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Privacy-Preserving Constrained Domain
Generalization via Gradient Alignment
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Abstract—Deep neural networks (DNN) have demonstrated unprecedented success for various applications. However, due to the

issue of limited dataset availability and the strict legal and ethical requirements for data privacy protection, the broad applications of

DNN (e.g., medical imaging classification) with large-scale training data have been largely hindered, greatly constraining the model

generalization capability. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain

generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, we propose

to improve the information aggregation process on the centralized server side with a novel gradient alignment loss, expecting that the

trained model can be better generalized to the “unseen” but related data. The rationale and effectiveness of our proposed method can

be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the

distribution distance measure. Experimental results on three domain generalization benchmark datasets indicate that our method can

achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods.

Index Terms—Federated learning, domain generalization, gradient alignment.

✦

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
success in various applications, such as computer vision,
natural language processing, and acoustic verification. For
example, in the field of medical imaging classification (e.g.,
tumour detection and classification, X-ray image analysis),
DNN model can even achieve higher diagnosis accuracy
compared with human doctors.

The tremendous achievements of DNNs are driven by
the availability of the large-scale training data. To guaran-
tee reliable decision support based on artificial intelligence
(AI) oriented applications, the large amount of data are
indispensable for training purposes [1], [2]. However, rea-
sonably large-scale dataset for some realistic environments
(e.g., clinical environment [3], [4]) are infeasible to collect
due to two reasons. First, though annotated data can be
collected from multiple sources, aggregating the data for
training may not be feasible due to the privacy regulations.
For example, European General Data Protection Regulation
(GDPR) has imposed strict rules regarding the storage and
exchange of the health data. Second, even though data
access permission can be obtained, collecting large-scale and
representative data can still be difficult due to the variation
of capturing protocols, device vendors and environments.
Thus, the trained DNNs are typically prone to be lack of
generalization capability when annotated large-scale data
are not available during training stage, especially for the out-
of-distribution data which are “unseen” during the training
stage.

Tremendous efforts have been devoted to tackling the
challenges of privacy and generalization for the DNN. Re-
garding the issue of privacy, federated learning (FL) [5], [6]
was proposed to train DNN based on datasets distributed
across multiple domains while preventing data leakage.
However, while existing techniques (e.g., [7], [8]) can tackle

the setting where data from multiple domains are heteroge-
neous (i.e., the distribution of data from different sources are
different), the trained DNN may not be able to generalize
well to the out-of-distribution data. Regarding the issue
of generalization, numerous methods have been developed
to improve the generalization capability of DNN based on
domain generalization [9], [10]. However, the existing tech-
niques require to aggregate the data to conduct domain-shift
simulation, which disobeys the privacy regulation rules.

To jointly overcome the aforementioned difficulties,
we propose a novel task-agnostic domain generalization
method based on gradient aggregation, aiming to improve
the model generalization capability under the privacy-
preserving constraint (i.e., domain generalization under the
constraint of privacy-preserving without data sharing from
multiple domains). By treating the gradient as a kernel
mean embedding from the original data space to the neural
tangent kernel space, we conduct distribution alignment
through Maximum Mean Discrepancy (MMD) [11] across
multiple domains based on the gradient. As such, the new
aggregated gradient is equipped with information from mul-
tiple domains and is expected to be better generalized to the
“unseen” testing data. We conduct extensive experiments on
three domain generalization benchmarks with the issue of
privacy to evaluate our proposed method. The results show
that our method can achieve better generalization capability
compared with state-of-the-art FL and domain generaliza-
tion (DG) techniques under the privacy-preserving setting.

2 RELATED WORKS

2.1 Domain Generalization

In the context of mitigating the challenge posed by disparate
environmental conditions between training and test data,
the concept of domain generalization (DG) has emerged
as a promising approach. DG involves leveraging data
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collected from diverse environmental conditions (source
domains) to train a deep neural network (DNN) model
that can effectively handle testing data obtained from an
unseen yet related condition (unknown target domain). It
is important to note that DG shares a close relationship
with domain adaptation (DA) [12], where domain shifts
are also addressed. However, unlike DA, which assumes
access to some (labeled or unlabeled) data samples from
the target domain, DG assumes the unavailability of such
samples during training. Consequently, DG methods must
seek solutions to effectively exploit the information present
in multiple source domains accessible during training. The
hope is that by distilling shared knowledge from source
domains, we can obtain more robust features that can be
potentially useful in unseen target domains. Existing tech-
niques in the DG field can be broadly categorized into three
streams. The first stream is based on the idea of training
a dedicated classifier for each source domain and then
combining them to give fused predictions by evaluating
the similarity between different source domains and test
samples (e.g., [13], [14]). The second stream focuses on
extracting shareable information across data through feature
representation learning (e.g., [15]) and meta-learning (e.g.,
[16]). These approaches aim to discover common patterns
or representations that are transferable across different do-
mains, enabling the model to generalize well to unseen
conditions. The last stream involves employing data aug-
mentation techniques, such as domain randomization [17]
and adversarial training [18], [19], to augment the scale of
the training data. By introducing variations or perturbations
to the data during training, these methods enhance the
model’s ability to handle diverse environmental conditions.

