
DEVELOPING ROBUST DIGITAL TWINS AND REINFORCEMENT
LEARNING FOR ACCELERATOR CONTROL SYSTEMS AT THE

FERMILAB BOOSTER
D.Kafkes ∗, Fermi National Accelerator Laboratory, Batavia, IL USA 60510

M. Schram, Thomas Jefferson National Accelerator Facility, Newport News, VA USA 23606

Abstract
We describe the offline machine learning (ML) develop-

ment for an effort to precisely regulate the Gradient Magnet
Power Supply (GMPS) at the Fermilab Booster accelerator
complex via a Field-Programmable Gate Array (FPGA). As
part of this effort, we created a digital twin of the Booster-
GMPS control system by training a Long Short-Term Mem-
ory (LSTM) to capture its full dynamics. We outline the
path we took to carefully validate our digital twin before
deploying it as a reinforcement learning (RL) environment.
Additionally, we demonstrate the use of a Deep Q-Network
(DQN) policy model with the capability to regulate the
GMPS against realistic time-varying perturbations.

BACKGROUND
Recently, the challenge and cost of hand-tuning and con-

trolling accelerators has resulted in a push to leverage deep
learning [1–4]. In this study, we present continuing work
on a real-time artificial intelligence (AI) control system
for precisely regulating the Gradient Magnet Power Supply
(GMPS), an important subsystem of the Fermilab Booster
accelerator complex.

The GMPS is realized as four power supplies, evenly
distributed around the Fermilab Booster. Each powers one
of four total gradient magnets, which are responsible for
steering and accelerating the 400 MeV proton beam the
Booster receives from the linear accelerator to 8 GeV [5, 6].
The GMPS operates on a 15 Hz cycle between the injection at
minimum current and beam extraction at maximum current.
Unfortunately, without any regulation, the fitted minimum of
the magnetic field may vary from the set point by as much as
a few percent, significantly reducing the beam flux available
to experiments run at the lab [7]. This deviation trends with
factors such as electrical ground movement, the operation
of other nearby high-power radio-frequency systems, and
even ambient temperature changes [5, 6].

In order to improve the agreement of the resulting ob-
served minimum and maximum currents with their set points,
a proportional-integral-derivative (PID) control scheme ap-
plies compensating offsets to the GMPS driving signal as
a means of regulation (see Fig. 1) [8, 9]. Presently, a hu-
man operator specifies a target program for B:VIMIN and
B:VIMAX , the PID-GMPS compensated minimum and max-
imum currents respectively, via the Fermilab Accelerator
Control Network. This signal is then transmitted to the
GMPS control board allowing the PID regulator to use the
∗ dkafkes@fnal.gov

Reference system:
B coil, transductor,

dB/dt coil, zero-crossing

GMPS control rack

Programmable
logic

target
settings

Power supplies 1-4

measurements
(& errors)

control signals

series
connect

Accelerator Control Network

sampled
Imin, Imax

Figure 1: Overview of current PID-GMPS control system.

previous 15 Hz cycle to calculate estimates for the minimum
and maximum current offset and then uses these values to
adjust the power supply program in the current cycle [8, 9].

Presently, this PID-GMPS regulation system achieves er-
rors corresponding to roughly 0.1% of the set value [7].
Our ultimate goal is to improve on this error by replacing
the PID-GMPS system with a reinforcement learning (RL)
approach. This RL-GMPS system will leverage a frame-
work in which an artificial intelligence (AI) agent learns to
achieve some end goal through feedback from interactions
with its environment [10,11]. We aim to deploy such an RL
agent to control changes in B:VIMIN in order to minimize
B:IMINER , the difference between the observed minimum
current reading and setting. This agent will ultimately con-
trol the GMPS system via a field-programmable gate array
(FPGA). However, since training the agent online involves
substantial risk, we prototyped our models offline.

METHODS
We collected approximately six months of time series data

from the Booster complex and ultimately selected 250,000
continuous time steps from March 10, 2020 to develop our
preliminary algorithms [7]. Here algorithms refer to both
the methods used to build a model that can reliably capture
the dynamics of the Booster-GMPS system and to develop a
reinforcement learning framework. For complete details on
our data collection process and access to our full published
dataset please see [12].

Digital Twin and RL Policy Models
Our offline ML development involved the training of two

different neural network models: a surrogate or digital twin

ar
X

iv
:2

10
5.

12
84

7v
1

 [
ph

ys
ic

s.
ac

c-
ph

]
 2

6
M

ay
 2

02
1

model and the RL agent policy model. Here we implement
a simple multi-layer perceptron (MLP) as our agent policy
model, the utility of which will be further described in the
next subsection, and a stacked Long-Short Term Memory
(LSTM) network to capture GMPS dynamics [7].

