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Abstract
Data-free compression raises a new challenge be-
cause the original training dataset for a pre-trained
model to be compressed is not available due to
privacy or transmission issues. Thus, a common
approach is to compute a reconstructed training
dataset before compression. The current recon-
struction methods compute the reconstructed train-
ing dataset with a generator by exploiting informa-
tion from the pre-trained model. However, current
reconstruction methods focus on extracting more
information from the pre-trained model but do not
leverage network engineering. This work is the first
to consider network engineering as an approach to
design the reconstruction method. Specifically, we
propose the AutoReCon method, which is a neural
architecture search-based reconstruction method.
In the proposed AutoReCon method, the genera-
tor architecture is designed automatically given the
pre-trained model for reconstruction. Experimen-
tal results show that using generators discovered by
the AutoRecon method always improve the perfor-
mance of data-free compression.

1 Introduction
To be deployed on resources-constrained hardware for real-
time applications, the efficiency of deep convolutional neural
networks has been improved significantly by various model
compression techniques [He et al., 2020; Howard et al., 2019;
Zhu et al., 2020b; Mirzadeh et al., 2020]. Without alter-
ing the model architecture, quantized neural networks [Zhu
et al., 2020b] use a low bit width representation instead
of full-precision floating-point, saving expensive multiplica-
tions. Pruning [He et al., 2020] is an approach to remove the
weights or neurons based on certain criteria. In terms of effi-
cient neural network architectures, the MobileNet [Howard et
al., 2019], ShuffleNet, and ESPNet [Mehta et al., 2019] series
make use of depthwise-separable convolution, grouped con-
volution with shuffle operation, and efficient spatial pyramid.
The knowledge distillation paradigm [Mirzadeh et al., 2020]
transfers the information from a pre-trained teacher network
to a portable student network.

Data-free compression [Chen et al., 2019; Cai et al., 2020]
has been an active research area when the original training
dataset for the given pre-trained model is unavailable be-
cause of privacy or storage concerns. Given the pre-trained
model to be compressed, it is an essential step to recon-
struct the original training dataset by inverting representa-
tion. For example, accuracy degradation of ultra-low preci-
sion quantized models [Banner et al., 2018; Xu et al., 2020;
Nagel et al., 2019] is unacceptable without fine-tuning on
the reconstructed training dataset. The reconstruction method
computes a reconstructed training dataset by leveraging some
extra metadata [Lopes et al., 2017] or by extracting some
prior information [Choi et al., 2020] from the pre-trained
model. Instead of computing the reconstructed training
dataset directly [Nayak et al., 2019; Cai et al., 2020; Lopes et
al., 2017], recent reconstruction methods [Fang et al., 2019;
Yoo et al., 2019; Micaelli and Storkey, 2019; Xu et al., 2020;
Choi et al., 2020; Chen et al., 2019] employ a generator
to generate a reconstructed training dataset in an end-to-end
manner and show better performance for data-free compres-
sion.

The quality of the reconstruction closely relates to the ex-
tracted information from the pre-trained model. When more
information is exploited from the pre-trained model, data-
free compression achieves better performance. Thus, the
current reconstruction methods [Micaelli and Storkey, 2019;
Xu et al., 2020; Nayak et al., 2019; Chen et al., 2019; Choi et
al., 2020; Yoo et al., 2019] focus on exploiting as much prior
information as possible from the pre-trained model. How-
ever, how the network engineering will contribute to the re-
construction method remains unknown. Thus, we consider
network engineering of the reconstruction method for the
first time in the literature. This work aims to seek an opti-
mized generator architecture, with which data-free compres-
sion shows performance improvement. It is worth mentioning
that network engineering of the reconstruction and exploiting
more prior information from the pre-trained model are com-
plementary rather than contradictory. Both are important and
should be explored for improving data-free compression. The
contribution of this paper is summarized as follows.

• To our best knowledge, we are the first work to consider
network engineering of the reconstruction method.

• We propose the AutoReCon method, which is a neural
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architecture search-based reconstruction method to opti-
mize generator architecture for reconstruction.

