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Abstract: Nonlinear Auto-Regressive eXogenous input (NARX) models are a popular class of
nonlinear dynamical models. Often a polynomial basis expansion is used to describe the internal
multivariate nonlinear mapping (P-NARX). Resorting to fixed basis functions is convenient since
it results in a closed form solution of the estimation problem. The drawback, however, is that
the predefined basis does not necessarily lead to a sparse representation of the relationship,
typically resulting in very large numbers of parameters. So-called decoupling techniques were
specifically designed to reduce large multivariate functions. It was found that, often, a more
efficient parameterisation can be retrieved by rotating towards a new basis. Characteristic
to the decoupled structure is that, expressed in the new basis, the relationship is structured
such that only single-input single-output nonlinear functions are required. Classical decoupling
techniques are unfit to deal with the case of single-output NARX models. In this work, this
limitation is overcome by adopting the filtered CPD decoupling method of Decuyper et al.
(2021b). The approach is illustrated on data from the Sliverbox benchmark: measurement data
from an electronic circuit implementation of a forced Duffing oscillator.

Keywords: Polynomial-NARX, decoupling, filtered CPD, model reduction, nonlinear system
identification

1. INTRODUCTION

Nonlinear auto-regressive exogenous input (NARX) mod-
els have been extensively used to describe nonlinear sys-
tems. It is a black-box system identification technique
which has proven to be useful in a wide range of applica-
tions (Chan et al., 2015; Zhao et al., 2013). NARX models
describe dynamical nonlinear behaviour by relating the
current output sample to both past output samples, and
current and past input samples. Defining

x = {u(t), u(t− 1), . . . , u(t− nu),
y(t− 1), . . . , y(t− ny)}, (1)

a general single-output NARX model is described by
(Billings, 2013)

y(t) = F (x) + e(t), (2)

where F : Rnu+ny+1 → R is a static multiple-input single-
output (MISO) nonlinear function and e(t) is an equation
error which is assumed to be a sequence of independent
identically distributed (IID) random variables. The func-
tion F may be described by any class of functions, e.g.
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FWO under license number G0068.18N.

it can be a neural network or a wavelet network. Often,
however, a basis expansion is preferred. In that case, a
direct estimate of the model parameters follows from linear
regression by using the measured outputs in the regressor
(minimising the equation error). A popular choice is the
polynomial basis, leading to so-called Polynomial-NARX
or P-NARX models.

The ease of identification is however countered by a
number of fundamental disadvantages. P-NARX models
are notorious for the number of parameters that have to
be identified, growing both with the number of past inputs
and past outputs, n = nu + ny + 1, and combinatorially
with the nonlinear degree d. Moreover, being a black-
box method, the obtained model is often very hard to
interpret. General practice is to use regularisation to steer
the optimisation towards meaningful terms and hence
reduce the number of parameters. Often, however, no
sparse representation can be obtained using the classical
monomial basis. The present work promotes the use of
decoupling techniques, which were designed to translate
the relationship into a more favourable basis.

Similar issues have already been addressed in the con-
text of nonlinear state-space models, where typically
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a multiple-input multiple-output (MIMO) polynomial is
used to describe the nonlinearity. It was found that by
decoupling the multivariate polynomial into a number of
univariate polynomials, both insight and model reduction
could be obtained (Decuyper et al., 2021a).

In general, decoupling techniques aim at transforming
generic multivariate nonlinear functions into decoupled
functions. The decoupled structure is characterised by
the fact that the nonlinear relationship is described by a
number of univariate functions of intermediate variables.
Given a generic nonlinear function

q = f(p) (3)

with q ∈ Rm and p ∈ Rn, the idea is to introduce an
appropriate linear transformation of p, denoted V , such
that in this alternative basis, univariate functions may be
used to describe the nonlinear mapping. The decoupled
function is then of the following form

f(p) = Wg(V Tp) (4)

where the ith function is gi(zi) with zi = vTi p, emphasising
that all functions are strictly univariate. The number of
allowed univariate functions, denoted r, is a user choice
which can be used to control the model complexity. In
some cases prior knowledge of the system may dictate
that a certain number of nonlinear components drive the
nonlinearity. Whenever no such knowledge is available, a
scan over r is performed. The number of univariate func-
tions plays a crucial role since it will determine whether
the implied equivalence of Eq. (4) exists. A second linear
transformation W , maps the function back onto the out-
puts. The linear transformations then have the following
dimensions: V ∈ Rn×r and W ∈ Rm×r.

