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Stability and Super-resolution of MUSIC and

ESPRIT for Multi-snapshot Spectral Estimation
Weilin Li, Zengying Zhu, Weiguo Gao, and Wenjing Liao

Abstract—This paper studies the spectral estimation problem
of estimating the locations of a fixed number of point sources
given multiple snapshots of Fourier measurements collected by
a uniform array of sensors. We prove novel stability bounds
for MUSIC and ESPRIT as a function of the noise standard
deviation, number of snapshots, source amplitudes, and support.
Our most general result is a perturbation bound of the signal
space in terms of the minimum singular value of Fourier
matrices. When the point sources are located in several separated
clumps, we provide an explicit upper bound of the noise-space
correlation perturbation error in MUSIC and the support error
in ESPRIT in terms of a Super-Resolution Factor (SRF). The
upper bound for ESPRIT is then compared with a new Cramér-
Rao lower bound for the clumps model. As a result, we show
that ESPRIT is comparable to that of the optimal unbiased
estimator(s) in terms of the dependence on noise, number of
snapshots and SRF. As a byproduct of our analysis, we discover
several fundamental differences between the single-snapshot and
multi-snapshot problems. Our theory is validated by numerical
experiments.

Index Terms—Multi-snapshot spectral estimation, stability,
super-resolution, MUSIC algorithm, optimality of ESPRIT al-
gorithm, Cramér-Rao lower bound, array imaging.

I. INTRODUCTION

A. Problem formulation and motivation

This paper studies the spectral estimation problem of es-

timating the locations of a fixed number of point sources

given multiple time snapshots of Fourier measurements col-

lected by a uniform array of sensors. Let S be the number

of point sources which we assume are located in the set

Ω :“ tωkuSk“1 Ď T, where T :“ r0, 1q is the torus. We denote

the source amplitudes at time t ą 0 by the complex-valued

vector xptq :“ txjptquSj“1 P CS . At time t ą 0, a uniform

array of M ě S sensors collects a noisy measurement vector

yptq :“ Φxptq ` eptq P C
M , (I.1)

where Φ :“ ΦM pΩq P CMˆS is the Fourier sensing matrix

with entries

Φk,j “ e´2πikωj ,

for k “ 0, . . . ,M ´ 1 and j “ 1, . . . , S, and eptq P CM

represents a noise vector at time t. The sensing matrix ΦM pΩq
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only depends on Ω and M , and is independent of time t. It

does not necessarily contain orthogonal columns unless Ω is

a subset of tk{MuM´1
k“0 .

Typically in practice, samples of yptq are collected at L

times t1 ă ¨ ¨ ¨ ă tL and each yptℓq is called a snapshot. This

paper studies the multi-snapshot spectral estimation problem

of estimating the source locations Ω from these L snapshots:

typtℓquLℓ“1. This problem appears in many interesting imaging

and signal processing applications, including inverse scattering

[15], Direction-Of-Arrival (DOA) estimation [22], [38], [45]

and spectral analysis [48].

Various methods have been developed by the imaging and

signal processing communities for multi-snapshot spectral

estimation [1], [20], [40], [44], [45]. A class of algorithms

commonly referred to as subspace methods are widely used in

applications due to their impressive empirical performance, es-

pecially in the context of super-resolution imaging where some

point sources are close together. In particular, MUSIC [45] and

ESPRIT [44] are among the most popular subspace methods.

MUSIC and ESPRIT are applicable in multi-dimensions as

well [43]. The success of MUSIC and ESPRIT has been

demonstrated in many simulations and applications [53].

Despite great developments in numerical methods and ex-

tensive empirical studies, there are many open theoretical ques-

tions regarding the stability and super-resolution of subspace

methods. This paper focuses on the fundamental performance

analysis question: What is the stability of MUSIC and ESPRIT,

as a function of the noise standard deviation, the number of

snapshots, source amplitudes, and the support set?

Prior theoretical work on related super-resolution problems

[13], [30], [31] suggest that the stability of the multi-snapshot

spectral estimation problem crucially depends on the locations

of the point sources. The minimum separation of Ω is

∆ :“ ∆pΩq :“ min
1ďjăkďS

|ωj ´ ωk|T,

where |ω|T :“ minnPZ |ω ´ n|. Since M consecutive Fourier

coefficients are collected during each time snapshot, the stan-

dard imaging resolution is 1{pM ´ 1q, which is referred to as

the Rayleigh Length (RL) in optics [10].

We expect the stability of this problem to be different

depending on the relationship between ∆ and 1{pM ´ 1q.

In this article, we are particularly interested in is the super-

resolution regime where ∆ ă 1{pM ´ 1q, so that there exist

ωj and ωk whose distance is smaller than 1 RL. When this is

the case, we define the super-resolution factor (SRF) by

SRF :“ 1

pM ´ 1q∆ ě 1. (I.2)

http://arxiv.org/abs/2105.14304v3
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B. Main results

The main contribution of this paper is a detailed per-

formance analysis of MUSIC and ESPRIT in terms of the

fundamental model quantities: the number of snapshots, noise

standard deviation, support set, and source amplitudes.

(a) Our most general upper bounds for the perturbation of

MUSIC (Theorem IV.5) and ESPRIT (Theorem IV.6)

show that their average errors can be controlled by a term

that is linear in

1

σSpΦq
a
λSpXq

ˆ Noise?
L
, (I.3)

where Noise represents the noise standard deviation to be

specified in Assumption (II.1), σSpΦq denotes the S-th

largest singular value of Φ, and λSpXq is the minimum

eigenvalue of the amplitude covariance matrix X to be

defined in (II.1). This inequality not only captures the

correct dependence on the number of snapshots and noise,

but it also highlights how the stability of both algorithms

implicitly depends on the configuration of the support set

Ω through the quantity σSpΦq.

(b) To give a more transparent upper bound in the super-

resolution regime, we consider a specific scenario where Ω

consists of separated clumps and the point sources in each

clump can be close together. Our upper bounds for the

stability of MUSIC (Theorem V.3) and ESPRIT (Theorem

V.4) are proportional to

SRFλ´1

a
λSpXq

ˆ Noise?
L
,

where λ is the cardinality of the largest clump. This

indicates that, for challenging super-resolution problems

where SRFλ´1 is large, additional snapshots or higher

quality samples must be taken for compensation.

(c) We prove a new Cramér-Rao lower bound (Theorem VI.3)

under a specific separated clumps model in Theorem VI.3.

This lower bound matches our upper bound for ESPRIT

in terms of the dependence on noise, L and SRF, thereby

certifying that the performance of ESPRIT is comparable

to that of the optimal unbiased estimator(s) for this model.

C. Comparison and connection to other works

Prior resolution analysis of subspace methods for multi-

snapshot spectral estimation [16], [41], [58] focused on a

special case where there are only two closely spaced point

sources. The papers [16], [58] analyzed the probability that

two sources are correctly detected instead of being misspeci-

fied as a single source. It was shown in [41] that the ESPRIT

support error is upper bounded by a term on the order of

SRF{p
?
MLˆ SNR) for certain Signal-to-Noise Ratio (SNR)

defined in the referenced article.

To our knowledge, there are no other theoretical works

that address more complicated situations beyond two closely

spaced point sources, e.g., when the support contains multiple

clumps of point sources and the point sources in each clump

can be closely spaced. A theoretical analysis for more com-

plicated situations could be valuable. For example, a recent

article [34] empirically compared the performance of several

numerical methods, including MUSIC, for DOA estimation

of several point sources arranged in complicated ways. Other

models have been considered, see [9], [57], but this direction

is beyond the scope of this work.

In literature, many existing works have addressed the sen-

sitivity of multi-snapshot MUSIC [17], [18], [28], [52] and

ESPRIT [28], [37], [51]. Many of these works focus on

sensitivity to model errors, which arise from antenna array

perturbations, sensor gain and phase errors, diagonal noise

covariance perturbations, etc. A first-order perturbation analy-

sis is given in [17], [18], [27], [28], [41], [52] for MUSIC,

in [28], [37], [51] for ESPRIT, in [43] for tensor-ESPRIT

in the multidimensional case, and in [12] for the estimation

of a damped complex exponential. The results in [27], [41],

[43] and many others prove that, the sensitivity of MUSIC

and ESPRIT is proportional to Noise{
?
L. However, they are

implicit for a super-resolution analysis since the dependence

on SRF is often hidden in some matrix eigenvalue.

When MUSIC and ESPRIT are used in applications, many

interesting techniques have been developed to improve its

performance. Spatial smoothing [39], [42], [46] is widely used

when some sources are coherent, or if only a small number

of snapshots is available. A first-order perturbation analysis

with spatial smoothing is given in [39], [42] and in [46] in the

multi-dimensional case. When the source amplitudes are non-

circular, some analysis can be found in [46]. Mathematical

theories on the sensitivity of MUSIC and ESPRIT usually

assume that the number of sources S is known. In practice, an

accurate estimation of S is an interesting problem. We refer

to [23], [33], [55], [56], [59] for some interesting techniques

and statistical analysis on the estimation of S.

The classical Cramér-Rao Bound (CRB) [8] provided a

lower bound on the variance of any unbiased estimator of the

support, and was extensively investigated in [21], [26], [49],

[50]. The paper that is most relevant to us is [26], which gave a

Cramér-Rao lower bound when all S point sources are almost

equally spaced in a small interval. This result is summarized

in detail in Section VI-A.

In recent years, spectral estimation has been extensively

studied in the single-snapshot scenario where L “ 1, and

primarily from a deterministic viewpoint. Performance guar-

antees of a convex optimization algorithm were established

in [6], [14] for sufficiently separated point sources and in

[4], [36] for super-resolution. On the other hand, MUSIC

and ESPRIT are non-convex methods, and their stability and

super-resolution limits were addressed in [29]–[31]. A detailed

review for the single-snapshot setting can be found in [30].