• Using the discovered generator, diverse experiments are
conducted to demonstrate the effectiveness of the Au-
toReCon method for data-free compression.

2 Related Work
2.1 Neural Architecture Search
Neural architecture search has attracted a lot of attention
since it can automatically search for an optimized architec-
ture for a certain task and achieve remarkable performance
[Pham et al., 2018; Liu et al., 2018; Gao et al., 2020;
Zhu et al., 2020a]. The optimization algorithms of neural ar-
chitecture search include reinforcement learning [Pham et al.,
2018], evolutionary algorithm, random search [Chen et al.,
2018], and gradient-based algorithm [Liu et al., 2018]. There
is a lot of work towards reducing the computational resources
required by searching, including weight sharing [Pham et al.,
2018], progressive search, one-short mechanism [Liu et al.,
2018], and using a proxy task. The performance of the dis-
covered architecture by neural architecture search has sur-
passed human-designed architecture in many computer vision
tasks, including classification [Liu et al., 2018] and image
generation [Gao et al., 2020].

2.2 Data-free Model Compression
Data-free compression covers data-free quantization and
data-free knowledge distillation. Without a generator, the re-
constructed training dataset is computed directly in [Lopes et
al., 2017; Nayak et al., 2019; Cai et al., 2020; Nagel et al.,
2019; Yin et al., 2020]. [Lopes et al., 2017] present a method
for data-free knowledge distillation, where the reconstructed
training dataset is computed based on some extra recorded ac-
tivations statistics from the pre-trained model. DeepInversion
[Yin et al., 2020] introduces a feature map regularizer based
on batch normalization information in the pre-trained model
for data-free knowledge distillation. In data-free knowledge
distillation [Nayak et al., 2019], the class similarities are
computed from the pre-trained model and the output space
is modeled via Dirichlet Sampling. [Cai et al., 2020] cal-
culates the reconstructed training dataset to match the statis-
tics of the batch normalization layers of the pre-trained model
and introduces the Pareto frontier to enable mixed-precision
quantization. [Nagel et al., 2019] improves data-free quan-
tization by equalizing the weight ranges and correcting the
biased quantization error.

The performance of data-free compression can be im-
proved by employing a generator for the reconstruction [Fang
et al., 2019; Yoo et al., 2019; Micaelli and Storkey, 2019;
Xu et al., 2020; Choi et al., 2020; Chen et al., 2019]. [Chen et
al., 2019] proposes a framework for data-free knowledge dis-
tillation by exploiting generative adversarial networks, where
the reconstructed training dataset derivated from the gener-
ator is expected to lead to maximum response on the dis-
criminator of the pre-trained model. The KEGNET [Yoo
et al., 2019] framework uses the generator and decoder net-
works to estimate the conditional distribution of the original
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Figure 1: The comparison between the current reconstruction
method and the AutoReCon method for data-free compression. The
goal of every subfigure is to update the models in gray color, given
the pre-trained and fixed models in white color. a) an overview of the
current reconstruction method to update the generator by minimiz-
ing the reconstruction loss Lr , where the generator has a human-
designed architecture. b) an overview of the current reconstruc-
tion for data-free compression to update the compressed model by
minimizing the compression loss Lc, after the generator with the
human-designed architecture has been trained in subfigure a). c)
an overview of the AutoReCon method to update the generator by
minimizing Lr , where there is a super net for the generator. d) an
overview of the AutoReCon method for data-free compression to
update the compressed model by minimizing Lc, after the generator
with a discovered architecture has been trained in subfigure c).

training dataset for data-free knowledge distillation. In data-
free knowledge distillation [Micaelli and Storkey, 2019], an
adversarial generator is used to produce and search for the
reconstructed training dataset on which the student poorly
match the teacher. In this paper, we improve on the work
of [Xu et al., 2020], which proposes a knowledge matching
generator to produce a reconstructed training dataset by ex-
ploiting classification boundary knowledge and distribution
information from the pre-trained model.