2.2 Federated Learning

Recent years have seen a rapidly growing number of intel-
ligent devices with AI computing capability, such as smart-
phones, wearable devices, autonomous vehicles, intelligent
CCTV cameras, IoT devices, etc. Those devices, forming a
large distributed network, can generate a large amount of
heterogeneous data every day. How to fully utilize the local
AI computing capability of each device while reducing the
data transmission cost or preserving data privacy becomes
a new challenge. Traditional AI data processing models,
which usually require homogeneous data transmission from
some parties to a central party for model training and final
build, can hardly be adapted in such scenarios. This gap
leads to a growing interest in the Federated Learning (FL)
framework. The Federated Learning is firstly proposed in
[20], [6] to support training AI models over distributed
remote devices or isolated data centers while keeping data
localized. In a general Federate Learning setting, there may
be tens to potentially millions of distributed clients (remote
devices/soiled data islands, etc.), and each client trains the
AI model locally using its private dataset. In each FL train-
ing round, the clients will share their model information,
usually the learned model weights or gradients, instead
of the training data, with a central aggregator. The aggre-
gator would aggregate the information from those clients
(e.g., through model parameters averaging) to obtain global
model parameters, which will be sent back to clients for the
next round of training.

One limitation of the aforementioned mechanism is that
it does not fully address the underlying challenges associ-
ated with system and data heterogeneity, where system het-
erogeneity refers to the situation where each local server has
different computational power, communication bandwidth,
etc., which further leads to local-update variation, and data
heterogeneity refers to the situation that the data distribu-
tions from different local servers are different. Moreover, it
is highly likely that the testing data are drawn from the
distribution which is different from the data distributions
of local servers. Regarding the first issue, in [7], a proximal
term on the objective function is introduced for each local
server, such that the impact of local-update variation can
be mitigated. Regarding the second issue, in [21], [22], a
federated transfer learning scheme was proposed, where
shareable information across servers can be learned with
domain alignment regularization. However, it required that
the co-occurrence samples are available between the labeled
source domain (i.e., domain for training purpose) and the
unlabeled target domain (i.e., domain for testing purpose),
which is not desired as we do not have target domain data
in hand for real-time applications. As such, its generaliza-
tion capability to out-of-distribution samples is prohibited.
Besides the aforementioned techniques, there are also some
works focusing on the federated learning for multi-task
setting or non i.i.d setting [23], [24], [25], [26], where the data
are heterogeneous. However, they are not designed based
on the cross-domain scenario for testing.

In recent years, there exist some works which focus on
tackling the problem of domain generalization under the
constraint of privacy-preserving (i.e., non-shared data from
multiple domains) [27], [28]. In [27], the authors proposed to
tackle the problem domain generalization under privacy set-
ting for medical imaging, with the input based on frequency
space (with 2D Fourier transformation) and a boundary-
oriented meta-optimization strategy, which is task-specific
(i.e., tailored for medical image segmentation task). While
the method proposed in [28] is task-agnostic, it is built upon
FedAvg [6] but requires both trainable classifier models and
frozen models during the training stage, which may not be
able to scale to different architectures. Our framework only
requires conventional local training on clients, which aligns
with the standard of federated learning and can be applied
to different models and tasks. Moreover, unlike [27] and [28]
which focus on local training, our proposed method focuses
on aggregation on the central server side.

3 PROPOSED METHOD

We propose to study the problem of task-agnostic privacy-
preserving constrained domain generalization (PPDG). The
architecture is built upon the FL system configuration [5],
[6], which is designed to handle data from multiple local
servers (i.e., client servers) and then aggregate the informa-
tion from local servers to a centralized server. Based on the
FL settings, the centralized server maintains a global DNN
model to coordinate the global learning objective across the
framework. Specifically, the objective is to minimize

min
w

f(w) =
K∑

k=1

pkFk(w), (1)
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where Fk(w) denotes the objective of deep learning model
on the k-th local server, K is the number of local servers,
pk > 0, and

∑
k pk = 1. In practice, one can set pk = nk/n,

where nk and n denote the number of training data in
the kth server and the total number of training data, re-
spectively. During training, at the federated round t, the
DNN in the local server is updated by receiving the DNN
parameters/gradients1 from the centralized server, and the
local servers further conduct DNN model training and send
the encrypted gradient to the centralized server for gradient
aggregation.

