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ABSTRACT

Location-aware networks will introduce innovative services and ap-
plications for modern convenience, applied ocean sciences, and pub-
lic safety. In this paper, we establish a hybrid method for model-
based and data-driven inference. We consider a cooperative local-
ization (CL) scenario where the mobile agents in a wireless network
aim to localize themselves by performing pairwise observations with
other agents and by exchanging location information. A traditional
method for distributed CL in large agent networks is belief propaga-
tion (BP) which is completely model-based and is known to suffer
from providing inconsistent (overconfident) estimates. The proposed
approach addresses these limitations by complementing BP with
learned information provided by a graph neural network (GNN). We
demonstrate numerically that our method can improve estimation ac-
curacy and avoid overconfident beliefs, while its computational com-
plexity remains comparable to BP. Notably, more consistent beliefs
are obtained by not explicitly addressing overconfidence in the loss
function used for training of the GNN.

Index Terms— Belief propagation, graph neural networks, co-
operative localization, factor graph, agent networks

1. INTRODUCTION

Location awareness [IH8] is an important aspect in a variety of
applications including autonomous navigation, applied ocean sci-
ences, and public safety. Of particular interest are algorithmic so-
lutions based on the framework of factor graphs and belief propa-
gation (BP) [5H8]] due to their ability to provide accurate results in
high-dimensional nonlinear Bayesian estimation problems.

BP [9H11]] is a message passing algorithm. It operates on the fac-
tor graph that represents the statistical model of an estimation prob-
lem. Given that the underlying factor graph is tree-structured, BP is
guaranteed to provide the exact marginal posterior distributions or
“beliefs” needed for optimal estimation. However, in cases where
the factor graph has cycles or the statistical model represented by
the factor graph does not accurately model the true data generating
process, BP can only provide approximations of the marginal poste-
rior distributions. In factor graphs with cycles, BP is typically faced
by a lack of convergence guarantees. BP is also known to provide
beliefs that are overconfident [10], i.e., the spread of the provided be-
liefs downplays the uncertainty of the estimates. This is particularly
problematic in autonomous navigation applications where overcon-
fidence can lead to catastrophic events [3]. We aim to improve the
accuracy and reliability of BP-based localization and tracking algo-
rithms by learning a refined model from data.

A graph neural network (GNN) [121|13] is a type of neural net-
work that implements a message passing mechanism similar to BP.
It has been demonstrated that a learned GNN can outperform loopy
BP for Bayesian estimation if sufficient data is available [14]. Re-
cently, [15] introduced neural enhanced belief propagation (NEBP)
which pairs a factor graph with a GNN. The learned GNN messages

complement the corresponding BP messages to correct errors intro-
duced by cycles and model mismatch. The resulting method com-
bines the benefits of model-based and data-driven inference. NEBP
can provide satisfactory estimation results when little data is avail-
able and leverages the performance advantages of GNNss in the large
data regime. So far NEBP has only been considered for estimation
problems with discrete random variables.

In this paper, we extend NEBP to estimation problems with con-
tinuous random variables and apply it to the cooperative localiza-
tion (CL) problem [5H7L[16]. In particular, we represent the beliefs
and messages related to continuous random variables by random
samples or “particles” and update their weights by combining the
BP message provided by the factor graph with the corresponding
message provided by the GNN. Compared to BP-based CL, the pro-
posed NEBP method has an improved estimation accuracy and can
avoid overconfident beliefs.

The main contributions of this paper are as follows.

* We extend NEBP to continuous random variables and apply
it to the CL problem.

* We demonstrate performance advantages compare to BP-
based CL with a relative small amount of training data.

Our method preserves the advantages of BP-based methods for CL
in wireless networks [SH7], i.e., it is fully distributed and requires
little communication overhead, while its computational complexity
only differs by a constant factor.

2. REVIEW OF PARTICLE-BASED BP FOR CL

We briefly review particle-based BP for CL which will be the basis
for the development of the proposed NEBP method.

2.1. System Model and Problem Formulation

We consider a wireless network that consists of I mobile agents with
indexes i € T £ {1,...,I}. The topology of the agent network is
described by the sets of neighbors N; C Z\{i}. In particular, agent
i is able to communicate and perform measurements with agents
j € N;. The state X; , = [pznv{n]T of agent ¢ € Z at time
n € {0,1,...} comprises the current position p, ,, € R< and other
motion-related parameters v; ,. Agent motion is modeled by the
mobility model

Xin — f(xiyn*hqi,n) (1)

where q; ,, is the driving noise with known probability density func-
tion (PDF) p(q; ,,) that is assumed to be statistically independent
across 4 and n. From the state transition function (I)) we can directly
obtain the state-transition PDF p(X;,n|Xi,n—1).

