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Adaptive Gradient Online Control
Deepan Muthirayan, Jianjun Yuan, Pramod P. Khargonekar

Abstract—In this work we consider the online control of a
known linear dynamic system with adversarial disturbance and
adversarial controller cost. The goal in online control is to
minimize the regret, defined as the difference between cumulative
cost over a period T and the cumulative cost for the best
policy from a comparator class. For the setting we consider, we
generalize the previously proposed online Disturbance Response
Controller (DRC) to the adaptive gradient online Disturbance
Response Controller. Using the modified controller, we present
novel regret guarantees that improves the established regret
guarantees for the same setting. We show that the proposed online
learning controller is able to achieve intermediate intermediate
regret rates between

√

T and log T for intermediate convex
conditions, while it recovers the previously established regret
results for general convex controller cost and strongly convex
controller cost.

Index Terms—Online control, adversarial cost, regret, distur-
bance response controller, adaptive gradient descent

I. INTRODUCTION

Control of systems with uncertainties is a central challenge

in control and is an extensively researched topic. There are

various sub-fields in control such as stochastic control [6],

[19], robust control [27] and adaptive control [17], [24] that

address the challenge of controller synthesis for different types

of uncertainties. In this work we are concerned with the

problem of online control of systems with uncertainties such as

disturbance and adversarial controller cost. The performance

in online control is measured in terms of how the regret

of performance, defined as the deviation of the performance

from that of the best policy, scales with the duration T . The

objective in online control is to design adaptive algorithms

to disturbances and adversarial cost so that the regret scales

sub-linearly in T , i.e., as Tα with α < 1.

Classical adaptive control investigates the problem of con-

trol of systems with parametric, structural and parametrizable

disturbance uncertainties [28]. The main focus in classical

adaptive control is the stability of system and asymptotic

tracking performance. Adaptive control has been studied for

systems of all types such as linear, non-linear, and stochastic.

There are many variants of adaptive control such as adaptive

model predictive control [16], [20], adaptive learning control

[22], [29], stochastic adaptive control [7] and robust adaptive

control [17]. These variations address the design of adaptive

controller for different variations of the basic adaptive control

setting. Many papers and books have been written on adaptive

control; see for example [7], [17], [24]. Thus, adaptive control
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is a very rich and extensively studied topic. The key variation

of the online control setting from the classical adaptive control

is the regret objective and in some cases the general nature

of the costs, where they could be adversarial and unknown

apriori. Thus, the classical adaptive control approaches can

be inadequate to analyse online control problems and are

typically solved by merging tools from statistical learning,

online learning and optimization, and control theory.

The field of online control has seen rising interest in the last

few years. One of the first setting that was extensively explored

is the Linear Quadratic Regulator (LQR) with the unknown

system and stochastic disturbances. Abbasi & Czepesvari [1]

were the first to study the online LQR problem with unknown

system and stochastic disturbances. The authors proposed an

adaptive algorithm that achieved
√
T regret w.r.t the best

linear control policy, which is the optimal policy. After [1],

several authors improved the algorithm of [1], which was an

inefficient algorithm. Dean et al. [11] were the first to propose

an efficient algorithm for the same problem. They showed that

their algorithm achieved a regret of O(T 2/3). Cohen et al. [10]

and Mania et al. [21] improved on this result by providing

an efficient algorithm with a regret guarantee of O(T 1/2) for

the same problem. Mania et al. [21] extended these results to

the partial observation setting and established O(
√
T )-regret

for the partially observed Linear Quadratic Gaussian (LQG)

setting. Cohen et al. [9] provided an O(
√
T ) algorithm for

a variant of the online LQR, where the system is known

and noise is stochastic but the controller cost function is an

adversarially chosen quadratic function. Recently, Simchowitz

et al. [25] showed that O(T 1/2) is the optimal regret for the

online LQR control problem.

While the above works focussed on online LQR, there are

others who studied the control of much general systems: linear

dynamic systems with adversarial disturbances and adversarial

cost functions. Agarwal et al. [3] considered the control of a

known linear dynamic system with additive adversarial distur-

bance and an adversarial convex controller cost function. They

proposed an online learning algorithm that learnt a Disturbance

Response Controller (DRC): a linear feedback of the portion of

the output contributed by the disturbances upto certain history.

They showed that their proposed controller achieves O(
√
T )-

regret with respect to the best DRC in hindsight. Agarwal et

al. in a subsequent work [4] showed that a poly logarithmic

regret is achievable for strongly convex controller cost and

well conditioned stochastic disturbances. Hazan et al. [13]

extended the setting of [3] to the case where the system is

unknown. They showed that when the system is unknown,

while O(
√
T )-regret is not achievable, they can still achieve a

sub-linear regret of O(T 2/3)-regret. Recently, [26] generalized

these results to provide similar regret guarantees for the same

setting with partial observation for both known and unknown
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systems.