3.1 Distribution Alignment in Neural Tangent Kernel

Space

Directly conducting gradient aggregation through averag-
ing process [6] may not benefit the generalization capability
of DNN model. One reason may be attributed to the gradi-

ent conflict (i.e., 〈∂Fi(w)
∂w

,
∂Fj(w)

∂w
〉 < 0 for local server i and j)

[29] which further leads to negative transfer across different
servers. To this end, we propose to improve the generaliza-
tion capability of DNN with privacy-preserving constraints
by proposing a novel gradient aggregation technique.

Before introducing our proposed method, we first revisit
the problem of improving the generalization capability of
machine learning model to the out-of-distribution samples,
which has received more and more attention recently [15],
[30]. In [30], the authors theoretically proved that the gen-
eralization capability can be improved by domain align-
ment through domain variance reducing, where the domain
variance can be defined by summing the MMD distance
between domain pairs, which can be given as

∑

i,j

‖µPi
− µPj

‖2H, (2)

where µPi
and µPj

denote the kernel embedding of distribu-
tion of domain i and j, respectively. One can minimize the
domain variance by representing the kernel mean with em-
pirical averaging as µP = 1

n

∑n
i=1 φ(xi), where φ denotes a

feature mapping function [11].

Our motivation originates from the recent advance of
DNN analysis based on neural tangent kernel [31]. By con-
ducting first-order Taylor expansion of network objective
f(w), we can reformulate the objective as

f(w) ≈ f(w0) +▽wf(w0)
⊤(w − w0). (3)

By focusing on the parameter w, the above approxi-
mation can be interpreted as a linear model with respect
to w, and the feature map φ(·) is the gradient at the
initialization w0 given as φ(x) = ▽wf(x;w0) w.r.t. the
data x. Based on the neural tangent kernel space, where
the feature map of the original input data x is defined as
the corresponding gradient, we can interpret the average
gradient as the kernel mean with empirical averaging, given
by µP = 1

n

∑n
i=1 φ(xi), where φ represents the feature

mapping function based on the neural tangent kernel, which
is the gradient. Thus, we can define the domain variance

1. We consider gradient in our manuscript.

among multiple local servers based on the kernel embed-
ding in the neural tangent kernel space by extending the
MMD distance in Eq. (2) as

∑

i,j

‖gradi − gradj‖
2, (4)

where gradi and gradj denote the gradient sent to the
centralized server from local server i and j, respectively.

3.2 Gradient Aggregation

Algorithm 1 Proposed Gradient Aggregation Algorithm

1: input: Gradients sent from local servers: G = {gradi}.

2: Initialize: ˆgradi = gradi, G = { ˆgradi}
3: for ˆgradi ∈ G do

4: for ˆgradj ∈ G\{ ˆgradi} do

5: if 〈 ˆgradi,
ˆgradj〉 < 0 then

6: ˆgradi = ˆgradi − 2λ( ˆgradi −
ˆgradj)

⊲ Gradient alignment
7: end if
8: end for
9: end for

10: gradagg = 1
K

∑K
i=1

ˆgradi ⊲ Aggregated gradient sent
back to local servers

The gradient aggregation on the centralized server side
optimizes Eq. 4 instead of conducting gradient averaging
to avoid possible gradient conflicting. To jointly achieve
domain alignment among multiple local servers while pre-
serving discriminative power of DNN learning, we propose
to conduct gradient modification based on local server i
through gradient descend w.r.t. local server j only if nega-

tive transfer between i and j occurs (i.e., 〈∂Fi(w)
∂w

,
∂Fj(w)

∂w
〉 <

0), and the modified gradient of local server i w.r.t. local
server j is given as

ˆgradi = gradi − 2λ(gradi − gradj), (5)

where λ is the hyper-parameter for gradient descend. We
repeat this process across the gradients collected from all
local servers in a random order to obtain the respective

gradient ˆgradi for local server i. We then conduct gradi-
ent averaging, which is for model update. Our proposed
method is summarized in Algorithm 1.