At time n, agent 7 exchanges information with neighboring
agents j € N; and performs a pairwise measurements that are mod-
eled as

Zjin = R(Xjn, Xin, Tjoin) (2)
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where r;_,; » is the measurement noise with known PDF p(r;_; »)
that is assumed to be statistically independent across edges (j,1),
i € Z,7 € N; and time n. From the measurement model (@), we
can directly obtain the likelihood function p(z;—i n|Xjn, Xin)-

Let X, = [Xin|icz and Zzn, = [Zjinlicz,jen; be the
joint state and measurement vectors at time m. Furthermore,
we introduce Xo., = [x0---x0]" and z1., = [z] - zn].

The goal of CL is to estimate the states of the agents X;n,
i1 € 7 from the joint measurement vector zi., by using, e.g.,
the minimum mean square error (MMSE) estimator xMMSE =
J Xi,n P(Xi,n|Z1:m)dXi,n. Estimation relies on the margmal pos-
terior distributions p(Xi,n|z1:n) = [ p(X0:n|Z1:n)X~i. However,
direct marginalization from p(xo:»|21:») is infeasible as its compu-
tation complexity grows exponentially with the number of time steps
and the number of agents.

2.2. BP for CL

BP [9] aims to calculate marginal posteriors p(X;,» |Z1.n ) efficiently
by passing messages on the edges of the factor graph that represents
the joint PDF of an estimation problem. In tree-structured graphs,
the beliefs provided by BP are guaranteed to converge to the true
marginal posterior distributions p(X;,n|Z1:» ). In graphs with cycles,
(i) there are typically no convergence guarantees but BP can nev-
ertheless often provide an accurate approximation of p(Xi,n|2z1:n)
[9L110]; and (ii) there are many possible orders in which messages
are computed (also known as the message schedules), and different
orders may lead to different beliefs.

BP for CL can provide accurate approximations of marginal dis-
tributions at a computational complexity that scales linearly with the
number of time steps and the agent network size. In particular, by
assuming that at time n = 0 the agent states X;,0, ¢ € Z are sta-
tistically independent and by using Bayes rule, the joint posterior
distribution p(xXo:n|21:n) factorizes according to

I n
P(X0in|z1:0) o< [ [ p(xi0) [] pins [%imr 1)

i=1 n/=1

X H p(zjﬂi,n/|xj,n/7xi,n/).
JEN;

A single time step of the corresponding cyclic factor graph is
shown in Fig.[[(a).

This factor graph provides the basis for BP for CL where a spe-
cific message schedule makes it possible to perform message passing
in real time and facilitates a distributed implementation. In particu-
lar, messages are sent only forward in time and ¢ € {1,...,7T}
message passing iterations are performed at each time step n indi-
vidually. At each message passing iteration ¢, messages are passed
only in one direction over every edge [6.[7]. The resulting BP algo-
rithm consists of prediction and update steps that are executed for
each agent 7 € 7 in parallel.

* Prediction Step: Based on the belief bET)(xi,n,l) calculated
at the previous time step n — 1 and the state transition PDF
P(Xin|Xin—1), the “prediction message” p;,—n(Xin) is ob-
tained as

Wi, —n (Xin) O(/p(xi,n|xi,n71)bET)(xi,nfl)dxi,nfl- 3
At time step n = 0, message passing is initialized by setting
(T) s
b (xi,0) = p(Xi0).

» Update Step: At message passing iteration ¢t € {1,...,
liefs b'~

T}, be-
1)(xj,n) are received from neighboring agents j € N;.

Next, corresponding “measurement messages” uj HZ n(Xin) are

calculated based on the likelihood function p(z;—i,n|Xjn, Xi,n),
ie.,

@gm@m)“/ﬂﬁwﬂﬁmﬁmwfﬂ@mﬁﬁw
“)

Finally, the belief at message passing iteration ¢ is obtained as

b (xi,n) o i, (Xim) H ugzm( in)- %)
JEN;

At message passing iteration ¢ = 1, beliefs are initialized as
0
B (xj.n) = i, (Xjn) (cf. @)

2.3. Particle-Based Processing

Often, the mobility and measurement models in (1) and (2)) are non-
linear and non-Gaussian and it is impossible to obtain a closed-form
solution for the message passing and belief calculation equations in
@)—(@). This problem can be addressed by representing messages
and beliefs by K weighted random samples or “particles” and ap-
proximating (3)—(3) by means of Monte Carlo techniques [17}18].
The solution of the resulting particle-based processing can be arbi-
trary close to the corresponding true solution of (3)—(3) by choosing

K sufficiently large.
* Prediction Step: Let {xﬁﬁf 1 fif)l 5:1 be a particle rep-
resentation of b( )(x“I 1).

