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Figure 1: (a) The flowmask ground-truth layer, (b) A segmentationmask generated by Detectron2 using Mask R-CNN, (c) True
Positive, (d) False Positive, (e) True Negative, (f) False Negative

ABSTRACT
A growing branch of computer vision is object detection. Object de-
tection is used inmany applications such as industrial process, medi-
cal imaging analysis, and autonomous vehicles. The ability to detect
objects in videos is crucial. Object detection systems are trained on
large image datasets. For applications such as autonomous vehicles,
it is crucial that the object detection system can identify objects
through multiple frames in video. There are many problems with
applying these systems to video. Shadows or changes in brightness
that can cause the system to incorrectly identify objects frame to
frame and cause an unintended system response. There are many
neural networks that have been used for object detection and if
there was a way of connecting objects between frames then these
problems could be eliminated.

For these neural networks to get better at identifying objects in
video, they need to be re-trained. A dataset must be created with
images that represent consecutive video frames and have matching
ground-truth layers. A method is proposed that can generate these
datasets. The ground-truth layer contains only moving objects. To
generate this layer, FlowNet2-Pytorch was used to create the flow
mask using the novel Magnitude Method. As well, a segmentation
mask will be generated using networks such as Mask R-CNN or
Refinenet. These segmentation masks will contain all objects de-
tected in a frame. By comparing this segmentation mask to the
flow mask ground-truth layer, a loss function is generated. This
loss function can be used to train a neural network to be better at
making consistent predictions on video.

The system was tested on multiple video samples and a loss was
generated for each frame, proving the Magnitude Method’s ability
to be used to train object detection neural networks in future work.

1 INTRODUCTION
Object detection is part of a wider field called computer vision.
Object detection is mainly concerned with identifying individual
instances of an objects in an image. This is a very fast-growing
branch of computer vision, and for good reason. There are many
applications where object detection is crucial for an overall sys-
tem to function. Important applications of object detection include
industrial process control and monitoring, medical image analy-
sis and target identification for military applications. One of the
most important applications of object detection is for autonomous
vehicles. Autonomous vehicles can use different object detection
frameworks to identify hazards and obstacles in their surroundings
and navigate around them accordingly. Most modern object detec-
tion frameworks are neural networks. Some modern and cutting
edge networks used for object detection are Mask R-CNN [7], Faster
R-CNN [15] and Panoptic FPN [10].

There is one thing in common with these networks, and that is
that they are all trained on datasets of images, such as the COCO
dataset [12] or Pascal VOC dataset [2]. These datasets are very large.
As such, after training neural networks using these datasets, the
networks are very good at identifying instances of objects in single
frames. Identifying objects in single frames are useful for many
applications, but not for the field of autonomous vehicle navigation.
In these applications, the input to the neural networks would not
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be single frames, but instead high framerate video. The networks
need to quickly run on each frame of the video, and return any
objects detected as well as their positions.

While working very well on images, these previously mentioned
networks do not produce smooth predictions on video. The root
of this problem comes down to how the networks were trained.
Since the networks were trained on single frames, they also make
predictions on single frames. In other words, the input video split
up and fed into the network frame by frame. The output is then
stitched back together afterwards.

The scenario becomes even more difficult for live video. In each
frame of the live video input, there are often changes in brightness,
contrast and shadowing. These frame-by-frame changes can cause
the network to make odd, incorrect, or otherwise sporadic object
predictions for a few frames, only to have these objects disappear
as shadows or lighting change in the next frame. An example of
a sporadic prediction is seen in Figure 2. These sporadic and in-
correct predictions are called artifacts. This is clearly an issue for
autonomous vehicles which navigate based on the predictions from
networks like these. Imagine if an autonomous car was travelling at
a high rate of speed, only to have an incorrectly detected obstacle
appear in front of it out of error. What should the car do? How
should it react? It is best to avoid this situation caused by artifact
predictions.

Figure 2: Left: A truck is identified as a van and a car at once.
Right: The truck is not detected in the next frame

If a neural network had some notion of connectivity of objects
between frames, this issue of artifacting could be eliminated from
the networks predictions. The network could be trained to not make
an object prediction in a certain place unless the object was there
in the previous frame. This would mean that a random shadow
or change of brightness would not trigger an incorrect prediction,
making the overall predictions in each frame smoother and more
consistent.

