for DESs with a single observable event is

NL-hard, we reduce the DAG reachability problem [19]: given a DAG𝐺 = (𝑉, 𝐸) and nodes
𝑠, 𝑡 ∈ 𝑉 , the problem asks whether 𝑡 is reachable from 𝑠. From 𝐺, we construct a DES
A = (𝑉 ∪ {𝑖}, {𝑎}, 𝛿, {𝑠, 𝑖}), where 𝑖 is a new initial state and 𝑎 is an observable event, as
follows. With each node of 𝐺, we associate a state in A. Whenever there is an edge from 𝑗

to 𝑘 in 𝐺, we add an 𝑎-transition from 𝑗 to 𝑘 to A. We add a self-loop labeled by 𝑎 to state
𝑡 and to state 𝑖. The set of secret initial states is 𝑄𝑆 = {𝑖} and the set of non-secret initial
states 𝑄𝑁𝑆 = {𝑠}. Then, A is initial-state opaque if and only if there is a path from 𝑠 to 𝑡 in
𝐺. Indeed, 𝐿 (A, 𝑖) = {𝑎}∗ is included in 𝐿 (A, 𝑠) if and only if 𝐿 (A, 𝑠) = {𝑎}∗, which is if
and only if 𝑡 is reachable from 𝑠. ut

4.1.3 Algorithmic complexity of deciding LBO

The algorithmic complexity of deciding whether a given DES is language-based opaque
with respect to given secret and non-secret languages has been investigated in the literature.
Lin [20] suggested an algorithm with the complexity 𝑂 (22𝑛), where 𝑛 is the order of the
state spaces of the automata representing the secret and non-secret languages. The same
complexity has been achieved byWu and Lafortune [31] using the transformation to current-
state opacity. We improve this complexity.

Theorem 3 The time complexity of deciding whether a DES 𝐺 is language-based opaque
with respect to a projection 𝑃, a secret language 𝐿𝑆 ⊆ 𝐿 (𝐺), and a non-secret language
𝐿𝑁𝑆 ⊆ 𝐿 (𝐺) is 𝑂 (𝑚ℓ2𝑛2 + 𝑛12𝑛2 ), where 𝑛1 is the number of states of the automaton
recognizing 𝐿𝑆 , 𝑛2 is the number of states recognizing 𝐿𝑁𝑆 , 𝑚 ≤ ℓ𝑛21 is the number of
transitions of an NFA recognizing 𝑃(𝐿𝑆), and ℓ is the number of observable events.

Proof Let 𝐺𝑆 and 𝐺𝑁𝑆 be automata recognizing 𝐿𝑆 and 𝐿𝑁𝑆 with 𝑛1 and 𝑛2 states, respec-
tively. Then 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) if and only if 𝑃(𝐿𝑆) ∩ co-𝑃(𝐿𝑁𝑆) = ∅, where co-𝑃(𝐿𝑁𝑆)
stands for Σ∗ − 𝑃(𝐿𝑁𝑆). We represent 𝑃(𝐿𝑆) by the projected automaton 𝑃(𝐺𝑆) with 𝑚
transitions and at most 𝑛1 states, and co-𝑃(𝐿𝑁𝑆) by the complement of the observer of
𝐺𝑁𝑆 , denoted by co-𝐺𝑜𝑏𝑠𝑁𝑆

, which has at most 2𝑛2 states and ℓ2𝑛2 transitions. The problem
is now equivalent to checking whether the language of 𝑃(𝐺𝑆) ∩ co-𝐺𝑜𝑏𝑠𝑁𝑆

is empty, which
means to search the structure for a reachable marked state. Since 𝑃(𝐺𝑆) has at most 𝑛1 states
and 𝑚 ≤ ℓ𝑛21 transitions, the structure has 𝑂 (𝑚ℓ2𝑛2 + 𝑛12𝑛2 ) transitions and states, which
completes the proof. ut

4.2 Transformations between CSO and INSO

In this section, we provide the transformations between current-state opacity and infinite-step
opacity. To the best of our knowledge, no transformations between current-state opacity and
infinite-step opacity have been discussed in the literature so far.

4.2.1 Transforming CSO to INSO

We first focus on the transformation from current-state opacity to infinite-step opacity. The
problemof deciding current-state opacity consists of aDES𝐺𝐶𝑆𝑂 = (𝑄,Σ, 𝛿, 𝐼), a projection
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Fig. 5 Transforming CSO to INSO.

𝑃 : Σ∗ → Σ∗
𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, and a set of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄. From

𝐺𝐶𝑆𝑂, we construct a DES𝐺 𝐼 𝑁𝑆𝑂 over the alphabet Σ∪{𝑢}, where 𝑢 is a new unobservable
event. Specifically, we construct 𝐺 𝐼 𝑁𝑆𝑂 = (𝑄 ∪ {𝑞★},Σ∪ {𝑢}, 𝛿′, 𝐼) from 𝐺𝐶𝑆𝑂 by adding
a new state 𝑞★ that is neither secret nor non-secret, and by defining 𝛿′ as follows, see Fig. 5
for an illustration:

1. 𝛿′ = 𝛿, that is, 𝛿′ is initialized as 𝛿 and further extended as follows;
2. for each state 𝑞 ∈ 𝑄𝑁𝑆 , we add a transition (𝑞, 𝑢, 𝑞★) to 𝛿′;
3. for each 𝑎 ∈ Σ, we add a self-loop (𝑞★, 𝑎, 𝑞★) to 𝛿′.

We extend the projection 𝑃 to the projection 𝑃′ : (Σ ∪ {𝑢})∗ → Σ∗
𝑜. The sets 𝑄𝑆 and 𝑄𝑁𝑆

remain unchanged.
Notice that the transformation preserves the number of observable events and determin-

ism, and that it requires only logarithmic space. It remains to show that𝐺𝐶𝑆𝑂 is current-state
opaque if and only if 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque.

Theorem 4 The DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if and
only if the DES 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃′.

Proof Assume first that 𝐺𝐶𝑆𝑂 is not current-state opaque. Since the new state 𝑞★ is neither
secret nor non-secret, we have that 𝐺 𝐼 𝑁𝑆𝑂 is not current-state opaque either. Consequently,
𝐺 𝐼 𝑁𝑆𝑂 is not infinite-step opaque.
On the other hand, assume that 𝐺𝐶𝑆𝑂 is current-state opaque. Since the new state 𝑞★

is neither secret nor non-secret, we have that 𝐺 𝐼 𝑁𝑆𝑂 is current-state opaque as well. Let
𝑠𝑡 ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂) be such that 𝛿′(𝛿′(𝐼, 𝑠) ∩𝑄𝑆 , 𝑡) ≠ ∅; in particular, 𝛿′(𝐼, 𝑠) ∩𝑄𝑆 ≠ ∅. Then,
since 𝐺 𝐼 𝑁𝑆𝑂 is current-state opaque, there exists 𝑠′ ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂) such that 𝑃′(𝑠′) = 𝑃′(𝑠)
and 𝛿′(𝐼, 𝑠′) ∩ 𝑄𝑁𝑆 ≠ ∅. By construction, 𝑠′ can be extended by the string 𝑢𝑡 using the
transitions to state 𝑞★ followed by self-loops in state 𝑞★. Therefore, 𝛿′(𝛿′(𝐼, 𝑠′)∩𝑄𝑁𝑆 , 𝑢𝑡) ≠ ∅
and 𝑃′(𝑠𝑡) = 𝑃′(𝑠𝑢𝑡), which shows that 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque. ut

We now illustrate the construction in the following example.

Example 2 Let 𝐺2 over Σ = {𝑎, 𝑏, 𝑐} depicted in Fig. 6 (left) be the instance of the CSO
problem with the set of secret states 𝑄𝑆 = {2} and the set of non-secret states 𝑄𝑁𝑆 = {5}.
Our transformation of CSO to INSO then results in the DES 𝐺 ′

2 depicted in Fig. 6 (right)
with a new state 𝑞★ and a new unobservable event 𝑢. We distinguish two cases depending on
whether event 𝑐 is observable or not.
If event 𝑐 is unobservable, then𝐺2 is current-state opaque, because the only string leading

to a secret state, state 2, is the string 𝑎, for which the string 𝑎𝑐 leading to the non-secret state,
state 5, satisfies that 𝑃(𝑎) = 𝑃(𝑎𝑐). Then, the reader can see that 𝐺 ′

2 is infinite-step opaque,
because the only possible extensions of the string 𝑎 from the secret state 2 are of the form
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Fig. 6 An example of the transformation of the CSO problem (left) to the INSO problem (right).