The original decoupling procedure requires the function
to be of the MIMO-type (Dreesen et al., 2015), i.e m > 1,
excluding the class of single-output P-NARX models. The
method is based on the canonical polyadic decomposition
(CPD) of a 3-way tensor, constructed out of evaluations of
the Jacobian matrix along a number of operating points
(see Section 3.2). It exploits the uniqueness properties of
the CPD in order to retrieve estimates of the univariate
functions gi. In Westwick et al. (2018), the issue with
single-output functions was circumvented by resorting to
evaluations of the Hessian, again retrieving a 3-way tensor.
In practice, however, the uniqueness of the CPD is often
not guaranteed (Decuyper et al., 2019), leading to very
noisy estimates of gi or its derivatives. As a solution,
Karami et al. (2021) proposed to add polynomial con-
straints when factoring the Hessian. Accurate decoupled
models could be obtained, although at the price of com-
puting the Hessian.

In this work, the filtered CPD approach of Decuyper et al.
(2021b) will be used. It acts on the basis of first order
derivative information, avoiding the computation of the
Hessian, and resorts to non-parametric soft constraints to
ensure meaningful estimates of gi are obtained.

2. FILTERED CPD DECOUPLING

The filtered CPD approach (F-CPD) links the original
function to a decoupled function on the basis of its first
order derivative information. The method relies on the
underlying diagonal structure of the Jacobian (Eq. (5)),
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Fig. 1. Centre: a collection of evaluations of the Jacobian of
the decoupled function (Eq. (4)), stacked in the third
dimension. Left: the corresponding third order tensor,
Right: extracting the central diagonal plane reveals a
diagonal tensor decomposition.

which follows from the use of univariate functions gi.
Denoting the left and right hand side Jacobian of Eq. (4)
by J and J ′, respectively, we have that

J ′ = W diag ([h1(z1) · · · hr(zr)])V T (5)

in which case hi(zi) := dgi(zi)
dzi

represents the derivative of

the univariate function gi(zi) with respect to its argument.
Evaluating this Jacobian in N operating points, i.e. for
{p[1], · · · ,p[N ]}, and collecting the evaluations in a third
dimension, expands the object into a three-way array J ′ ∈
Rn×m×N . This is illustrated graphically in Fig. 1. Notice
that the diagonal plane, H ∈ RN×r, stores evaluations of
hi, i.e the derivative of the functions gi. Given the diagonal
form, the collection of Jacobians may be written as a sum
of r outer products (or rank-one terms). Element-wise we
have that,

J ′[s,k,l] =

r∑
i=1

wsi vki hli, (6)

for s = 1, . . . ,m and k = 1, . . . , n and l = 1, . . . , N . A sum
of rank-one terms defines a diagonal tensor decomposition
(Kolda and Bader, 2009). The latter is illustrated on the
right in Fig. 1.

Dreesen et al. (2015) found that the underlying diagonal
form of J ′ can be exploited in the decoupling process.
It was suggested to construct a third order tensor, J ,
out of evaluations of the Jacobian of the known function,
f(p), and compute a diagonal decomposition such that
J ≈ J ′. In the filtered CPD approach, finite difference
filters are introduced into the decomposition. This allows
for the Jocobian tensor to be decomposed into the more
convenient factors {W ,V ,G}, where G stores evaluations
of the univariate functions gi.

