
Large depth of range Maxwellian-viewing SMV 
near-eye display based on a Pancharatnam-

Berry optical element 

LIN WANG, 1 YAN LI,1,* SHUXIN LIU, 1 YIKAI SU,1 DI WANG, 2 AND QIONG-
HUA WANG 2 

1 Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China 
2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, 

China 

*yan.li@sjtu.edu.cn 

Abstract: In order to overcome the accommodation and convergence (A-C) conflict that 

commonly causes visual fatigue in AR display, we propose a Maxwellian-viewing-super-multi-

view (MV-SMV) near-eye display system based on a Pancharatnam-Berry optical element 

(PBOE). The PBOE, which is constituted with an array of high-efficiency polarization gratings, 

is implemented to direct different views to different directions simultaneously, constructing the 

3D light field. Meanwhile, each view is like a Maxwellian view display that possesses a small 

viewpoint and a large depth of field (DOF). Hence, the MV-SMV display can display virtual 

images with correct accommodation depth cue within a large DOF. We implement a proof-of-

concept MV-SMV display prototype with 3 × 1 and 3 × 2 viewpoints using a 1D PBOE and a 

2D PBOE, respectively, and achieve a DOF of 4.37 diopters experimentally. 

© 2021 Chinese Laser Press OSA Open Access Publishing Agreement 

1. Introduction 

Augmented reality (AR) [1-3], which augments the virtual information on the real-world 

environment, is an emerging technology that has potential applications in various fields such 

as healthcare, education and military. There are many AR wearable devices in the market, 

including Microsoft HoloLens, Magic Leap One and Google glasses. However, in most AR -

displays, the virtual 3D images are generated by feeding the left and right eyes with two parallax 

images. In such a display, the visual axes of the two eyes are converged at the virtual 3D image 

depth, but the eye accommodation is fixed at the 2D image plane of the micro-display. The 

conflict between the accommodation depth cue and convergence depth cue is called 

accommodation and convergence conflict (A-C) conflict [4-9], and it will cause visual 

discomfort and fatigue after long-term use.  

To address the A-C conflict issue in AR displays, different display methods have been 

proposed. The first one is multi-focal plane display [10-18], which generates 3D images by 

displaying the discrete 2D cross-section pictures of the 3D volume along the visual axis. The 

second method is vari-focal plane display [19], which dynamically adjusts the focal distance of 

a single-plane display to match the convergence depth of the eyes. The third one is Maxwellian-

viewing (MV) display [20,21], where collimated image light is focused to a point at the pupil 

position by an eyepiece to provide an always-in focus image on the retina. Another promising 

approach is super-multi view (SMV) display [22-25]. In a SMV near-eye display, more than 

one parallax images are observed by a single eye, and therefore the light field of the multiple 

views can evoke correct focus adaption of the eye. However, this method usually suffers from 

a limited depth of field (DOF) [26].  
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In this paper, we propose a Maxwellian-viewing-super-multi-view (MV-SMV) near-eye 

display system based on a Pancharatnam-Berry optical element (PBOE) [27], to achieve both 

correct accommodation depth cue and a large DOF. The key component in our system, the 

PBOE, is composed of several regions of high-efficient gratings, that can deflect different views 

to different directions. The system also employs a holographic optical element (HOE) [28] 

which functions as an optical combiner and an eyepiece. In this MV-SMV display, the light of 

each view is produced from collimated laser light, and hence each view behaves like a 

Maxwellian-viewing display, providing always-in-focus images and a small eye box (or 

viewpoint). With multiple views, the light field of 3D objects can be faithfully reconstructed, 

while the DOF of the display is significantly improved due to the small eye box of each view. 

We have implemented the MV-SMV display system and achieved 3 × 1, and 3 × 2 viewpoints, 

respectively. Experimental result confirms that correct accommodation depth cue could be 

obtained within a large range from 20 cm to 160 cm. 

2. Theory of depth of field 

The working principle of a Maxwellian-viewing display is shown in Fig. 1 (a), where collimated 

image light is focused to a point by an eyepiece at the pupil position. It is as if each virtual 

image point only gives out one narrow beam in a certain direction, so in this pin-hole-like 

imaging system [29], no matter how the eye adjusts its focus, a clear image could always be 

formed on the retina, resulting in a large DOF. However, in a MV display, the eyebox is very 

small and the image could be easily missed out by the pupil.  