It is worth noting that our proposed gradient aggre-
gation does not conflict with the homomorphic encryp-
tion, which encrypts the data by preserving the structural
transformation of original data [5], [32] and is adopted for
gradient communication in the FL setting. For example, by
considering homomorphic encryption, Eq. 5 can be reformu-
lated as

Ê(gradi) = E(gradi)⊖E(2)⊗E(λ)⊗(E(gradi)⊖E(gradj)),

where ⊗ and ⊖ denote the subtraction and multiplication
operation in the encrypted space. After conducting gradient
aggregation on the centralized server side, the modified and
encrypted gradient can be sent back to the local servers for
decryption and model updating.

Discussion. Conceptually, our proposed method is close
to Meta-Learning Domain Generalization (MLDG) [16]. In
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[16], a first-order Meta-Learning approximation was pro-
posed to reformulate the objective in [33] with a classifica-
tion loss and a gradient similarity loss. Besides, there also
exists methods which perform gradient alignment for the
problem of domain generalization. For example, ArgSum
and ArgRand [34] aim to explore the consensus of gradient
information (i.e., by masking the gradient to 0 if there exists
sign contradiction). While ArgSum and ArgRand are based
on the setting where data from multiple domains could
be shared, their method can be extended in our setting.
However, these two methods only explore gradient sign
information which may not be able to extract domain in-
variant knowledge across different clients. In [35] and [36],
the authors proposed to maximize the gradient similarity,
and minimize gradient variance across domains, which
can also be treated as performing gradient alignment for
domain generalization. However, [35] and [36] focus on
the centralized setting (i.e., data from multiple domains
are shared), where the gradient alignment loss is jointly
optimized with classification loss in a gradient-of-gradient
manner (see Algorithm 2 in [35]). Our proposed method is
different from [35] and [36], where the classification loss (i.e.,
local training) and gradient matching (on the central server)
are conducted in different places, as such, no gradient-of-
gradient information can be obtained. As such, a novel
optimization scheme (i.e., aggregation method) should be
developed to tackle the problem of domain generalization
with non-shared data from multiple domains.

Our formulation is also similar to projecting conflicting
gradients (PCGrad) [37], which is designed for multi-task
learning, at a high level. In [37], the cosine similarity of
gradients between two tasks are evaluated. If the value of
gradient similarity is negative, PCGrad proceeds to replace
one gradient by projecting it onto the normal plane of
another gradient. However, there are two limitations which
prevents PCGrad from being applied to our setting, 1) it
involves division process when computing cosine similarity
of gradient, the training process may not be stable if the
gradient vanishes (i.e., values of gradient close to zero) at
any local servers, which leads to 0 divided by 0; 2) even if
there is not gradient vanishing, it is still difficult for PCGrad
to be applied in homomorphic encryption based federated
learning setting due to the division operation involved [38].
Nevertheless, we also show in the experimental section
that our proposed method can achieve better performance
compared with PCGrad.

We are also aware that more recently, [26] proposed a FL
method where clients transmit Jacobian matrices to improve
model performance in the non-IID FL setting. While some
desired performance was reported in [26], our proposed
method is different compared with [26] on two folds: 1) we
focus on cross-domain FL scenario, 2) we only require the
client to tranmit gradient information to the central server,
which can be easier to adapt to different FL architectures
(based on the standard of federated learning [39]).

3.3 Convergence Analysis

In this section, we conduct convergence analysis of our
proposed gradient aggregation method. For simplicity, we
assume that two local servers are involved in the federated

learning training process, where the gradient sent from two
local servers are denoted as grad1 and grad2, respectively.
We assume that we first conduct gradient modification on
grad1 followed by grad2, if needed. We further denote
ˆgrad1 and ˆgrad2 as the modified gradients, respectively. We

focus on the convergence analysis on local server 1 as a
showcase.

At each update, we have three cases:

1) 〈grad1, grad2〉 > 0
2) 〈grad1, grad2〉 < 0 and 〈 ˆgrad1, grad2〉 > 0
3) 〈grad1, grad2〉 < 0 and 〈 ˆgrad1, grad2〉 < 0

For case 1), there is no need to conduct gradient mod-
ification based on our setting, for case 2), we only modify
grad1 by keeping grad2 unchanged, for case 3), we modify
both grad1 and grad2. Now we are ready to present our
analysis.

Theorem 1. We assume the loss function L is convex and differ-
entiable, and the gradient of L is L-Lipschitz with L > 0. Then,
the model update rule with our proposed gradient modification
method will converge to the optimal value.