3 AutoReCon Method for Data-free
Compression

In this section, we define the reconstruction method for data-
free compression. Then, we introduce our proposed AutoRe-
Con method, a neural architecture search-based reconstruc-
tion method, and present its search space and search algo-
rithm. Also, the training process of the AutoReCon method
for data-free compression is described.

3.1 Definition of Reconstruction Method
The pre-trained model Mp is obtained by training on the
original training dataset To = {xo, yo}. Given the pre-
trained model Mp, we compute the reconstructed training



dataset Tr = {xr, yr} with the reconstruction method Φ, i.e.,
Tr = Φ(Mp).

Considering the reconstruction method with a generator
as shown in Figure 1a), the pre-trained model Mp is fixed
while the weights of the generator are updated by minimizing
the reconstruction loss Lr. The prior information extracted
from the pre-trained model Mp by the current methods is
mainly the class boundary information and distribution infor-
mation. If more prior information can be extracted from the
pre-trained model, the reconstruction method can be easily
adjusted by incorporating more loss terms to the reconstruc-
tion loss. Current reconstruction method Φ can be expressed
as follows.

min
Wg

Lr(Wg) = min
Wg

Eyo∼Pyo (yo),z∼Pz(z)

[Lclass(Mp(Mg(z|yo);Wg), yo) + Lbns(BNr, BNo)]
(1)

where z and Wg are the random noise input vector and
weights of the generator, and Lclass(·, ·) is the cross-entropy
loss function. Lbns(·, ·) measures the distribution distance be-
tween the batch normalization statistics of the original train-
ing dataset BNo and the batch normalization statistics of
the reconstructed training dataset BNr. The formulations
of Lclass, Lbns, and Lr are flexible to make the AutoReCon
method general.

3.2 AutoReCon Method
As shown in Figure 1a) and c), we present an overview of cur-
rent reconstruction and the AutoReCon method. The current
reconstruction method includes a pre-trained modelMp and a
generatorMg with a human-designed architecture. In the Au-
toReCon method, we aim to search for a superior generator
architecture automatically for reconstruction.

Regarding the reconstruction task, our training objective
function is written as follows, where both weightsWg and ar-
chitecture Ag of the generator can be updated by minimizing
the reconstruction loss.

min
Ag

Lval
r (Ag,W

∗
g (Ag))

s.t. W ∗
g (Ag) = argmin

Wg

Ltrain
r (Ag,Wg)

(2)

where Ltrain
r and Lval

r refer to the reconstruction loss function
on the reconstructed training dataset and the reconstructed
validation dataset, respectively. W ∗

g (Ag) are the optimal
weights of the generator given the generator architecture Ag .
Ag ∈ S and S is the whole search space of the generator.

The Search Space
We construct a layer-wise search space with a fixed macro-
architecture for the generator. The macro-architecture defines
the type of the edge, the number of edges, the node con-
nection, and the input/output dimension of each node. The
macro-architecture is shown in Figure 2, where there are three
convolutional blocks and five nodes in every convolutional
block. We denote the generator as Mg(e1, ..., ei, ..., eE),
where ei represents the ith edge and E is the number of
edges. The nodes refer to the feature maps and we calcu-
late them as the summation of the outputs of their previous

Edge type Mixture of candidate operations

Normal-edge

Convolution 1 × 1, dilation=1
Convolution 3 × 3, dilation=1
Convolution 5 × 5, dilation=1
Convolution 3 × 3, dilation=2
Convolution 5 × 5, dilation=2
Identity
None

Up-edge Nearest Neighbor Interpolation
Bilinear Interpolation

Cross-edge
Nearest Neighbor Interpolation
Bilinear Interpolation
None

Table 1: For different types of edges, there are different mixtures of
candidate operations.

connected edges. There are three types of edges: normal-
edge, up-edge, and cross-edge. Normal-edge connects two
nodes with the same dimension. Up-edge is used to increase
the spatial resolution. Normal-edge and Up-edge are within a
convolutional block. Cross-edge connects two adjacent con-
volutional blocks.