MLPs are standard feedforward neural networks which
take in and iteratively feedforward data through many layers
of perceptrons (neurons). Each of these neurons involves
a function that multiplicatively weights the input vectors,
sums them together, adds a bias term; and then applies a non-
linear activation function. The chaining of these functions
results in a network.

Table 1: The DQN-MLP policy model architecture.
Layer Layer Type Outputs Activation Parameters

1 Dense 128 ReLU 768
2 Dense 128 ReLU 16,512
3 Dense 128 ReLU 16,512
4 Dense 7 Linear 903

Total 34,695

Beyond MLPs, there are many possible choices of neural
network architectures. The one most relevant to capturing
the the Booster-GMPS system’s multiple frequency modali-
ties in our surrogate model is a type of network known as
a Long-Short Term Memory (LSTM) [7]. Unlike standard
feedforward networks, during each forward pass, LSTMs are
able to learn about previous inputs through the accumulation
of weights in a hidden global state variable. This mechanism
is useful for modeling time series data, which is exactly what
we had collected for this effort.

Table 2: We stacked LSTM modules together to create our
digital twin architecture.

Layer Layer Type Outputs Activation Parameters
1 LSTM 256 Tanh 416,768
2 LSTM 256 Tanh 525,312
3 LSTM 256 Tanh 525,312
4 Dense 3 Linear 771

Total 1,468,163

DQN Reinforcement Learning
Reinforcement learning is a training framework that in-

volves an AI agent interacting with an environment to max-
imize a defined reward over many fixed-iteration-length
episodes [10, 11]. The agent’s actions within this environ-
ment are defined by a policy model. As stated above, we
used an MLP for this policy model in accordance with the
deep 𝑄-network (DQN) approach, which trains this neural
network to learn the action-value function— 𝑄-value— that
maps a discrete number of agent actions to rewards [13, 15].
To keep our action space finite, we discretized the change of
B:VIMIN using steps of just seven different sizes, including
an option for zero-size change [7].

At each time step 𝑡, our surrogate model environment
takes in the control action 𝐴𝑡 determined by the RL agent
MLP-DQN policy model as the small compensation to be

applied to B:VIMIN based on the current state 𝑆𝑡 . The digital
twin then provides the new system state 𝑆𝑡+1 along with an
associated reward 𝑅𝑡+1. In our studies, the state is composed
of the variables inputted to the surrogate model (discussed
at length in the section below) and the reward is calculated
from the B:IMINER output by the surrogate:

𝑅𝑡 = −|B:IMINER(𝑡) | . (1)

Optimizing the agent’s policy actions over the training hori-
zon is defined to mean maximizing the long-term integrated
reward, which is calculated over each fixed-length episode.

DIGITAL TWIN DEVELOPMENT AND
VERIFICATION

In our preliminary result [7], we formulated our stacked
LSTM surrogate model to capture the dynamics of:

B:VIMIN+B:IMINER+B:LINFRQ+I:IB+I:MDAT40 →
B:VIMIN + B:IMINER + B:LINFRQ. (2)

Here B:LINFRQ is the measured offset from the 60 Hz line
frequency, and I:IB and I:MDAT40 provide measurements
of the main injector bending dipole current through different
communication channels. This model was trained using
MinMax scaling [14] and a 150 step lookback, i.e. 150
previous timesteps of the input variables were fed into the
model in order to predict the next timestep forward in the
output variables [7]. Here we describe the validation process
we used to verify and improve upon our initial result.

First, we distilled our surrogate model into the simplest
possible combination of variables we aimed to regulate:
B:VIMIN + B:IMINER → B:VIMIN + B:IMINER . From this
most basic model, we explored using a much smaller look-
back window of 15 timesteps as well as the use of Robust
scaling [14]. Since we found the 15 timestep lookback and
MinMax scaling to be performant, we ultimately decided to
keep the original scaling and move forward to experiment
with this much shorter lookback window.

After iterating over this most basic model, we began the
forward selection process, experimenting with the inclu-
sion of different variables. The variables we considered for
these studies included the inputs from the original model:
B:VIMIN , B:IMINER , B:LINFRQ , I:IB , and I:MDAT40
; as well as B_VIMIN (the GMPS minimum current set
point), B:VIMAX (the compensated maximum GMPS cur-
rent), B:VIPHAS (the GMPS ramp phase with respect to line
voltage), and I:MXIB (the main injector dipole bend current).
B_VIMIN was included on the suggestion of subject-matter
experts [16]; and the three additional variables were selected
based on the results of a Granger Causality study [17]. For
details on how this analysis was performed, please see [7].