Proof. If case 1), we can apply gradient descent (e.g., stochas-
tic gradient descent) which leads to a standard deep neural
network optimization.

If case 2), grad1 will be modified as

ˆgrad1 = (1− 2λ)grad1 + 2λgrad2, (6)

and grad2 will keep unchanged. the model parameters will
then be updated as

w∗ = w −
η

2
[(1 − 2λ)grad1 + (1 + 2λ)grad2]. (7)

As we have assumed that L is Lipschitz continuous, by
further denoting t = η

2 , where t ≤ 1
L

based on the Lipschitz
continuous property, we can conduct a quadratic expansion
of L around L(w) and obtain the following inequality:

L(w∗) ≤ L(w) + ▽L(w)⊤(w∗ − w) +
1

2
L‖w∗ − w‖2

≤ L(w) + grad1(−t[(1− 2λ)grad1 + (1 + 2λ)grad2])

+
1

2
L‖(−t[(1− 2λ)grad1 + (1 + 2λ)grad2])‖

2

≤ L(w) + (2λ2 −
1

2
)t‖grad1 − grad2‖

2. (8)

As we can see, since t > 0, as long as 2λ2 − 1
2 < 0, we

can have L(w∗) < L(w) which implies that the objective
function value strictly decreases with each iteration unless
grad1 = grad2.

If case 3), grad1 and grad2 will be modified as

ˆgrad1 = (1− 2λ)grad1 + 2λgrad2, (9)

ˆgrad2 = 2λ ˆgrad1 + (1− 2λ)grad2, (10)

respectively. Similar to the case 2), we can perform a
quadratic expansion around L(w) as

L(w∗) ≈ L(w) + ▽L(w)⊤(w∗ − w) +
1

2
L‖w∗ − w‖2,
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where ▽L(w) = grad1, L is the Lipschitz constant, and

w∗ − w = 1
2 (

ˆgrad1 + ˆgrad2),
ˆgrad1 = (1 − 2λ)grad1 +

2λgrad2, ˆgrad2 = 2λ ˆgrad1 + (1− 2λ)grad2.
Now, we substitute the update rule expression for w∗

and simplify the inequality using the constraint t ≤ 1
L

,
which leads to

L(w∗) ≤ L(w) + (8λ4 −
1

2
)t‖grad1 − grad2‖

2. (11)

As long as 8λ4 − 1
2 < 0, we can also have L(w∗) < L(w)

with each iteration unless grad1 = grad2.

In summary, we show that optimal value can be obtained
in all the cases. This completes the proof.

Our analysis can be extended to the cases where we
have multiple local servers. Particularly, one can treat the
gradient from the ith local server as grad1 the weighted
summed gradients from the remaining servers as grad2.

3.4 Implementation

Our proposed gradient aggregation algorithm for privacy-
preserving constrained domain generalization (PPDG) only
relies on the gradient information of each client, which is
task-agnostic. Intuitively, each client can send gradient to
the central server every iteration, however, such mechanism
inevitably increases communication burden between central
server and the local server, which is not practical in FL. We
thus follow [6] to reduce the computation cost on each client
(i.e., increase the number of iterations of training on each
client before sending the information to the central server).
In this case, we consider to approximate the gradient as ωT−
ω0 (in a form of gradient descent), where ω0 denotes the
initial parameters of the client model, and ωT denote the
model parameters after T iterations. We found such strategy
to be quite effective on different benchmark datasets.

4 EXPERIMENT

We first evaluate our model on the WILDS benchmark [40],
which contains a variety of datasets capturing real-world
distribution shifts across a diverse range of modalities. We
consider three challenging datasets in WILDS benchmark,
namely Camelyon17, Poverty, and FMow where the data are
all with privacy concerns (e.g., Camelyon17 based on health-
care application, and Poverty, FMow based on satellite im-
agery which can be related to homeland security), under the
Federated learning settings. We consider the gradient/weight-
aggregation-based FL baselines, including FedAvg [6], Fed-
Prox [41] and COPA [28], as well as the domain generaliza-
tion methods, including AgrSum and AgrRand [34], which
aim to explore the consensus gradients across domains and
can be extended to the FL setting. Besides, we also adopt
DeepAll and PCGrad [37] (where PCGrad is designed for
multi-task learning but can be extended to the FL setting) as
baselines for comparison.

Noted that other state-of-the-art non-federated domain
generalization baselines are not applicable in our case as
they require aggregating data from multiple servers to cre-
ate a domain shift scenario.