To construct a layer-wise search space for the generator,
we set each edge as a mixture of candidate operations, which
has several parallel operations instead of one specific oper-
ation. Thus, the over-parameterized generator is expressed
as Mg(e1 = C1, ..., ei = Ci, ..., eE = CE) and Ci is the
mixture of candidate operations for the edge ei. As shown
in Table 1, different types of edges use different mixtures of
candidate operations. Taking the edge Ci as an example, we
compute its output by summing the outputs of the mixture of
candidate operations as follows.

Xi
out = Ci(X

i
in) =

F∑
j=1

Oi
j(X

i
in) (3)

where Xi
in and Xi

out are the input and output of the ith edge.
Oi

j denotes the jth candidate operation of the ith edge and
j = 1, ..., F . F is the number of candidate operations for an
edge.

The Search Algorithm
The search algorithm represents the search space as a stochas-
tic super netMs. In the stochastic super netMs,Oi

j is associ-
ated with an architecture parameter αi

j . To derive a generator
Ag from the stochastic super net Ms, the candidate operation
Oi

j is sampled with the probability pij , which is computed as
follows.

pij(O
i
j ;α

i) = softmax(αi) =
exp(αi

j)∑F
j=1 exp(α

i
j)

(4)

Since sampling from the mixture of candidate operations for
each edge is independent, the probability of sampling a gen-
erator architecture Ag can be described as follows.

P (Ag;αg) =

E∏
i=1

pij(O
i
j ;α

i) (5)
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Figure 2: The macro-architecture for the generator. The macro-architecture is a directed acyclic graph consisting of an ordered sequence of
nodes. For example, the rectangle with the tag ”B1-N1” represents the 1st node of the 1st convolutional block. ”B1-N5(B2-N1)” indicates the
5th node of the 1st convolutional block is the same as the 1st node of the 2nd convolutional block.

In this case, we can approximate the problem of finding
an optimized discrete generator architecture by finding opti-
mized sampling probabilities. The training objective function
of the AutoReCon method is re-written from Equation 2 as
follows.

min
ag

Eag∼Pag (ag)[L
val
r (ag,W

∗
g (ag))]

s.t. W ∗
g (ag) = argmin

Wg

Ltrain
r (ag,Wg)

(6)

To make the reconstruction loss differentiable to the sam-
pling probabilities, we compute continuous variables mi

j by
the Gumbel Softmax function as an alternative as follows.

mi
j = GumbelSoftmax(pi) =

exp
[
(pij + gij)/τ

]∑F
j=1 exp

[
(pij + gij)/τ

]
(7)

where gij is the noise sampled from the Gumbel distribution
(0, 1) and τ is a temperature parameter to control the sam-
pling operation. Then, the continuous variables mi

j are di-
rectly differentiable with respect to the sampling probabili-
ties. Thus, the computation of the edge Ci in Equation 3 can
be expressed as follows.

Xi
out = Ci(X

i
in) =

F∑
j=1

mi
jO

i
j(X

i
in) (8)

3.3 Training Process
Using the AutoReCon method, the training process for data-
free compression is illustrated as shown in Algorithm 1. The
first stage of the training process is to search for generator
architecture with our AutoReCon method, as shown in Fig-
ure 1c). The goal of the first stage is to seek an optimized
generator architecture from the stochastic super net. The
second stage of the training process is to compress the pre-
trained model Mp with the discovered generator Mg . The
compression loss Lc can be introduced from quantization
and/or knowledge distillation. Compared with the current re-
construction methods, our AutoReCon method considers net-
work engineering and search for an optimized generator ar-
chitecture for reconstruction.

4 Experiments
4.1 Implementation Details
Our interest is to show the performance improvement of
data-free compression, which is brought by the AutoReCon

Algorithm 1 The AutoReConmethod for data-free compres-
sion
Input: Pre-trained model Mp.
Output: Discovered generator Mg , compressed model Mc.

Stage 1: Searching for generator architecture.
1: for epoch = 1 to L1 do
2: for batch = 1 to T1 do
3: Obtain random noise z ∼ N(0, 1) and label yo.

Generate reconstructed training dataset Tr with stochastic
super net Ms.
Update weights of stochastic super net by minimizing re-
construction loss Lr .