𝑏𝑘 , for 𝑘 ∈ N, and for every such extension there is an extension 𝑢𝑏𝑘 of the string 𝑎𝑐 from
the non-secret state 5 such that 𝑃(𝑎𝑏𝑘 ) = 𝑃(𝑎𝑐𝑢𝑏𝑘 ).
If event 𝑐 is observable, then 𝐺2 is not current-state opaque, because the only string

leading to a non-secret state, string 𝑎𝑐, has a different observation then the string 𝑎 leading
to the secret state, that is, 𝑃(𝑎𝑐) ≠ 𝑃(𝑎). Consequently, the reader can verify that 𝐺 ′

2 is not
current-state opaque, and hence neither infinite-step opaque.

4.2.2 Transforming INSO to CSO

Transforming infinite-step opacity to current-state opacity is technically more involved.
The problem of deciding infinite-step opacity consists of a DES 𝐺 𝐼 𝑁𝑆𝑂 = (𝑄,Σ, 𝛿, 𝐼),
a projection 𝑃 : Σ∗ → Σ∗

𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, and a set of non-secret states
𝑄𝑁𝑆 ⊆ 𝑄. From 𝐺 𝐼 𝑁𝑆𝑂, we construct a DES 𝐺𝐶𝑆𝑂 in the following two steps:

1. We construct a DES𝐺𝐶𝑆𝑂 such that𝐺𝐶𝑆𝑂 is current-state opaque if and only if𝐺 𝐼 𝑁𝑆𝑂
is infinite-step opaque. In this step of the construction, 𝐺𝐶𝑆𝑂 has one observable event
more than 𝐺 𝐼 𝑁𝑆𝑂.

2. To reduce the number of observable events by one, we apply Lemma 2. Consequently,
the resulting DES has the same number of observable events as𝐺 𝐼 𝑁𝑆𝑂, if𝐺 𝐼 𝑁𝑆𝑂 has at
least two observable events, is deterministic if and only if 𝐺𝐶𝑆𝑂 is, and is current-state
opaque if and only if 𝐺𝐶𝑆𝑂 is.

We now describe the construction of 𝐺𝐶𝑆𝑂 = (𝑄 ∪ 𝑄+ ∪ 𝑄−,Σ ∪ {@}, 𝛿′, 𝐼), where
𝑄+ = {𝑞+ | 𝑞 ∈ 𝑄}, 𝑄− = {𝑞− | 𝑞 ∈ 𝑄}, and@ is a new observable event. To this end, we
first make two disjoint copies of 𝐺 𝐼 𝑁𝑆𝑂, denoted by 𝐺𝑆 and 𝐺𝑁𝑆 , where the set of states
of 𝐺𝑆 is denoted by 𝑄 ′

𝑆
= 𝑄+ and the set of states of 𝐺𝑁𝑆 is denoted by 𝑄 ′

𝑁𝑆
= 𝑄−. The

DES 𝐺𝐶𝑆𝑂 is taken as the disjoint union of the automata 𝐺 𝐼 𝑁𝑆𝑂, 𝐺𝑆 , and 𝐺𝑁𝑆 , see Fig. 7
for an illustration. Furthermore, for every state 𝑞 ∈ 𝑄𝑆 , we add the transition (𝑞,@, 𝑞+)
and, for every state 𝑞 ∈ 𝑄𝑁𝑆 , we add the transition (𝑞,@, 𝑞−). The set of secret states of
𝐺𝐶𝑆𝑂 is 𝑄 ′

𝑆
and the set of non-secret states of 𝐺𝐶𝑆𝑂 is 𝑄 ′

𝑁𝑆
. We extend projection 𝑃 to

𝑃′ : (Σ ∪ {@})∗ → (Σ𝑜 ∪ {@})∗.
Notice that 𝐺𝐶𝑆𝑂 is deterministic if and only if 𝐺 𝐼 𝑁𝑆𝑂 is, and that logarithmic space is

sufficient for the construction of 𝐺𝐶𝑆𝑂. As already pointed out, however, the construction
does not preserve the number of observable events, which requires the second step of the
construction using Lemma 2 as described above.
We now show that 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque if and only if 𝐺𝐶𝑆𝑂 is current-state

opaque.
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Fig. 7 Transforming INSO to CSO.

Theorem 5 The DES 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if
and only if the DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect to 𝑄 ′

𝑆
, 𝑄 ′

𝑁𝑆
, and 𝑃′ : (Σ ∪

{@})∗ → (Σ𝑜 ∪ {@})∗.

Proof Assume that 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque. We show that 𝐺𝐶𝑆𝑂 is current-state
opaque. To this end, consider a string 𝑤 such that 𝛿′(𝐼, 𝑤) ∩ 𝑄 ′

𝑆
≠ ∅. We want to show that

there exists 𝑤′ such that 𝑃′(𝑤) = 𝑃′(𝑤′) and 𝛿′(𝐼, 𝑤′) ∩𝑄 ′
𝑁𝑆

≠ ∅. However, since𝑄 ′
𝑆
= 𝑄+,

𝑤 is of the form𝑤1@𝑤2. Then, by the construction, 𝛿(𝐼, 𝑤1) contains a secret state of𝐺 𝐼 𝑁𝑆𝑂,
say 𝑞 ∈ 𝛿(𝐼, 𝑤1) ∩𝑄𝑆 , such that state 𝑞+ is a copy of state 𝑞 reached under@ from state 𝑞 in
𝐺𝐶𝑆𝑂, and 𝑤2 is read from state 𝑞+ in the copy 𝐺𝑆 of 𝐺 𝐼 𝑁𝑆𝑂. That is, 𝑤2 can be read from
state 𝑞 in 𝐺 𝐼 𝑁𝑆𝑂, and hence 𝛿(𝐼, 𝑤1𝑤2) ≠ ∅. Altogether, 𝛿(𝛿(𝐼, 𝑤1) ∩𝑄𝑆 , 𝑤2) ≠ ∅ and the
fact that 𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque imply that there exists a string 𝑤′

1𝑤
′
2 ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂)

such that 𝑃(𝑤1) = 𝑃(𝑤′
1), 𝑃(𝑤2) = 𝑃(𝑤′

2), and 𝛿(𝛿(𝐼, 𝑤
′
1) ∩ 𝑄𝑁𝑆 , 𝑤

′
2) ≠ ∅. Let 𝑤′ =

𝑤′
1@𝑤

′
2. Then 𝑃

′(𝑤) = 𝑃′(𝑤′) and, by the construction, ∅ ≠ 𝛿′(𝛿′(𝐼, 𝑤′
1@) ∩ 𝑄 ′

𝑁𝑆
, 𝑤′
2) ⊆

𝑄 ′
𝑁𝑆
, which completes the proof.
On the other hand, assume that 𝐺 𝐼 𝑁𝑆𝑂 is not infinite-step opaque, that is, there exists a

string 𝑠𝑡 ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂) such that 𝛿(𝛿(𝐼, 𝑠) ∩𝑄𝑆 , 𝑡) ≠ ∅ and for every 𝑠′𝑡 ′ ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂) with
𝑃(𝑠) = 𝑃(𝑠′) and 𝑃(𝑡) = 𝑃(𝑡 ′), 𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡 ′) = ∅. But then for 𝑠@𝑡 ∈ 𝐿 (𝐺𝐶𝑆𝑂), we
have that ∅ ≠ 𝛿′(𝛿′(𝐼, 𝑠@)∩𝑄 ′

𝑆
, 𝑡) = 𝛿′(𝐼, 𝑠@𝑡) ⊆ 𝑄 ′

𝑆
and, for every 𝑠′@𝑡 ′ ∈ 𝐿 (𝐺𝐶𝑆𝑂) such

that 𝑃′(𝑠@𝑡) = 𝑃′(𝑠′@𝑡 ′), we have that 𝛿′(𝐼, 𝑠′@𝑡 ′) ∩𝑄 ′
𝑁𝑆

= 𝛿′(𝛿′(𝐼, 𝑠′@) ∩𝑄 ′
𝑁𝑆
, 𝑡 ′) = ∅,

which shows that 𝐺𝐶𝑆𝑂 is not current-state opaque. ut

We now illustrate the construction.

Example 3 Let 𝐺3 over Σ = {𝑎, 𝑏, 𝑐} depicted in Fig. 8 (left) be the instance of the INSO
problem with the set of secret states 𝑄𝑆 = {2} and the set of non-secret states 𝑄𝑁𝑆 = {4}.
Our transformation of INSO to CSO then results in the DES 𝐺 ′

3 depicted in Fig. 8 (right)
with a new observable event @, the set of secret states 𝑄 ′

𝑆
, and the set of non-secret states

𝑄 ′
𝑁𝑆
. We again consider two cases based on the observability status of event 𝑐.
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Fig. 8 An example of the transformation of the INSO problem (left) to the CSO problem (right).