4.1 Results on Camelyon17

The Camelyon17 dataset contains 450,000 scanned patches
of breast cancer metastases in lymph-node sections. The
data are collected from 5 hospitals, and each hospital can
be treated as a single domain. The objective of Camelyon17
is to predict the presence of tumor tissue in the scanned
patch. As shown in [40], the variations in data collection and
processing brought from different hospital deployments can
greatly degrade the performance of tumor tissue prediction.
We follow the setting in [40] for our evaluation, where the
training data contain scanned patches from three different
hospitals, and the validation and test set consist of data
from the rest hospitals. We utilize the training set to train
our proposed method and evaluate and validation and test
set, respectively.

Setting. We follow the experimental protocols proposed
in [40], using the DenseNet-121 as the network for model
training. As for the model training on local server, we set
the learning rate to be 0.001, L2-regularization strength to
be 0.01, the batch size to be 32 and adopt SGD optimizer
with momentum 0.9. We trained the model for 10 rounds.
Each round all clients join the training and the local training
epochs is set to 1. We choose the epoch with the highest
accuracy in validation split, and report the corresponding
test accuracy. We set hyperparameter λ of PPDG to 0.1, and
for FedProx baseline, we tune the parameter of the proxy
term µ in a large range and set it to 0.1 where the best
performance can be achieved.

Results. We first conduct performance comparisons
with FL methods. As can be observed from Table 1, our
proposed method can achieve better performance compared
with FedAvg and FedProx in a large margin. Such obser-
vation is reasonable due to the domain alignment strat-
egy for gradient aggregation, such that shared information
among domains can be better exploited. We also notice
that FedProx generally achieves slightly better performance
when compared to FedAvg. One possible reason for this
improvement could be that the proximal term in FedProx
encourages the updated model weights to stay close to the
original model weights, which might contribute to enhanced
common knowledge learning.

Subsequently, we discuss the performance comparisons
with centralized learning. As we can see, FedAvg and Fed-
Prox achieve poorer performance compared with DeepAll
baseline in average, which is reasonable due to the data
variation across domains. Such results are also consistent
with performance in other FL based tasks (e.g., [7]). While
COPA could achieve better performance compared with
FedAvg and FedProx, its generalization capability is still not
desired compared with our proposed method. Nevertheless,
our proposed method can achieve a competitive perfor-
mance compared with DeepAll baseline and with better
performance on validation set, which is reasonable since our
method can be interpreted as conducting domain alignment
by mapping the data to the neural kernel space, such that
the shareable information across domains can be learned,
further bringing benefits to generalization capability.

Last but not the least, our proposed method can also
achieve better performance compared with the gradient
based methods AgrSum, AgrRand and PCGrad, which are
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TABLE 1
Results on Camelyon17 dataset.

Method Validation. (%) Test. (%) Average. (%)
DeepAll 87.4 76.8 82.1
FedAvg 80.4 70.2 75.3
FedProx 80.1 71.4 75.8
AgrSum 87.4 71.1 79.3
AgrRand 88.9 68.3 78.6
PCGrad 85.9 70.0 77.5
COPA 88.0 71.6 79.8
PPDG 89.0 73.0 81.0

designed for domain generalization and multi-task learning
task but can also be extended to the FL setting. We observe
that significant improvement can be achieved by using
our proposed, which further shows the superiority of our
proposed PPDG.

4.2 Results on Poverty

The Poverty dataset assembles satellite imagery and survey
data (utilized as ground truth) at 19,669 villages from 23
African countries between 2009 and 2016. Poverty is for
regression task which aims to predict the real-valued asset
wealth index of an area, given its satellite imagery, which
is essential for targeted humanitarian efforts in poor re-
gions, especially for much of the developing world where
ground-truth measurement of poverty are lacking because
of the high field surveys cost. The whole dataset contains
46 different domains: 23 different countries with 2 regions
(urban and rural) for each country. The train split contains
26 domains, the validation and test splits divide the rest 20
domains equally. We use the train split for model training
and evaluate the performance on validation and test splits
by computing Pearson correlation (r) between the predicted
and ground-truth asset index, the worst group result evalu-
ates the model’s generalization ability over the Urban and
rural region shift [40].

Setting. We follow [40] by using the ResNet-18 as the
training network, a batch size of 64, and Adam optimizer
with an initial learning rate of 0.001 that decays by 0.96 per
epoch. We trained the model for 200 epochs and reported the
epoch result with highest validation peason-r value along
with the corresponding test pearson-r value. We set the
hyper-parameter µ of FedProx and λ of PPDG to 0.1. As the
number of train domains here is large (with 26 domains),
we follow [6] by choosing a selection ratio 0.5 to randomly
select 13 clients (i.e., domains) to join each training round
with one local epoch training.