The results of these surrogate model experiments are pre-
sented in the table below, which displays the final loss at-
tained by the model with the given configuration. After
comparing results, we decided to move forward with the 6

to 2 model since including the other three variables in the 9
to 2 model made only a slight difference in the final loss:

B:VIMIN + B:IMINER + B_VIMIN + B:LINFRQ

+ I:IB + I:MDAT40 → B:VIMIN + B:IMINER (3)

Table 3: Training Mean-Squared Error (MSE) results from
digital twin experimentation studies.

Model MSE (10−6)
B:VIMIN + B:IMINER →

B:VIMIN + B:IMINER 449.0567
B:VIMIN + B:IMINER + B_VIMIN →

B:VIMIN + B:IMINER 379.5542
B:VIMIN + B:IMINER + B:LINFRQ

+ I:IB + I:MDAT40 →
B:VIMIN + B:IMINER 346.6192

B:VIMIN + B:IMINER + B_VIMIN
+ B:LINFRQ + I:IB + I:MDAT40

→ B:VIMIN + B:IMINER 314.3544
B:VIMIN + B:IMINER + B_VIMIN

+ B:LINFRQ + B:VIMAX + B:VIPHAS
+ I:IB + I:MDAT40 + I:MXIB

→ B:VIMIN + B:IMINER 294.6336

Additionally, we tried decomposing the variables from the
models mentioned above into signal and noise vectors using
Empirical Mode Decomposition [18]. Despite the fact that
this resulted in marginally better performance, we decided
that this would be too difficult to implement in real-time on
the board funneling input data to the FPGA. For this reason,
we omit these results here. Similarly, after completing the
digital twin validation and verification process, we decided
to create our own version of the MinMax scaler rather than
using the transformation available to us via the scikit-learn
library since using this premade scaler could not be easily
implemented on the FPGA-side.

Uncertainty Quantification
In order to provide a prediction with statistical interop-

erability, we performed concrete dropout as a means of un-
certainty quantification [19]. The concrete dropout process
involves introducing tunable uncertainty into a network train-
ing process through the addition of a dropout layer, which
randomly removes inputs to the following layer with some
probability 𝑝 at each forward pass. This causes the training
of the network’s other weights and biases to adjust without
these “dropped out" neurons. Once this dropout layer has
been added to the network, 𝑝 can be adjusted to take on a
different value during inference.

After training our surrogate with a dropout layer inserted
after the first LSTM, we set the layer to probabilities rang-
ing from [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5], and used the
inferred outputs of our network to match the actual underly-
ing distribution of the data. We found a value of 𝑝 = .2 gave
us our best results: reconstructing the modeled distribution

of B:VIMIN at 103.3930 ± 0.0297 (underlying distribution:
103.3940 ± .0314); and B:IMINER at 0.0012 ± 0.2090 (un-
derlying distribution of .0011 ± .2181).

PRELIMINARY RL RESULTS
Finally, we present our most recent RL results, training

and deploying our trained MLP-DQN policy model within
our verified digital twin environment in Fig. 2. When com-
paring the DQN-GMPS system results to the PID-GMPS
controller, we see a factor of 2-4x improvement.

0 250 500 750 1000 1250 1500 1750 2000
Episodes

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

To
ta

l R
ew

ar
d

Training Rolling Total Reward (10 Episodes)

Data Rolling Total Reward
DQN Policy Model Rolling Total Reward

0 200 400 600 800 1000
Episodes

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

To
ta

l R
ew

ar
d

Testing Total Reward

Data Rolling Total Reward
DQN Policy Model Rolling Total Reward

Figure 2: Results of training (top) and testing (bottom).

CONCLUSION
We outlined the steps we took to carefully validate our dig-

ital twin of the Booster-GMPS system— perhaps the most
important aspect of our offline machine learning develop-
ment. After all, without a robust surrogate model to support
training, we would not be able to trust the deployment of the
trained agent on the live system via an FPGA in the future.

ACKNOWLEDGEMENTS
This proceedings was created as part of the “Accelerator

Control with Artificial Intelligence” Project conducted under
the Fermilab Laboratory Directed Research and Develop-
ment Program (Project ID FNAL-LDRD-2019-027). The
manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the
U.S. Department of Energy, Office of Science, Office of High
Energy Physics and is registered at Fermilab as Technical
Report Number FERMILAB-CONF-21-230-AD-SCD.