If event 𝑐 is unobservable, then𝐺3 is infinite-step opaque. Indeed, the only string leading
to the single secret state, state 2, is the string 𝑎. The same string leads to the single non-secret
state, state 4. Then, any possible extension of the string 𝑎 from the unique secret state 2
is the string 𝑏𝑘 , for 𝑘 ∈ N, which reaches state 3. However, for any such extension, there
is the extension 𝑐𝑏𝑘 from the non-secret state 4 with 𝑃(𝑎𝑏𝑘 ) = 𝑃(𝑎𝑐𝑏𝑘 ). The reader can
further see that 𝐺 ′

3 is current-state opaque, because it can enter a secret state only after
generating a string of the form 𝑎@𝑏𝑘 , 𝑘 ∈ N, in which case 𝛿′(1, 𝑃−1 (𝑎@)) = {2+, 4−, 5−}
and 𝛿′(1, 𝑃−1 (𝑎@𝑏𝑘 )) = {3+, 5−} for 𝑘 ≥ 1.
If event 𝑐 is observable, then 𝐺3 is not infinite-step opaque, because after generating

string 𝑎𝑏, the intruder can deduce that the system was in the secret state 2. Similarly, after
generating string 𝑎@𝑏, system 𝐺 ′

3 ends up in the only state 3
+, which is a secret state, and

hence 𝐺 ′
3 is not current-state opaque.

4.2.3 The case of a single observable event

To preserve the number of observable events, our transformation of infinite-step opacity to
current state opacity relies on Lemma 2. This lemma requires at least two observable events
in 𝐺 𝐼 𝑁𝑆𝑂, and hence it is not applicable to systems with a single observable event. For
these systems, we provide a different transformation that requires to add at most a quadratic
number of new states.
The problem of deciding infinite-step opacity for systems with a single observable event

consists of a DES 𝐺 𝐼 𝑁𝑆𝑂 = (𝑄,Σ, 𝛿, 𝐼) with Σ𝑜 = {𝑎}, a set of secret states 𝑄𝑆 ⊆ 𝑄, a set
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Fig. 9 Transforming INSO to CSO for systems with a single observable event.

of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄, and a projection 𝑃 : Σ∗ → {𝑎}∗. We denote the number of
states of 𝐺 𝐼 𝑁𝑆𝑂 by 𝑛, and define a function 𝜑 : 𝑄 → {0, . . . , 𝑛} that assigns, to every state
𝑞, the maximal number 𝑘 ∈ {0, . . . , 𝑛} of observable steps that are possible from state 𝑞;
formally, 𝜑(𝑞) = max

{
𝑘 ∈ {0, . . . , 𝑛} | 𝛿(𝑞, 𝑃−1 (𝑎𝑘 )) ≠ ∅

}
.

From 𝐺 𝐼 𝑁𝑆𝑂, we construct a DES 𝐺𝐶𝑆𝑂 = (𝑄 ′,Σ, 𝛿′, 𝐼) as illustrated in Fig. 9, where
𝛿′ is initialized as 𝛿 and modified as follows. For every state 𝑝 ∈ 𝑄 with 𝜑(𝑝) > 0, we
add 𝑛 new states 𝑝1, . . . , 𝑝𝑛 to 𝑄 ′ and 𝑛 new transitions (𝑝, 𝑎, 𝑝1) and (𝑝𝑖 , 𝑎, 𝑝𝑖+1), for
𝑖 = 1, . . . , 𝑛 − 1, to 𝛿′. Finally, we replace every transition (𝑝, 𝑎, 𝑟) in 𝛿′ by the transition
(𝑝𝑛, 𝑎, 𝑟). Notice that the transformation requires to add at most 𝑛2 states, and hence it can
be done in polynomial time. Let 𝑄 ′

𝑆
= 𝑄𝑆 and 𝑄 ′

𝑁𝑆
= 𝑄𝑁𝑆 . For every state 𝑝 ∈ 𝑄𝑆 with

𝜑(𝑝) = 𝑘 > 0, we add the corresponding states 𝑝1, . . . , 𝑝𝑘 to𝑄 ′
𝑆
. Analogously, for 𝑝 ∈ 𝑄𝑁𝑆

with 𝜑(𝑝) = 𝑘 > 0, we add 𝑝1, . . . , 𝑝𝑘 to 𝑄 ′
𝑁𝑆
.

Notice that the transformation can be done in polynomial time, preserves the number of
observable events, and determinism. However, whether the transformation can be done in
logarithmic space is open. Even if the DES had no unobservable event, to determine whether
𝜑(·) = 𝑛 is equivalent to the detection of a cycle. The detection of a cycle is NL-hard: We
can reduce the DAG reachability problem as follows. Given a DAG 𝐺 and two nodes 𝑠 and 𝑡,
we construct a DES G by associating a state with every node of 𝐺 and an 𝑎-transition with
every edge of 𝐺. Finally, we add an 𝑎-transition from 𝑡 to 𝑠. Then 𝑡 is reachable from 𝑠 in 𝐺
if and only if G contains a cycle. Since it is an open problem whether L = NL, it is an open
problem whether 𝜑 can be computed in deterministic logarithmic space.
We show that𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque if and only if𝐺𝐶𝑆𝑂 is current-state opaque.

Theorem 6 The DES 𝐺 𝐼 𝑁𝑆𝑂 with a single observable event is infinite-step opaque with
respect to𝑄𝑆 ,𝑄𝑁𝑆 , and 𝑃 if and only if the DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect
to 𝑄 ′

𝑆
, 𝑄 ′

𝑁𝑆
, and 𝑃.

Proof Assume that 𝐺 𝐼 𝑁𝑆𝑂 is not infinite-step opaque. Then, there exists 𝑠𝑡 ∈ 𝐿 (𝐺 𝐼 𝑁𝑆𝑂)
with 𝛿(𝛿(𝐼, 𝑠)∩𝑄𝑆 , 𝑡) ≠ ∅ such that 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠))∩𝑄𝑁𝑆 , 𝑃−1𝑃(𝑡)) = ∅. Let 𝑓 : Σ∗ → Σ∗

be a morphism such that 𝑓 (𝑎) = 𝑎𝑛+1 and 𝑓 (𝑏) = 𝑏, for 𝑎 ≠ 𝑏 ∈ Σ. Then, by construction,
𝛿(𝐼, 𝑠) = 𝛿′(𝐼, 𝑓 (𝑠)), and hence 𝛿′(𝐼, 𝑓 (𝑠)) ∩ 𝑄 ′

𝑆
≠ ∅. If 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 = ∅,

then 𝛿(𝐼, 𝑓 (𝑃−1𝑃(𝑠))) ∩ 𝑄 ′
𝑁𝑆

= ∅ because 𝛿(𝐼, 𝑠′) = 𝛿′(𝐼, 𝑓 (𝑠′)) for any 𝑠′ ∈ 𝑃−1𝑃(𝑠),
and 𝐺𝐶𝑆𝑂 is not current-state opaque. Otherwise, we denote by 𝑞𝑠 ∈ 𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 and
𝑞𝑛𝑠 ∈ 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 the states with maximal 𝜑(𝑞𝑠) and 𝜑(𝑞𝑛𝑠). Since 𝐺 𝐼 𝑁𝑆𝑂 is
not infinite-step opaque, 𝜑(𝑞𝑠) > 𝜑(𝑞𝑛𝑠). Then, in 𝐺𝐶𝑆𝑂, 𝑞𝑠 has exactly one outgoing
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Fig. 10 An example of the transformation of the INSO problem with a single observable event (left) to the
CSO problem (right).

observable transition and is followed by 𝜑(𝑞𝑠) = 𝑘 secret states, while 𝑞𝑛𝑠 is followed by
𝜑(𝑞𝑛𝑠) < 𝑘 non-secret states. Therefore, 𝛿′(𝐼, 𝑓 (𝑠)𝑎𝑘 )∩𝑄 ′

𝑆
≠ ∅ and 𝛿′(𝐼, 𝑓 (𝑠′)𝑎𝑘 )∩𝑄 ′

𝑁𝑆
=

∅ for any 𝑠′ ∈ 𝑃−1𝑃(𝑠), and hence 𝐺𝐶𝑆𝑂 is not current-state opaque.
On the other hand, assume that𝐺 𝐼 𝑁𝑆𝑂 is infinite-step opaque, and that 𝛿′(𝐼, 𝑤)∩𝑄 ′

𝑆
≠ ∅.