There are fundamental differences between the single-snapshot

and multi-snapshot problems, which we discuss in Section

VIII. Due to these differences, the results in this paper can

not be directly deduced from the ones in [29]–[31].

A key quantity in the mathematics of super-resolution is

σSpΦq, which crucially depends on the support geometry.

Explicit lower bounds for σSpΦq were derived in [2], [3], [11],

[24], [25], [30], [32], [35] for various support models. This

paper uses the lower bound under the separated clumps model

in [30].
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D. Organization

This paper is organized as follows. We introduce assump-

tions and define important terminology in Section II. We define

the signal space associated with this problem and derive an

error between the true and empirical signal spaces in Section

III. We present our stability analysis for MUSIC and ESPRIT

in Section IV, and then consider a separated clumps model in

Section V. To understand the fundamental limits of spectral

estimation, we deduce a new Cramér-Rao lower bound under

a specific separated clumps model in Section VI and compare

it to our upper bound for ESPRIT. We present numerical

experiments in Section VII and discuss the differences between

the multi-snapshot versus single-snapshot problems in Section

VIII. All proofs are contained in Section XI.

E. Notation

We use R and C to denote the set of real and complex

numbers respectively. For z P C, we denote its angle by

arg z P r0, 2πq. For a vector x P CS , we denote the diagonal

matrix with x on the diagonal by diagpxq P CSˆS . We let

}x} denote the Euclidean norm of x and x
˚ be its conjugate

transpose. Let Ik be the k ˆ k identity matrix and δt,s be the

Kronecker delta; that is, δt,s “ 1 if t “ s, and δt,s “ 0 if

t ‰ s.

For a matrix A, we use σ1pAq ě σ2pAq ě ¨ ¨ ¨ to denote the

singular values of A listed in non-increasing order, and each

singular value appears according to its multiplicity. If A has

real eigenvalues, we use λ1pAq ě λ2pAq ě ¨ ¨ ¨ to denote its

eigenvalues of A. We use }A}2 and }A}F for the spectral and

Frobenius norms of A, respectively. Let A˚ be the conjugate

transpose of A. We use d to denote the Hadamard (pointwise)

product of two matrices of equal size. For a linear operator

A, we denote its range by RpAq. For any subspace U , we

let PU be the orthogonal projection onto U . Slightly abusing

notation, we let PA be the orthogonal projection onto RpAq.

We use Z „ Gν,τ to specify that Z P R is a random

variable such that EZ “ 0, varpZq “ ν2, and E exppuZq ď
exppτν2u2q for all u P R. For a complex Z , we write

Z „ Gν,τ to mean that the real and imaginary parts are

independent Gν{
?
2,τ random variables. If Q is an event, then

Qc denotes its complement and 1Q is the indicator function

of Q.

We use the notation A Àm,n,p B to mean that there exists

a C ą 0 depending only on m,n, p such that A ď CB.

Throughout the paper, we assume that the noise vectors eptq
are random, and the expectation E is taken over the probability

distribution of the noise eptq.

II. ASSUMPTIONS AND COVARIANCE MATRICES

Our performance guarantees for MUSIC and ESPRIT re-

quire the following standard assumptions.

Assumption II.1. (Model assumptions) Fix positive integers

L,M, S such that S ď M and S ď L.

(a) Ω Ď T has cardinality S and does not depend on t.

(b) The amplitude covariance matrix,

X :“ 1

L

Lÿ

ℓ“1

xptℓqxptℓq˚, (II.1)

is strictly positive-definite.

(c) There exist ν, τ ą 0 such that for any t ą 0, the

entries of eptq P CM are independent complex Gν,τ

random variables. For t ­“ s, assume eptq and epsq are

independent. These assumptions imply that

Eeptqepsq˚ “ ν2δt,sIM .

(d) For each ℓ “ 1, . . . , L, we are given

yptℓq :“ Φxptℓq ` eptℓq.

(e) The noise level satisfies the following assumption

ν ď σSpΦq
a
λSpXq. (II.2)

Assumption II.1 is standard in spectral and DOA estimations

[22], [45], [49]. This assumption can be justified as follows:

Assumption II.1(a) is necessary from a statistical viewpoint.

If Ω is allowed to change over time, then there might be

no relationship between yptkq and yptℓq for k ­“ ℓ, so

collecting additional snapshots might not be beneficial. Under

this assumption, Φ :“ ΦpΩq P C
MˆS is a special type of

matrix, often referred to as a non-harmonic Fourier matrix or

Vandermonde matrix with nodes on the complex unit circle,

and by the celebrated Vandermonde determinant theorem, Φ

has rank S and σSpΦq ą 0.

Assumption II.1(b) on the strictly positive-definiteness of

the amplitude covariance matrix is standard in array imaging

and DOA estimation [22], [45], [49]. This assumption is

equivalent to the requirement that xpt1q, . . . ,xptLq P CS span

CS . If this assumption is void, both MUSIC and ESPRIT

can be modified as the single-snapshot scenario by utilizing a

Hankel structure. This is a technical point to be discussed in

Section VIII.

For example, Assumption II.1(b) can be used in models

where xptq evolves over time according to a physical law.

Many stochastic models of xptq fulfill Assumption II.1(b).

For instance, if xpt1q, . . . ,xptLq are independent Gaussian

vectors with Np0, ν2q i.i.d. entries, then X has full rank with

probability one. More generally, if xptq is sub-Gaussian and

the population covariance of xptq is strictly positive-definite,

then X has full rank with high probability, see [54][Theorem

4.71 and Exercise 4.7.3].

When L snapshots of measurements are taken, we define

the matrices

XL :“ 1?
L

“
xpt1q ¨ ¨ ¨ xptLq

‰
,

EL :“ 1?
L

“
ept1q ¨ ¨ ¨ eptLq

‰
,

YL :“ 1?
L

“
ypt1q ¨ ¨ ¨ yptLq

‰
.

(II.3)



4

The empirical covariance matrices are

X :“ 1

L

Lÿ

ℓ“1

xptℓqxptℓq˚ “ XLX
˚
L P C

SˆS , (II.4)

pY :“ 1

L

Lÿ

ℓ“1

yptℓqyptℓq˚ “ YLY
˚
L P C

MˆM . (II.5)

Defining Y :“ ΦXΦ˚, one can verify that

EpY “ Y ` ν2IM . (II.6)

III. SIGNAL SPACE AND ITS EMPIRICAL ESTIMATION

A. Signal and noise space

A signal space plays an important role in a class of

subspace methods [22], including MUSIC and ESPRIT. These

algorithms first compute an empirical version of the signal

space by a truncated eigen-decomposition, and then extract

the source locations based on this signal space.

Definition III.1 (Signal and noise spaces). The signal space

is defined to be the column space of Φ, and the noise space is

defined to be the orthogonal complement of the signal space.

Although the signal and noise spaces do not depend on

the specific choice of orthonormal basis, we pick particular

bases purely for convenience. Throughout this paper, we let

U P CMˆS and W P CMˆpM´Sq such that U˚U “ I and

W˚W “ I be matrices whose columns form an orthonormal

basis for the signal space and the noise space, respectively.

Due to identity (II.6) and Assumption II.1(b), the signal space

is the eigenspace associated with the S largest eigenvalues of

Y :“ ΦXΦ˚.

With L snapshots of noisy measurements, the signal and

noise spaces can be estimated from the empirical covariance

matrix pY as follows. Let r pU,xW s P CMˆM be a unitary matrix

whose columns are eigenvectors of pY , and the columns of
pU P C

MˆS are the eigenvectors corresponding to the S largest

eigenvalues of pY .

Definition III.2. We refer to pU and xW as the empirical signal

space and the empirical noise space, respectively.

B. An accurate perturbation bound for the signal space

In this paper, we establish an accurate perturbation bound

for pU . Roughly speaking, if the number of snapshots is

sufficiently large, and everything else is fixed, the empirical

signal space pU is a good approximation of the signal space

U . We first quantify the distance between pU and U by their

canonical angles.

Definition III.3. Suppose U, pU P CMˆS and U˚U “ pU˚ pU “
I . The canonical angles between U and pU are defined to be

θj “ arccos σjp pU˚Uq, for j “ 1, . . . , S. Let

sin θp pU,Uq :“ diag
`
sinpθ1q, ¨ ¨ ¨ , sinpθSq

˘
.

The (Euclidean) sin θ distance between U and pU is

distp pU,Uq :“ } sin θp pU,Uq}2. (III.1)

This definition extends the notion of an angle between two

vectors to subspaces, and it is invariant to the particular choice

of basis. It follows from [47, Chapter I, Theorem 5.5] and [7,

Lemma 2.1.2] that

distp pU,Uq “ }pI ´ P pU qPU }2
“ }pI ´ PU qP pU }2 “ }PU ´ P pU }2.

(III.2)

It is a consequence of [58, Theorem 3] that the sin θ distance

between U and pU satisfies the following expectation bound.

See Section XI-A for the details.

Theorem III.4. Under Assumption II.1, there exists a constant

Cτ ą 0 depending only on τ such that

E
`
distp pU,Uq2

˘
ď CτM

λSpXqσ2
SpΦq

ν2

L
.

Remark III.5. Note that X defined in (II.1) is normalized by

L, so we can interpret λSpXq has a normalized quantity. Since

Φ has S columns each with Euclidean norm
?
M , we can

also interpret
?
M{σSpΦq as a normalized quantity. Hence,

Theorem III.4 tells us that the average squared sin θ distance

between U and pU tends to zero proportional (at least) linearly

in ν2{L.

Remark III.6. Throughout this paper, we will provide upper

bounds for the average squared sin θ distance. We can use

Jensen’s inequality,
`
Edistp pU,Uq

˘2 ď E
`
distp pU,Uq2

˘
, to

convert them into an upper bound for the expected error if

desired.

IV. STABILITY OF MUSIC AND ESPRIT

A. Review of MUSIC and ESPRIT

In signal processing, MUSIC [45] and ESPRIT [44] have

been widely used in applications due to their impressive

numerical performance and super-resolution phenomenon.