In this work we study the online control setting of [26]:

linear dynamic systems with additive disturbance and adver-

sarial controller cost, where the system state is only partially

observable. We assume that our system is known and our cost

functions are general convex controller costs. Previous works

in the online adversarial setting [3], [4], [13], [26], either

assume the cost functions to be convex or strongly-convex.

Reiterating the results of [26] for the known system case, what

has been established is that O(
√
T ) regret is achievable when

the cost function are convex, and O(logT ) regret is achievable

when the cost functions are strongly convex. The question we

address in this work is: can we achieve intermediate regret

guarantees for intermediate convex conditions?

A. Our Contribution

The online control algorithm we propose is the adaptive

gradient extension of the online learning disturbance response

controller proposed in [3], [26]. Here the adaptive gradient

refers to the adaptation of the gradient step size of the gradient

learning algorithm used in [3], [26]. Thus, to the best of our

knowledge, we present the first adaptive gradient online learn-

ing control algorithm. We show that the proposed learning

algorithm recovers the previously established regret guarantee

of O(
√
T ) for general convex controller cost functions and

O(log T ) for strongly-convex and smooth controller cost func-

tions (see [26]), and simultaneously achieves an intermediate

regret between O(
√
T ) and O(log T ) for intermediate convex

conditions of the controller cost functions. We prove our main

result by establishing a new result for adaptive gradient online

learning for the problem of Online Convex Optimization with

Memory (OCO-M), which is the online convex optimization

problem where the cost at a time step also depends on a certain

history of past decisions.

B. Other Related Work

Online Convex Optimization (OCO): In the OCO frame-

work, the learner encounters a sequence of convex loss func-

tions which are unknown beforehand and may vary arbitrarily

over time. The learner updates the estimate of the optimal

solution at each time-step based on the previous losses and

incurs a loss for its updated estimate as given by the loss

function for this time step. At the end of each step, either the

loss function may be revealed, a scenario referred to as full

information feedback, or only the experienced loss is revealed,

a scenario known as bandit feedback. The objective of the

learner is to minimize the loss accumulated over time. Under

the full information feedback setting, it has been established

that the best possible regret scales as O(T 1/2) (resp. O(log T ))
for convex (resp. strongly convex) loss functions, where T is

the number of time steps [2], [14], [32]. These results have

also been extended to constrained online convex optimiza-

tion where it has been shown that the best regret scales as

O(Tmax{c,1−c}) for the cost and O(T 1−c/2) for constraint

violation, where c is a constant [18], [30]. When compared to

OCO, the key difference in online control is the dependence

of the decision on the state of the system, and thus in online

control what is to be learnt is a control policy instead of a

single decision.

Policy Optimization: Fazel et al. [12] proved that the policy

gradient based learning converges asymptotically to the opti-

mal policy for the Linear-Quadratic Regulator (LQR) problem.

Zhange et al. [31] extended this result to the H2/H∞ control

problem. Recently, [23] proved asymptotic convergence of a

gradient based meta-learner for the LQR problem. All of these

works provide asymptotic convergence guarantees.

Notation: We denote the transpose of a vectorX by X⊤. We

denote the expectation of a random variable X by E[X ] and

the expectation w.r.t a filtration Ft by E[.|Ft]. The minimum

singular value of a matrix M is denoted by σmin(M) and the

minimum eigen value is denoted by λmin(M). The function

ρ(·) denotes the spectral radius of the input matrix. We define

‖·‖ to be 2-norm of the vector or the matrix as the case

maybe. For a given variable Xt that is dependent on time

t, Xt1:t2 is used to denote the sequence (Xt1 , Xt1+1, ..., Xt2).
By

∑
Xt1:t2, we denote the sum of the elements in the

sequence Xt1:t2 . The big O(·) is the standard order notation

and Õ(·) is the standard order notation that includes polylog

factors.

II. PROBLEM PRELIMINARIES

The problem we consider is the online control of a linear

dynamical system given by

xt+1 = Axt +But + wt,

yt = Cxt + et, (1)

where xt ∈ R
dx , is the state of the system, ut ∈ R

du , is the

control input generated by the controller, wt, et are bounded

disturbances of appropriate dimensions and yt ∈ R
dy , is the

observed output. The objective is to regulate the response of

this system so as to achieve sub-linear regret with respect to the

best policy from a class of policies, also called the comparator

policy.

The class of policies we consider for the comparator are

linear dynamic controllers, denoted by Π. A linear dynamic

controller π ∈ Π is a linear dynamic system given by

(Aπ, Bπ, Cπ , Dπ) with the internal state sπt ∈ R
dπ and output

being the control input at time t:

sπt+1 = Aπs
π
t +Bπyt, u

π
t = Cπs

π
t +Dπyt (2)

We denote the online controller for the system in Eq. (1) by

C. The controller at any point has only access to the following

information at time t: (i) all prior cost functions c1:t−1, (ii)

all prior observations y1:t−1, and (iii) all prior control inputs

u1:t−1. The controller, unlike the classical setting, does not

have access to the future cost functions, which are adversarial.