We show that 𝛿′(𝐼, 𝑃−1𝑃(𝑤)) ∩ 𝑄𝑁𝑆 ≠ ∅. Consider a state 𝑞𝑠 ∈ 𝛿′(𝐼, 𝑤) ∩ 𝑄 ′
𝑆
and a path

𝜋 in 𝐺𝐶𝑆𝑂 leading to 𝑞𝑠 under 𝑤. Denote by 𝑝 the last state of 𝜋 that corresponds to a
state of 𝐺 𝐼 𝑁𝑆𝑂; that is, 𝑝 is not a new state added by the construction of 𝐺𝐶𝑆𝑂. Since
𝑞𝑠 ∈ 𝑄 ′

𝑆
, we have, by construction, that 𝑝 ∈ 𝑄𝑆 . Then the choice of 𝑝 partitions 𝑤 = 𝑢𝑣,

where 𝑢, read along the path 𝜋, leads to state 𝑝, and 𝑣 = 𝑎ℓ is a suffix of length ℓ ≤ 𝑛.
Let 𝑢′ be a string such that 𝑓 (𝑢′) = 𝑢. Then 𝑝 ∈ 𝛿(𝐼, 𝑢′) ∩ 𝑄𝑆 . Since 𝜑(𝑝) ≥ ℓ, there
exists 𝑡 such that 𝑃(𝑡) = 𝑎ℓ and 𝛿(𝛿(𝐼, 𝑢′) ∩ 𝑄𝑆 , 𝑡) ≠ ∅ in 𝐺 𝐼 𝑁𝑆𝑂. Then infinite-step
opacity of 𝐺 𝐼 𝑁𝑆𝑂 implies that there exists 𝑢′′ and 𝑡 ′ such that 𝑃(𝑢′) = 𝑃(𝑢′′), 𝑃(𝑡) = 𝑃(𝑡 ′),
and 𝛿(𝛿(𝐼, 𝑢′′) ∩ 𝑄𝑁𝑆 , 𝑡 ′) ≠ ∅. In particular, there is a state 𝑞𝑛𝑠 ∈ 𝛿(𝐼, 𝑢′′) ∩ 𝑄𝑁𝑆 with
𝜑(𝑞𝑛𝑠) ≥ ℓ, and 𝛿′(𝐼, 𝑓 (𝑢′′)) ∩ 𝑄 ′

𝑁𝑆
≠ ∅. Therefore, 𝛿′(𝐼, 𝑓 (𝑢′′)𝑎ℓ ) ∩ 𝑄 ′

𝑁𝑆
≠ ∅ and

𝑃( 𝑓 (𝑢′′)𝑎ℓ ) = 𝑃(𝑢𝑣) = 𝑃(𝑤), which completes the proof. ut

We now illustrate the construction.

Example 4 Let 𝐺4 over Σ = {𝑎, 𝑢} depicted in Fig. 10 (left) be the instance of the INSO
problem with a single observable event Σ𝑜 = {𝑎}, the set of secret states 𝑄𝑆 = {1}, and
the set of non-secret states 𝑄𝑁𝑆 = {3}. Then, 𝜑(1) = 𝜑(3) = 3, and our transformation of
INSO to CSO results in the DES 𝐺 ′

4 depicted in Fig. 10 (right) with the set of secret states
𝑄 ′
𝑆
and the set of non-secret states 𝑄 ′

𝑁𝑆
. We consider two cases based on the presence of

the unobservable transition (1, 𝑢, 3) in 𝐺4.
We first assume that the transition (1, 𝑢, 3) exists in𝐺4. Then,𝐺4 is infinite-step opaque,

because any string 𝑎𝑘 leading from the secret state 1 is indistinguishable from the string
𝑢𝑎𝑘 that leads the system to the non-secret state 3. The reader can see that 𝐺 ′

4 is current-
state opaque, because a secret state is reachable only under a string of the form 𝑎𝑘 , for
𝑘 ∈ {0, 1, 2, 3}, and for any such string there is an indistinguishable string 𝑢𝑎𝑘 reaching a
non-secret state.
If the transition (1, 𝑢, 3) does not exist in𝐺4, then𝐺4 is not infinite-step opaque, because

it is neither current-state opaque and, obviously, neither 𝐺 ′
4 is current-state opaque.

4.2.4 Improving the algorithmic complexity of deciding infinite-step opacity

Let 𝐺 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be a DES. We design an algorithm deciding infinite-step opacity in
time 𝑂 ((𝑛 + 𝑚ℓ)2𝑛), where ℓ = |Σ𝑜 | is the number of observable events, 𝑛 is the number of
states of 𝐺, and 𝑚 is the number of transitions of 𝑃(𝐺), 𝑚 ≤ ℓ𝑛2.
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To decide whether𝐺 is infinite-step opaque with respect to𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄, and 𝑃 : Σ∗ →
Σ∗
𝑜, we proceed as follows:

1. We compute the observer G𝑜𝑏𝑠 of 𝐺 in time 𝑂 (ℓ2𝑛) [8];
2. We compute the projected automaton 𝑃(𝐺) of 𝐺 in time 𝑂 (𝑚 + 𝑛) [15];
3. We compute the product automaton C = 𝑃(𝐺) × G𝑜𝑏𝑠 in time 𝑂 ((𝑚 + 𝑛) · ℓ2𝑛) [10];

– states of C are of the form 𝑄 × 2𝑄;
4. For every reachable state 𝑋 of G𝑜𝑏𝑠 , we compute 𝑋𝑆 = 𝑋 ∩𝑄𝑆 and 𝑋𝑁𝑆 = 𝑋 ∩𝑄𝑁𝑆 ;
(a) If 𝑋𝑆 ≠ ∅ and 𝑋𝑁𝑆 = ∅, then 𝐺 is not infinite-step opaque; this is, actually, the
standard check whether 𝐺 is current-state opaque;

(b) Otherwise, for every state 𝑥 ∈ 𝑋𝑆 , we add a transition from 𝑋 under @ to state
(𝑥, 𝑋𝑁𝑆) of C, and we add the state (𝑥, 𝑋𝑁𝑆) to set 𝑌 ;

5. If C contains a state of the form (𝑞, ∅) reachable from 𝑌 , then 𝐺 is not infinite-step
opaque; otherwise, 𝐺 is infinite-step opaque.

Informally, we first make use of the standard check in the observer of 𝐺 whether 𝐺 is
current-state opaque. If it is not, then it is neither infinite-step opaque. Otherwise, for every
state 𝑋 of the observer of𝐺 that contains both secret and non-secret states, we add a transition
under the new event @ to a pair of a secret state 𝑥 ∈ 𝑋 and the set of all non-secret states
𝑋𝑁𝑆 of 𝑋 . If a state of the form (𝑞, ∅) is reachable from (𝑥, 𝑋𝑁𝑆), then 𝐺 is not infinite-step
opaque. Otherwise, 𝐺 is infinite-step opaque. We now formally prove correctness.

Lemma 3 The DES 𝐺 is infinite-step opaque if and only if 𝐺 is current-state opaque and
no state of the form (𝑞, ∅) is reachable in C from the set 𝑌 .

Proof Assume that 𝐺 is not infinite-step opaque. Then, there exists 𝑠𝑡 ∈ 𝐿 (𝐺) such that
𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅ and 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 , 𝑃−1𝑃(𝑡)) = ∅. There are two cases:
(i) either 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 = ∅, in which case 𝐺 is not current-state opaque, neither
infinite-step opaque, and the algorithm detects this situation in the observer of 𝐺 on line
4(a), (ii) or 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 = 𝑍 ≠ ∅. In this case, 𝑃(𝑠)@ leads from the observer of
𝐺 to the pairs (𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑆) × {𝑍} of the NFA C. Since 𝛿(𝐼, 𝑠𝑡) ≠ ∅, there exists
(𝑧, 𝑍) ∈ (𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑆) × {𝑍} such that 𝑃(𝑡) leads the projected automaton 𝑃(𝐺)
from state 𝑧 to a state 𝑞. However, 𝛿(𝑍, 𝑃−1𝑃(𝑡)) = ∅ implies that 𝑃(𝑡) leads the observer of
𝐺 from state 𝑍 to state ∅, and hence the pair (𝑞, ∅) is reachable in C from a state of 𝑌 .
On the other hand, if 𝐺 is infinite-step opaque, then it is current-state opaque, and we

show that no state of the form (𝑞, ∅) is reachable in C from a state of 𝑌 . For the sake of
contradiction, assume that a state of the form (𝑞, ∅) is reachable in C from a state of 𝑌 .
Then, there must be a string 𝑠 such that 𝑃(𝑠) reaches a state 𝑋 in the observer of 𝐺 such that
𝑋𝑆 = 𝑋 ∩ 𝑄𝑆 contains a state 𝑧, 𝑋 ∩ 𝑄𝑁𝑆 = 𝑍 ≠ ∅, there is a transition under @ from 𝑋

to the pair (𝑧, 𝑍) of C, and the NFA C reaches state (𝑞, ∅) from (𝑧, 𝑍) under a string 𝑤. In
particular, there must be a string 𝑡 ∈ 𝑃−1 (𝑤) that moves 𝐺 from state 𝑧 to state 𝑞. But then
𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, and 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 , 𝑃−1 (𝑤)) = ∅, which means that 𝐺 is
not infinite-step opaque – a contradiction. ut

Since our algorithm constructs and searches the NFA C that has 𝑂 (𝑛2𝑛) states and
𝑂 (𝑚ℓ2𝑛) transitions, the overall time complexity of our algorithm is 𝑂 ((𝑛 + 𝑚ℓ)2𝑛).
We now illustrate the procedure in the following example.