We first introduce some important notations. We define the

signal vector at ω P r0, 1q as

φpωq :“
“
1 e2πiω e4πiω ¨ ¨ ¨ e2πipM´1qω‰˚ P C

M .

The columns of Φ in (I.1) exactly consist of the signal vectors

at the sources locations:

Φ “
“
φpω1q φpω2q ¨ ¨ ¨ φpωSq

‰
.

In the noiseless situation, MUSIC amounts to finding the

noise space, forming the noise-space correlation function and

identifying the zero set of the noise-space correlation, which

is necessarily the support set. When M ě S ` 1, we have the

following observations regarding the Vandermonde matrix Φ:

‚ rankpΦq “ S

‚ rank prΦ, φpωqsq “ S ` 1 if and only if ω R Ω.

These observations imply that, ω P Ω if and only if φpωq P
RpΦq. Since the signal space U is exactly RpΦq, the condition

of φpωq P RpΦq can be quantified by a noise-space correlation

function or an imaging function.
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Algorithm 1 MUSIC and ESPRIT

Input: Measurements typtℓquLℓ“1 and sparsity S.

1. Form the empirical covariance matrix pY according to

equation (II.5).

2. Compute the eigen-decomposition of pY to obtain pU , the

empirical signal space.

MUSIC: Compute the empirical imaging function

pJ pωq “ }φpωq}
}pI ´ P pU qφpωq} , ω P r0, 1q,

and identify its S largest local maxima as tpωjuSj“1
.

ESPRIT: Let pU0 and pU1 be two submatrices of pU contain-

ing the first and the last M ´ 1 rows respectively. Compute

pΨ “ pU :
0

pU1

and its S eigenvalues pλ1, . . . , pλS . Set pωj :“ ´ arg pλj

2π
.

Output: pΩ “ tpωjuSj“1
.

Definition IV.1 (Noise-space correlation (NSC) and imaging

functions). For any ω P r0, 1q, the noise-space correlation

function is defined as

Rpωq :“ }pI ´ PU qφpωq}
}φpωq} “

››pI ´ PU qφpωq
››

?
M

.

The imaging function is defined as

J pωq :“ 1{Rpωq.

The MUSIC algorithm is based on the following lemma:

Lemma IV.2. Let M ě S ` 1. Then

ω P Ω ðñ Rpωq “ 0 ðñ J pωq “ 8.

Lemma IV.2 implies that, the source locations can be exactly

identified through the roots of the noise-space correlation

function, or the peaks of the imaging function.

When L snapshots of noisy measurements are taken, we can

compute the empirical signal space pU .

Definition IV.3 (Empirical NSC and imaging functions). For

any ω P r0, 1q, the empirical noise-space correlation (NSC)

function is defined to be

pRpωq :“ }pI ´ P pU qφpωq}
}φpωq} .

The empirical imaging function is defined to be

pJ pωq :“ 1{ pRpωq.

An estimate for the support set is obtained by extracting the

S largest local maxima of pJ , or equivalently, the S smallest

local minima of pR. MUSIC is summarized in Algorithm 1.

ESPRIT reformulates the support estimation step as an

eigenvalue problem. We first discuss the noiseless situation. By

definition, the signal space U is the column space of Φ, and so

there exists an invertible matrix Q P CSˆS such that U “ ΦQ.

Let U0 and U1 be two submatrices of U containing the first and

the last M ´ 1 rows respectively. Denote ΦM´1 P CpM´1qˆS

as the submatrix containing the first M´1 rows of Φ. Letting

DΩ :“ diagpe´2πiω1 , . . . e´2πiωSq P C
SˆS , we have

U0 “ ΦM´1Q, U1 “ ΦM´1DΩQ.

Setting M ´ 1 ě S guarantees that U0 and U1 have rank S.

It follows that

Ψ :“ U
:
0U1 “ Q´1DΩQ P C

SˆS .

Hence, the eigenvalues of Ψ are exactly te´2πiωj uSj“1. The

ESPRIT algorithm amounts to finding the support set Ω

through the eigenvalues of Ψ.

When L snapshots of noisy measurements are taken, ES-

PRIT follows the same steps but with the empirical signal

space pU instead of U . It is summarized in Algorithm 1.

To quantify the error between Ω and pΩ, we introduce the

support matching distance.

Definition IV.4. The matching distance between Ω and pΩ is

mdpΩ, pΩq :“ min
ψ

max
j

ˇ̌
pωψpjq ´ ωj

ˇ̌
T

where ψ is a permutation on t1, . . . , Su.

B. Stability of MUSIC and ESPRIT

The stability of MUSIC depends on the perturbation of the

NSC function from R to pR, which can be measured as

} pR ´ R}8 :“ sup
ωPr0,1q

| pRpωq ´ Rpωq|.

Theorem IV.5. Let M ě S ` 1. Under Assumption II.1 and

with Cτ ą 0 being the constant in Theorem III.4, we have

E
`
} pR ´ R}28

˘
ď CτM

λSpXqσ2
SpΦq

ν2

L
. (IV.1)

Theorem IV.5 is proved in Section XI-B.

Unlike MUSIC, ESPRIT is an explicit algorithm since it

reformulates the main question as an eigenvalue problem. For

ESPRIT, we have the following estimate for the matching

distance between the true and recovered support.

Theorem IV.6. Let M ě S ` 1. Under Assumption II.1, let

Cτ ą 0 be the constant in Theorem III.4 and pΩ be the output

of ESPRIT.

(a) Moderate SNR regime. We have

E
`
mdppΩ,Ωq2

˘
ď Cτ16

S`2S3M2

λSpXqσ4
SpΦq

ν2

L
.

(b) Large SNR regime. Define

ξ :“ σ2
SpΦqλSpXq

M

L

ν2
, ρ :“ 1?

6

4S`2σ2
SpΦq∆

S2M
.

There is a sufficiently large Dτ ě 1 depending only on τ

such that if

ξ ě Dτ max
´
1,

1

ρ
,
1

ρ2

¯
, (IV.2)

then it holds that

E
`
mdppΩ,Ωq2

˘
Àτ

M

σ2
SpΦqλSpXq

ν2

L
.
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Due to the considerable length of the proof of Theorem

IV.6, we split the proof into two parts. Parts (a) and (b) are

proved in Sections XI-C and XI-D respectively. Part (a) holds

for all possible values of L and ν. On the other hand, part

(b) requires that ξ (which can be interpreted as a scaled and

squared signal-to-noise-ratio) is sufficiently large depending

on the model parameters.

V. SUPER-RESOLUTION OF MULTI-SNAPSHOT MUSIC AND

ESPRIT

A. Minimum singular value of Fourier matrices

In this section, we consider a general model of Ω where the

point sources are clustered into separated clumps.

Assumption V.1. (Separated clumps model). Let M and R

be a positive integers and Ω Ď T have cardinality S. We

say that Ω consists of R separated clumps with parameters

pR,M, S, α, βq if the following hold.

(a) Ω can be written as the union of R disjoint sets tΛruRr“1 ,

where each clumpΛr is contained in an interval of length

1{pM ´ 1q.

(b) ∆ ě α{pM ´ 1q with max1ďrďR pλr ´ 1q ă 1{α where

λr is the cardinality of Λr.

(c) If R ą 1, then the distance between any two clumps is at

least β{pM ´ 1q.

α
M´1

Λ1

α
M´1

Λ2

α
M´1

ΛR´1

α
M´1

ΛR
β

M´1

Fig. 1. Ω “ YrΛr where each Λr contains 3 equally spaced points with
spacing α{pM ´ 1q. The clumps are separated at least by β{pM ´ 1q.

An example of separated clumps is given in Figure 1.

There are many types of discrete sets that consist of separated

clumps. Extreme examples include when Ω is a single clump

containing all S points, and when Ω consists of S clumps

containing a single point. While our theory applies to both

extremes, the in-between case where Ω consists of several

clumps each of modest size is most interesting. A super-

resolution theory of single-snapshot MUSIC and ESPRIT for

this separated clumps model is developed in [29]–[31]. This

paper focuses on the multi-snapshot scenario. The difference

between the single-snapshot and multi-snapshot cases is dis-

cussed in Section VIII.

Under this separated clumps model, σSpΦq can be estimated

as an ℓ2 aggregate of R terms, where each term only depends

on the “geometry” of each clump [30, Theorem 2.7].

Theorem V.2. Let M ě S2`1. Assume Ω satisfies Assumption

V.1 with parameters pR,M, S, α, βq for some α ą 0 and

β ě max
1ďrďR

20S1{2λ5{2
r

α1{2 . (V.1)

Then there exist explicit constants B1, . . . , BR ą 0 where Br
only depends on M and λr such that

σSpΦq ě
?
M ´ 1

´ Rÿ

r“1

`
Brα

´λr`1
˘2¯´ 1

2

.

An explicit formula for Br is given in [30, Theorem 2.7, Eq.

(2.5)]. In particular, Br only depends on λr and M (although

Br can be further upper bounded in terms of only λr if

desired) and importantly, Br does not depend on α.

The main feature of this theorem is the exponent on α,

which depends on the cardinality of each clump as opposed

to the total number of points S. Let λ be the cardinality of

the largest clump:

λ “ max
1ďrďR

λr. (V.2)

Since the inequality holds for any Ω that is a pR,M, S, α, βq
set, then it holds for α “ ∆pM ´ 1q. Defining the super-

resolution factor SRF as equation (I.2), Lemma V.2 implies

σminpΦq ě C
?
M ´ 1 SRF´λ`1. (V.3)

B. Super-resolution of MUSIC and ESPRIT

In this section, we combine our stability analysis for multi-

snapshot MUSIC and ESPRIT in Section IV-B with the mini-

mum singular value estimate in Theorem V.2 to derive a super-

resolution theory for multi-snapshot MUSIC and ESPRIT.