The controller has to choose a policy to compute the control

action at time t based on this information.

The online control setting of ours is the following: The

controller C, on applying the control input ut at time t, suffers

the loss lt(yt, ut), an adversarially chosen convex function,

which is apriori unknown. The controller can observe the loss

function only after its decision at time step t. The controller

can then use this information to update its control policy.



The performance of the online controller is measured by the

regret which is the total cost incurred by the controller for a

duration T minus the total cost incurred by the best controller

in hindsight taken from the class of controllers Π. Denote

the system output and the input corresponding to a controller

π ∈ Π by (yπt , u
π
t ). Let JT (π) =

∑T
t=1 lt(y

π
t , u

π
t ), π ∈ Π.

Then, the regret for the controller C is given by

RT (C) = E[JT (C)]−min
π∈Π

E[JT (π)]. (3)

A. Assumptions

We state the assumptions we make below.

Assumption 1: The system is stable, i.e., ρ(A) < 1. The

system matrices A,B are known.

The assumptions on the spectral radius (or the assumption that

there is additional knowledge of a feedback rule to stabilize the

system) are standard in online learning and control problems

[1], [10], [11], [26]. We emphasize that analysis without

stability or the knowledge of a stabilizing feedback law is

still an hard and open challenge in online control. While there

are works that investigate simultaneous safe exploration and

control such as in Reinforcement Learning [8], these works

do not study the finite performance objective such as regret.

Assumption 2: The noise wt and et are bounded and

stochastic i.i.d. Their distribution is known and E[ws
t ] = 0,

E[est ] = 0.

Assumption 3: The loss function lt is convex and for

z⊤ = [y⊤t , u
⊤
t ], (z

′)⊤ = [(y′)⊤, (u′)⊤] such that R =
max{‖z‖, ‖z′‖, 1}, ‖lt(yt, ut)− lt(y′, u′)‖ ≤ LR‖z − z′‖.
The convexity assumption is standard in online learning and

optimization and online control settings. Most of online con-

trol especially the setting with general adversarial cost func-

tions and disturbances are built on tools from online convex

analysis. This is because the tools for online optimization

analysis have been well understood and developed for the

convexity setting and such analysis for general non-convex

cost setting are still non-existent. The second part of the

assumption states that the loss functions are locally Lipschitz.

We note that the assumptions stated here are exactly the

assumptions in the state-of-the-art work in online control [26].

III. ONLINE CONTROL ALGORITHM

The online control algorithm we propose for the general

controller C is the adaptive gradient version of the online DRC

(or DRC-GD) proposed in [26]. We call this the disturbance

response controller - adaptive gradient descent (DRC-AGD).

We briefly review the online DRC in [26], and then present

the DRC-AGD algorithm.

A. Online Disturbance Response Controller

Let’s define ynat to be the natural output, the system output

when the control inputs are zero, i.e.,

ynatt = et +

t−1∑

s=0

CAt−s−1ws

= yt −
t−1∑

s=1

G[s]ut−s, G
[s] = CAs−1B.

Since et, wt are bounded for all t and ρ(A) < 1, ynatt

is bounded for all t. We define Rnat to be the bound on

ynatt . The DRC as defined in [26] is parameterized by a

m−length sequence of matrices, denoted by M = (M [i])m−1
i=0 .

The DRC’s control decision is given by

ut =

m−1∑

s=0

M [s]ynatt−s. (4)

Let’s define the following class of disturbance response

controllers:

M(m,R) =

{

M = (M [s])m−1
s=0 : ‖M‖ =

∑

s

‖M [s]‖ ≤ RM

}

(5)

The online learning algorithm or the DRC-GD proposed in

[26] continuously updates the feedback gain M as the loss

functions are revealed. It applies the control input as defined

in Eq. (4) with the current value of the feedback gain M . The

algorithm then updates the feedback gain M based on the

revealed loss function, similar to how the decision is updated

in OCO. Thus the disturbance feedback gain M is equivalent

to the decision in OCO.

For the choice of regret as defined in Eq. (3), the disturbance

response controller is a good choice given that the best dis-

turbance response controller for the realized sequence of cost

functions is approximately equal to the best linear dynamic

controller. We will show this in the proof of our main result.

Thus, by learning the disturbance response controller online

the controller can get closer to the optimal linear dynamic

controller. We pick the control structure as DRC instead of

linear dynamic controller because the DRC control form has

advantages from the point of view of online regret analysis. It

enables the regret analysis to be approximated by the regret

analysis of a limited memory problem, where memory refers

to the number of past controller parameters the realized cost

at a time t is dependent on. This will not be feasible with

the linear dynamic control structure because the control input

computed by a linear dynamic controller at any point of time

is dependent on the entire history of control inputs unlike Eq.

(4).