The method of Decuyper et al. (2021b) can be summarised
in three steps:

(1) Collect the Jacobian matrices of the known function,
J , and stack them into a three-way array, i.e. the
Jacobian tensor J ∈ Rn×m×N .

(2) Factor J into {W ,V ,G} by computing a filtered
diagonal tensor decomposition (F-CPD).

(3) Retrieve the functions, gi, by parametrising the non-
parametric estimates stored in G.

At the core of the algorithm lies an alternating least-
squares routine which iteratively updates W ,V , and G.
Starting from a random initialisation 1 the following norm
is progressively minimised

1 The retrieved local minimum depends on the initialisation point.
In this work, however, no significant impact of the initialisation was
observed when tackling the benchmark problem of Section 3.



arg min
W ,V ,G

‖J − JW ,V ,FC(V ) ◦GK‖2F , (7)

where the shorthand notation J ′ = JW ,V ,FC(V )◦GK is
used and ‘◦’ defines a matrix-column product, illustrated
by Eq. (9). In this formulation, FC ∈ RN×N×r stores a
collection of finite difference filters, with the ith filter

FCi
:= FC[:,:,i]

. (8)

A finite difference filter is a matrix which upon multiplica-
tion with a vector of function evaluations, returns a finite
difference approximation. Recall that the ith column of
H stores evaluations of the derivative of gi with respect
to zi = vTi p, resulting in the dependency FC(V ). We may
then express hi, as the finite difference of the ith column
of G,

hi := FCi
gi. (9)

The subscript C denotes that a central differencing scheme
is used.

Eq. (7) can be broken down into 3 separate objectives, i.e.
Eq. (10), (11), and (12). Denoting the matricisations of
J along its rows, columns and tubes by J(1),J(2),J(3),
respectively, and using ‘�’ to denote the Khatri-Rao
product, an update of W is found from

arg min
W

‖J(1) −W ((FC(V ) ◦G)� V )T‖2F (10)

Given that W appears linearly in the objective, a closed-
form update formula may be obtained.

What is imperative is to retrieve meaningful estimates of
the functions gi along the columns of G. Originally one
relied on the uniqueness properties of the CPD to meet
this requirement (Dreesen et al., 2015). As was mentioned
earlier, it has been shown that this uniqueness is often not
guaranteed, leading to very noisy estimate.

The F-CPD method, on the other hand, relies on finite
difference filters to steer the decomposition towards mean-
ingful factors. What is required in practice is to promote
smoothness on the estimates stored in G. Given that both
V (via zi = vTi p) and G contribute to the smoothness
of the estimates of gi(zi), a smoothness objective should
be reflected in both their cost functions. Regularisation is
used to penalise noisy estimates. An update of V is found
from

arg min
V

‖J(2) − V ((FC(V ) ◦G)�W )T‖2F
+ λ‖ (FL(V ) ◦G)− (FR(V ) ◦G) ‖2F

(11)

where λ is a hyperparameter which balances both ob-
jectives. The additional term penalises divergent results
from a left (FL) and a right (FR) finite difference filtering
operation, ultimately steering the optimisation towards
smooth solutions. Given that V appears nonlinearly in
Eq. (11), nonlinear optimisation is required when comput-
ing an update.

In analogy with Eq. (11), the update formula of G is also
found from a joint objective function.

arg min
G

‖J(3) − (FC(V ) ◦G)(V �W )T‖2F
+ λ‖ (FL(V ) ◦G)− (FR(V ) ◦G) ‖2F

(12)

It can be shown that G appears linearly in Eq. (12).

The smoothness objective ensures that the functions may
be parameterised using an appropriate basis expansion.

What basis expansion to use depends on the application
and can be freely chosen by the user.

The computational cost of the algorithm is quadratic
in both N and r. More efficient implementations are
the subject of future study. For now, the benchmark
problem of Section 3 could be solved in a computing time
in the order of minutes. The present algorithm can be
summarised by the following pseudocode.