Example 5 We consider system 𝐺3 of Example 3 as depicted in Fig. 8 with all the events 𝑎,
𝑏, 𝑐 observable, the set of secret states𝑄𝑆 = {2}, and the set of non-secret states𝑄𝑁𝑆 = {4}.
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Fig. 11 The relevant part of the observer of𝐺3 (left), the corresponding part of the automaton𝐶 (right), and
the@-transition (dashed) added by the algorithm.

Then𝐺3 is current-state opaque, but not infinite-step opaque. To show that𝐺3 is not infinite-
step opaque, our algorithm works as follows. First, notice that 𝑃(𝐺3) coincides with 𝐺3,
since there are no unobservable transitions in 𝐺3. A relevant part of the observer of 𝐺3 is
depicted in Fig. 11 (left), and a relevant part of the automaton 𝐶, i.e., of the product of
𝑃(𝐺3) with the observer of 𝐺3, is depicted in Fig. 11 (right). The only reachable state of
the observer that has a nonempty intersection with 𝑄𝑆 = {2} is state 𝑋 = {2, 4}, resulting in
𝑋𝑆 = {2} and 𝑋𝑁𝑆 = {4}. The algorithm then creates an@-transition from state 𝑋 = {2, 4}
of the observer to state (2, {4}) of the product automaton𝐶 (the dashed transition in Fig. 11).
Since state (3, ∅) is reachable from state (2, {4}) in 𝐶, system𝐺3 is not infinite-step opaque;
indeed, observing 𝑎𝑏 in 𝐺3, the intruder knows for sure that the system was in a secret state.
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Fig. 12 Projected automaton 𝑃 (�̃�3) .

On the other hand, we now assume that 𝑐 is
unobservable. To avoid confusion, we denote 𝐺3
with 𝑎 and 𝑏 observable, 𝑐 unobservable, the set of
secret states 𝑄𝑆 = {2}, and the set of non-secret
states 𝑄𝑁𝑆 = {4} as 𝐺3. Then 𝐺3 is infinite-step
opaque, and our algorithm works as follows. First,
we construct 𝑃(𝐺3) as shown in Fig. 12. Relevant
parts of the observer of 𝐺3 and of the product of
𝑃(𝐺3) with the observer, automaton 𝐶, is depicted
in Fig. 13. The only reachable state of the observer of 𝐺3 with a nonempty intersection with
𝑄𝑆 = {2} is state 𝑋 = {2, 4, 5}, resulting in 𝑋𝑆 = {2} and 𝑋𝑁𝑆 = {4}. The algorithm creates
an @-transition from state 𝑋 = {2, 4, 5} of the observer to state (2, {4}) of the product
automaton 𝐶 (the dashed transition in Fig. 13). Since no state of the form (𝑞, ∅) is reachable
from state (2, {4}), 𝐺3 is infinite-step opaque.
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Fig. 13 The relevant part of the observer of �̃�3 (left), the corresponding part of the automaton𝐶 (right), and
the@-transition (dashed) added by the algorithm.
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Fig. 14 Transforming CSO to K-SO.

4.3 Transformations between CSO and K-SO

In this section, we describe the transformations between current-state opacity and K-step
opacity. To the best of our knowledge, no such transformations have been considered in the
literature so far.

4.3.1 Transforming CSO to K-SO

The transformation from current state opacity to K-step opacity is analogous to the trans-
formation from current state opacity to infinite-step opacity of Section 4.2.1. Intuitively, the
modification is that we need to make only K observable steps from any non-secret state
instead of infinitely many such steps.
The problem of deciding current-state opacity consists of a DES 𝐺𝐶𝑆𝑂 = (𝑄,Σ, 𝛿, 𝐼), a

projection 𝑃 : Σ∗ → Σ∗
𝑜, a set of secret states𝑄𝑆 ⊆ 𝑄, and a set of non-secret states𝑄𝑁𝑆 ⊆ 𝑄.

For a given 𝐾 ∈ N, from𝐺𝐶𝑆𝑂, we construct a DES𝐺𝐾 -𝑆𝑂= (𝑄∪𝑄★,Σ∪{𝑢}, 𝛿′, 𝐼), where
𝑢 is a new unobservable event, by adding 𝐾+1 new states𝑄★ = {𝑞★0 , . . . , 𝑞

★
𝐾
} that are neither

secret nor non-secret, and by defining 𝛿′ as follows, see Fig. 14 for an illustration:

1. 𝛿′ = 𝛿, that is, 𝛿′ is initialized as 𝛿 and further extended as follows;
2. for every state 𝑞 ∈ 𝑄𝑁𝑆 , we add the transition (𝑞, 𝑢, 𝑞★0 ) to 𝛿

′;
3. for 𝑖 = 0, . . . , 𝐾 − 1 and every 𝑎 ∈ Σ𝑜, we add the transition (𝑞★𝑖 , 𝑎, 𝑞★𝑖+1) to 𝛿

′.

We extend the projection 𝑃 to the projection 𝑃′ : (Σ ∪ {𝑢})∗ → Σ∗
𝑜. The sets 𝑄𝑆 and 𝑄𝑁𝑆

remain unchanged.

Theorem 7 The DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if and
only if the DES 𝐺𝐾 -𝑆𝑂 is K-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 , 𝑃′, and 𝐾 .

Proof Assume first that 𝐺𝐶𝑆𝑂 is not current-state opaque. Since the new states 𝑞★0 , . . . , 𝑞
★
𝐾

are neither secret nor non-secret,𝐺𝐾 -𝑆𝑂 is not current-state opaque either, and hence𝐺𝐾 -𝑆𝑂
is not K-step opaque.
On the other hand, assume that 𝐺𝐶𝑆𝑂 is current-state opaque. Since the new states

𝑞★0 , . . . , 𝑞
★
𝐾
are neither secret nor non-secret, 𝐺𝐾 -𝑆𝑂 is current-state opaque as well. Let

𝑠𝑡 ∈ 𝐿 (𝐺𝐾 -𝑆𝑂) be such that |𝑃(𝑡) | ≤ 𝐾 and 𝛿′(𝛿′(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅. Then, since 𝐺𝐾 -𝑆𝑂 is
current-state opaque, there is 𝑠′ ∈ 𝑃−1𝑃(𝑠) such that 𝛿′(𝐼, 𝑠′) ∩ 𝑄𝑁𝑆 ≠ ∅. By construction,
we can extend 𝑠′ by the string 𝑢𝑃(𝑡) using the transitions through the new states 𝑞★0 , . . . , 𝑞

★
𝐾
,

that is, 𝛿′(𝛿′(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑢𝑃(𝑡)) ≠ ∅, and hence 𝐺𝐾 -𝑆𝑂 is K-step opaque. ut

We now illustrate the construction.
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Fig. 15 An example of the transformation of the CSO problem (left) to the K-SO problem (right).

Example 6 Let 𝐺2 over Σ = {𝑎, 𝑏, 𝑐} depicted in Fig. 15 (left) be the instance of the CSO
problem from Example 2 with the set of secret states 𝑄𝑆 = {2} and the set of non-secret
states 𝑄𝑁𝑆 = {5}. Our transformation of CSO to K-SO then results in the DES 𝐺 ′′

2 depicted
in Fig. 15 (right) with 𝐾 = 2, a new unobservable event 𝑢, and three new states 𝑞★0 , 𝑞

★
1 , and

𝑞★2 . We again distinguish two cases depending on whether event 𝑐 is observable or not.
If 𝑐 is unobservable, 𝐺2 is current-state opaque as shown in Example 2. The reader can

see that 𝐺 ′′
2 is then 2-step opaque, because the only possible extensions of the string 𝑎 from

the secret state 2 are of the form 𝑏𝑘 , for 𝑘 ∈ N, and for those extensions where 𝑘 ≤ 2, there is
an extension 𝑢𝑏𝑘 of the string 𝑎𝑐 from the non-secret state 5 such that 𝑃(𝑎𝑏𝑘 ) = 𝑃(𝑎𝑐𝑢𝑏𝑘 ).
If 𝑐 is observable, then 𝐺2 is not current-state opaque as shown in Example 2. Conse-

quently, the reader can verify that 𝐺 ′′
2 is not current-state opaque, and hence neither 2-step

opaque.