We introduce the following definitions for ease of presenta-

tion. Let M [s](j) denote the jth row of the M [s] matrix. Let

z(i : j) denote the sub-vector of the vector z corresponding

to the elements from i to j. Let P denote the vector given

by P (sq + (j − 1)dy + 1 : sq + jdy) = (M [s](j))⊤, where

q = dydu, 1 ≤ j ≤ du. Essentially, this defines P to be

the vector of the transposes of the rows of M [s] stacked one

above the other. We introduce the following definitions that

will be required for discussing the algorithms.

Definition 1: ut [Mt|ynat1:t ] :=
∑m−1

s=0 M
[s]
t ynatt−s,

ỹt[Pt:t−h|ynat1:t ] := ynatt +
∑h

s=1G
[s]ut−s,

Ft [Pt:t−h|ynat1:t ] := lt (ỹt [Pt:t−h|ynat1:t ] , ut [Mt|ynat1:t ]),
ft(P |ynat1:t ) := Ft[{P, P, ..., P}|ynat1:t ].

The term ỹt is an approximate output that depends only on the

past h control inputs. Consequently this approximate estimate

is only a function of Pt:t−h for a given ynat1:t . The function Ft

is the loss lt evaluated for this approximate output ỹt and so



it is also only a function of Pt:t−h. The function ft is the loss

Ft when Pk , for all k s.t. t ≥ k ≥ t− h is fixed to P , and so

we term it as the memory-less loss.

Minimizing the regret (Eq. (3)) is an Online Convex Op-

timization problem with Memory (OCO-M) [5] because the

loss function at a time step depends on the past control

inputs, which is the case even with the approximated cost

Ft[Pt:t−h], a function of the truncated output ỹt. Following the

key idea in [5], the DRC-GD algorithm [26] uses the gradient

of the memory-less function ft(·) to update P . This, as can

be expected, only minimizes the regret of
∑
ft(·) instead

of the approximated cost Ft[Pt:t−h]. But as shown in [5],

the memory-less regret closely approximates the regret of the

approximated cost Ft[Pt:t−h], which in turn, as we show later,

is a good approximation of the regret of the actual realized

cost.

Let P(m,R) =
{

P :
∑m−1

s=0 ‖M [s]‖ ≤ RM

}

. The learning

algorithm for the online DRC proposed in [26] initializes P
to an element drawn from the set P(m,R). It then updates

P along the gradient of the memory-less loss function ft(·)
as the loss functions (or cost) are revealed to continuously

improve the feedback controller:

P ← ProjM
(
P − ηt+1∂ft

(
P |ynat1:t

))
. (6)

In [26], the authors show that the disturbance response

controller with the memory-less gradient update given by Eq.

(6), where ηt is fixed to a particular value (see Theorem 2,

[26]), achieves a regret of Õ(
√
T ) when the cost functions

are general convex functions and polylog(T ) when the cost

functions are smooth and strongly convex. In this work, we

extend this online DRC controller by using an adaptive step

rate akin to [15] instead of a fixed step rate η. We discuss our

extended algorithm in the next section.

B. Online Disturbance Response Controller: DRC-AGD

In this section, we present the DRC-AGD algorithm. First,

we briefly review the adaptive gradient online learning algo-

rithm [15] for the standard OCO problem and then present

our new regret result for adaptive gradient learning for the

OCO-M problem. We then introduce our DRC-AGD online

control algorithm and use its result to analyse the regret of

the DRC-AGD algorithm.

1) Adaptive Gradient Online Learning: Consider the stan-

dard online convex optimization (OCO) setting (see [15]). At

time t, the player chooses an action ut from some convex

subset K of R
n, where maxx∈K‖x‖ ≤ D, and the adversary

chooses a convex loss function ft(·). The regret for the player

over duration T is given by

RT =

T∑

t=1

ft(ut)−min
u∈K

T∑

t=1

ft(u) (7)

Let ft be Ht-strongly convex, i.e., let ft(u
∗) ≥ ft(u) +

∇ft(u∗ − u) + Ht

2 ‖u∗− u‖22 and ‖∇ft‖ ≤ Gt. Once the loss

function is revealed at time t the algorithm can use the loss

function to update its decision. The adaptive gradient online

learning algorithm proposed in [15] updates the decision ut
by the following gradient step:

ut+1 = ProjK (ut − ηt+1∂ (ft(u) + gt(u)))

ηt+1 =
1

∑
H1:t +

∑
λ1:t

, (8)

where
∑
H1:t =

∑t
k=1Hk,

∑
λ1:t =

∑t
k=1 λk , and λts

are suitably defined parameters. Here, it is clear that the step

rate at each time step is updated by the strong convexity Ht

of the loss function at t as defined above. Thus the step rate is

adapted and the algorithm is adaptive gradient online learning.

The regret for this algorithm can be characterized as in the

following Lemma.

Lemma 1: Consider the online update given by Eq. (8) with

gt(u) = 1/2λt‖u‖22. Then for any sequence of λ1, λ2, ..., λT ,

RT ≤
1

2
D2λ1:T +

1

2

T∑

t=1

(Gt + λtD)2
∑
H1:t +

∑
λ1:t

, (9)

Please see Thoerem 3.1. [15] for the proof. This is the

basic result that the regret rate results in [15] are based on.