For MUSIC, we obtain an upper bound for the perturbation

of the noise-space correlation function by combining Theo-

rems IV.5 and V.2.

Theorem V.3. Suppose M ě S ` 1, Ω satisfies the sep-

arated clumps model in Assumption V.1 with parameters

pR,M, S, α, βq such that (V.1) holds. Under Assumption II.1,

let Cτ and Br be the constants in Theorems III.4 and V.2 re-

spectively, and let pR be the perturbed noise-space correlation

function of MUSIC. Then we have

E
`
} pR ´ R}28

˘
ď Cτ

λSpXq
Rÿ

r“1

`
Brα

´λr`1
˘2 ν2

L
. (V.4)

Theorem V.3 provides a perturbation bound for the noise-

space correlation function in multi-snapshot MUSIC under

the separated clumps model. The terms that appear in the

upper bound in Theorem V.3 can be interpreted as follows:

ν2 is the noise variance, 1{L is the usual stochastic factor,

and the quantity in front of ν2{L can be interpreted as

the condition number of super-resolution recovery of multi-

snapshot MUSIC. Letting λ be the cardinality of the largest

clump defined in (V.2), Theorem V.3 shows that

E
`
} pR ´ R}28

˘
ÀM,S,λ,τ

SRF2λ´2

λSpXq
ν2

L
. (V.5)

Notice that the right hand side only depends on the cardinality

of the largest clump instead of the total number of point

sources S. This perturbation bound on MUSIC is verified by

numerical experiments in Section VII.

As for ESPRIT, we provide a bound for the support error

by combining Theorem IV.6 and Theorem V.2.

Theorem V.4. Suppose M ě S ` 1, Ω satisfies the sep-

arated clumps model in Assumption V.1 with parameters

pR,M, S, α, βq such that (V.1) holds. Under Assumption II.1,

let Cτ and Br be the constants in Theorems III.4 and V.2

respectively, and let pΩ be the output of ESPRIT.
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(a) Moderate SNR regime. We have

E
`
mdppΩ,Ωq2

˘
ď Cτ16

S`2S3

λSpXq
´ Rÿ

r“1

`
Brα

´λr`1
˘2 ¯2 ν2

L
.

(b) Large SNR regime. Define

ρ :“ 1

2
?
6

4S`2∆

S2M

Rÿ

r“1

`
Brα

´λr`1
˘2
.

There is a sufficiently large Dτ ě 1 depending only on τ

such that if

L

ν2
ě Dτ

λS

Rÿ

r“1

`
Brα

´λr`1
˘2

max
´
1,

1

ρ
,
1

ρ2

¯
,

then it holds that

E
`
mdppΩ,Ωq2

˘
Àτ

1

λSpXq

Rÿ

r“1

`
Brα

´λr`1
˘2 ν2

L
.

Theorem V.4 provides an estimate of the support error in

multi-snapshot ESPRIT under the separated clumps model. Let

λ be the cardinality of the largest clump defined in (V.2). If the

assumptions in part (b) hold, then we can provide a simpler

estimate,

E
`
mdppΩ,Ωq2

˘
ÀM,S,λ,τ

SRF2λ´2

λSpXq
ν2

L
. (V.6)

This perturbation bound on ESPRIT is verified by numerical

experiments in Section VII.

In comparison, classical perturbation bounds on MUSIC and

ESPRIT usually depend on some eigenvalues and eigenvectors

of the noiseless covariance matrix Y , such as (29a, 29b) of

[41]. If we know the true source locations and amplitudes,

we can compute the eigenvalues and eigenvectors, and then

plug them into (29a) of [41]. In real applications, we do not

know the true source locations and amplitudes. Therefore,

those bounds can not be directly evaluated.

In the special case of two sources, (33a) of [41] shows

that the squared source localization error is proportional to

p1{∆q2 “ SRF2 (∆ is referred as the one defined in [41]).

The two-source scenario is a special case of our clumps model

where the support consists of a single clump with two point

sources: R “ 1 and λ “ 2. Therefore, (33a) of [41] is

a special case of our Theorem V.3 and Theorem V.4. Our

results consider a more general class of support, and such

generalization is highly nontrivial.

VI. CRAMÉR-RAO LOWER BOUND

A. Background

The classical Cramér-Rao bound (CRB) [8] expresses a

lower bound on the variance of any unbiased estimator of the

support Ω. In literature, the Cramér-Rao lower bound has been

derived for various models of the support set, and we review

some important contributions further below.

Before we proceed, let us recall some old definitions and

define some new ones that will be used in this section and

Section XI-E. Let ξ P T.

‚ φpξq P CM denotes the vector whose k-th entry, for 0 ď
k ď M ´ 1, is e´2πikξ .

‚ For each ℓ ě 0, we let φpℓq P CM be the vector whose

entries are the ℓ-th derivative of φpξq. Hence, φpℓqpξqk :“
p´2πikqℓe´2πikξ .

‚ For convenience, we let ψpξq :“ φp1qpξq, which will play

an important role below.

‚ Given Ω, we let Φ,Ψ P CMˆS be the matrices whose

columns are of the form φpθq and ψpθq, respectively, for

each θ P Ω.

The CRB for spectral estimation has been extensively

studied [21], [26], [38], [49], [50]. We briefly review some

important results. A fundamental result in [49, Theorem 4.1]

implies that, under appropriate assumptions, for any unbiased

estimator pΩ :“ tpωjuSj“1 of Ω :“ tωjuSj“1, not necessarily just

MUSIC or ESPRIT, we have

E

´`pΩ ´ Ω
˘`pΩ ´ Ω

˘˚¯
ě ν2

2L

´
Re

`
Ψ˚pI ´ PΦqΨ dX

˘¯´1

.

(VI.1)

To simplify the notation in this section, we always assume

that the elements of pΩ have been re-indexed to minimize its

matching distance to Ω.

While inequality (VI.1) already gives the optimal depen-

dence on the noise variance ν2 and the number of snapshots

L, the matrix that appears on the right hand side implicitly

depends on Ω, so it is unclear how pRepΨ˚pI´PΦqΨdX
˘
q´1

behaves as a function of Ω and M . One would hope for an

explicit bound depending on the geometry of Ω.

The paper [26] considered a situation where Ω consists of

S points approximately spaced by ε. The main result in the

aforementioned paper provided an expansion of the right hand

side of (VI.1) in the asymptotic limit ε Ñ 0. In particular, it

was shown that

E
`
mdppΩ,Ωq2

˘
ě Cν2ε´2S`2

L
`Opε´2S`3q, (VI.2)

where C ą 0 is independent of ε, ν, L but is allowed to depend

on the other parameters.

B. New CRB for clumps model

The geometric results in Section V, as well as prior work on

super-resolution [30], strongly suggest that inequality (VI.2)

is unnecessarily pessimistic and is achieved in the worst-case

scenario where all point sources are located in a single clump.

This section provides a new CRB for the separated clumps

model, under the additional requirements that each clump has

λ elements that are equally spaced by a small parameter ε.

We will derive a CRB on the order of ε´2λ`2, which is much

improved since it is possible that λ ! S.

We consider a situation where there are R clumps that are

far apart, and each clump contains λ points separated by ε.

This is a more specific model than the one considered in

Assumption V.1.

Definition VI.1. We say Ωε Ď T is a pε,R, λ, tθruRr“1q set if

ε ă λ´1 minr ­“s |θr ´ θs|T and Ωε can be written as

Ωε “
Rď

r“1

tθr, θr ` ε, . . . , θr ` pλ´ 1qεu.
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Note that this implies Ωε consists of R disjoint sets each

supported in an interval of length pλ ´ 1qε and Ωε has

cardinality S “ Rλ.

We also require the following assumptions on the noise and

amplitudes.

Assumption VI.2. Fix any positive integers L,M, S such that

M ě S and L ě S.

(a) Fix M,R, λ and distinct θ1, . . . , θR Ď T and let Ωε be a

pε,R, λ, tθruRr“1q set.

(b) The amplitude covariance matrix X is strictly positive-

definite.

(c) For each t ą 0 and 1 ď j ď M , ejptq is a Gaussian

random vector with independent entries such that ejptq „
Np0, ν2q. Also assume that epsq and eptq are independent

for s ­“ t.

(d) For each 1 ď ℓ ď L, we are given

yptℓq “ ΦpΩεqxptℓq ` eptℓq.

Theorem VI.3. Under Assumption VI.2, there exists ε0 ă
p2πλpM ´ 1qq´1 depending only on M , λ, and tθruRr“1 such

that the following hold. For all ε P p0, ε0q, any unbiased

estimator pΩε of Ωε satisfies the lower bound

E
`
mdppΩε,Ωεq2

˘
ě C

`
εpM ´ 1q

˘´2λ`2
ν2

LpM ´ 1q3}X}2
, (VI.3)

where the implicit constant C ą 0 does not depend on L, M ,

X , ε, and ν.

Theorem VI.3 is proved in Section XI-E.

The right hand side of (VI.3) can be made more explicit

by using the super-resolution factor. Since ε is the minimum

separation of Ωε and M is the total number of Fourier

measurements, we see that εpM ´ 1q “ SRF´1. Note that

the assumption on ε0 in Theorem VI.3 necessarily implies

SRF ą 1, and (VI.3) becomes

E
`
mdppΩε,Ωεq2

˘
ě C SRF2λ´2 ν2

LpM ´ 1q3}X}2
. (VI.4)

C. Comparison of our CRB and the classical CRB

In order to explain the main improvement of Theorem VI.3

over classical the CRBs, consider the support set shown in

Figure 2. For the Ω depicted in Figure 2, the classical CRB,

such as (VI.2), yields the prediction that for any unbiased

estimator pΩ,

E
`
mdppΩ,Ωq2

˘
ě Cε´10ν2

L
` lower order terms.

On the other hand, our CRB in Theorem VI.3 yields

E
`
mdppΩ,Ωq2

˘
ě C ν2ε´4

pM ´ 1q7L}X} . (VI.5)

In the super-resolution regime, ε can be much smaller than

1{M , so our CRB provides a significant improvement over

the classical CRB.