{x(k) (k)}K

i W =

Then, a particle representation
1 of pin(xin) in @), can be obtained by

drawing, for each k € {1,...,K}, one particle x( ) from
P(XinlXim_ 1) ie.

R N
At n = 0, we draw particles from the prior, i.e. x( 0) ~ p(xi,0),

and set corresponding weights according to wE 0 k) ' %

Update Step: Following the message multiplication scheme in

[17] a particle-based representation of bgt)(xiyn) in (@) is calcu-
lated for each message passing iteration ¢t € {1,...7}. In partic-
ular, particle-based messages

t,k k)y ~(t—1,k
(ZS;—)l) _p(ZJ*” 7l|xg no XE i)w](',n ) (6)

are computed for each neighbor 5 € AN; and weight update is
performed according to

~(f k) _ (k) H ¢§ii) 7

JEN;
At message passing iteration ¢t = 1, (6) is initialized as qbgljz) =
p(Zj—s, n|x§kg,x(k))w](ﬁz. Finally, particles and unnormalized

(k) = (t:k)

weights {x;", w; I ,_, are exchanged among neighboring

agents.
After the last iteration (tf = 7T'), the weights are normalized,
le wz(q':Lk) = ~(Tk)/2k’ 1 ~z(1':Lk) k e {17---7K}’ and an

approximation of the MMSE estimate can be obtained as X; ., =
Zk LW (T k)xl(-ﬁz The particle representation {xi’jL (T k)} o1
is also needed for the prediction step at the next time step n + 1.

For future reference, we introduce the weight vector w; =
[w(l) - wEK)]T of agent 7 after the prediction step and the joint
weight vector w = [w;]icz. Similarly, we introduce the vectors

of particle-based BP messages d)JHZ = [qb(t’l) gzﬁ(t K)] nd

J— J—1
t) _ [ 4(t)
¢( )= [(ﬁj‘”‘}iEI,jENi'
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(a) Factor Graph

(b) GNN

Fig. 1: Factor graph for CL (a) and corresponding graph neural net-
work (GNN) (b) for a single time slot n. The BP and GNN mes-
sages related to the messages 3 — 1 are also shown. The time index
n is omitted and the short notations p;—; 2 P(Zj—i,n|Xjn, Xin)s

A
Pi = P(Xin|Xin—1), fbj—i = 5 ®

W5 2in (Xin), and mj—; = m;”,
are used.

3. NEBP FOR CL

In this section, we will review GNNs and present the proposed
particle-based NEBP framework for CL. In particular, at each time
step n we complement iterative particle-based BP (6)—(Z) by a GNN.
Since we limit our discussion to a single time step, we will omit the
time index n in what follows.

3.1. Graph Neural Networks (GNNs)

GNNs [12] extend neural networks to graph-structured data. We
consider the message passing neural network (MPNN) [19] which
is a variant of GNNs that generalizes graph convolutional networks
[20] and implements a message passing mechanism similar to BP. A
MPNN is defined on a graph G = (V, £) where € induces the sets of
neighbors N; = {j € V|(i,j) € £}. There is one neural network
for each node and each edge in the graph. In many applications
all node networks and all edge networks share sets of parameters,
respectively.

Each node 7 € V is associated with a vector h; called node
embedding. At message passing iteration ¢t € {1,...,T}, the fol-
lowing operations are performed for each node ¢ € V in parallel.
First, messages are exchanged with neighboring nodes j € N;. In
particular, the GNN message sent from node ¢ € V to its neighbor
j € N; is given by
m® = ge(hz(-t)7 h;t), aij) (8)

l*}j

where ge(-) is a neural network with trainable parameters and a;_ ;

is the edge attribute. Next, the node embedding h( )is updated by

incorporating the sum of received messages mgll, Jj € N, ie,

O = g (B0, 3 D). o

JEN;

Here, gn(-) is again a neural network with trainable parameters.