Here, the parameters λ1:T can be suitably chosen based on

the convex conditions to achieve intermediate regret rates

for intermediate convex conditions of the sequence of loss

functions; for example, conditions such as Ht ∝ t−α. We

direct the reader to [15] for a more detailed discussion of

their results.

2) Adaptive Gradient Online Learning for OCO-M: In this

section we discuss the extension of the adaptive gradient

learning to the OCO-M problem. The difference in the OCO-

M setting is that the cost function at a particular time t is also

dependent on a certain history of the past decisions. More

specifically, the cost functions ft in OCO-M are a function of

the decisions upto h time steps in the past, i.e., ut:t−h, where

h is a given number. Thus, the regret in the OCO-M problem

is the following:

RT =
T∑

t=1

ft(ut:t−h)−min
u∈K

T∑

t=1

ft(u), (10)

where we used ft(u) as a shorthand notation for the cost when

ut−k = u, for all k, where 0 ≤ k ≤ h. In the next theorem we

present the equivalent of Lemma 1 for the OCO-M problem,

which we will use to analyse our main algorithm.

Theorem 1: For a sequence of (h + 1)-variate Ft define

ft(u) = Ft(u, u, ..., u). Let Gc be an upper bound on the co-

ordinate wise Lipschitz constant of Ft, Gf be an upper bound

on the Lipschitz constant of ft, ft be Ht-strongly convex, and

D be an upper bound on the diameter of K. Consider the

online update given by Eq. (8), with gt(u) = 1/2λt‖u‖22. Then

for any sequence of λ1, λ2, ..., λT , λj ≤ λi, j ≥ i,

RT =

T∑

t=h+1

Ft(ut, ..., ut−h)−min
u∈K

T∑

t=h+1

Ft(u, ..., u)

≤ 1

2
D2λ1:T +

1

2

T∑

t=1

G̃2
f,t

∑
H1:t +

∑
λ1:t

,



where G̃f,t =
√

(Gf + λtD) (Gf + λtD + 2Gch3/2).

Please see Appendix for the proof.

3) Adaptive Gradient Online Learning for Control: Here,

we extend the adaptive gradient descent learning idea to the

online DRC. The gradient learning algorithm we propose,

which we call as DRC-AGD, is the extension of Eq. (6) with

an adaptive step rate similar to Eq. (8):

Pt+1

= ProjP
(
Pt − ηt+1∂

(
E
[
ft
[
Pt|ynat1:t

]]
+ gt(Pt)

))

gt(P ) =
1

2
λt‖P‖22, ηt+1 =

1
∑
H1:t +

∑
λ1:t

, (11)

where the udpate is by the gradient of the memory-less cost

E [ft [Pt|ynat1:t ]], with an adaptive step rate ηt+1, where Ht is

the strong convexity of E [ft [Pt|ynat1:t ]] and λts are suitably

chosen parameters as before.

Algorithm 1 Disturbance Response Control - Adaptive Gra-

dient Descent (DRC-AGD)

Input: Radius RM , and the matrices G[i], h.

1 Initialize P1 ∈ P
2 for t = 1,....,T do

3 Observe yt and determine ynatt = yt −
∑t−1

i=1 G
[i]ut−i

4 Choose ut =
∑m−1

s=0 M
[s]
t ynatt−s

5 Observe the loss function and suffer the loss lt(yt, ut)
6 Set ηt+1 = 1∑

H1:t+
∑

λ1:t

7 Pt+1 = ProjP
(
Pt − ηt+1∂

(
E [ft [Pt|ynat1:t ]] +

1
2λt‖Pt‖22

))

8 end

Algorithm 1 presents the full DRC-AGD algorithm.

4) Main Results: In DRC-AGD, the gradient of the

memory-less cost E [ft [Pt|ynat1:t ]] is used. Hence, to apply

Theorem 1 to the analysis of the DRC-AGD algorithm, we

need to establish the strong convexity of E [ft [Pt|ynat1:t ]]. We

also need to establish that Gc and Gf exist for the memory-

less cost E [ft [Pt|ynat1:t ]]; we prove all of this as part of the

main theorem. In the next lemma we characterize the strong

convexity of E [ft [Pt|ynat1:t ]] in terms of the strong convexity

H l
t of lt (recall how ft is dependent on lt in Definition 1).

Lemma 2: The function E [ft [Pt|ynat1:t ]] is Ht-strongly con-

vex, where

Ht = H l
t

(

σ2
e + σ2

w

(
σmin(C)

1 + ‖A‖22

)2
)

,

∇2lt ≥ H l
t , E[w

s
tw

s
t ] ≥ σ2

w, E[este
s
t ] ≥ σ2

e .

Please see Proposition 7.1, [26] for the proof. We introduce

an additional definition before we discuss our main theorem.