F-CPD Algorithm

Construct Jacobian tensor J
Randomly select N points from the input space {p[k]}Nk=1

Compute Jk on the operating points {p[k]}Nk=1
Stack the Jacobian matrices J [:, :, k] := Jk

Factor J into {W ,V ,G}
Initialise W ,V ,G for chosen value of r
Repeat ALS routine
update W ,V ,G via (10) to (12)
Until maximum number of iterations

Parameterise G
obtain gi(zi) from appropriate basis expansion of G

The filtered CPD approach is a powerful tool since it no
longer relies on the uniqueness properties of the CPD. As
a result, the number of univariate functions, r, to be used
in the decoupled function, has become a design choice.

Moreover, also multiple-input single-output functions,
may be decoupled using filtered CPD. MISO functions
result in Jacobian matrices rather than tensors, prevent-
ing the possibility of exploiting the uniqueness properties
of the CPD. F-CPD therefore enables the decoupling of
single-output NARX models, and by extent of general
MISO functions.

3. BENCHMARK PROBLEM

The decoupling of single-output P-NARX models will
be demonstrated on a nonlinear benchmark data set of
the forced duffing oscillator. The data is obtained from
an electrical implementation of a mechanically resonating
system involving a moving mass m, a viscous damping
c and a nonlinear spring k(y(t)). The analogue electrical
circuitry generates data close to but not exactly equal
to the idealised representation given by the nonlinear
ordinary differential equation (ODE)

mÿ(t) + cẏ(t) + k(y(t))y(t) = u(t), (13)

where the presumed displacement, y(t), is considered the
output and the presumed force, u(t), is considered the
input. Overdots denote the derivative with respect to time.
The static position-dependent stiffness is given by

k(y(t)) = α+ βy2(t), (14)

which can be interpreted as a cubic hardening spring.

The training data consists of 9 realisations of a random-
phase odd multisine. The period of the multisine is 1/f0
with f0 = fs/8192 Hz and fs ≈ 610 Hz. The number of
excited harmonics is L = 1342 resulting in an fmax ≈ 200
Hz. Each multisine realisation is given a unique set of
phases that are independent and uniformly distributed in
[0, 2π[. The signal to noise ratio (SNR) at the output is
estimated at approximately 40 dB. This is measurement
noise (or sensor noise). It is high levels of measurement
noise can deteriorate the performance of NARX models
(Schoukens et al., 2021). It is important to stress that



this inherent sensitivity is not removed by replacing the
internal function by a decoupled one.

As validation data a filtered Gaussian noise sequence
of the same band width and with a linearly increasing
amplitude is used.

The data are part of three benchmark data sets for
nonlinear system identification described in Wigren and
Schoukens (2013). The approach will consist of 3 steps:

(1) Identify a P-NARX model on the basis of the training
data.

(2) Decouple the NARX model using the F-CPD tech-
nique.

(3) Use a final optimisation to minimise the simulation
error of the decoupled model.

3.1 Reference P-NARX model

Using the System Identification toolbox in MATLAB a P-
NARX model is estimated with the following properties:
nu = 1, ny = 3, and d = 3. All cross-term monomials
where included leading to a model with 55 parameters. We
will denote the P-NARX model by f(x) : Rnu+ny+1 → R,
with x as defined in Eq. (1), emphasising that the model
is obtained by minimising the equation error (focus on
prediction). As performance metric a relative root-mean-
squared simulation error is used

erms =

√
1
N

∑N
k=1 (y[k]− ys[k])

2√
1
N

∑N
k=1 y[k]2

× 100 (15)

where ys denotes the simulated output and N is the record
length. The estimation process returns an accurate P-
NARX model yielding a erms of 1.01% when simulating
the validation data.

3.2 Decoupled P-NARX model

Given that using the F-CPD method, r, has become a
design choice, we are able to scan over r and study the
performance of the obtained decoupled models. Addition-
ally, a scan over the hyperparameter λ is required. Besides
the simulation error (Eq. (15)) we will also introduce a
function approximation error,

ef =

√
1
N

∑N
k=1 (f(xo[k])− fd(xo[k])) 2√

1
N

∑N
k=1 f(xo[k])2

× 100 (16)

in which fd represents the decoupled polynomial function,

fd = wTg
(
V Txo

)
, (17)

and xo are the operating points. In this caseN refers to the
number of operating points for which the decomposition
is computed.