 

Fig. 1. Working principles of (a) a Maxwellian-viewing display and (b) a SMV display. 

The working principle of a SMV display is shown in Fig. 1(b). Here, s’ is the virtual image 

of the screen (micro-display) s formed by the display optics. So, if we ignore all the viewing 

optics for simplification, it could be considered as if the light beams of the parallax images are 

emitted by the pixels in the s’ plane in different directions. As multiple beams (from different 

views, respectively) enter the eye, the viewer is tempted to believe that 3D point is located at 

the intersection of the beams. To see the virtual 3D point clearly, the eye focus is so adjusted 

that the multiple beams are converged into one at the retina. So in this situation, the eye 

accommodation is consistent with the virtual 3D point instead of the 2D screen s’. 

In most cases, the beams are divergent with finite beam sizes, so they will form an image 

spot instead of an image point on the retina. The more the 3D point deviates from s’, the larger 

the size it is, and a more blurred image is formed on the retina. Since human eye has limited 

resolution, if the spot is smaller than the maximum acceptable size , which is about 15 m 

[23], it could still be treated as a point of a clear image. So in order to generate clear images, 

we need to find out the range of the virtual point that could always produce a spot size smaller 

than  Such a range is the DOF of a SMV. If the virtual point is out of this range, no matter 

how the eye adjusts its focus, the virtual image is always blurry. 



  

Fig. 2. Schematic diagrams of the focusing effect when the virtual image is (a) in front of and (b) behind 

the s’ plane. 

In the following, we will calculate the DOF of a general SMV display. Fig. 2(a) and (b) 

demonstrates the image formation of a virtual point in front of and behind the screen s’, 

respectively. In either case, according to the sets of conjugate planes, one could obtain the 

following relations:  
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where fi is the focal length of the eye when it is focused at the 3D image, 𝑢𝑖 is the distance from 

the 3D image to the human eye, 𝑣 is the distance from the human eye to the retina which could 

be considered as a constant, 𝑑0 is the width of the light beam at the pupil position, 𝑢 is the 

distance from the screen image s’ to the human eye, and 𝑣𝑖 is the distance from the human eye 

to the s’’ plane (the conjugate image of s’). Here, when virtual image is in front of the plane s’ 

as shown in Fig. 2(a), i=1. If it is behind s’ as shown in Fig. 2(b), i=2. 

In addition, from the similar triangles in Fig. 2(a) and (b), one could obtain the following 

relations, respectively: 
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Where di (i=1,2) is the spot size of the image on the retina. When d1=d2=, we can calculate the 

DOF in the form of diopters: 
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From Eq. (5), one can see that DOF is inversely proportional to the width of the light beams 

at the pupil d0. Therefore, a narrow beam width is favorable for a large DOF. 

3. MV-SMV system 

In the proposed MV-SMV system, for each view, the parallax image is produced from the 

collimated light source, so that it could be considered as a Maxwellian-viewing display. As 

multiple views projected from different directions are perceived by a single eye, SMV condition 

is satisfied and correct accommodation response could be evoked. Because of the narrow beam 



width in the MV-SMV display, the DOF is significantly enlarged. In the following, we will 

illustrate the working principle of the proposed MV-SMV display, introduce the two key 

components, the PBOE and the HOE, and demonstrate the experimental result as we have 

implemented a proof-of-concept prototype. 

3.1 System configuration and working principle 

The system configuration of the proposed MV-SMV display is shown in Fig. 3. Light coming 

from a 532 nm laser is expanded by a beam expander to illuminate a reflective amplitude-

modulated liquid-crystal-on Silicon spatial light modulator (SLM). The image loaded on the 

SLM is an array of N   M parallax-view sub-images. Accordingly, the PBOE is also divided 

into N   M regions, which are basically high-efficient PB gratings with different periods and 

orientations. With precise alignment, the collimated light of a sub-image can only pass through 

the corresponding PB grating, and is deflected to a specific direction. The HOE (a Bragg 

volume optical element) and the refractive lens work together to converge different sub-image 

light into different viewpoints at the pupil position. When the intervals of the viewpoints are 

made sufficiently small, one eye could see more than one parallax sub-image, so that the 3D 

images can be reconstructed by the light field of multiple views, evoking correct 

accommodation response. 