Results. We report the result in Table. 2. We see that
PPDG obtains the highest validation and test performance
under both average and worst sections compared with
other federated learning based baselines, especially on test
split with an improvement of 0.1 ahead over the FedAvg.
The centralized DeepAll baseline shows significant better
performance, which is reasonable since it can directly access
data from all domains and use them during training stage
instead of only performing gradient aggregation.

4.3 Results on FMow

Similar to the Poverty dataset, the FMow dataset also con-
tains satellite images collected from 5 different regions in

TABLE 2
Results on Poverty dataset.

Method Val Pearson r Test. Pearson r

Average Worst Average Worst
DeepAll 0.81 0.52 0.75 0.39
FedAvg 0.71 0.31 0.69 0.13
FedProx 0.71 0.29 0.68 0.08
AgrSum 0.56 0.21 0.59 0.20
AgrRand 0.58 0.28 0.59 0.15
PCGrad 0.70 0.34 0.74 0.10
COPA 0.73 0.25 0.80 0.21
PPDG 0.74 0.34 0.79 0.23

TABLE 3
Results on FMOW dataset.

Method Val Accuracy (%) Test. Accuracy (%)
Average Worst Average Worst

DeepAll 60.1 50.2 53.4 32.7
FedAvg 57.8 47.7 52.1 32.9
FedProx 56.5 45.2 50.8 31.9
AgrSum 52.9 45.7 47.3 27.4
AgrRand 53.1 46.8 47.2 28.7
PCGrad 60.1 49.6 53.7 32.8
COPA 60.0 47.6 51.3 29.7
PPDG 59.6 50.4 53.8 33.9

16 consecutive years. The task is to predict the land-usage
type (62 categories in total such as shopping mall,residential
units etc.) from the satellite image. The objective is to gen-
eralize the trained model to satellite imagery taken in the
future which may be shifted due the infrastructure develop-
ment across time. Such predictions can contribute to global-
scale monitoring of sustainability and economic challenges,
aiding policy and humanitarian efforts in applications such
as deforestation tracking. We follow the setting in [40] for
training, validation and test domain split.

Settings. We follow [40] to train a DenseNet-121 model
for the task. The initial learning rate is to set to 10−4 that
dacays by 0.96 per epoch and the batch size is set to 32.
We randomly select 5 domains to join each training round
with one local training epoch. We set λ of PPDG to 0.05
and µ of FedProx to 0.01 (we tune µ in a large range and
report the best performance we can achieve). For evaluation,
we report the average accuracy to evaluate the model’s
ability to generalize over years, and the worst-case accuracy
to measure the model’s generalization performance across
regions under a time shift.

Results. We can find in Table 3 that our method achieves
the best performance on both test and validation sets among
all baselines in terms of the worst-case accuracy, and ranks
the second in terms of the average accuracy on validation set.
The results further justify the superiority of our proposed
method.

4.4 Results on Other Datasets

Besides only considering datasets from WILDS benchmark
with privacy issue, we further evaluation on two other
datasets, RMNIST and TerraInc, from Domainbed bench-
mark [42]. Specifically, we follow the Domainbed bench-
mark by using LeNet for RMNIST, and ResNet-18/50 for
TerraInc, where we randomly split each source domain into
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training and validation set in a ratio of 9:1 to tune the
hyperparameter by setting λ = 0.001 for RMNIST, and
λ = 0.2 for TerraInc. As for FedProx, we set µ = 0.1 where
the best performance could be obtained. As we can see, our
proposed method can generally outperform other methods,
which shows that our proposed method is model agnostic
and can be generalized to various datasets.

TABLE 4
Results on RMNIST dataset.

RMNIST 0 15 30 45 60 75 Avg.

DeepAll 94.0 98.7 98.4 98.5 98.5 94.6 97.1
FedAvg 82.9 95.6 96.6 96.8 96.2 86.3 92.4
FedProx 79.6 94.7 95.8 95.9 94.6 82.7 90.5
PCGrad 86.1 97.3 93.8 95.0 97.5 88.4 93.0
AgrSum 72.9 94.3 96.4 96.4 93.9 78.8 88.8
AgrRand 72.7 94.3 96.4 96.4 93.8 79.0 88.8
COPA 83.0 96.0 97.4 97.0 96.1 88.6 93.0
PPDG 84.0 96.7 97.7 97.8 97.1 87.4 93.4

TABLE 5
Results on TerraInc dataset.