4: end for
5: for batch = 1 to V1 do
6: Obtain random noise z ∼ N(0, 1) and label yo.

Generate reconstructed validation dataset Vr with stochas-
tic super net Ms.
Update architecture parameters of stochastic super net by
minimizing reconstruction loss Lr .

7: end for
8: end for

Stage 2: Compression with discovered generator.
9: for epoch = 1 to L2 do

10: for batch = 1 to T2 do
11: Obtain random noise z ∼ N(0, 1) and label yo.

Generate reconstructed training dataset Tr with the dis-
covered generator Mg .
Update weights of compressed model Mc by minimizing
compression loss Lc.

12: end for
13: end for

method. We adopt the GDFQ data-free compression method
[Xu et al., 2020] as a baseline for the following three reasons.
First, it exploits both class boundary information and dis-
tribution information from the pre-trained model Mp, com-
pared to other methods that use only one type of informa-
tion [Cai et al., 2020; Yoo et al., 2019; Chen et al., 2019;
Nayak et al., 2019]. Second, it includes both data-free quanti-
zation and data-free knowledge distillation, where knowledge
distillation is applied for the output layer (i.e., knowledge dis-
tillation is not applied for the intermediate layers). Third, it
achieves state-of-the-art performance. We use the same ex-
perimental settings as the GDFQ method to observe the influ-
ence of the generator architecture. In the GDFQ method, the
human-designed generator architecture for both CIFAR-100
and ImageNet classification follows ACGAN. Besides, the



Method Pre-trained model Generator Quantization Top-1(CIFAR-100) Top-1(ImageNet)
- ResNet18 - - 78.83% -
- ResNet18 - - - 71.47%
GDFQ ResNet18 Human-designed w6a6 78.00% 70.10%
GDFQ ResNet18 Human-designed w5a5 75.93% 68.38%
GDFQ ResNet18 Human-designed w4a4 60.23% 60.70%
GDFQ ResNet18 Human-designed w3a3 28.71% 20.69%
Ours ResNet18 Discovered by AutoReCon w6a6 78.52%(+0.52%) 70.61%(+0.51%)
Ours ResNet18 Discovered by AutoReCon w5a5 77.22%(+1.29%) 68.88%(+0.50%)
Ours ResNet18 Discovered by AutoReCon w4a4 71.02%(+10.79%) 61.32%(+0.62%)
Ours ResNet18 Discovered by AutoReCon w3a3 46.44%(+17.73%) 23.37%(+2.68%)
- MobileNetV2 - - 70.72% -
- MobileNetV2 - - - 73.03%
GDFQ MobileNetV2 Human-designed w6a6 69.59% 71.18%
GDFQ MobileNetV2 Human-designed w5a5 65.27% 67.81%
GDFQ MobileNetV2 Human-designed w4a4 53.91% 59.80%
GDFQ MobileNetV2 Human-designed w3a3 8.50% 2.31%
Ours MobileNetV2 Discovered by AutoReCon w6a6 70.57%(+0.98%) 71.53%(+0.33%)
Ours MobileNetV2 Discovered by AutoReCon w5a5 67.95%(+2.68%) 68.40%(+0.59%)
Ours MobileNetV2 Discovered by AutoReCon w4a4 58.42%(+4.51%) 60.13%(+0.33%)
Ours MobileNetV2 Discovered by AutoReCon w3a3 10.21%(+1.71%) 14.30%(+11.99%)
- ResNet50 - - 79.36% -
- ResNet50 - - - 77.72%
GDFQ ResNet50 Human-designed w6a6 78.79% 76.40%
GDFQ ResNet50 Human-designed w5a5 76.17% 70.79%
GDFQ ResNet50 Human-designed w4a4 61.44% 55.94%
GDFQ ResNet50 Human-designed w3a3 26.51% 1.20%
Ours ResNet50 Discovered by AutoReCon w6a6 79.12%(+0.33%) 76.76%(+0.36%)
Ours ResNet50 Discovered by AutoReCon w5a5 77.06%(+0.89%) 74.13%(+3.34%)
Ours ResNet50 Discovered by AutoReCon w4a4 68.20%(+6.76%) 64.37%(+8.43%)
Ours ResNet50 Discovered by AutoReCon w3a3 36.17%(+9.66%) 1.63%(+0.43%)