The two linear polarizers are appropriately arranged to achieve a high contrast for the SLM 

image. The right-handed circular polarizer (RCP) and a left-handed circular polarizer (LCP) 

are placed in front of and behind the PBOE, respectively, to ensure high diffraction efficiency 

[30]. 

  
Fig. 3. Configuration of the MV-SMV system. 

3.2 PBOE 

PBOEs are thin diffractive devices with high polarization selectivity. They are essentially 

patterned half-wave plates with spatially varying optic-axis orientation. The working principle 

of PBOEs can be explained by Jones Matrix. The Jones vector of the incident circular 

polarization could be expressed as: 
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where J+ and J- are for the left-handed circularly light and right-handed circularly polarized 

light, respectively. After passing through a small region of the PBOE where the optic axis of 

the half-wave plate is uniform, the Jones vector of the output light can be described as: 
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where , W() and R() are the azimuth angle of the optic axis, phase retardation of the half 

wave plate and rotation matrix, respectively [27,30]. As one can see here, the handedness of 

the circular polarization is inversed in addition to a phase change of 2. As the azimuthal angle 

 changes continuously from 0 to 𝜋, the phase can be modulated from 0 to 2𝜋 continuously. 

This could avoid the discontinuous phase change and lead to high diffraction efficiency. If one 

could freely control the optic axis distribution of the PBOE, arbitrary phase profile could be 

generated.  

Nowadays, with the advance of photoalignment technique, in-plane liquid crystal (LC) 

director distribution could be conveniently controlled, and various PB LC devices including 

gratings and lenses have been fabricated at low cost [31]. Fig. 4 (a) shows the LC directors in 

a continuous PB grating, which changes continuously and linearly from 0o to 180o in a period. 

And its phase distribution is shown in Fig. 4 (b). In our experiment, we fabricated 2 PBOEs 

(one has 3 × 1 regions and the other 3 × 2 regions) using a LC polymer material to achieve 3 × 

1 and 3 × 2 viewpoints for the MV-SMV display, respectively. Each region of the PBOEs is a 

continuous PB grating whose period and orientation are appropriately designed to deflect light 

to a unique direction.  

 

Fig. 4. (a) LC director distribution and (b) phase change of a continuous PB grating. 

To fabricate the PBOE devices, first, the glass substrates were cleaned and then cured by 

a UV-Ozone for 15 mins. Then the photoalignment material, 0.4wt% Brilliant Yellow (BY) 

dissolved in dimethylformamide, was spin-coated onto the substrates at the speed of 500 rpm 

for 5 s and then 3000 rpm for 30 s [31]. Next, the sample was exposed to patterned polarization 

light field produced from a 488 nm laser with the density of 2 mW/cm2 for 40 mins. Here, a 

non-interferometric setup [33] shown in Fig. 5 was employed to generate the patterned 

polarization field. It could generate an arbitrary alignment pattern by a single exposure. The 

SLM used in our experiment is a phase-type SLM (Holoeye, PLUTO-VIS) with a resolution of 

1920 × 1080 and pixel size 8 m. After exposure, a diluted liquid crystal reactive mesogen 

mixture (RMM) solution, consisting of 97wt% reactive mesogen RM257 and 3wt% photo 

initiator Irgacure 651 dissolved in toluene with a weight ratio of 1:3, was spin coated on the 

sample at the speed of 500 rpm for 5 s and then 3000 rpm for 30 s [32]. The same spin coating 

process was repeated once again to achieve the approximate thickness of a LC half wave plate. 

Immediately after that, the RMM was cured by 365 nm UV light to form a polymer film. 



 

Fig. 5. Optical setup of PBOE exposure. 