Definition 2: ψ(i) =
∑

j≥i‖CAj−1B‖2, i > 0. Since

ρ(A) < 1, there exists c > 0 and ρ ∈ (0, 1) such that

ψ(i) ≤ Cρi. RG∗ = 1 + ψ(1).

In the next theorem we use Theorem 1 to characterize the

regret for the DRC-AGD online control algorithm.

Theorem 2: Suppose Assumptions 1, 2, 3 hold. Suppose

the algorithm 1 is run with m,h ≥ 1 such that ψ(m) ≤

RG∗/T, ψ(h) ≤ RM/T then

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
1

2
D2λ1:T +

1

2

T∑

t=1

(G̃f,t)
2

∑
H1:t +

∑
λ1:t

, where

Gf = GC = L
√
mRMRG∗R2

nat, D = 2
√

min{du, dy}RM ,

G̃f,t =
√

(Gf + λtD) (Gf + λtD + 2Gch3/2).
Please see the Appendix for the proof. The proof proceeds

by splitting the regret (Eq. (3)) into several terms; the burn-

in loss, algorithm truncation error, f-policy error, comparator

truncation error and the policy approximation error. This

splitting follows the proof technique in [26]. The burn-in loss

is just the realized cost corresponding to the first m + h
time steps. The burn-in loss can be trivially bounded (see

for example Lemma 5.2. [26]). The algorithm truncation error

is the difference between the realized cost for the remaining

horizon and the cost that would be realized with the truncated

output approximation ỹt, i.e.,
∑
Ft. We recall that the output

is truncated so that it depends only on the past h control

inputs; see Definition 1 for the truncated output ỹt and the

corresponding loss Ft. This splitting is done because Theorem

1 can only be applied to fixed length memory while the

actual realized cost is dependent on the entire history of

control inputs. The f-policy error is the difference between

the cost
∑
Ft, which is the approximate cost by truncating

the memory, and the same cost when Pk = P ∀ k. Thus, the

f-policy error is given by
∑T

t=m+h+1 E[Ft(Pt:t−h|ynat1:t )] −
infP

∑T
t=m+h+1 E[ft(P |ynat1:t )]. Given the form of this re-

gret term, we can apply Theorem 1 to bound the f-

policy error. We note that the approximated cost with trun-

cated memory under fixed P is different from the real-

ized cost under a fixed disturbance response controller P .

This introduces the comparator truncation error, the differ-

ence of the two costs, i.e., infP
∑T

t=m+h+1 E[ft(P |ynat1:t )] −
infP

∑T
t=m+h+1 E[lt(y

P
t , u

P
t )]. The policy approximation er-

ror is the difference between the realized cost for the best

fixed P disturbance response controller and the cost for the

best linear dynamic controller. The truncation errors and policy

approximation error can also be bounded (see [26]). We give

details of bounding the burn-in loss, truncation errors and the

policy approximation error in the Appendix. Putting together

the bounds of all these terms gives us the final result.

We note that the regret bound for DRC-AGD has terms

similar to the regular adaptive gradient algorithm (see Lemma

1). Given this result, we can apply the analysis similar to [15]

to establish regret scaling for various convex conditions. In

the next corollary we discuss the specific scaling of the regret

w.r.t T under various convex conditions and in particular show

that the DRC-AGD algorithm interpolates between T 1/2 and

logT .

Corollary 1: Suppose Assumptions 1, 2, 3 hold. Suppose

the algorithm 1 is run with m,h ≥ 1 such that ψ(m) ≤
RG∗/T, ψ(h) ≤ RM/T, T ≥ 4 then

1) for any sequence of convex loss functions lt

RT ≤ Õ(
√
T )



2) for any sequence of convex loss functions lt with H l
t ≥

H
RT ≤ Õ(log T )

3) for H l
t = t−α, and 0 < α ≤ 1/2

RT ≤ Õ(Tα)

4) for H l
t = t−α, and α > 1/2

RT ≤ Õ(
√
T )

Please see the Appendix for the proof. We see that the DRC-

AGD algorithm recovers the O(
√
T ) and O(log T ) result for

strongly convex and general convex cost functions and at the

same time achieves intermediate regret scaling for intermediate

convex conditions. We emphasize that the regret scaling of

Õ(Tα) is valid for a more general condition such as
∑
H1:t ≥

t1−α.

IV. CONCLUSION

In this work we considered the online control of a known

linear dynamic system with adversarial disturbances and ad-

versarial cost functions. Our objective is to improve regret

rates established for this setting by prior works, which only

considered either convex costs or strongly convex costs.

Specifically, we addressed the question whether the regret

rates can be improved when the convexity of controller cost

functions are intermediate, i.e., between strongly convex and

convex.