In order to ensure that the operating points cover the re-
gion of interest, they are selected on the basis of the train-
ing data. Simulating the training data using the P-NARX
estimate f returns the collection XT = {xT [k]}NT

k=0, with
xT containing the simulated output samples

xT = {u(t), u(t− 1), . . . , u(t− nu),
ys(t− 1), . . . , ys(t− ny)}, (18)

and NT denoting the training record length. The operating
points are then drawn from the joint normal distribution,
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Fig. 2. Relative function approximation error computed on
the operating points.

inferred from XT . The number of operating points to
use can be considered a hyperparameter. In this work
N = 200 points is used. In correspondence to the reference
model, f , the functions gi of the decoupled models will be
parametrised using third order polynomials, d = 3.

We will study the decoupled models following the grid
defined by r = 1, . . . , 6 and λ = 10l, with l = −1, . . . , 5.
For every value of r the decoupled model yielding the
lowest function approximation error, ef , is selected. This
will correspond to the value of λ which results in the
appropriate balance between the tensor approximation
objective and the smoothness objective (Eq. (11) and
(12)). The overview of the function approximation error
is depicted in Fig. 2. Accurate function approximations,
fd ≈ f , could be obtained yielding errors below 1% for
values of r > 1.

In a final step, nonlinear optimisation is used to fine-
tune the decoupled models on the basis of their training
data simulation error. A Levenberg-Marquardt algorithm
(Levenberg, 1944) is used to minimise the output error
objective given by

arg min
w,V ,θ

NT∑
k=1

(
y[k]−wTg(V Txs[k],θ)

)2
, (19)

with y the true output, xs containing simulated output
samples of the decoupled model (similar to Eq. (18)), and
θ storing the coefficients of the third order polynomials in
g.

Fig. 3 illustrates the performance of the optimised model
set when simulating the validation data. It is clear that
decoupled models for which r ≥ 4 perform equally well as
the reference model, i.e ≈ 1% (indicated by the red line).
Models containing less univariate mapping functions miss
the required complexity to reproduce the data up to such
precision. For some applications, however, the performance
of the r = 2 and r = 3 model may still be acceptable. The
simulation performance of the r = 4 model is illustrated
in Fig. 4.

Noticing that w merely serves as a scaling on the functions
g, the coefficients can be incorporated in θ. Doing so
results in a total parameter count of 36 for the r = 4
model, compared to the 55 parameters required in the
standard basis expansion of the reference model. The
univariate functions of the decoupled model are depicted
in Fig. 5. From visual inspection of the functions one may
conclude that the system behaviour is dominantly cubic.
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Fig. 3. Black markers: Relative simulation error of the de-
coupled P-NARX models, computed on the validation
data. Red: error obtained from the reference P-NARX
model.
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Fig. 4. Blue: validation output data corresponding to
a filtered Gaussian noise sequence. The amplitude
extends beyond the training data amplitude resulting
in an extrapolation of the model. Red: simulation
error of the r = 4 decoupled model.
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Fig. 5. Univariate functions of the r = 4 decoupled P-
NARX model. The functions are evaluated over the
validation range.

Additionally the SISO functions can easily be monitored
to flag extrapolation (Karami et al., 2019). It should be
noted that in this case, even after decoupling, physical
interpretability remains hard. An important aspect is
believed to be the choice of regressors, i.e. nu, ny. The use
of shifted input samples contributes to retrieving a non-
physical model, in this case of the forced Duffing oscillator.
One such mechanism is the introduction of sampling zeros
(Goodwin et al., 2013).