4.3.2 Transforming K-SO to CSO

Transforming K-step opacity to current-state opacity is again similar to the transformation
of infinite-step opacity to current-state opacity. Again, we only need to check K subsequent
steps instead of all the subsequent steps. The problem of deciding K-step opacity consists of
a DES 𝐺K-SO = (𝑄,Σ, 𝛿, 𝐼), a projection 𝑃 : Σ∗ → Σ∗

𝑜, a set of secret states 𝑄𝑆 ⊆ 𝑄, and a
set of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄. From 𝐺K-SO, we construct a DES 𝐺𝐶𝑆𝑂 in the following
two steps:

1. We construct a DES 𝐺𝐶𝑆𝑂 such that 𝐺𝐶𝑆𝑂 is current-state opaque if and only if 𝐺K-SO
is K-step opaque. In this step of the construction, 𝐺𝐶𝑆𝑂 has one observable event more
than 𝐺K-SO.

2. To reduce the number of observable events by one, we apply Lemma 2. Consequently,
the resulting DES has the same number of observable events as 𝐺K-SO, if 𝐺K-SO has at
least two observable events, is deterministic if and only if 𝐺𝐶𝑆𝑂 is, and is current-state
opaque if and only if 𝐺𝐶𝑆𝑂 is.

We now describe the construction of 𝐺𝐶𝑆𝑂 = (𝑄 ∪ 𝑄+ ∪ 𝑄− ∪ 𝑄★,Σ ∪ {𝑢,@}, 𝛿′, 𝐼),
where 𝑄+ = {𝑞+ | 𝑞 ∈ 𝑄}, 𝑄− = {𝑞− | 𝑞 ∈ 𝑄}, 𝑄★ = {𝑞★0 , . . . , 𝑞

★
𝐾+1}, @ is a new

observable event, and 𝑢 is a new unobservable event. To this end, we first make two disjoint
copies of 𝐺K-SO, denoted by 𝐺+ and 𝐺−, where the set of states of 𝐺+ is denoted by 𝑄+ and
the set of states of 𝐺− is denoted by 𝑄−. The DES 𝐺𝐶𝑆𝑂 is now taken as the disjoint union



22 Jiří Balun, Tomáš Masopust

p q

QS

r

QNS
GK-SO

=⇒
p q r

Q

p+ q+ r+

Q′S = Q+

p− q− r−
Q−

GCSO

q?0 q?1

...

q?Kq?K+1

Q′NS

@

@

u
u

u Σo

Σo

Σo

Σo

Σo

Fig. 16 Transforming K-SO to CSO.

of the automata 𝐺K-SO, 𝐺+, and 𝐺−, see Fig. 7 for an illustration. We now add K+2 new
states 𝑞★0 , . . . , 𝑞

★
𝐾+1 to 𝐺𝐶𝑆𝑂 and the following transitions. For every state 𝑞 ∈ 𝑄𝑆 , we add

the transition (𝑞,@, 𝑞+), for every state 𝑞 ∈ 𝑄𝑁𝑆 , we add the transition (𝑞,@, 𝑞−), for every
𝑞− ∈ 𝑄−, we add the transition (𝑞−, 𝑢, 𝑞★0 ), for every 𝑎 ∈ Σ𝑜 and 𝑖 = 0, . . . , 𝐾 , we add the
transition (𝑞★

𝑖
, 𝑎, 𝑞★

𝑖+1), and, finally, we add the self-loop (𝑞
★
𝐾+1, 𝑎, 𝑞

★
𝐾+1) for every 𝑎 ∈ Σ𝑜.

The set of secret states of 𝐺𝐶𝑆𝑂 is the 𝑄 ′
𝑆
= 𝑄+ and the set of non-secret states of 𝐺𝐶𝑆𝑂 is

the set 𝑄 ′
𝑁𝑆

= {𝑞★0 , 𝑞
★
𝐾+1}. We extend projection 𝑃 to 𝑃

′ : (Σ ∪ {@, 𝑢})∗ → (Σ𝑜 ∪ {@})∗.
Notice that 𝐺𝐶𝑆𝑂 is deterministic if and only if 𝐺K-SO is, and that logarithmic space is

sufficient for the construction of 𝐺𝐶𝑆𝑂. However, as already pointed out, the construction
does not preserve the number of observable events, which requires the second step of the
construction using Lemma 2.
We now show that 𝐺K-SO is K-step opaque if and only if 𝐺𝐶𝑆𝑂 is current-state opaque.

Theorem 8 The DES𝐺𝐾 -𝑆𝑂 is K-step opaque with respect to𝑄𝑆 ,𝑄𝑁𝑆 , and 𝑃 if and only if
the DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect to 𝑄 ′

𝑆
, 𝑄 ′

𝑁𝑆
, and 𝑃′ : (Σ ∪ {@, 𝑢})∗ →

(Σ𝑜 ∪ {@})∗.

Proof Assume that 𝐺K-SO is K-step opaque. We show that 𝐺𝐶𝑆𝑂 is current-state opaque. To
this end, consider a string 𝑤 such that 𝛿′(𝐼, 𝑤) ∩𝑄 ′

𝑆
≠ ∅. We want to show that there exists

𝑤′ ∈ 𝑃′−1𝑃′(𝑤) such that 𝛿′(𝐼, 𝑤′) ∩ 𝑄 ′
𝑁𝑆

≠ ∅. However, since 𝑄 ′
𝑆
= 𝑄+, 𝑤 is of the form

𝑤1@𝑤2 and, by the construction, 𝛿(𝐼, 𝑤1) contains a secret state of𝐺K-SO. Since𝐺 is K-step
opaque, there exists a string 𝑤′

1 ∈ 𝑃
−1𝑃(𝑤1) such that 𝛿(𝐼, 𝑤′

1) ∩ 𝑄𝑁𝑆 ≠ ∅. Then, because
𝑤2 can be read in the copy of 𝐺K-SO from a state 𝑞+ for a state 𝑞 ∈ 𝛿(𝐼, 𝑤1) ∩𝑄𝑆 , we further
have that 𝛿(𝛿(𝐼, 𝑤1) ∩ 𝑄𝑆 , 𝑤2) ≠ ∅. If |𝑃(𝑤2) | ≤ 𝐾 , then K-step opacity of 𝐺K-SO implies
that there exists a string 𝑤′′

1 𝑤
′′
2 ∈ 𝐿 (𝐺K-SO) such that 𝑃(𝑤′′

1 ) = 𝑃(𝑤1), 𝑃(𝑤
′′
2 ) = 𝑃(𝑤2), and

𝛿(𝛿(𝐼, 𝑤′′
1 ) ∩𝑄𝑁𝑆 , 𝑤

′′
2 ) ≠ ∅. By construction, 𝑞★0 ∈ 𝛿′(𝛿′(𝐼, 𝑤′′

1@) ∩𝑄𝑁𝑆 , 𝑤′′
2 𝑢), and hence

𝐺𝐶𝑆𝑂 is current-state opaque. If |𝑃(𝑤2) | > 𝐾 , then 𝑞★𝐾+1 ∈ 𝛿
′(𝛿′(𝐼, 𝑤′′

1@)∩𝑄𝑁𝑆 , 𝑢𝑃(𝑤′′
2 )),

and hence 𝐺𝐶𝑆𝑂 is current-state opaque.
On the other hand, assume that 𝐺K-SO is not K-step opaque, that is, there exists a string

𝑠𝑡 ∈ 𝐿 (𝐺K-SO) such that |𝑃(𝑡) | ≤ 𝐾 , 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅ and, for every 𝑠′ ∈ 𝑃−1𝑃(𝑠)
and 𝑡 ′ ∈ 𝑃−1𝑃(𝑡), 𝛿(𝛿(𝐼, 𝑠′) ∩ 𝑄𝑁𝑆 , 𝑡 ′) = ∅. But then, for 𝑠@𝑡 ∈ 𝐿 (𝐺𝐶𝑆𝑂), we have that
𝛿′(𝛿′(𝐼, 𝑠@) ∩ 𝑄 ′

𝑆
, 𝑡) ∩ 𝑄 ′

𝑆
≠ ∅ and, for every 𝑠′@𝑡 ′ ∈ 𝐿 (𝐺𝐶𝑆𝑂) such that 𝑃′(𝑠@𝑡) =
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Fig. 17 An example of the transformation of the K-SO problem (left) to the CSO problem (right).