We proposed an adaptive gradient extension of the distur-

bance response controller proposed in prior works for the same

problem we study. We proved that the proposed online learning

controller recovers the previously established regret guarantee

of O(
√
T ) for general convex controller cost functions and

O(log T ) for strongly-convex and smooth controller cost func-

tions (see [26]), and achieves an intermediate regret between

O(
√
T ) and O(log T ) for intermediate convex conditions for

the controller cost functions.
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APPENDIX A: PROOF OF THEOREM 1

The regret can be split as

RT =

T∑

t=h+1

Ft(ut, ..., ut−h)−
T∑

t=h+1

Ft(ut, ..., ut)

+

T∑

t=h+1

Ft(ut, ..., ut)−min
u∈K

T∑

t=h+1

Ft(u, ..., u)

=
T∑

t=h+1

Ft(ut, ..., ut−h)−
T∑

t=h+1

Ft(ut, ..., ut)

+

T∑

t=h+1

ft(ut)−min
u∈K

T∑

t=h+1

ft(u).

Lets call the second term as R̃T , i.e.,

R̃T =

T∑

t=h+1

ft(ut)−min
u∈K

T∑

t=h+1

ft(u).

Given that

ut+1 = ProjK (ut − ηt+1∂ (ft(ut) + gt(ut))) , (12)

Lemma 1 is applicable to R̃t. Hence, we have that

R̃T ≤
1

2
D2
∑

λ1:T +
1

2

T∑

t=1

(Gf + λtD)2
∑
H1:t +

∑
λ1:t

.

Next, we bound the first term. By the definition of Gc we have

that

‖Ft(ut, ..., ut−h)− Ft(ut, ..., ut)‖22
≤ G2

c‖[u⊤t , ..., u⊤t−h]
⊤ − [u⊤t , ..., u

⊤
t ]

⊤‖22

= G2
c

h∑

i=1

‖ut − ut−i‖22

≤ G2
c

h∑

i=1





i∑

j=1

‖ut−j+1 − ut−j‖2





2

.

Using Eq. (12) we have that

‖ut−j+1 − ut−j‖2 ≤ ‖ηt−j+1∂ (ft−j(ut−j) + gt−j(ut−j))‖2.

Given that ‖∇ft−j‖ ≤ Gc (this follows from the fact that L
is a Lipschitz constant of f iff ‖∇f‖2 ≤ L for differentiable

f ), and ‖∇gt−j(.)‖2 ≤ λt−jD, we have that

‖ut−j+1 − ut−j‖2 ≤ ηt−j+1(Gf + λt−jD).

Using this observation we have that

‖Ft(ut, ..., ut−h)− Ft(ut, ..., ut)‖22

≤ G2
c

h∑

i=1





i∑

j=1

ηt−j+1(Gf + λt−jD)





2

≤ G2
c

h∑

i=1





i∑

j=1

ηt−h(Gf + λt−hD)





2

≤ G2
ch

3η2t−h (Gf + λt−hD)
2
.

That is

‖Ft(ut, ..., ut−h)− Ft(ut, ..., ut)‖2
≤ Gch

3/2ηt−h (Gf + λt−hD) .

Hence

T∑

t=h+1

Ft(ut, ..., ut−h)−
T∑

t=h+1

Ft(ut, ..., ut)

≤ Gch
3/2

T∑

t=h+1

ηt−h (Gf + λt−hD)

= Gch
3/2

T∑

t=h+1

(Gf + λt−hD)
∑
H1:t−h +

∑
λ1:t−h

≤ Gch
3/2

T∑

t=1

(Gf + λtD)
∑
H1:t +

∑
λ1:t

.

Combining this with the bound on R̃T we get that

RT ≤
1

2
D2
∑

λ1:T +
1

2

T∑

t=1

G̃2
f,t

∑
H1:t +

∑
λ1:t

,

where G̃f,t =
√

(Gf + λtD) (Gf + λtD + 2Gch3/2). �

APPENDIX C: PROOF OF THEOREM 2

For a policy π∗ ∈ Π

JT (C)− JT (π∗) =

T∑

t=1

lt(yt, ut)−
T∑

t=1

lt(y
π∗

t , uπ
∗

t )

We can split the regret as in [26]:

E[JT (C)]− E[JT (π
∗)] =

m+h∑

t=1

E[lt(yt, ut)]

︸ ︷︷ ︸

burn-in loss

+

T∑

t=m+h+1

E[lt(yt, ut)]−
T∑

t=m+h+1

E[Ft(Pt:t−h|ynat1:t )]

︸ ︷︷ ︸

algorithm truncation error

+

T∑

t=m+h+1

E[Ft(Pt:t−h|ynat1:t )]− inf
P

T∑

t=m+h+1

E[ft(P |ynat1:t )]

︸ ︷︷ ︸

f-policy error

+ inf
P

T∑

t=m+h+1

E[ft(P |ynat1:t )]− inf
P

T∑

t=m+h+1

E[lt(y
P
t , u

P
t )]

︸ ︷︷ ︸

comparator truncation error

+ inf
P

T∑

t=1

E[lt(y
P
t , u

P
t )]−

T∑

t=1

E[lt(y
π∗

t , uπ
∗

t )].