2 RELATEDWORK
2.1 Mask R-CNN
One state-of-the-art object detection framework is called Mask
R-CNN [7]. It extends a history of region-based neural network de-
tectors originally proposed by Ross Girshick in 2015. [4] It combines
both object detection and semantic segmentation into one predic-
tion for a whole image. [7] This means it is particularly good at
instance segmentation, which is a crucial task for autonomous vehi-
cle navigation. It works as essentially what is a two-step process.[9]
[7] The first step is that a fully-convolutional network (FCN) gen-
erates regions of interest for where objects are likely to be in an

image. Then a region proposal network (RPN) generates masks and
labels for each object in the image. These two separate networks
within the larger framework share some convolutional layers, but
for the most part they function independently [7]. This process
leads to very, very good predictions on single images. The output
consists of an object masks, labels and a score of certainty for each
prediction. A visualized example of a Mask R-CNN prediction is
seen in Figure 3.

Figure 3: Example of predictions made by Mask R-CNN

2.2 Refinenet
Another very recently developed network is called Refinenet. Re-
finenet differs in a few ways from Mask R-CNN. Firstly, Refinenet
is a fully convolutional network. [11] It does not have a two-step
approach like Mask R-CNN. [9] This means that the output from the
network is already a mask. There is no second stage of processing
which needs to be done to it (like the RPN does in Mask R-CNN). Es-
sentially, the network generates a few scaled-down versions of the
input image. It uses a Residual Conv Unit (RCU) to generate feature
maps on each scaled-down image, combines these feature maps
into pooling blocks, and then another RCU generates output.[11] A
modified version of this network is called Lightweight Refinenet.
[13] This modified network is more compact that the original Re-
finenet network. Lightweight Refinenet does away with the RCU,
and replaces all 3x3 convolutions with 1x1 convolutions. This makes
lightweight Refinenet much faster [4] and therefore more suited to
processing live video, such as on autonomous vehicles. Lightweight
Refinenet generates masks, similar to those generated from Mask
R-CNN. These masks identify the class which the object belongs to.

2.3 Detectron2
Detectron2 is a computer vision framework designed by Facebooks
AI Research group. [3] It is capable of implementing various com-
puter vision frameworks, such as Mask R-CNN as mentioned above.
It also provides helper functions to make tasks like visualization
and training easier. In this context, Detectron2 is used to apply
Mask R-CNN to sample images and videos.

2.4 FlowNet 2.0
The idea of optical flow has been used since the 1980’s and has
been used to improve the accuracy and power consumption of
various computer visionmodels when classifying videos. [6] Optical
flow is a per pixel prediction that assumes a brightness constancy,
and pixels characteristics are predicted by a flow field at different
locations. [6] One implementation of optical flow is FlowNet 2.0,
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which uses a convolutional CNN architecture to directly learn the
concept of optical flow. [8] FlowNet 2.0 is based off of four different
algorithms, FlowNetS, FlowNetC, FlowNetCSS, and FlowNetSD.
The FlowNet 2.0 architecture uses these different algorithms to
detect large or small displacements between two images using
brightness error to calculate movement between images. [6] The
Pytorch code base is used to generate a flow field that can be used to
see howmovement of pixels is changing between images. FlowNet2
data can be visualized to determine the movement of an object.
Visualization works by transforming each pixels flow vector (U,V)
to (X,Y) and putting it on a Cartesian plane. The scale of the vectors
are determined each frame relative to all other pixels with the only
restriction being the magnitude of vectors must be less than 1𝑥109.
This Cartesian vector is then translated to a colour based off the
scale in Figure 4 below.

Figure 4: Flow scale with colour map and vector demonstra-
tion [5]

Figure 5: Example of FlowNet output on a frame of a video

3 APPROACH
To allow object detection neural networks such as Refinenet and
Mask R-CNN to get better at identifying objects in video without
introducing artifacts, as previously mentioned, there needs to be a
way to re-train these networks. The networks must be re-trained
using a set of data that is known to not contain any of these artifacts.
Additionally, this theoretical dataset should accurately represent
consecutive video frames, as this is the desired use case and main
motivation for re-training these networks. In other words, there
must be a way to create a dataset of images that represent consec-
utive video frames, and that have matching ground-truth layers
which are free of artifacts. Once this dataset is obtained, the ex-
isting neural networks can be re-trained, and evaluated for better

performance on video. By re-training using a dataset that does not
contain any artifacts, anytime the detection network does make an
incorrect, sporadic detection, this will ideally be represented in the
loss function, and result in the network being adjusted accordingly.

3.1 Source of Training Data
As previously mentioned, the training dataset should represent con-
secutive video frames as much as possible. Therefore, it is proposed
that the new training dataset be created directly from sample videos.
This is both a practical, and fast approach. To separate a desired
sample video into individual frames, the command line tool FFmpeg
[1] is used. To create a dataset, the first step is to feed the sample
video into FFmepg. The output from FFmpeg is a set of frames that
make up the original video. These frames are directly representative
of the consecutive, single frames which these networks must run
predictions on when they are fed video.

