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Abstract

Motion planning is a fundamental task of determining a
collision-free trajectory that drives the robot to a target state
in the configuration space, minimizing a user-defined cost
function such as trajectory length [1]. It has a wide range
of applications for autonomous underwater vehicles (AUVs),
such as seabed mapping [2], structural inspection [3], oil spill
cleaning [4], mine hunting [5], and other underwater tasks
[6]. In order to ensure that the AUV successfully completes
its mission, the path planner must be adaptive to previously-
unknown obstacles in the environment as well as moving
obstacles (e.g., other marine vessels) [7]. As such, it is critical
to ensure rapid replanning of the AUV paths online to facilitate
safe operation as new information becomes available.

A variety of methods have been developed to solve the mo-
tion planning problem; a review is presented in [8]. In general,
motion planning methods can be broadly classified into two
main categories: grid-based and sample-based. The grid-based
methods, such as A? [9], discretize the configuration space
and search for the optimal solution; however, these approaches
suffer from the curse of dimensionality and their accuracy de-
pends on the grid resolution. On the other hand, the sampling-
based methods generate samples randomly in the configuration
space, construct a graph structure to capture connectivity
between different configurations, and search a solution on it
[10]. Therefore, sample-based motion planning approaches are
becoming increasingly popular since they can find feasible
solutions quickly in high-dimensional spaces while asymp-
totically approaching the optimal one. Specifically, they are
very useful for online planning in dynamic environments.
Online methods are characterized as active or reactive. Active
strategies predict the future trajectory of a moving obstacle for
a fixed time duration and generate a collision-free trajectory
for the robot; however, the performance can degrade if the
predicted information is incomplete or incorrect. In contrast,
the reactive strategies plan the path based only on the obstacle
information at the current time, and replan the path whenever
the obstacle information changes.

Recently, several variants of the RRT/RRT? have been pre-
sented for online motion planning in dynamic environments.
Otte et al. [11] proposed RRTX algorithm which utilizes
a rapidly-exploring random graph (RRG) [12] to explore
the search area. This method maintains a well-defined and
connected structure over the entire explored region; however,
re-optimizing the connections in the entire graph when the
environment changes makes it inefficient in highly dynamic
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settings. Chen et al. [13] presented Horizon-based Lazy RRT?

(HL-RRT?) algorithm in the context of RRT? algorithm [12].
In this method, invalid parts of the search tree due to moving
obstacles are pruned, and new samples are drawn to find a
new path using a trained Gaussian mixture model. While this
can find a new solution quickly, the machine learning based
sampler cannot guarantee the performance. Furthermore, this
method removes the invalid parts which are disconnected from
the main tree to maintain a single tree structure, resulting in
repeated exploration of the same area. Finally, Yuan et al. [14]
proposed Efficient Bias-goal Factor RRT (EBG-RRT), where
invalid parts of the tree are pruned if it does not contain the
current position or destination. Then, leaf nodes are identified
in the main tree that are near the destination tree. Finally,
samples are drawn using heuristics or a uniform distribution
to attempt to reconnect the trees. This method is easy to
implement; however, it prunes the tree portions which do
not contain the current node or goal, resulting in repeated
exploration of the same area.

We present a novel online reactive sampling-based motion
planning algorithm for dynamic environments, called Multiple
Rapidly Exploring Random Trees (MRRT), to address the
limitations of existing approaches. The proposed algorithm
is built upon the RRT algorithm and multi-tree structure. At
the beginning, RRT algorithm is applied to find the initial
solution based on the partial knowledge of the environment.
Then, the robot starts to execute this path. At each iteration, the
new obstacle configurations are collected by the robot’s sensor
and used to replan the path. This new information can come
from unknown static obstacles (e.g., seafloor layout) as well
as moving obstacles. Then, to accommodate the environmental
changes, two procedures are adopted: 1) edge pruning, and
2) tree regrowing. Specifically, the edge pruning procedure
checks the collision status through the tree and only removes
the invalid edges while maintaining the tree structure of
already-explored regions. Due to removal of invalid edges, the
tree could be broken into multiple disjoint trees. As such, the
RRT algorithm is applied to regrow the trees. Specifically, a
sample is created randomly and joined to all the disjoint trees
in its local neighborhood by connecting to the nearest nodes.
Finally, a new solution is found for the robot. Figure 1 shows
an execution example of the online motion planning algorithm
in a dynamic environment with moving obstacles.

The advantages of the proposed algorithm are as follows: i)
retains the maximal tree structure by only pruning the edges
which collide with the obstacles, ii) guarantees probabilis-
tic completeness, and iii) is computational efficient for fast
replanning since all disjoint trees are maintained for future
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(a) Obstacle information is updated; infeasible edges are pruned from
the tree.
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(b) By removing infeasible edges multiple disjoint trees are created.
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(c) A random sample is generated; it is joined to all disjoint trees in
the local neighborhood by connecting to the nearest node.
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(d) A random sample is generated; it is joined to all disjoint trees in
the local neighborhood by connecting to the nearest node.
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(e) A random sample is generated; it is joined to all disjoint trees in
the local neighborhood by connecting to the nearest node.
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(f) Once the full tree is obtained, a new feasible solution is searched
on it.

Fig. 1. An illustrative example of MRRT algorithm.

connections and expanded simultaneously.
In the full paper, we will present details of the proposed

MRRT algorithm and the simulation results of rapid path
replanning in an unknown static environment as well as in
a dynamic environment containing moving obstacles.
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