𝑃′(𝑠′@𝑡 ′), we have two cases: (i) If 𝛿(𝐼, 𝑠′) ∩ 𝑄𝑁𝑆 = ∅, then 𝛿′(𝐼, 𝑠′@𝑡 ′) ∩ 𝑄 ′
𝑁𝑆

=

𝛿′(𝛿′(𝐼, 𝑠′@) ∩𝑄−, 𝑡 ′) = 𝛿′(∅, 𝑡 ′) = ∅, which shows that 𝐺𝐶𝑆𝑂 is not current-state opaque.
(ii) If 𝛿(𝐼, 𝑠′) ∩ 𝑄𝑁𝑆 ≠ ∅, then 𝛿′(𝐼, 𝑠′@𝑡 ′) ∩ 𝑄 ′

𝑁𝑆
= 𝛿′(𝛿′(𝐼, 𝑠′@) ∩ 𝑄−, 𝑡 ′) = ∅, because

inserting 𝑢 to any strict prefix of 𝑡 ′ may reach 𝑞★0 but has to leave it when the rest of 𝑡
′ is

read, and the rest (neither 𝑃(𝑡 ′)) is not long enough to reach state 𝑞★
𝐾+1. Therefore, 𝐺𝐶𝑆𝑂 is

not current-state opaque. ut

We now illustrate the construction.

Example 7 Let 𝐺3 over Σ = {𝑎, 𝑏, 𝑐} depicted in Fig. 17 (left) be the instance of the K-SO
problem from Example 3 with 𝐾 = 2, the set of secret states 𝑄𝑆 = {2}, and the set of
non-secret states 𝑄𝑁𝑆 = {4}. Our transformation of K-SO to CSO then results in the DES
𝐺 ′′
3 depicted in Fig. 17 (right) with a new observable event @, a new unobservable event

𝑢, the set of secret states 𝑄 ′
𝑆
, and the set of non-secret states 𝑄 ′

𝑁𝑆
. We consider two cases

based on the observability status of event 𝑐.
If 𝑐 is unobservable, then𝐺3 is 2-step opaque, because it is infinite-step opaque as shown

in Example 3. The reader can further see that𝐺 ′′
3 is current-state opaque, because it can enter

a secret state only after generating a string of the form 𝑎@𝑏𝑘 , for 𝑘 ∈ N, in which case we
have that 𝛿′(1, 𝑃−1 (𝑎@)) = {2+, 4−, 5−, 𝑞★0 } and 𝛿

′(1, 𝑃−1 (𝑎@𝑏𝑘 )) = {3+, 5−, 𝑞★0 , . . . , 𝑞
★
𝑖
}

for 𝑘 ≥ 1, where 𝑖 = min{𝑘, 3}.
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Fig. 18 Transforming K-SO to CSO for systems with a single observable event.

If 𝑐 is observable, then 𝐺3 is not 2-step opaque, because after generating string 𝑎𝑏, the
intruder can deduce that the system was in the secret state 2. Similarly, after generating string
𝑎@𝑏, system 𝐺 ′′

3 ends up in the only state 3
+, which is a secret state, and hence 𝐺 ′′

3 is not
current-state opaque.

4.3.3 The case of a single observable event

To preserve the number of observable events, our transformation of K-step opacity to current
state opacity relies on Lemma 2. This lemma requires at least two observable events in𝐺K-SO,
and hence it is not applicable to systems with a single observable event. For these systems,
we provide a different transformation that requires to add at most a quadratic number of new
states.
The problem of deciding K-step opacity for systems with a single observable event

consists of a DES 𝐺K-SO = (𝑄,Σ, 𝛿, 𝐼) with Σ𝑜 = {𝑎}, a set of secret states 𝑄𝑆 ⊆ 𝑄, a set
of non-secret states 𝑄𝑁𝑆 ⊆ 𝑄, and a projection 𝑃 : Σ∗ → {𝑎}∗. We denote the number of
states of 𝐺K-SO by 𝑛, and define a function 𝜑 : 𝑄 → {0, . . . , 𝐾} that assigns, to every state
𝑞, the maximal number 𝑘 ∈ {0, . . . , 𝐾} of observable steps that are possible from state 𝑞;
formally, 𝜑(𝑞) = max

{
𝑘 ∈ {0, . . . , 𝐾} | 𝛿(𝑞, 𝑃−1 (𝑎𝑘 )) ≠ ∅

}
. Notice that if 𝐾 > 𝑛 − 1, then

a system with a single observable event is K-step opaque if and only if it is infinite-step
opaque. Therefore, we may consider only 𝐾 ≤ 𝑛 − 1.
From 𝐺K-SO, we construct a DES 𝐺𝐶𝑆𝑂 = (𝑄 ′,Σ, 𝛿′, 𝐼) as illustrated in Fig. 18, where

𝛿′ is initialized as 𝛿 and modified as follows. For every state 𝑝 ∈ 𝑄 with 𝜑(𝑝) > 0, we
add 𝐾 new states 𝑝1, . . . , 𝑝𝐾 to 𝑄 ′ and 𝐾 new transitions (𝑝, 𝑎, 𝑝1) and (𝑝𝑖 , 𝑎, 𝑝𝑖+1), for
𝑖 = 1, . . . , 𝐾 − 1, to 𝛿′. Finally, we replace every transition (𝑝, 𝑎, 𝑟) in 𝛿′ by the transition
(𝑝𝐾 , 𝑎, 𝑟). Notice that the transformation requires to add at most 𝑛2 states, and hence it can
be done in polynomial time. Let 𝑄 ′

𝑆
= 𝑄𝑆 and 𝑄 ′

𝑁𝑆
= 𝑄𝑁𝑆 . For every state 𝑝 ∈ 𝑄𝑆 with

𝜑(𝑝) = 𝑘 > 0, we add the corresponding states 𝑝1, . . . , 𝑝𝑘 to 𝑄 ′
𝑆
and, for every 𝑝 ∈ 𝑄𝑁𝑆

with 𝜑(𝑝) = 𝑘 > 0, we add 𝑝1, . . . , 𝑝𝑘 to 𝑄 ′
𝑁𝑆
.

Notice that the transformation can be done in polynomial time, preserves the number of
observable events, and determinism. However, whether the transformation can be done in
logarithmic space is open.
We show that 𝐺K-SO is K-step opaque if and only if 𝐺𝐶𝑆𝑂 is current-state opaque.
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Theorem 9 The DES 𝐺K-SO with a single observable event is K-step opaque with respect to
𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if and only if the DES 𝐺𝐶𝑆𝑂 is current-state opaque with respect to 𝑄 ′

𝑆
,

𝑄 ′
𝑁𝑆

, and 𝑃.

Proof Assume that𝐺K-SO is not K-step opaque, that is, there is 𝑠𝑡 ∈ 𝐿 (𝐺K-SO) with |𝑃(𝑡) | ≤
𝐾 such that 𝛿(𝛿(𝐼, 𝑠) ∩𝑄𝑆 , 𝑡) ≠ ∅ and 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩𝑄𝑁𝑆 , 𝑃−1𝑃(𝑡)) = ∅. Let 𝑓 : Σ∗ →
Σ∗ be amorphism such that 𝑓 (𝑎) = 𝑎𝐾+1 and 𝑓 (𝑏) = 𝑏, for 𝑎 ≠ 𝑏 ∈ Σ. Then, by construction,
𝛿(𝐼, 𝑠) = 𝛿′(𝐼, 𝑓 (𝑠)), and hence 𝛿′(𝐼, 𝑓 (𝑠)) ∩ 𝑄 ′

𝑆
≠ ∅. If 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 = ∅,

then 𝛿′(𝐼, 𝑓 (𝑃−1𝑃(𝑠))) ∩ 𝑄 ′
𝑁𝑆

= ∅ because 𝛿(𝐼, 𝑠′) = 𝛿′(𝐼, 𝑓 (𝑠′)) for any 𝑠′ ∈ 𝑃−1𝑃(𝑠),
and 𝐺𝐶𝑆𝑂 is not current-state opaque. Otherwise, we denote by 𝑞𝑠 ∈ 𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 and
𝑞𝑛𝑠 ∈ 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 the states with maximal 𝜑(𝑞𝑠) and 𝜑(𝑞𝑛𝑠). Since 𝐺K-SO is not
K-step opaque, 𝜑(𝑞𝑠) > 𝜑(𝑞𝑛𝑠). Then, in 𝐺𝐶𝑆𝑂, 𝑞𝑠 has exactly one outgoing observable
transition and is followed by 𝜑(𝑞𝑠) = 𝑘 secret states, while 𝑞𝑛𝑠 is followed by 𝜑(𝑞𝑛𝑠) < 𝑘

non-secret states. Therefore, 𝛿′(𝐼, 𝑓 (𝑠)𝑎𝑘 ) ∩𝑄 ′
𝑆
≠ ∅ and 𝛿′(𝐼, 𝑓 (𝑠′)𝑎𝑘 ) ∩𝑄 ′