ε

Λ1

ε

Λ2well separated

Fig. 2. A comparison of the classical CRB and our new CRB for clumps. Ω
consists of 2 clumps where each clump contains λ “ 3 equally spaced points
with separation ε.

D. Near optimality of ESPRIT

ESPRIT is one of the most popular subspace methods

for spectral estimation. To compare our upper bound for

ESPRIT and our new CRB, we consider a situation where

the assumptions to both Theorems V.4 and VI.3 hold.

‚ Suppose Ω consists of separated clumps with parameters

pR,M, S, α, βq where β satisfies the relationship (V.1).

Moreover, we further impose that each clump has car-

dinality λ and are equally spaced by α{pM ´ 1q. Then

Ω is also a pε,R, λ, tθruRr“1q set where ε “ α{pM ´ 1q
and each θr is the left most point in the r-th clump. An

example is depicted in Figure 1.

‚ Assume that the amplitude covariance matrix X is strictly

positive-definite.

‚ Assume that for each t ą 0 and 1 ď j ď M , ejptq is

a Gaussian random vector with independent entries such

that ejptq „ Np0, ν2q. Also assume that epsq and eptq
are independent for s ­“ t.

If L{ν2 is sufficiently large so that the assumptions in Theorem

V.4 part (b) hold, then the output of ESPRIT satisfies

E
`
mdppΩ,Ωq2

˘
ÀM,S,λ

SRF2λ´2

λSpXq
ν2

L
.

On the other hand, for any unbiased estimator pΩ, Theorem

VI.3 and (VI.4) demonstrate that

E
`
mdppΩ,Ωq2

˘
ÁM,S,λ

SRF2λ´2

}X}2
ν2

L
.

Notice that these statements are not contradictory since

}X}2 “ λ1pXq ě λSpXq.
Thus, we observe that ESPRIT has the same dependence

on the noise level ν, the number of snapshots L, and the

super-resolution factor SRF compared to the optimal unbiased

estimator(s).

VII. NUMERICAL EXPERIMENTS

In this section, we perform systematic numerical simulations

to validate our theory, under the separated clumps model. We

consider the support Ω consisting of 2 clumps of point sources,

i.e., R “ 2. Each clump contains λ equally spaced points

separated by ∆ for λ “ 2 and λ “ 3 respectively. Each

amplitude is i.i.d. complex normal CNp0, 1q such that the real

and imaginary parts are independent normal, i.e. Np0, 1{2q.

With such amplitudes, λSpXq « 1. Each noise is an i.i.d.

CNp0, ν2q random variable whose real and imaginary parts

are independent normal, i.e. Np0, ν2{2q. We take L snapshots

of M “ 100 noisy Fourier measurements according to (I.1).

Our upper bounds are proved for the noise-space correlation
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(NSC) function perturbation in MUSIC and the support error

in ESPRIT. When λ “ 2 and λ “ 3, we conduct 100 and 2500

trials of experiments respectively, and display the average NSC

function perturbation in MUSIC and support error in ESPRIT,

as well as the standard deviation in Figure 3 - 6. The standard

deviation is represented by the error bar.

Our numerical experiments in Figure 3 - 6 are to validate

the NSC perturbation in MUSIC and the support error in

ESPRIT versus the noise standard deviation ν, the number of

snapshots L, σSpΦq and SRF. For MUSIC, the perturbation of

the NSC is proved in Theorem IV.5 and Theorem V.3 where

the dependence on ν, L, σSpΦq, SRF, M can be summarized

as:

E
`
} pR ´ R}8

˘
À

?
Mνa

λSpXqσSpΦq
?
L

À
?
M SRFλ´1νa
λSpXq

?
L
.

(VII.1)

For ESPRIT, the support error is proved in Theorem IV.6 and

Theorem V.4 where the dependence on ν, L, σSpΦq, SRF, M

in the large SNR regime can be summarized as:

E
`
mdppΩ,Ωq

˘
À

?
Mνa

λSpXqσSpΦq
?
L

À
?
M SRFλ´1νa
λSpXq

?
L
.

(VII.2)

Finally, we show phase transition figures for ESPRIT that

validate our perturbation analysis for ESPRIT.

A. Error versus Noise

We first test the NSC perturbation in MUSIC and the

support error in ESPRIT versus Noise. We set SRF “ 5,

L “ 1000 and 25000 for λ “ 2 and 3 respectively. Figure

3 (a) shows the NSC perturbation in MUSIC as a function of

noise ν in log10 scale. Figure 3 (b) shows the support error

in ESPRIT as a function of noise ν in log10 scale. The slope

for all curves is close to 1, which demonstrates that the NSC

perturbation in MUSIC and the support error in ESPRIT is

linear in noise as predicted in (VII.1) and (VII.2).
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Fig. 3. (a) Noise-space correlation (NSC) function perturbation in MUSIC
versus noise ν in log10 scale for λ “ 2 and λ “ 3; (b) Support error in
ESPRIT versus noise ν in log10 scale for λ “ 2 and λ “ 3.

B. Error versus the number of snapshots L

We next test the NSC perturbation in MUSIC and the

support error in ESPRIT versus the number of snapshots L,

when ν “ 0.1 and SRF “ 5. Figure 4 (a) shows the NSC

perturbation in MUSIC as a function of L in log10 scale.

Figure 4 (b) shows the support error in ESPRIT as a function

of L in log10 scale. The slope for all curves is close to ´0.5,

which is consistent with (VII.1) and (VII.2).
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Fig. 4. (a) NSC perturbation in MUSIC versus L in log10 scale for λ “ 2
and λ “ 3; (b) Support error in ESPRIT versus L in log10 scale for λ “ 2
and λ “ 3.

C. Error versus σSpΦq and super-resolution factor (SRF)

Finally we test the NSC perturbation in MUSIC and the

support error in ESPRIT versus σSpΦq and SRF respectively,

when L “ 1000 and ν “ 0.1. While R and λ are fixed, we

vary ∆ such that σSpΦq and SRF vary.

Figure 5 (a) shows the NSC perturbation in MUSIC as

a function of σSpΦq in log10 scale. Figure 5 (b) shows the

support error in ESPRIT as a function of σSpΦq in log10 scale.

The slope for all curves is around ´1, which is consistent with

(VII.1) and (VII.2).

Figure 6 (a) shows the NSC perturbation in MUSIC as a

function of SRF in log10 scale. Figure 6 (b) shows the support

error in ESPRIT as a function of SRF in log10 scale. The slope

for all curves is around λ´1, which is consistent with (VII.1)

and (VII.2).
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Fig. 5. (a) NSC perturbation in MUSIC versus σSpΦq in log10 scale for
λ “ 2 and λ “ 3; (b) Support error in ESPRIT versus σSpΦq in log10 scale
for λ “ 2 and λ “ 3.
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Fig. 6. (a) NSC perturbation in MUSIC versus SRF in log10 scale for λ “ 2
and λ “ 3; (b) Support error in ESPRIT versus SRF in log10 scale for λ “ 2
and λ “ 3.
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D. Phase transition figures for ESPRIT

Finally we show the phase transition figures of ESPRIT in

Figure 7. Figure 7 shows the average log2rmdppΩ,Ωq{∆s with

respect to: (a,b) log10 L and log10 ν when λ “ 2 and λ “ 3;

(c,d) log10 L and log10 SRF when λ “ 2 and λ “ 3; (e,f)

log10 SRF and log10 ν when λ “ 2 and λ “ 3. We observe a

clear phase transition phenomenon, and a blue phase transition

curve is extracted in each figure. According to (VII.2), we

expect the phase transition curve follows

pλ´ 1q log10 SRF ` log ν „ 1{2 logL. (VII.3)

After numerically fitting the phase transition curves, our em-

pirical slope is consistent with our theoretical one in (VII.3).
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(a) Noise-L Phase transition when
λ “ 2, slope « 0.50
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(b) Noise-L Phase transition when
λ “ 3, slope « 0.49
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(c) SRF-L Phase transition when
λ “ 2, slope « 0.50
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(d) SRF-L Phase transition when
λ “ 3, slope « 0.25
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(e) Noise-SRF Phase transition when
λ “ 2, slope « ´0.98
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(f) Noise-SRF Phase transition
when λ “ 3, slope « ´1.93

Fig. 7. Color plot for the average log2rmdppΩ,Ωq{∆s for ESPRIT with
respect to: (a)-(b) ν vs L, (c)-(d) SRF vs L, (e)-(f) ν vs SRF when λ “ 2
(left column) and λ “ 3 (right column). The slope in (a,b) is about 0.5; the
slope in (c,d) is about 0.5{pλ ´ 1q; the slope in (e,f) is about ´pλ ´ 1q,
which is consistent with (VII.3).

VIII. MULTIPLE VERSUS SINGLE SNAPSHOT

This paper focuses on the multi-snapshot spectral estimation

problem where Fourier measurements of xptq and Ω are

collected at L different time instances. Since information is

collected at different times, it is natural to impose statistical

assumptions, which is what we and many other papers have

done.

MUSIC and ESPRIT are still applicable for the single-

snapshot spectral estimation problem (the L “ 1 case),

with proper modification. Instead of forming the empirical

covariance matrix pY in the first step of Algorithm 1, one forms

the Hankel matrix of a single-snapshot [31], [32]. From a

theoretical perspective, the single-snapshot problem is usually

treated from a deterministic point of view.

Single-snapshot MUSIC and ESPRIT enjoy theoretically

provable robustness properties in the super-resolution regime,

as shown in [30], [31]. The main results there show that for

MUSIC and ESPRIT,

single-snapshot error À ν

σ2
SpΦq À SRF2pλ´1qν, (VIII.1)

where the implicit constants do not depend on the noise

standard deviation ν, the support set Ω, and SRF. This upper

bound matches, up to implicit constants, the minimax lower

bounds [2], [30].