Since ge(+) and gn(-) share the same parameters across edges
and nodes, respectively, they can be trained on small graphs even if
then used in large scale inference problems. For future reference, we
introduce the joint vector of node embeddings h = [h;];cz and the
joint vector of messages m = [m;_;]icz,jeN; -

3.2. Particle-based NEBP

The main idea of particle-based NEBP is to use the particle represen-

tation {xikg, zb(t k)} o1 of a continuous state X; ,, as if it would be

the probability rnass functlon (PMF) of a discrete random variable,
ke {1,.
and the particle weights w( ) are the probablhtles of these outcomes.

The GNN that is complernentary to one time step of the CL fac-
tor graph is shown in Fig.[Tb). Since the CL factor graph only con-
sists of pairwise interactions, we can use a simpler GNN compared
to the one originally proposed for NEBP [15], i.e. a GNN that only
models variables nodes in the factor graph by a corresponding GNN
node. In what follows, we denote the NEBP messages and their joint
vector by ¢ and qb;tlz, respectively.

NEBP for CL consists of the following three steps:

i.e., the particles x* , K} are the possible outcomes

zn’

1. First, classical BP runs for one iteration, i.e.,

¢ =BP(p!" ", w). (10)

Here BP(-) is the function that takes NEBP messages ¢* =) and
w as inputs and returns the BP rnessages ¢ by ﬁrstzornputing
(@ (with t replaced by ¢ — 1 and ¢( ~./ replaced by ¢(t Lk)y
followed by (@) for all edges (j,7),i €Z, j € N in the network.
At iteration t = 1, é(t’l) in ([10) is replaced by the all-ones
vector with dimension K Y7_ |\V;].

2. Next, the output of the GNN is computed, i.e.,

[h(tJrl)T m(t)T]T _ GNN(h(t), ¢(t))

where GNN(-) is the function that calculates GNN messages
m® and updated node embeddings h®**+Y from the current node
embeddings h® and the classical BP messages ) using (B)-
(@). In particular, the classical BP messages ¢\, .,i € T, j € \;
are used as the edge attributes a;_,; in (8).

Att=1,h® is initialized by setting h{") = [%T vec(C;) ]T for
all 7 € Z, where X; = Zk:l wik)xl(-k) is the sample mean, C; =
Zk 1 (k)( Ek)—fci)(xl(.k)—fq)-r is the sample covariance, and
vec(+) creates a vector from the input matrix by taken elements
columnwise.

j—i

3. Finally, for all edges (j, ), i € Z, 7 € N;, GNN messages m;gl

and BP messages qb;i , are combined according to

t) t (t) t
é;ln - ( 54)>1)¢]~>z ( 54)>1)
The functions gs(-) and gv(-) are neural networks with learnable
parameters and output a positive scalar and a positive vector, re-
spectively.

After T iterations, the particle representation {x(k)7 w(T k) W

of the NEBP belief Z_),ET) (x;) is obtained by calculating weights
(T’k) based on (7) with BP messages (f)(T’k) replaced by NEBP

J—1
messages qb(T *) . The particle representation {x(k) (T.k) }ﬁ;l can

y W;

then be used to calculate an approximate MMSE estimate X; and
the corresponding approximate covariance matrix. Since we aim to
reduce the MSE of the position estimate p the neural networks
ge(*), gn(+), gs(+), and gv(+) are trained based on the loss function

T .
22:1 ”Ez - pz‘Hz'
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Fig. 2: Numerical evaluation of the proposed NEBP method in a CL scenario with 13 static anchors and 100 mobile agents. (a) One realization
of true and estimated mobile agent tracks with dots indicating the final positions. (b) Outage probability versus threshold ew. (c) Probability
that an estimate is consistent versus confidence levels. (The gray dotted-line indicates a confidence level of 95%.)

4. EXPERIMENTS

In this section, we compare the performance the proposed NEBP
method with BP. The neural networks ge(+), gs(), g+(+) are multi-
layer perceptrons (MLPs) with a single hidden layer and leaky rec-
tified linear units (ReLUs) [21]], with exception that the output lay-
ers of gs(-) and gv(-) use sigmoid and ReLU activations, respec-
tively. We set the number of message passing iterations to 7' =1, in
which case the node function gy (-) is not needed. During training,
the parameters of ge(-), gs(-), and gv(-) are updated through back-
propagation. The dimension of node embeddings h; is 20 and the
dimension of GNN messages m;_.; is 32.