𝑁𝑆
= ∅ for any

𝑠′ ∈ 𝑃−1𝑃(𝑠), and hence 𝐺𝐶𝑆𝑂 is not current-state opaque.
On the other hand, assume that 𝐺K-SO is K-step opaque, and that 𝛿′(𝐼, 𝑤) ∩𝑄 ′

𝑆
≠ ∅. We

show that 𝛿′(𝐼, 𝑃−1𝑃(𝑤)) ∩ 𝑄𝑁𝑆 ≠ ∅. Consider a state 𝑞𝑠 ∈ 𝛿′(𝐼, 𝑤) ∩ 𝑄 ′
𝑆
and a path 𝜋 in

𝐺𝐶𝑆𝑂 leading to 𝑞𝑠 under 𝑤. Denote by 𝑝 the last state of 𝜋 that corresponds to a state of
𝐺K-SO; that is, 𝑝 is not a new state added by the construction of 𝐺𝐶𝑆𝑂. Since 𝑞𝑠 ∈ 𝑄 ′

𝑆
, we

have, by construction, that 𝑝 ∈ 𝑄𝑆 . Then the choice of 𝑝 partitions 𝑤 = 𝑢𝑣, where 𝑢, read
along the path 𝜋, leads to state 𝑝, and 𝑣 = 𝑎ℓ is a suffix of length ℓ ≤ 𝐾 . Let 𝑢′ be a string such
that 𝑓 (𝑢′) = 𝑢. Then 𝑝 ∈ 𝛿(𝐼, 𝑢′)∩𝑄𝑆 . Since 𝜑(𝑝) ≥ ℓ, there exists 𝑡 such that 𝑃(𝑡) = 𝑎ℓ and
𝛿(𝛿(𝐼, 𝑢′) ∩𝑄𝑆 , 𝑡) ≠ ∅ in 𝐺K-SO. Then K-step opacity of 𝐺K-SO implies that there exists 𝑢′′
and 𝑡 ′ such that 𝑃(𝑢′) = 𝑃(𝑢′′), 𝑃(𝑡) = 𝑃(𝑡 ′), and 𝛿(𝛿(𝐼, 𝑢′′) ∩ 𝑄𝑁𝑆 , 𝑡 ′) ≠ ∅. In particular,
there is a state 𝑞𝑛𝑠 ∈ 𝛿(𝐼, 𝑢′′) ∩ 𝑄𝑁𝑆 with 𝜑(𝑞𝑛𝑠) ≥ ℓ, and 𝛿′(𝐼, 𝑓 (𝑢′′)) ∩ 𝑄 ′

𝑁𝑆
≠ ∅.

Therefore, 𝛿′(𝐼, 𝑓 (𝑢′′)𝑎ℓ ) ∩ 𝑄 ′
𝑁𝑆

≠ ∅ and 𝑃( 𝑓 (𝑢′′)𝑎ℓ ) = 𝑃(𝑢𝑣) = 𝑃(𝑤), which completes
the proof. ut

We now illustrate the construction.

Example 8 Let 𝐺4 over Σ = {𝑎, 𝑢} depicted in Fig. 19 (left) be the instance of the K-SO
problem from Example 4 with 𝐾 = 2, a single observable event Σ𝑜 = {𝑎}, the set of secret
states 𝑄𝑆 = {1}, and the set of non-secret states 𝑄𝑁𝑆 = {3}. Then, 𝜑(1) = 𝜑(3) = 2, and
our transformation of K-SO to CSO results in the DES 𝐺 ′′

4 depicted in Fig. 19 (right) with
the set of secret states 𝑄 ′

𝑆
and the set of non-secret states 𝑄 ′

𝑁𝑆
. Analogously to Example 4,

we consider two cases based on the presence of the unobservable transition (1, 𝑢, 3) in 𝐺4.
If the transition (1, 𝑢, 3) exists in 𝐺4, then 𝐺4 is 2-step opaque, since it is infinite-step

opaque as shown in Example 4. The reader can see that 𝐺 ′′
4 is current-state opaque, because

a secret state is reachable only under a string of the form 𝑎𝑘 for 𝑘 ∈ {0, 1, 2}, and for any
such string there is an indistinguishable string 𝑢𝑎𝑘 reaching a non-secret state.
If the transition (1, 𝑢, 3) does not exist in 𝐺4, then 𝐺4 is not 2-step opaque, because it is

neither current-state opaque and, obviously, neither 𝐺 ′′
4 is current-state opaque.

4.3.4 Improving the algorithmic complexity of deciding K-step opacity

Let 𝐺 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be a DES. We design an algorithm deciding K-step opacity in time
𝑂 ((𝐾 + 1)2𝑛 (𝑛 + ℓ2𝑚)), where ℓ = |Σ𝑜 | is the number of observable events, 𝑛 is the number
of states of 𝐺, and 𝑚 is the number of transitions of 𝑃(𝐺), 𝑚 ≤ ℓ𝑛2.
To decide whether 𝐺 is K-step opaque with respect to 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄, and 𝑃 : Σ∗ → Σ∗

𝑜,
we proceed as follows:
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Fig. 19 An example of the transformation of the K-SO problem with a single observable event (left) to the
CSO problem (right).

1. We compute the observer G𝑜𝑏𝑠 of 𝐺 in time 𝑂 (ℓ2𝑛);
2. We compute the projected automaton 𝑃(𝐺) of 𝐺 in polynomial time 𝑂 (𝑚 + 𝑛);
3. We compute a DFA D accepting the language Σ𝐾𝑜 ; then D has 𝐾 + 1 states and is
constructed in time 𝑂 (ℓ(𝐾 + 1));

4. We compute the product automaton C = 𝑃(𝐺) × G𝑜𝑏𝑠 in time 𝑂 ((𝑚 + 𝑛) · ℓ2𝑛);
– states of C are of the form 𝑄 × 2𝑄;

5. For every reachable state 𝑋 of G𝑜𝑏𝑠 , we compute 𝑋𝑆 = 𝑋 ∩𝑄𝑆 and 𝑋𝑁𝑆 = 𝑋 ∩𝑄𝑁𝑆 ;
(a) If 𝑋𝑆 ≠ ∅ and 𝑋𝑁𝑆 = ∅, then 𝐺 is not K-step opaque;
(b) Otherwise, for every state 𝑥 ∈ 𝑋𝑆 , we add a transition from 𝑋 under @ to state

(𝑥, 𝑋𝑁𝑆) of C, and we add the state (𝑥, 𝑋𝑁𝑆) to set 𝑌 ;
6. We set 𝑌 to be the set of initial states of C, and compute G = C ×D;
(a) If G contains a reachable state of the form (𝑞, ∅, 𝑑), then 𝐺 is not K-step opaque;
otherwise, 𝐺 is K-step opaque.

Informally, we make use of the algorithm designed for deciding infinite-step opacity of
Section 4.2.4 with the modification that we take an intersection of C with the automaton
recognizing Σ𝐾𝑜 . This modification ensures that any computation of C ends after K steps,
and hence we check at most K subsequent steps.

Lemma 4 The DES 𝐺 is K-step opaque if and only if 𝐺 is current-state opaque and no state
of the form (𝑞, ∅, 𝑑) is reachable in G.

Proof The algorithm works as that deciding infinite-step opacity. The only modification is
that we intersect C with D, recognizing Σ𝐾𝑜 . This modification ensures that the algorithm
checking infinite-step opacity is blocked after K subsequent steps, and hence it decides K-step
opacity. ut

Since our algorithm constructs and searches the NFA G with 𝑂 ((𝐾 + 1)𝑛2𝑛) states and
𝑂 ((𝐾+1)ℓ𝑚2𝑛ℓ) transitions, the time complexity of our algorithm is𝑂 ((𝐾+1)2𝑛 (𝑛+ℓ2𝑚)).

5 Conclusions

We studied the transformations among the notions of language-based opacity, current-state
opacity, initial-state opacity, initial-and-final-state opacity, K-step opacity, and infinite-step
opacity. In particular, we provided a general transformation from language-based opacity
to initial-state opacity, and constructed transformations between infinite-step opacity and
current-state opacity, and between K-step opacity and current-state opacity. Together with
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the transformations of Wu and Lafortune [31], we have a complete list of transformations
between the discussed notions of opacity. The transformations are computable in polynomial
time, preserve the number of observable events, and determinism. We further applied the
transformations to improve the algorithmic complexity of deciding language-based opacity,
infinite-step opacity, and K-step opacity, and to obtain the precise computational complexity
of deciding the discussed notions of opacity.

Acknowledgements We gratefully acknowledge suggestions and comments of the anonymous referees.
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