A naı̈ve guess is that the error incurred by multi-snapshot

MUSIC and ESPRIT would be 1{
?
L times that of the single-

snapshot setting. Perhaps surprisingly, our results show that

this naı̈ve guess is incorrect. Indeed, the main results of

this paper for MUSIC (Theorems IV.5 and V.3) and ESPRIT

(Theorems IV.6 and V.4) show that on average,

multi-snapshot error À ν

σSpΦq
?
L

À SRFλ´1ν?
L

, (VIII.2)

where again, the implicit constants do not depend on the noise

standard deviation ν, the support set Ω, SRF, and L.

Comparing the upper bounds for single-snapshot and multi-

snapshot errors, we see that not only does collecting multiple

snapshots provide us with the extra 1{
?
L cancellation, but it

also enjoys an additional square root in the 1{σSpΦq and SRF

terms. In other words, the condition numbers of multi-snapshot

MUSIC and ESPRIT are significantly better than their single-

snapshot counterparts.

The improvement can be explained by the strictly positive-

definite assumption on X made in Assumption II.1. To see

why, consider the deterministic setting where xptq is fixed

throughout time, so xpt1q “ ¨ ¨ ¨ “ xptLq. Then the collected

snapshots are of the form,

yptℓq “ ΦpΩqxpt1q ` eptℓq.
Hence, collecting multiple snapshots does not provide us with

any new information about the range of Φ since xptq is

constant, and the best that can be done is to average all L

such snapshots,

1

L

Lÿ

ℓ“1

yptℓq “ ΦpΩqxpt1q ` 1

L

Lÿ

ℓ“1

eptℓq,

in order to reduce the variance of the noise by a factor of L

and feed this averaged signal into single-snapshot MUSIC and

ESPRIT. In this highly degenerate situation, the naı̈ve guess for

the stability of multi-snapshot MUSIC and ESPRIT is correct.

We also explain how the strictly positive-definite assumption

on X changes the inherent geometry of the problem. For the

sake of this discussion, assume that eptq “ 0 for all t ą 0.

Since Ω does not change in time, yptℓq P RpΦq for each

1 ď ℓ ď L. If X is strictly positive definite, then txptℓquLℓ“1

spans a S-dimensional subspace, so the span of typtℓquLℓ“1 is
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precisely RpΦq. On the other hand, if X does not have full

rank, then typtℓquLℓ“1 only contains partial information about

the range of Φ. In which case, multi-snapshot MUSIC and

ESPRIT would fail and we would need to use their single-

snapshot versions.

IX. CONCLUSION AND DISCUSSION

This paper analyzes the performance of MUSIC and ES-

PRIT, and identifies some key quantities that control their

stability: number of snapshots, noise variance, amplitude co-

variance matrix, and the smallest singular value of Fourier

matrices (which can then be further estimated in terms of

SRF). Our results accurately quantify intuitive phenomenon.

For instance, if many point sources are closely spaced then

we expect recovery to be sensitive to noise – this is precisely

captured by our results since in this case, σSpΦq would be

small, and SRFλ would be large. Likewise if the amplitudes

of xptq vary slowly over time, then we expect inversion to

be challenging – this is again captured by our results since

in that case, λSpXq would be small and lead to instability. If

λSpXq “ 0, then multi-snapshot ESPRIT and MUSIC would

fail, but we can instead use their single snapshot versions.

The upper bound for ESPRIT matches a Cramér-Rao lower

bound in terms of SRF and max clump cardinality. This proves

that no unbiased algorithm can be fundamentally better than

ESPRIT for this imaging problem in the large SRF regime

– any improvements can only be made in terms of other

model parameters such as S, M , and λ. These are valuable

results for practitioners, as they provide an accurate and solid

theoretical footing for discriminating between favorable and

unfavorable imaging situations. While this paper only focuses

on a one dimensional scenario with plain MUSIC and ESPRIT,

we believe the techniques here are also relevant for the analysis

of their multi-dimensional counterparts and variations.
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XI. PROOFS

A. Proof of Theorem III.4

Proof. Recall that YL “ ΦXL ` EL. To put this in the

framework of [5], we rescale the problem so that
?
L

ν
YL “

?
L

ν
ΦXL `

?
L

ν
EL,

so that now EL
?
L{ν is a MˆL matrix with i.i.d. G1,τ entries.

This scaling does not change the singular spaces of YL and

ΦXL. Applying [5, Theorem 3], which extends to complex

matrices without issue, there is a Cτ ą 0 only depending on

τ such that

E
`
distp pU,Uq2

˘
ď CτMpν2σ2

SpΦXLq ` ν4q
Lσ4

SpΦXLq . (XI.1)

Since XL is full rank and assumption (II.2) holds, we have

σSpΦXLq ě σSpΦqσSpXLq “ σSpΦq
a
λSpXq ě ν.

Using this inequality in (XI.1) completes the proof.

B. Proof of Theorem IV.5

Proof. We start with a deterministic inequality that links the

perturbation of R to the distance between U and pU . For any

ω P r0, 1q, we have

|Rpωq ´ pRpωq| ď }PU ´ P pU } “ distpU, pUq,

where the last identity follows from (III.2). This shows that

E
`
}R ´ pR}28

˘
ď E

`
distpU, pUq2

˘
.

Using Theorem III.4 completes the proof.

C. Preparation and proof of Theorem IV.6 part (a)

The stability of ESPRIT relies on several deterministic

perturbation results for the perturbation of pΨ from Ψ, that

can be estimated by matrix perturbation theory.

Lemma XI.1. Suppose M ě S ` 1 and distp pU,Uq ď
2´pS`2q. Then

}pΨ ´ Ψ}2 ď 22S`4 distp pU,Uq. (XI.2)

Proof. Before we proceed to the stability analysis, we need to

point out an important feature of ESPRIT. ESPRIT is invariant

to the specific choice of orthonormal basis for the column span

of pU . In other words, the eigenvalues of pΨ remain the same if

one uses different orthonormal basis for the column space of
pU [31, Section III]. According to [7, Lemma 2.1.3], we can

properly choose an orthonormal basis for pU such that

} pU ´ U}2 ď
?
2 distp pU,Uq. (XI.3)

According to [31, Lemma 3], σSpU0q is lower bounded such

that

min
`
σSpU0q, σSpU1q

˘
ě 2´S . (XI.4)

Combining (XI.3), (XI.4) and the assumption of Lemma XI.1

implies

} pU0 ´ U0}2 ď } pU ´ U}2 ď
?
2 distp pU,Uq ď 1

2
σSpU0q.

This enables us to apply [31, Lemma 6], and obtain

}pΨ ´ Ψ}2 ď 7} pU ´ U}2
σ2
SpU0q ď 7

?
2

σ2
SpU0q distp

pU,Uq,

which further implies (XI.2) due to (XI.4).

We next provide a deterministic bound between }pΨ ´ Ψ}2
and mdppΩ,Ωq, with [31, Lemma 2].

Lemma XI.2. On the condition that M ě S`1, the following

statements hold:

(a) Moderate perturbation regime. We have

mdppΩ,Ωq ď S3{2?
M

σSpΦq }pΨ ´ Ψ}2.

(b) Small perturbation regime. If additionally,

}pΨ ´ Ψ}2 ď σ2
SpΦq∆
S2M

,

then mdppΩ,Ωq ď }pΨ ´ Ψ}2.
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Proof of Theorem IV.6 part (a). Assume for now that

distp pU,Uq ď 2´pS`2q. Combining Lemmas XI.1 and XI.2

part (a), we obtain the deterministic inequality,

mdppΩ,Ωq ď 4S`2S3{2?
M

σSpΦq distp pU,Uq. (XI.5)

If distp pU,Uq ą 2´pS`2q, then the same inequality still holds

since

mdppΩ,Ωq ď 1 ď 2S`2}Φ}F
σSpΦq distp pU,Uq

ď 4S`2S3{2?
M

σSpΦq distp pU,Uq,

where we used that the Frobenius norm of Φ is
?
MS.

Hence, (XI.5) holds regardless of the value of distp pU,Uq.

Squaring both sides of (XI.5), taking the expectation, and

applying Theorem III.4 completes the proof of part (a) of the

theorem.

D. Preparation and proof of Theorem IV.6 part (b)

We begin by recalling two lemmas, and are essentially

immediate consequences of [5].

Lemma XI.3. Suppose Assumption II.1 holds. Define the

events

E1 :“
!
σ2
SpY ˚

L Uq ě 2

3
σ2
SpΦqλSpXq ` ν2

)
,

E2 :“
!
σ2
S`1pYLq ď 1

3
σ2
SpΦqλSpXq ` ν2

)
.

There exists a sufficiently large Dτ ě 1 depending only on τ

such that the following hold. Suppose

ξ :“ Lσ2
SpΦqλSpXq
Mν2

ě Dτ . (XI.6)

1) There is a c ą 0 depending only on τ such that

P
`
pE1 X E2qc

˘
Àτ expp´cMξq. (XI.7)

2) There are C, c ą 0 depending only on τ such that for all

u ě 0,

P

´
}PY ˚

L
U pYL˚UKq}2 ě uν?

L

¯

Àτ exp
´
CM ´ cmin

`
u2, u

a
Mξ

˘¯
` exp

`
´ cMξ

˘
.

(XI.8)

Proof. The proof essentially follows from Lemma 4 in the

supplement of [5]. For ease of notation, let η :“
?
L{ν. To

use the mentioned lemma, we first rescale by η and take the

conjugate transpose of YL “ ΦXL ` EL to get,

ηY ˚
L “ ηpΦXLq˚ ` ηE˚

L, (XI.9)

Notice that the Lˆ M matrix ηE˚
L has entries that are i.d.d.

G1,τ random variables. The the right singular vectors of ηY ˚
L

are the left singular vectors of YL, and the conjugate transpose

does not alter the singular values or their ordering.