4. COMPARING POLYNOMIAL CONSTRAINTS TO
F-CPD

In this section the decoupling technique of Karami et al.
(2021), which will be referred to as the the structured
Hessian method, is compared to the F-CPD method.
Following the author’s notation, the decoupled model may
be written as

fd = c0 +

r∑
i=1

gi(v
T
i x)

gi(zi) =

d∑
j=1

cj,iz
j
i ,

(20a)

(20b)

which corresponds to Eq. (17) where w is incorporated in
the vector of coefficients,

c = [c0 c1,1 . . . cd,1 c1,2 . . . cd,r]T. (21)

Computing the Hessian of the output of the decoupled
function with respect to the input variables generates a
matrix for each operating point xo

H ′y(xo) =

r∑
i=1

g′′i (vTi xo)viv
T
i (22)

where g′′i denotes the second derivative of gi with respect
to zi. The collection of Hessian matrices may again be
stacked into a three-way array whose entries are given by

H′[j,k,l] =

r∑
i=1

vij vik g
′′
il (23)

for j = 1, . . . , n and k = 1, . . . , n and l = 1, . . . , N .

The idea is to construct the Hessian tensor H out of
evaluations of the known function and use the CPD to
factor it into H′ = JV ,V ,G′′K, such that H ≈ H′. In this
case G′′ = [g′′1 . . . g

′′
r ] is a matrix storing evaluations of the

second derivate of g.

From the previous it is clear that relying on the uniqueness
properties of the CPD alone does not guarantee to obtain
accurate estimates of g′′i . It was therefore proposed not
to solve for G′′ directly, but to formulate the matrix
factor into a polynomial form and solve for the polynomial
coefficients instead. The optimisation problem to be solved
can be formulated as

arg min
V ,c

‖H − JV ,V ,G′′P (c,V )K‖2F , (24)

where the columns of G′′P are expressed as polynomials
using the coefficients c and the Vandermonde matrices
based on all the zi (hence the dependence on V given
zi = vTi x). The optimisation problem is solved using a
quasi-Newton algorithm.

The obtained estimate of V is then used to initialise a
final optimisation based on the simulated training output
of the decoupled model

arg min
V ,c

NT∑
k=1

(y[k]− ys[k](V , c))
2
. (25)

Starting from the reference model of Section 3.1, the
structured Hessian method is used to obtain a decoupled
P-NARX model. The exact same data and operating
points are used for fair comparison.
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Fig. 6. Black markers: Relative simulation error of the de-
coupled P-NARX models, computed on the validation
data. Red: error obtained from the reference P-NARX
model. Blue: error of the r = 4 model obtained from
the structured Hessian method.

A decoupled P-NARX model with r = 4 functions is
obtained. Also here polynomials of the third degree are
used. The obtained model is of an identical architecture
as the r = 4 model obtained in Section 3.2, i.e. when
considering the w vector to be incorporated in g. In Fig. 6,
the performance of the decoupled model is compared to the
models obtained in Section 3.2. The decoupled model has
a slightly higher error of erms = 1.78%.

A number of advantages and disadvantages of both meth-
ods are listed:

• The structured Hessian method requires the expen-
sive computation of the Hessian.
• The F-CPD method requires a search over the hyper-

parameter λ.
• The structured Hessian method enforces polynomial

constraints on one of the factors. This may be inap-
propriate when facing non-polynomial nonlinearities.
• The structured Hessian method retrieves an estimate

of the factor V from the constrained CPD of the
Hessian. The Hessian, however, no longer contains
information on the linear part of the NARX model.

5. CONCLUSION

In this work a filtered CPD is used to decouple single-
output polynomial NARX models. Polynomial NARX
models typically require a large number of parameters in
their description. For decoupled structures, the number of
parameters grows linearly with the degree, resulting in a
substantial model reduction. It was shown that the filtered
CPD method no longer relies on the uniqueness properties
of the CPD. As a result, the number of univariate functions
in the decoupled structure has become a design choice.
The method is illustrated on the benchmark problem of
the forced Duffing oscillator and compared to the results
obtained from the structured Hessian method.
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