Fig. 6 (a) shows the microscopic pictures of the different regions of the 1D PBOE (3 × 1 

regions). The middle region has uniform alignment, so that light can directly pass through 

without any deflection. The right and left regions have the same gratings period (48 m) in the 

x direction, but complementary phase profiles. The expected diffraction angles of the two 

regions are 0.64° and −0.64°, respectively, according to the grating equation 𝑑sin𝜃 = 𝜆 (𝜆 =
532 𝑛𝑚). The diffraction patterns of the two regions with circularly polarized incidence are 

shown in Fig. 6 (c). The diffraction efficiencies of the right and left regions are 93.2% and 

88.8%, respectively. Here, the diffraction efficiency is defined as the ratio of the 1st order 

diffracted intensity to the total light intensity collected after the PB grating.  

 

Fig. 6. (a) Microscopic pictures of different regions in the 1D PBOE and (b) in the 2D PBOE. (c) 

Diffraction patterns of the right (top) and left regions (bottom) of the 1D PBOE. (d) Diffraction patterns 

of different regions of the 2D PBOE. 

Fig. 6 (b) shows the microscopic pictures of the different regions in the 2D PBOE. The LC 

alignment of the first row is exactly the same as the 1D PBOE. The orientations of the three 

gratings in the second row are 45o, 90o and -45o, with respect to x direction in the x-y plane, 

respectively, and their grating periods are 34 m, 48 m and 34 m. The diffraction efficiencies 



of the regions (i), (iii), (iv), (v) and (vi) are 93.1%, 89.3%, 85.1%, 89.5%, 82.6%, respectively, 

and the diffraction patterns are shown in Fig. 6 (d). 

3.3 HOE 

HOEs are optical elements fabricated by exposing holographic recording materials to interfered 

laser light. HOEs usually exhibit high wavelength and angle selectivity due to their Bragg 

structure nature. For light satisfying Bragg condition, a HOE can realize a certain optical 

function like a grating, a lens or a mirror [34,35], with high diffraction efficiency. For light 

dissatisfying Bragg condition, however, it is just like a transparent window. Because of these 

characteristics, HOEs have been employed as optical combiners in AR systems [36,37].  

In our experiment, we fabricated a HOE to function as a mirror lens in the optical system. 

Fig. 7(a) illustrates the recording process of the HOE. The HOE sample is placed at the position 

where a spherical wave and a plane wave, coming from opposite sides, interfere. The angle 𝛼 

between reference beam and the HOE sample plane is approximately 45°, and the spherical 

wave impinges on the sample normally. The HOE material used in the experiment is a 

commercial holographic film (Litiholo C-RT20), and the required exposure energy is ~30 

mJ/cm2 at the wavelength of 532 nm [38]. In our experiment, we exposed the HOE for half an 

hour. The density of the object beam and reference beam are both approximately 50 mW/cm2. 

The focal length of the lens used for generating the object beam is 100 mm. 

 

Fig. 7. (a) Recording process and (b) reconstruction process of the HOE. 

The measured diffraction efficiency of the HOE lens is ~60%, and its focal length is ~70 mm. 

To evaluate its imaging quality, collimated light modulated with a letter “A” was projected to 

the HOE as shown in Fig. 7 (b). Fig. 8 (a) shows the focus pattern received on a screen, which 

indicates good focusing ability. And Fig. 8 (b) shows the projected image when the screen is 

placed at a farther distance.  



 

Fig. 8. (a) Focus pattern of the HOE lens and (b) projected image by the HOE. 

3.4 Prototype implementation and result 

We implemented a proof-of-concept MV-SMV display prototype according to Fig. 3, and 

achieved 3 × 1 and 3 × 2 viewpoints using the 1D and 2D PBOEs, respectively. The SLM used 

in the experiment is an amplitude-type SLM (Holoeye, LC-R-1080), whose the resolution is 

1920 × 1080 and the pixel size is 8 𝜇𝑚. The RCP in front of the PBOE is to ensure circular 

polarized incidence. Although the diffraction efficiencies of the PB gratings are high, we still 

placed a LCP behind the PBOE to eliminate the zero-order light whose polarization was 

unchanged. The focal length of the refractive lens is 60 mm. 