3.2 Generating the Ground-Truth Layer with
FlowNet 2.0

The next step is to take the previously generated frames that will
make up the dataset and generate a ground-truth layer from them.
This layer must contain all objects in this frame which are mov-
ing. Random artifacts incorrectly predicted by the object detection
networks are not moving, as they just appear in one frame and dis-
appear in the next. By having the ground-truth layer only include
moving objects, if the object detection network did incorrectly de-
tect an artifact, this would be represented in the loss function. From
this, the network will be modified as to not predict these single,
stationary artifacts.

To create the ground-truth layer, FlowNet2-Pytorch will be used.
[14] This layer will be called the flow mask. This flow mask will be
a binary mask that represents all movement in a given frame. Like
previously explained, FlowNet2-Pytorch is an implementation of
the FlowNet2 optical flow estimation framework that implements
PyTorch. Using FlowNet2 is a novel approach since it allows for the
automatic generation of ground-truth masks on the dataset frames.
It is also convenient that it runs on a common GPU, much like the
neural networks we are trying to improve. Essentially, FlowNet2
takes in a set of images and predicts the motion of each pixel in
each frame. This motion prediction is in the form of a U and V
vector. This vector gives the X and Y motion of the pixel on a
Cartesian plane. After splitting up the frames of a sample video
using FFmepg, the frames can be run through FlowNet2 to generate
motion predictions for each frame. Flow data can be visualized
with external libraries such as flow2image.[16] An example of this
visualized flow data for a frame can be seen in Figure 5.

3.3 Creating the Mask: The Magnitude Method
The ground-truth layer must be created from the flow data. By
doing so, there is a way to determine when artifact predictions
have been made, and have them reflected by the loss function for
that frame. A method is proposed for generating the ground truth
layer using the flow data obtained from running FlowNet2 on each
frame. This method is called the Magnitude Method. As previously
explained, FlowNet2 generates a motion vector for each pixel. The
magnitude of motion for each pixel can be calculated by:
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𝑀𝑎𝑔 =
√︁
(𝑈 2 +𝑉 2) (1)

This is an efficient and quick operation to perform for a whole
frame of flow information that can be performed on the GPU. This
way, the magnitude of motion for each pixel in a frame can be
quickly determined. A threshold is arbitrarily set, using a guess and
check method to find a good value. Using this magnitude informa-
tion, a binary mask is created. Any pixels whose motion magnitude
is greater than the threshold is present in the mask. An example
of one of these masks generated by the magnitude method can be
seen in Figure 1(a). This mask is called the flow mask, and it is very
significant. It gives a way of identifying moving objects that are
present over time in consecutive frames. In other words, there is
now a way to relate objects in one frame to the next. With this
valuable mask, it is possible to identify incorrectly detected artifacts.
This mask will be used as the ground-truth layer when re-training
existing networks.

3.4 Comparing with Existing Models
To compare with existing object detection networks like Mask R-
CNN or Refinenet, there must be a way to generate masks from
the output of these networks to compare against. Obviously object
detection networks like Refinenet or Mask R-CNN can produce
and masks around objects, as that is their main purpose. But this is
not what we are concerned about for this purpose. Here, exactly
what types of objects which are detected by these networks is not
important. All that matters is the total mask of detected objects. This
is because we are not trying to improve specific object detection,
but rather just trying to decrease incorrect and sporadic detections.
We need a segmentation mask that represents all instances detected
for a single frame, all in a single mask. This is what can be compared
to the ground-truth layer described above. We generate this binary
segmentation mask by performing a logical OR on the mask for
each object detected in a frame. This gives one overall frame that
has all detected objects for a frame in one mask. An example of this
type of segmentation mask can be seen in Figure 1(b).