4.1. Dataset and Training Procedure

We consider agent networks in two dimensional (2-D) space. The
state of each agent at time n is defined as x; , = [p;-r)nv;-r,n]T e R*
where p, ,, € R? and v;,, € R? are the 2-D position and velocity,
respectively. We use a constant-velocity motion model with drag
force and Gaussian driving noise with standard deviation o, = 0.05
(see [22] for details). Furthermore, we consider measurements of
the distance zji,n = [|P;n, — Pinll + 7j—in, Where 75;n is
zero-mean Gaussian noise with standard deviation o, = 1.

We consider I = 25 agents on the area of interest [0, 60jm X
[0,60]m. There are five static anchors at perfectly known loca-
tions, i.e., their state transition model and prior distribution are
given by p(xi,n|xi,n,1) = (5(Xz‘,n — Xi,n71) and p(Xiyo) = (5(){1',0
—[P; 00]") where P; is the true anchor position. In each re-
alization, the mobile agents are uniformly placed over the area
[15,45]m x [15,45|m and their velocity is randomly drawn from
N(o, 012,12) with 0, = 0.1. For each agent, a track that consists
of 50 time steps is generated and range measurements are obtained
by assuming a connectivity of 20m, i.e. j € N if and only if
P, — Psnll < 20m. For inference, the initial prior distribution
is p(Xi,o) = N(I"’i,w Ei,o). Here Ei,o = diag{107 107 0.017 0.01}
and p;  is randomly drawn from N (xi,0, i ,0), where x; ¢ is the
true initial state of agent <.

For training, an Adam optimizer [23] with learning rate 10~*
and batch size of 2 is used. Furthermore, 100 realizations of agent
tracks and 10 passes of the entire training dataset are considered.
A larger agent network is employed for performance evaluation to
show the generalization ability of our NEBP method. In particular,
we consider a network that consists of 13 static anchors and 100 mo-
bile agents, i.e., I = 100 in the area [0, 100jm x [0, 100]m (see [6])

and generate another 400 realizations of agents tracks. The agents
are uniformly placed over [10,90]m x [10,90]m at time n = 0. All
the other parameters are set as during training. Anchor positions and
a realization of mobile agent tracks are shown in Fig[2al

4.2. Performance Evaluation

To evaluate the performance of different localization algorithms, we
use the outage probability Pouw = P(||P,,, — P |l > en). where
P », is the true position, P, ,, is the estimate, and en > 0 is the er-
ror threshold. Fig. Pblshows the outage probability versus threshold
ewm. It can be seen that our proposed NEBP algorithm yields signif-
icantly reduced outage probability compared to BP. Fig. 2al shows
one realization of true and estimated agent tracks.

To assess the consistency of BP and NEBP estimates, we
conduct two-sided chi-square tests. We first calculate the nor-
malized estimation error squared (NEES) [1] , e;n = (Py,, —
piﬂl)Tﬁ;li’n(f)iﬂl — pi’n), where 2;,12-@ € R?*? is the estimated
position covariance. Assuming that the true posterior distribution is
Gaussian, the NEES follows a chi-square distribution with degree of
freedom 2. Let Ho be the hypothesis that the belief of agent i is
consistent, i.e., f)l-’n and ¥y ; , are the true mean and covariance
matrix. Ho is accepted if e;,n € [r1, r2], where r1, 72 is determined
such that P(e;,n, < r1|Ho) = P(ein > r2|Ho) = 5 and 1 — ais
the confidence level. Ideally, as indicated by the black dashed line
in Fig. 2d at confidence level 1 — a, the probability that Hy is ac-
cepted should be 1 — . However, the BP solution has P(accept Ho)
significantly smaller than 1 — a. At 95% confidence level, 40% of
the NEES values e; ., fall outside the confidence interval, indicat-
ing that BP provides inconsistent estimates. On the other hand, the
proposed NEBP method is close to the ideal line, where only 5%
of NEES values e; ,, fall outside the 95% confidence interval [1]]. It
can thus be concluded that NEBP significantly improves the consis-
tency of estimates. Notably, more consistent estimates are obtained
by not explicitly addressing overconfidence in the loss function used
for training of the GNN.

5. CONCLUSION

In this paper, we propose a particle-based NEBP method for CL
that combines the benefits of model-based and data-driven inference.
The proposed approach complements BP with learned information
provided by a GNN. Simulation results show that NEBP outper-
forms traditional BP in terms of localization error and consistency
of estimates as well as generalizes to larger agent networks.
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