In this proof, C, c are constants that depend only on τ ,

and their values may change from line to line. Now we apply

Lemma 4 in the supplement of [5] to (XI.9) to get that, for

all u1, u2, u ě 0,

P

´
η2σ2

SpY ˚
L Uq ď pη2σ2

SpΦXLq ` Lqp1 ´ u1q
¯

ď C exp
´
CS ´ c

`
η2σ2

SpΦXLq ` L
˘
minpu1, u21q

˘¯
,

P

´
η2σ2

S`1pYLq ě Lp1 ` u2q
¯

ď C exp
´
CM ´ cLminpu2, u22q

¯
.

P

´
η}PY ˚

L
U pYL˚UKq}2 ě u

¯

Àτ exp
´
CM ´ cmin

´
u2, u

b
η2σ2

SpΦXLq ` L
¯¯

` exp
`

´ cpη2σ2
SpΦXLq ` Lq

˘
.

(XI.10)

For the first bound in (XI.10), we pick

u1 :“ 1

3

η2σ2
SpΦXLq

η2σ2
SpΦXLq ` L

ď 1

3
.

Hence, minpu1, u21q “ u21. The noise condition (II.2) implies

that

η2σ2
SpΦXLq ` L ď 2η2σ2

SpΦqλSpXq, (XI.11)

We also have S ď M . So for sufficiently large Dτ depending

only on c, C (which only depend on τ ), condition (XI.6) and

inequality (XI.11) allow us to say that

c
η4σ4

SpΦXLq
η2σ2

SpΦXLq ` L
´ CS

ě c

2
η2σ2

SpΦXLq ´ CM ě c

4
η2σ2

SpΦqλSpXq.
(XI.12)

Inserting this value of u1 into (XI.10), and using the above

observations, we see that

PpEc1q ď P

´
η2σ2

SpY ˚
L Uq ď 2

3
η2σ2

SpΦXLq ` L
¯

ď C exp
`

´ cη2σ2
SpΦqλSpXq

˘
.

For the second bound in (XI.10), we pick

u2 “ 1

3

η2σ2
SpΦXLq
L

“ 1

3

σ2
SpΦXLq
ν2

.

Notice that

Lminpu2, u22q ě 1

9
min

´
η2σ2

SpΦXLq, η
4σ4
SpΦXLq
L

¯

ě 1

9

η4σ4
SpΦXLq

η2σ2
SpΦXLq ` L

.

Using the same argument as in (XI.12), for Dτ sufficiently

large, we see that

cLminpu2, u22q ´ CM ě c

36
η2σ2

SpΦqλSpXq.

Combining these observations shows that

PpEc2q ď P

´
η2σ2

S`1pYLq ě L` 1

3
η2σ2

SpΦXLq
¯

ď C exp
`

´ cη2σ2
SpΦqλSpXq

˘
.

Combining the above with a union bound argument completes

the proof of (XI.7).
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Finally, we proceed to simplify the probability bound

for }PY ˚

L
U pYL˚UKq}2. Since

a
η2σ2

SpΦXLq ` L ěa
η2σ2

SpΦqλSpXq and η2σ2
SpΦXLq ` L ě η2σ2

SpΦqλSpXq,
we can use (XI.10) to get (XI.8).

The next lemma is a deterministic bound. It is Proposition

1 in [5] applied to equation (XI.9).

Lemma XI.4. Suppose Assumption II.1 holds. If σSpY ˚
L Uq ą

σS`1pYLq, then

dp pU,Uq2 ď
σ2
SpY ˚

L Uq}PY ˚

L
U pYL˚UKq}22

pσ2
SpY ˚

L Uq ´ σ2
S`1pYLqq2 .

Proof of Theorem IV.6 part (b). In this proof, we let C ą
0, c ą 0 be constants that only depend on τ . Their values

may change from one line to another. Let E1 and E2 be the

events defined in Lemma XI.3 and set E :“ E1 X E2. Define

the event

H :“
!
dp pU,Uq ď 4S`2σ2

SpΦq∆
S2M

)
“

!
dp pU,Uq ď

?
6ρ

)
.

In this proof, we consider the three events E X H, E X Hc,

and Ec. The first event E X H is a good event where we

will be able to apply Lemma XI.1. The third event Ec can

be readily controlled using Lemma XI.3. The majority of the

proof pertains to the second event E XHc, and to do this, we

will estimate PpHc|Eq.

Under event E , the inequalities in Lemmas XI.3 imply

σ2
SpY ˚

L Uq ´ σ2
S`1pYLq ě 1

3
σ2
SpΦqλSpXq ą 0.

This allows us to use Lemma XI.4 when E occurs. Using

the inequalities in Lemmas XI.3 again, σSpY ˚
L Uq ď σSpYLq

since U has orthonormal columns, and ν2 ď σ2
SpΦqλSpXq

from (II.2), under event E ,

dp pU,Uq2 ď
3pσ2

SpΦqλSpXq ` ν2q}PY ˚

L
U pYL˚UKq}22

σ4
SpΦqλ2SpXq

ď
6}PY ˚

L
U pYL˚UKq}22

σ2
SpΦqλSpXq .

This inequality implies,

PpHc|Eq ď P

´
}PY ˚

L
U pYL˚UKq}2 ě ρσSpΦq

a
λSpXq

ˇ̌
E

¯

“ P

´
}PY ˚

L
U pYL˚UKq}2 ě ρ

a
Mξ

ν?
L

ˇ̌
E

¯

ď P

´
}PY ˚

L
U pYL˚UKq}2 ě ρ

a
Mξ

ν?
L

¯ 1

PpEq .

The 1{PpEq term can be safely ignored, since by Lemma XI.3

and (IV.2), we have

P
`
E
c
˘

Àτ expp´cMξq ď expp´cDτ q.
For Dτ sufficiently large depending only on τ (since the

implicit constants in this inequality only depend on τ ), we

have PpEcq ď 1{2 and PpEq ě 1{2.

Let us continue with our goal of bounding PpHc|Eq. We

use Lemma XI.4 to see that

PpHc|Eq ď 2P
´

}PY ˚

L
U pYL˚UKq}2 ě ρ

a
Mξ

ν?
L

¯

Àτ exp
`
CM ´ cmin

`
ρ2, ρ

˘
Mξ

˘
` expp´cMξq.

Condition (IV.2) implies that ξ ě Dτ {minp1, ρ, ρ2q, so for

sufficiently large Dτ , we have

PpHc|Eq Àτ exp
`

´ cmin
`
1, ρ, ρ2

˘
Mξ

˘

We use the inequality, e´bu2 ď 1{u2 for all u2{ logpu2q ě 1{b,
with u “

?
ξ and b “ cminp1, a, a2qM , which is justified by

(IV.2), to finally see that

PpHc|Eq Àτ

Mν2

σ2
SpΦqλSpXq . (XI.13)

Now we are ready to finish the proof. Recall we have the

trivial upper bound mdppΩ,Ωq ď 1. When event E X H holds,

we can employ Lemma XI.1 and part (b) of Lemma XI.2 to

see that mdppΩ,Ωq1EXH ď 4S`2 distp pU,Uq1EXH. Then

E
`
mdppΩ,Ωq2

˘

“ E
`
mdppΩ,Ωq21E

˘
` E

`
mdppΩ,Ωq21Ec

˘

ď E
`
mdppΩ,Ωq21EXH

˘
` E

`
mdppΩ,Ωq21EXHc

˘
` PpEcq

ď E
`
16S`2 distp pU,Uq21EXH

˘
` PpE X Hcq ` PpEcq

ď 16S`2
E

`
distp pU,Uq2

˘
` PpHc|Eq ` PpE X Hcq.

We use Theorem III.4 to deal with the first term, and inequality

(XI.13) for the second term. For the third term, by Lemma XI.3

and the inequality e´bu2 ď 1{u2 with u “
?
ξ and b “ cM ,

we have

PpEcq Àτ expp´cMξq Àτ

Mν2

σ2
SpΦqλSpXq .

E. Preparation and proof of Theorem VI.3

The proof of the Cramer-Rao lower bound for clumps stated

in Theorem VI.3 requires several technical lemmas. While our

approach is similar in spirit to that of [26], we need to extend

the ideas in the referenced paper to several clumps.

We introduce several functions of a single complex variable

z. We typically use upper-case letters to denote functions of

a single complex variable. The m-th Laurent coefficient of

a F : C Ñ C (expanded at z “ 8) is denoted by bmpF q.

Throughout, we fix a positive integer n and 0 ă ε ă 1. We

define the functions

Gpzq :“
n´1ź

k“0

1

z ´ k
“

8ÿ

m“n

bmpGq
zm

,

and Gεpzq :“
n´1ź

k“0

1

z ´ εk
.

(XI.14)

For each 0 ď j ă n, let

Fε,jpzq :“ Gεpzq
z ´ jε

“ 1

pz ´ jεq

n´1ź

k“0

1

z ´ εk
“

8ÿ

m“n`1

bmpFε,jq
zm

.

(XI.15)

Notice that Fε,j has simple poles at kε for each k ­“ j and

a pole of multiplicity 2 at jε. We have the partial fraction

expansion of Fε,j ,

Fε,jpzq
ź

k ­“j
pjε´ kεq “ 1

pz ´ εjq2 `
n´1ÿ

k“0

Cε,j,k

z ´ kε
. (XI.16)
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Lemma XI.5. For each ε P p0, 1q, positive integer n, and

0 ď j ă n, the coefficients tCε,j,kun´1
k“0 defined in (XI.16)

satisfy the system of n equations:

´ kpjεqk “
n´1ÿ

ℓ“0

pVεqk,ℓCε,j,ℓ, 0 ď k ă n, (XI.17)

where Vε is a Vandermonde matrix with real nodes,

Vε :“

»
———–

1 1 1 ¨ ¨ ¨ 1

0 ε 2ε ¨ ¨ ¨ pn´ 1qε
...

...
...

...

0 εn´1 p2εqn´1 ¨ ¨ ¨
`
pn ´ 1qε

˘n´1

fi
ffiffiffifl .