Any objects that are present in the segmentation mask that are
not present in the ground-truth flow mask are likely incorrectly
predicted artifacts. By comparing the flow masks for each frame of
a video with the matching ground-truth layer (flow mask), we can
calculate the true positives, true negatives, false positives, and false
negatives for each frame. This is are shown in Figure 1(c)-(f). The
intersection-over-union (IOU) for each frame can be calculated by:

𝐼𝑂𝑈 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 ) (2)

Similarly, the loss can be calculated as:

𝐿𝑜𝑠𝑠 = 1 − 𝐼𝑂𝑈 (3)
Using the loss equation above, a loss can be generated for each

frame in a given video clip. This loss function can be used to re-train
the original object detection network, such as Mask R-CNN or Re-
finenet. As part of this study, some research was done into actually
re-training the original object detection networks. Re-training a net-
work like Refinenet would prove to be much easier than re-training
Mask R-CNN. Refinenet is a purely convolutional network. This

means that the output mask comes directly from the network layers.
[11] In other words, there is no post-processing of the masks before
they are output. If we desired to go modify the network, it would be
very easy as the layers of the network are directly exposed. On the
other hand, Mask R-CNN is a type of multi-step network. [9] The
output from Mask R-CNN is not the direct result of convolution
operations. Instead, there are multiple steps involved in getting an
output. These steps are described in section. 2.1 Because of these
extra steps, it is more difficult to work backwards in the networks
layers to re-train it.

4 RESULTS
This study did not go as far as to re-train the original object detec-
tion networks with the obtained loss function. Rather than using the
generated loss functions to retrain the object detection networks,
the above process was applied to two separate networks. The goal
was to investigate the feasibility in generating a loss function as
previou sly described. Table 1 below shows the average loss for 30
frames of three sample videos. The loss was calculated for both
Refinenet as well as Mask R-CNN. It is clear that the proposed
method is capable of calculating loss between the ground-truth
flow mask and the predicted segmentation mask. These results are
demonstrated in the table below.

Table 1: Average loss for 30 frames of three sample videos

Sample Video: Average Loss -
Refinenet

Average Loss -
Mask R-CNN

driveby.mp4 0.7651 0.7306
walking.mp4 0.8396 0.8460
driving_on_401.mp4 0.8904 0.9075
Average 0.8317 0.8280

5 DISCUSSION
The average loss for both models tested is almost the same (within
0.01 of each other). This indicates that the Magnitude Method for
creating flow masks, and using these as ground-truth layers is
equally valid for different types of neural networks.

We notice the loss is much higher on the walking and driving
videos (walking.mp4 and driving_on_401.mp4). This is interesting
to note because they have a major difference compared to the
driveby video, driveby.mp4. The driveby video has a stationary
background, with many objects moving in the foreground. When
visualizing its flow data, there is a clear distinction between the
stationary background and moving foreground. This means that
when the Magnitude Method is applied to it, the resulting flow
mask also has a clear distinction between the moving foreground
and stationary background. Conversely, the walking and driving
videos both contain a moving background (relative to the camera)
and a moving foreground (people and cars, respectively). When
visualizing the flow data for it, there is not as clear of a distinction
between foreground and background. This becomes evident in
Figure 6. From this figure we can see that for the image pair on
the left, both the background and foreground are moving. As such,
they both have a magnitude and direction of movement, that is
why they are coloured. When the flow mask is generated using the

4



Magnitude Method, the whole image’s motion magnitude is greater
than the threshold, and that is why the flow mask becomes the
whole frame (bottom left). For the right side image pair of Figure 6,
the background of the flow is white, which means it is not moving
according to the scale in Figure 4. The background has a much lower
magnitude of movement than the cars, which appears blue. The
magnitude of the car movement is greater than the threshold, so
they appear in the flowmaskwhile the background does not(bottom
right).

The consequences of this are that the Magnitude Method for
creating flowmasks to use as the ground-truth layer is only valid for
videos where the background is stationary relative to the camera.

For these instances where the Magnitude Method produces ac-
ceptable flow masks to use as the ground-truth layer, the method
seems valid. In these cases where an adequate and clear flow mask
can be created, it gives a good representation of what is moving in a
frame and what is not. This can successfully be compared with the
segmentation mask for the same frame, and a loss can be calculated.
This loss function should be able to be used to train the original
predictor network to better and more smoothly make predictions
on videos.

0

Figure 6: Left upper and lower: Amoving backgroundmakes
it harder to differentiate theflowmask from the background
using the magnitude method, Right upper and lower: A sta-
tionary background makes it much easier to differentiate
the background from foreground objects when creating the
flow mask.

6 CONCLUSION
There is a clear need for reliable object detection neural networks
that can reliably run on live video for applications such as au-
tonomous vehicles. As these networks were trained on single frame
images, they do not perform consistently well on videos. As such,
a method was proposed to improve this. The method involved cre-
ating a flow mask by applying the Magnitude Method to flow data
for a set of images. A segmentation mask was also generated that
contained every detected object for each frame. Then from these
two masks, an IOU and loss was calculated for each frame. This loss
can be used to directly re-train simple purely convolutional net-
works like Refinenet. This method is valid for any video in which
the background is not stationary relative to the camera.
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