REFERENCES
[1] A. Edelen et al., “Neural Networks for Modeling and Control

of Particle Accelerators”, IEEE Trans. Nucl. Sci., vol. 63, no.
2, p. 878, Apr. 2016, doi:10.1109/TNS.2016.2543203

[2] A. Edelen, S. Beidron, J. Edelen, and S. Milton, “First
Steps Toward Incorporating Image Based Diagnostics into Par-
ticle Accelerator Control Systems Using Convolutional Neural
Networks”, in Proceedings, 2nd North American Particle Ac-
celerator Conference (NAPAC2016), Chicago, IL, USA: 2016,
pp. 9–14.

[3] A. Edelen, et al., “Using A Neural Network Control Policy
For Rapid Switching Between Beam Parameters In An FEL”,
in Proceedings of the 38th International Free-Electron Laser
Conference, Santa Fe, NM, USA, Aug. 2017.

[4] J. Duris et al., “Bayesian optimization of a free-electron laser”,
Phys. Rev. Lett., vol. 124, no. 12, p. 124801, 2020, doi:10.
1103/PhysRevLett.124.124801

[5] J. Crawford et al, Booster Rookie Book Manual v4.1,
2009, https://operations.fnal.gov/rookie_books/
Booster_V4.1.pdf

[6] J. Ryk, “Gradient Magnet Power Supply for the Fermilab 8-
GeV Proton Synchrotron”, Fermilab, Batavia, IL, USA, Rep.
FERMILAB-PUB-74-085, Aug. 1984.

[7] J. St. John et al., “Real-time Artificial Intelligence for Accel-
erator Control: A Study at the Fermilab Booster”, submitted
for publication in Physical Review Accelerators and Beams.

[8] N. Minorsky “Directional Stability of Automatically Steered
Bodies”, J. Am. Soc. Nav. Engineers, vol. 34, no. 2, p. 280,
1922, 10.1111/j.1559-3584.1922.tb04958.x

[9] J.G. Ziegler and N.B. Nichols “Optimum Settings for Auto-
matic Controllers”, Trans. ASME, vol. 64, p. 759, 1942,

[10] R. Sutton and A. Barto, “Reinforcement Learning: An
Introduction”, MIT Press Cambridge, MA, USA: 2018.

[11] V. François-Lavet et al. “An Introduction to Deep Reinforce-
ment Learning”, Found. Trends Mach. Learn., vol. 11, p. 219,
2018, 10.1561/2200000071

[12] D. Kafkes and J. St.John, “BOOSTR: A Dataset for Acceler-
ator Control Systems”, MDPI Data, vol. 24, no. 6, p. 124801,
2021, doi:10.3390/data6040042

[13] V. Mnih et al. “Human-level control through deep reinforce-
ment learning”, Nature, vol. 518, p. 219, 2015, 10.1038/
nature14236

[14] F. Pedregosa, “Scikit-learn: Machine Learning in Python”,
Journal of Machine Learning Research, vol. 12, p. 2825, 2011,

[15] V. Mnih, et al., “Playing Atari with Deep Reinforcement
Learning”, in NIPS Deep Learning Workshop 2013, Lake
Tahoe, NV USA Dec. 2013.

[16] R. Keller, “Controlling Currents”, Fermilab, Batavia, IL
USA, Aug. 2019.

[17] C. Granger "Investigating Causal Relations By Econometric
Models and Cross-spectral methods”, Econometrica, vol. 37,
p. 424, 1969, 10.2307/1912791

[18] J. Gao, S. Haghighi, and D. Hatzinakos, “Reference empir-
ical mode decomposition”, in 2014 IEEE 27th Canadian Con-
ference on Electrical and Computer Engineering (CCECE),
Toronto, CA, May. 2014.

[19] Y. Gal, J. Hron, and A. Kendall, "Concrete Dropout” in
Advances in Neural Information Processing Systems 30 (NIPS
2017), Long Beach, CA USA Dec. 2017.

doi:10.1109/TNS.2016.2543203
doi:10.1103/PhysRevLett.124.124801
doi:10.1103/PhysRevLett.124.124801
https://operations.fnal.gov/rookie_books/Booster_V4.1.pdf
https://operations.fnal.gov/rookie_books/Booster_V4.1.pdf
10.1111/j.1559-3584.1922.tb04958.x
10.1561/2200000071
doi:10.3390/data6040042
10.1038/nature14236
10.1038/nature14236
10.2307/1912791

	BACKGROUND
	METHODS
	Digital Twin and RL Policy Models
	DQN Reinforcement Learning

	DIGITAL TWIN DEVELOPMENT AND VERIFICATION
	Uncertainty Quantification

	Preliminary RL Results
	CONCLUSION
	ACKNOWLEDGEMENTS