Table 2: Experimental results of data-free compression on CIFAR-100 and ImageNet classification. w4a4 means that the weights and
activations are quantized to 4-bit precision. Both our data-free compression method and the GDFQ adopt knowledge distillation for the
output layer. In each block, the first row presents the accuracy of the full-precision pre-trained model on CIFAR-100. The second row shows
the accuracy of the full-precision pre-trained model on ImageNet.

human-designed generator for ImageNet classification adopts
the categorical conditional batch normalization layer to fuse
label information following SN-GAN.

4.2 Results on Image Classification
Results on ImageNet Classification
As shown in Table 2, we report the experimental results of
data-free compression on the ImageNet classification dataset.
Replacing the human-designed generator with the gener-
ator discovered by our AutoReCon method, the accuracy
of the GDFQ method increases consistently using different
pre-trained models and low-bit width quantization. Using
ResNet18 as the pre-trained model and 3-bit width quanti-
zation, the Top-1 accuracy of the GDFQ method can increase
by 2.68% when using the generator discovered by the Au-
toReCon method. The Top-1 accuracy of the GDFQ method
increases by 11.99% using MobileNetV2 as the pre-trained
model, 3-bit width quantization, and the generator discov-
ered by the AutoReCon method. Using ResNet50 as the pre-
trained model and 5-bit width quantization, the Top-1 accu-
racy of our data-free compression with an optimized genera-
tor surpasses the GDFQ method by 8.43%. In addition, the
optimized generator needs almost the same parameters and

fewer flops compared with a human-designed generator.

Results on CIFAR-100 Classification
As shown in Table 2, we report the experimental results
of data-free compression on the CIFAR-100 classification
dataset. Using various pre-trained models and low-bit
width quantization, our data-free compression with an op-
timized generator architecture achieves better accuracy than
the GDFQ method with a human-designed generator. Using
ResNet18 as the pre-trained model and 3-bit width quantiza-
tion, the Top-1 accuracy of the GDFQ method will improve
by 17.73% if the human-designed generator is replaced with
the generator discovered by the AutoReCon method. Using
MobileNetV2 and 5-bit width quantization, the Top-1 accu-
racy of our data-free compression shows an improvement of
4.51% compared with the GDFQ method. The Top-1 ac-
curacy improvement becomes 9.66% using ResNet50 as the
pre-trained model and 4-bit width quantization.

4.3 Ablation Study
Scalability of Discovered Generator Architectures
We explore the scalability of the discovered generator archi-
tecture for data-free compression on the CIFAR-100 classifi-
cation dataset. We scale the base channels by a factor from



Method Scale Top-1 Top-5
GDFQ s = 4 64.87% 86.76%
GDFQ s = 3 65.04% 86.93%
GDFQ s = 2 65.22% 87.19%
GDFQ s = 1 65.27% 87.30%
GDFQ s = 0.5 63.72% 86.21%
Ours s = 4 68.78%(+3.91%) 88.62%
Ours s = 3 68.09%(+3.05%) 89.01%
Ours s = 2 67.95%(+2.73%) 88.76%
Ours s = 1 67.58%(+2.31%) 88.42%
Ours s = 0.5 66.30%(+2.58%) 88.09%

Table 3: Experimental results of data-free compression on CIFAR-
100 classification. The GDFQ method uses a human-designed gen-
erator. Our data-free compression uses the generator discovered by
the AutoRe method.