︸ ︷︷ ︸

policy approximation error

.

We leverage the results from [26] to bound the following

terms: (i) burn-in loss, (ii) algorithm truncation error, (iii)



comparator truncation error, and (iv) policy approximation

error. From Lemma 5.2, [26], we have that

m+h∑

t=1

E[lt(yt, ut)] ≤ 4R2
G∗R2

natR
2
M (m+ h).

From Lemma 5.3, [26], we have that

E[Truncation errors] ≤ 4LTRG∗R2
natR

2
Mψ(h+ 1)

Finally, from Theorem 1, [26], we have that

E[Policy app. error] ≤ 2LTRMR
2
G∗R2

natψ(m)

Next we bound the f-policy error term. Theorem 1 applies

to this term. From Lemma 5.4, [26], we have that ft(.|ynatt )
is Gf -Lipschitz, where Gf = L

√
mRMRG∗R2

nat, Ft(.|ynatt )
is Gf -Lipschitz coordinate wise, i.e., Gc = Gf , and D =
2
√
min{du, dy}RM . Then applying Theorem 1 to the f-policy

error term we get that

E[f-policy error] ≤ 1

2
D2
∑

λ1:T +
1

2

T∑

t=1

(G̃f,t)
2

∑
H1:t +

∑
λ1:t

.

This completes the proof. �

APPENDIX D: PROOF OF COROLLARY 1

Consider the term

R̂T =
1

2
D2
∑

λ1:T +
1

2

T∑

t=1

(G̃f,t)
2

∑
H1:t +

∑
λ1:t

.

We make the following observation.

(G̃f,t)
2 = (Gf + λtD)

(

Gf + λtD + 2Gch
3/2
)

≤ 2 (Gf + λtD)
2
+ 2G2

ch
3 ≤ 4G2

f + 4λ2tD
2 + 2G2

ch
3.

Hence,

R̂T ≤
1

2
D2
∑

λ1:T +
1

2

T∑

t=1

4G2
f + 4λ2tD

2 + 2G2
ch

3

∑
H1:t +

∑
λ1:t

≤ 1

2
D2
∑

λ1:T + 2
T∑

t=1

λtD
2 +

T∑

t=1

2G2
f +G2

ch
3

∑
H1:t +

∑
λ1:t

≤ 5

2
D2
∑

λ1:T +

T∑

t=1

2G2
f +G2

ch
3

∑
H1:t +

∑
λ1:t

. (13)

Let Ĝ2
f := 2G2

f +G
2
ch

3. Next, we prove the main results case

by case.

Case 1, any sequence of convex lt: For this case set λ1 =
√
T

and λt = 0, t ≥ 2. Then from Theorem 2 and Eq. (13) we get

that

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5

2
D2
∑

λ1:T +

T∑

t=1

Ĝ2
f

∑
H1:t +

∑
λ1:t

≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h)) +
5

2
D2
√
T+

+ Ĝ2
f

T∑

t=1

1√
T

= O(
√
T ).

Case 2, any sequence of convex lt such that H l
t ≥ H : In this

case, from Lemma 2

Ht ≥ H l
t

(

σ2
e + σ2

w

(
σmin(C)

1 + ‖A‖22

)2
)

≥ H
(

σ2
e + σ2

w

(
σmin(C)

1 + ‖A‖22

)2
)

= H̃.

Set λt = 0, then from Theorem 2 and Eq. (13) we get that

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5

2
D2
∑

λ1:T +
T∑

t=1

Ĝ2
f

∑
H1:t +

∑
λ1:t

≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h)) + Ĝ2
f

T∑

t=1

1

tH̃

= O(logT ).

Case 3, H l
t = Ht−α, and 0 < α ≤ 1/2: From Lemma 2

Ht ≥ H̃t−α. Set λ1 = H̃Tα and λt = 0, t > 1. Then from

Theorem 2 and Eq. (13) we get that

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5H̃

2
D2Tα +

Ĝ2
f

H̃

T∑

t=1

1
(
∑t

k=1 k
−α + Tα

) .

Now
∑t

k=1 k
−α ≥

∫ t−1

0
(u+1)−αdu = (1−α)−1(t1−α− 1).

Using this fact we get that

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5H̃

2
D2Tα +

Ĝ2
f (1− α)
H̃

T∑

t=1

tα−1

≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5H̃

2
D2Tα +

Ĝ2
f (1− α)
H̃α

Tα = O(Tα).

Case 4, H l
t = Ht−α, and α ≥ 1/2: In this case too Ht ≥

H̃t−α. Set λ1 = H̃T 1/2 and λt = 0, t > 1. Then from

Theorem 2 and Eq. (13) we get that

RT (C) ≤ R2
MR

2
G∗R2

nat(6L+ 4(m+ h))

+
5H̃

2
D2T 1/2 +

Ĝ2
f

H̃

T∑

t=1

1

T 1/2
= O(

√
T )�
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