TerraInc Loc.100 Loc.38 Loc.43 Loc.46 Avg.

Resnet-18
DeepAll 49.8 31.3 47.1 37.2 41.4
FedAvg 46.5 38.6 40.2 27.3 38.2
FedProx 43.8 38.1 39.5 29.0 37.6
PCGrad 46.7 41.1 40.4 27.3 38.9
AgrSum 51.6 40.7 38.6 35.3 41.6
AgrRand 50.0 39.6 38.3 35.4 40.8
COPA 46.8 40.6 42.4 29.5 39.8
PPDG 49.0 42.0 47.6 32.7 42.8

Resnet-50
DeepAll 56.0 48.0 54.6 43.3 50.5
FedAvg 59.2 48.1 43.6 32.9 45.9
FedProx 50.5 41.4 41.0 32.2 41.3
PCGrad 57.2 46.0 41.7 33.2 44.5
AgrSum 56.7 47.1 40.1 36.3 45.1
AgrRand 57.4 46.2 39.1 36.9 44.9
COPA 59.0 48.2 44.6 33.1 46.2
PPDG 57.2 48.7 49.9 37.7 48.4

4.5 Hyperparameter analysis

We now examine the sensitivity of hyperparameter based on
the TerraInc dataset. Specifically, our investigation involves
assessing the impact of the hyperparameter λ over a broad
range (i.e., [0.01, 0.02, 0.05, 0.1, 0.2, 0.5]) and the findings of
the resulting hyperparameter analysis are presented in the
Figure 1 (where the results are reported in the format (λ,
average ACC)). The outcomes reveal that the performance
is unsatisfactory when λ is relatively small, which is reason-
able as it may not lead to gradient modification using our
proposed approach. Conversely, the performance improves
as λ increases. Nevertheless, λ cannot be excessively large
(i.e., λ = 0.5 in our case) due to the risk of non-convergence
during optimization, as demonstrated in our theoretical
analysis.
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Fig. 1. Hyperparameter Analysis on λ on TerraInc dataset. The dash line
denotes the result of FedAvg baseline.

4.6 Ablation study on gradient conflict.

We further propose to conduct an ablation study by ex-
cluding the consideration of gradient conflict (i.e., always
applying gradient alignment loss between two domains) on
TerraInc dataset. The findings in Table 6 indicate that al-
though the results still surpass the FedAvg baseline, the per-
formance decreases in comparison to the outcome obtained
from solely considering gradients that lead to negative
transfer. This outcome is reasonable because if the gradients
between two domains are excessively similar, an overfitting
problem may occur, thereby further increasing the gradient
distance between the two domains where negative transfer
may transpire.

TABLE 6
Comparison between our PPDG and gradient alignment without

considering gradient conflict under the setting on TerraInc dataset
where the hyperparameter λ = 0.2.

Method Acc

FedAvg 45.9
PPDG w/o gradient conflict 47.0
PPDG 48.4

4.7 Statistical Analysis

Besides only reporting results based on only average ac-
curacy/Pearson Correlation, we further perform Test of
Significance by using paired-sample t-test on Camelyon17
and RMNIST by using p-value at the 5% significance level.
The results are reported in Table 7. From the results, it is
evident that h = 1 for all baseline methods, suggesting that it
is appropriate to reject the null hypothesis that no difference
exists between our proposed approach and the baseline
methods. Consequently, we can assert that our proposed
method yields significant improvements.

5 CONCLUSION

In this paper, we focus on the domain generalization prob-
lem under the constraint of privacy-preserving settings. In
particular, motivated by the theory of kernel embedding
on the neural kernel tangent space, we propose a novel
gradient aggregation method, which can better extract the
shareable information among the data from multiple lo-
cal servers. We perform experimental studies on various
challenging datasets coming from WIDLS and Domainbed
benchmarks for classification and regression. The results
justify the effectiveness of our proposed method.
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TABLE 7
The results of the t-test, which compares our proposed method with the

baseline methods, are presented in a format denoted as p/h. The
p-value obtained from the t-test is represented by p. A value of h = 1
indicates a statistically significant difference between our proposed

method and the baseline, while a value of h = 0 indicates no significant
difference.

Method FedAvg AgrRand ArgSum PCGrad COPA

Camelyon17 0.0024/1 0.0164/1 0.0043/1 1.63e-4/1 0.0367/1
RMNIST 0.0033/1 1.03e-4/1 1.01e-4/1 0.043/1 0.0212/1
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