Method Generator Top-1
- - 77.50%
DAFL Human-designed 61.40%
DFAD Human-designed 67.70%
Ours Discovered by AutoReCon 69.98%(+2.28%)

Table 4: Experimental results of data-free compression on CIFAR-
100 classification. The first row is the accuracy of the pre-trained
teacher model.

s = 0.5 to s = 4 for the discovered generator and the human-
designed generator. The data-free compression results using
MobileNetV2 as the pre-trained model, 5-bit width quantiza-
tion, and knowledge distillation applied for the output layer
are shown in Table 3. Without modifying the optimized gen-
erator architecture, the performance of our data-free compres-
sion keeps increasing and is always better than the GDFQ
method when scaling the base channels by the factor from
s = 0.5 to 4.0. The accuracy of the GDFQ method decreases
when we scale the base channels for the human-designed gen-
erator. Thus, we conclude that our searched generator ar-
chitecture has superior scalability compared to the human-
designed generator for data-free compression.

Generalization of AutoReCon Method
Except for the GDFQ method, we use the GFAD[Fang et
al., 2019] method as a baseline to show the generalization
of our AutoReCon method. The generation loss in the GFAD
method is replaced with the reconstruction loss of Equation 6,
which enables the exploration of generator architecture. We
use ResNet34 as the pre-trained teacher model and ResNet18
as the student model. The experimental results of data-
free knowledge distillation on CIFAR-100 is shown in Ta-
ble 4. With a human-designed generator, the GFAD method
achieves better accuracy than the DAFL[Chen et al., 2019]
method. The Top-1 accuracy of our data-free knowledge dis-
tillation with a discovered generator is 2.28% better than the
baseline of the GFAD method with a human-designed gener-
ator.

4.4 Comparison with State-of-the-art Methods
On the ImageNet classification dataset, we present the results
of additional data-free compression methods as shown in Ta-

Method Pre-trained model Quantization Top-1
- ResNet18 - 71.47%
DFQ ResNet18 w4a4 0.10%
ZeroQ ResNet18 w4a4 26.04%
DFC ResNet18 w4a4 55.49%
GDFQ ResNet18 w4a4 60.70%
Ours ResNet18 w4a4 61.60%
- MobileNetV2 - 73.03%
DFQ MobileNetV2 w4a4 0.11%
ZeroQ MobileNetV2 w4a4 3.31%
GDFQ MobileNetV2 w4a4 59.80%
Ours MobileNetV2 w4a4 60.02%
- ResNet50 - 77.72%
ZeroQ ResNet50 w4a4 0.12%
GDFQ ResNet50 w4a4 55.94%
Ours ResNet50 w4a4 57.49%

Table 5: Comparison of different data-free compression methods on
ImageNet classification. w4a4 means that the weights and activa-
tions are quantized to 4-bit precision. The first row of each block is
the accuracy of the full-precision pre-trained model.

ble 5. The comparison is mainly for data-free quantization
except that the GDFQ and our methods apply knowledge dis-
tillation on the output layer. None of the compared meth-
ods apply knowledge distillation on the intermediate layers.
The results of DFQ [Nagel et al., 2019] and ZeroQ [Cai et
al., 2020] are cited from the GDFQ paper and have a rather
low accuracy for ultra-low precision data-free quantization.
The DFC [Haroush et al., 2020] method achieves a moderate
accuracy with a combination of BN-Statistics and Inception
schemes. Our method achieves better accuracy compared to
the GDFQ method since the AutoReCon method discovers an
optimized generator architecture for reconstruction.

5 Conclusion
In this paper, we present the AutoReCon method, which is the
first work to consider network engineering of the reconstruc-
tion method to improve the performance of data-free com-
pression. In particular, our AutoReCon method can search
for an optimized generator architecture from a stochastic su-
per net with gradient-based neural architecture search for re-
construction. When we plug our discovered generator to
replace the human-designed generator, our data-free com-
pression benefits from the optimization of the generator ar-
chitecture and achieves better accuracy. Specifically, using
ResNet50 as the pre-trained model and 5-bit width quanti-
zation, the Top-1 accuracy of our data-free compression on
ImageNet with an optimized generator surpasses the GDFQ
method by 8.43%. The Top-1 accuracy of the DFAD method
on CIFAR-100 increases by 2.28% using ResNet34 as the
pre-trained teacher model, ResNet18 as the student model,
and the generator discovered by the AutoReCon method.
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