The refractive lens and the HOE work together to converge the collimated light beams into 

viewpoints at the pupil position. Fig. 9 (a) shows the photo of the viewpoints received on a 

screen at the exist pupil of the system with 3 × 1 viewpoints. The interval of the adjacent 

viewpoints d is ~ 0.8 mm and the size of each viewpoint d0 is ~0.20 mm. Since the pupil 

diameter of a human eye is usually 4-8 mm, with such small viewpoint intervals the system can 

satisfy the SMV condition. The viewpoint interval d is determined by the deflection angle of 

the PBOE  and the focal length of the lens system (comprised of the refractive and HOE lenses) 

f as 𝑑 = 𝑓tan𝜃, based on the simplified configuration shown in Fig. 10.  

 

Fig. 9. Photos of the viewpoints at the pupil position: (a) 3 × 1 viewpoints and (b) 3 × 2 viewpoints.  

 

Fig. 10. Calculation of viewpoint intervals in a simplified configuration. Lens -- the equivalent lens of 

the refractive lens and HOE lens. 

For each view of the MV-SMV, it is a like Maxwellian-viewing display, and should generate 

always-in-focus images within a large DOF. To confirm this, we only displayed the middle 

view with a letter “A” while showing nothing in the other views. A camera was placed near the 

exist pupil to took photos. As the camera focus was adjusted from near distance to far distance, 

the captured images were always sharp though their sizes varied. Fig. 11 (a) and (b) shows the 

pictures taken when the camera was focused at 20 cm and 200 cm, respectively, for example. 



 

Fig. 11. Captured images from the middle view when camera was focused at (a) 20 cm and (b) 200 cm. 

When three parallax images (letters “A” and “K” with different intervals) were displayed, 

virtual 3D images could be generated. Here, the virtual image letter “A” was generated at the 

depth of 160 cm, while the letter “K” was at 20 cm. Fig. 12 (a) and (b) shows the photos of the 

virtual 3D images augmented on the real world, when the camera was focused at 20 cm and 

160 cm, respectively. We can see that when one of the letters is clear in focus, the other is 

blurry. The virtual images exhibit the same in and out-of-focus effects as the real objects (an 

aperture at a near distance and a notebook at a far distance). Therefore, this MV-SMV display 

could indeed provide correct accommodation depth cue for virtual 3D images. Moreover, 

within the large range of depth from 20 cm to 160 cm (or from 5 diopters to 0.63 diopters in 

the form of diopters), we could always observe clear virtual images, indicating a large DOF of 

at least 4.37 diopters. 

 

Fig. 12. Captured images of the MV-SMV display with 3 × 1 viewpoints when camera was focused at 

20 cm and (b) 160 cm. Captured images of the MV-SMV display with 3 × 2 viewpoints when camera 

was focused at (c) the notebook and (d) the ‘hi’ label. 

We further implemented the system to achieve 3 × 2 viewpoints using the 2D PBOE. Six 

parallax images of letter “A” were projected from different regions of the SLM, respectively. 

Similarly, the light beams were converged to different viewpoints as shown in Fig. 9 (b). When 

camera was focused at the notebook which is 160 cm away, the letter “A” was also clear in 

focus. When the camera was focused at a “hi” label, the virtual image “A” is blurred just as the 

notebook. In this experiment, with 3 × 2 viewpoints, both horizontal and vertical parallaxes 

were realized, and the full parallax could provide more natural 3D effect. 

4. Conclusion  

In this study, we developed and demonstrated a MV-SMV near-eye display system based on a 

PBOE. The collimated parallax images are deflected by the PBOE into different directions, and 



are then converged into viewpoints by the lenses. We implemented the MV-SMV AR display 

with 3 × 1 and 3 × 2 viewpoints, using a 1D PBOE and 2D PBOE, respectively. The HOE 

serves as both an eyepiece and a combiner in the AR display system. The spot size of each 

viewpoint is about 0.2 mm, and the interval of the adjacent viewpoints is about 0.8 mm. The 

small interval ensures the satisfaction of SMV condition that more than one viewpoint should 

be observed by a human eye simultaneously. Thanks to the small size of the viewpoints, the 

system can display 3D images with correct accommodation depth cue within a large DOF of at 

least 4.37 diopters. We believe the proposed MV-SMV display holds great promise for future 

AR display applications.  
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