Proof. Recall the following Laurent series expansions at z “
8: for any w P C, we have

1

z ´ w
“ 1

zp1 ´ w{zq “
8ÿ

m“1

wm´1

zm
,

1

pz ´ wq2 “ ´ d

dz

´ 1

z ´ w

¯
“

8ÿ

m“2

pm´ 1qwm´2

zm
.

Fix 0 ď j ă n. Using these expansions in (XI.15) and (XI.16),

we see that

ź

k ­“j
pjε´ kεq

8ÿ

m“n`1

bmpFε,jq
zm

“
8ÿ

m“2

pm´ 1qpjεqm´2

zm
`
n´1ÿ

k“0

Cε,j,k

8ÿ

m“1

pkεqm´1

zm
.

Examining the z´m terms for 1 ď m ď n in this equation,

we see that

0 “
n´1ÿ

k“0

Cε,j,k,

and that for 2 ď m ď n, we have

0 “ pm ´ 1qpjεqm´2 `
n´1ÿ

k“0

Cε,j,kpkεqm´1.

This is precisely the system of equations in (XI.19).

The following lemma bounds the growth rate of the coeffi-

cients tCε,j,kun´1
k“0 that were defined earlier.

Lemma XI.6. For each ε P p0, 1q, positive integer n, and

0 ď j ă n, the coefficients tCε,j,kun´1
k“0 defined in (XI.16)

satisfy

max
0ďkăn

|Cε,j,k| ď 2n´1pn´ 1q!.

Proof. For 0 ď ℓ ă n, let γℓ denote the circle in the complex

plane oriented counter-clockwise with center εℓ and radius

ε{2. Integrating both sides of equation (XI.16) over γℓ, we

see that

2πiCε,j,ℓ “
´ ż

γℓ

Fε,jpzq dz
¯ ź

k ­“j
pjε ´ kεq.

Here, we used that pz´ kεq´1 for each k ­“ ℓ is holomorphic

in an open disk containing γℓ and that
ş
γℓ

pz ´ ℓεq´2 dz “ 0.

Since γk has circumference πε, the above imply

|Cε,j,ℓ| “ 1

2π

ˇ̌
ˇ
ż

γℓ

Fε,jpzq dz
ˇ̌
ˇ

ź

k ­“j
|jε´ kε|

ď εnpn ´ 1q!
2

´
sup
zPγℓ

|Fε,jpzq|
¯
.

Observe that for each z P γℓ, we have |z ´ ℓε| “ ε{2 and

|z ´ kε| ě ε|ℓ´ k| ´ ε

2
ě ε

2
if k ­“ ℓ.

Hence,

sup
zPγℓ

|Fε,jpzq| “ sup
zPγℓ

´ 1

|z ´ jε|

n´1ź

k“0

1

|z ´ εk|
¯

ď 2n

εn
.

Combining the above inequalities completes the proof.

One of the key results is a following Taylor-like approxi-

mation of ψ by linear combinations of φ. It will be clear in

the proof of Theorem VI.3 why this is helpful.

Lemma XI.7. Fix ξ P T, positive integers n and M , and

0 ď j ă n. For all sufficiently small ε ą 0 depending only

on M , ξ, and j, there exist coefficients tBε,j,kunk“0 Ď R and

tAε,j,ℓuℓěn Ď C that do not depend on ξ such that

ψpξ ` jεq “
n´1ÿ

k“0

Bε,j,k φpξ ` kεq `
8ÿ

ℓ“n
Aε,j,ℓ ε

ℓ´1φ
pℓqpξq
ℓ!

.

Moreover, we have that

|Aε,j,ℓ| ď ℓjℓ´1 ` nℓ`12n´1pn ´ 1q!. (XI.18)

Proof. We first fix 0 ď j ă n. Using that the collection of M

functions, ξ ÞÑ e2πikξ for 0 ď k ď M ´ 1, are analytic, for

sufficiently small ε depending M , ξ and j, we have

φpξ ` jεq “
8ÿ

ℓ“0

φpℓqpξq
ℓ!

pjεqℓ,

where the above series converges absolutely. Differentiating

each term, we see that

ψpξ ` jεq “
8ÿ

ℓ“1

φpℓqpξq
ℓ!

ℓpjεqℓ´1.

We define tBε,j,kun´1
k“0 as the unique solution to the system

of equations:

kpkεq “
n´1ÿ

ℓ“0

pVεqk,ℓBε,j,ℓ, 0 ď k ă n, (XI.19)

where Vε is a Vandermonde matrix as defined in Lemma XI.5.

The tBε,j,kun´1
k“0 are well-defined because Vε is Vandermonde.

Note that Bε,j,k is independent of ξ. By definition, we have

n´1ÿ

ℓ“0

φpℓqpξq
ℓ!

ℓpjεqℓ´1 ´
n´1ÿ

k“0

Bε,j,k

n´1ÿ

ℓ“0

φpℓqpξq
ℓ!

pkεqℓ

“
n´1ÿ

ℓ“0

φpℓqpξq
ℓ!

´
ℓpjεqℓ´1 ´

n´1ÿ

k“0

Bε,j,kpkεqℓ
¯

“ 0.
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Using this equation, we see that

ψpξ ` jεq

“
n´1ÿ

ℓ“0

φpℓqpξq
ℓ!

ℓpjεqℓ´1 `
8ÿ

ℓ“n

φpℓqpξq
ℓ!

ℓpjεqℓ´1

“
n´1ÿ

k“0

Bε,j,k

n´1ÿ

ℓ“0

φpℓqpξq
ℓ!

pkεqℓ `
8ÿ

ℓ“n

φpℓqpξq
ℓ!

ℓpjεqℓ´1

“
n´1ÿ

k“0

Bε,j,k φpξ ` kεq

`
8ÿ

ℓ“n

φpℓqpξq
ℓ!

εℓ´1
´
ℓjℓ´1 ´ ε

n´1ÿ

k“0

Bε,j,kk
ℓ
¯
.

Defining the quantity

Aε,j,ℓ :“ ℓjℓ´1 ´ ε

n´1ÿ

k“0

Bε,j,kk
ℓ

proves the first statement of the lemma.

Observe that the system of equations (XI.17) and (XI.19)

are identical up to a negative sign, and so Bε,j,k “ ´Cε,j,k,

where Cε,j,k is defined in (XI.16). Using the upper bound for

Cε,j,k given in Lemma XI.6 provides us with (XI.18).

Proof of Theorem VI.3. Using that the maximum of a finite

set exceeds its average and inequality (VI.1), we see that

E
`
mdppΩ,Ωq2

˘
ě 1

S

Sÿ

j“1

E|pωε,j ´ ωε,j |2

ě ν2

2LS
Tr

´`
Re

`
Ψ˚pI ´ PΦqΨ dX

˘¯´1¯
.

(XI.20)

Next, we use basic properties of the trace and spectral norm

and that for any matrices A and B, we have }RepAq}2 ď }A}2
and }AdB} ď }A}2}B}2, see [19, Theorem 5.5.1]. Hence

Tr
´`

Re
`
Ψ˚pI ´ PΦqΨ dX

˘¯´1¯

ě
››`

Re
`
Ψ˚pI ´ PΦqΨ dX

˘˘´1››
2

ě
››Re

`
Ψ˚pI ´ PΦqΨ dX

˘››´1

2

ě }X}´1
››Ψ˚pI ´ PΦqΨ

››´1

2
.

(XI.21)

Since pI ´ PΦq is a projection matrix, we have

››Ψ˚pI ´ PΦqΨ
››
2

“
››`

pI ´ PΦqΨ
˘˚`

pI ´ PΦqΨ
˘››

2

ď
››pI ´ PΦqΨ

››2
F
.

(XI.22)

Each column of Ψ has the form ψpθr ` jεq. Let us fix any

1 ď r ď R and 0 ď j ă λ. Applying Lemma XI.7 (with

ξ “ θr and n “ λ ą 0), for all sufficiently small ε depending

on M , θr and j,

pI ´ PΦqψpθr ` jεq “
8ÿ

ℓ“λ
Aε,j,ℓ ε

ℓ´1 pI ´ PΦqφpℓqpθrq
ℓ!

,

(XI.23)

where the above series converges absolutely and we used the

crucial observation that pI ´ PΦqφpθr ` kεq “ 0 for all 0 ď

k ă λ. To make some the resulting expressions simpler, we

set M0 :“ M ´ 1. A direct calculation shows that
››pI ´ PΦqφpℓqpθrq

››
2

ď
››φpℓqpθrq

››
2

“
´ M0ÿ

m“0

ˇ̌
ˇp´2πimqℓe´2πimθr

ˇ̌
ˇ
2¯1{2

ď p2πqℓM ℓ`1{2
0 .

(XI.24)

It follows from equation (XI.23), inequality (XI.24), and the

upper bound for |Aε,j,ℓ| given in Lemma XI.7, that
››pI ´ PΦqψpθr ` jεq

››
2

ď
8ÿ

ℓ“λ
|Aε,j,ℓ| εℓ´1 p2πqℓM ℓ`1{2

0

ℓ!

ď M
3{2
0 pεM0qλ´1

8ÿ

ℓ“λ
|Aε,j,ℓ|

p2πqℓpεM0qℓ´λ
ℓ!

ď M
3{2
0

`
εM0

˘λ´1
8ÿ

ℓ“λ
Cℓ,λ

p2πqℓpεM0qℓ´λ
ℓ!

,

(XI.25)

where we have defined Cℓ,λ :“ ℓλℓ´1 ` λℓ`12λ´1pλ ´ 1q!.
By making ε even smaller if necessary, the series on the right

hand side of (XI.25) converges to some value that can be upper

bounded by a C ą 0 that depends only on λ. Note that from

this equation, a necessary condition is that ε ă p2πλM0q´1.

Recall that ε also depends on θr and j. Making ε even smaller

if necessary so that (XI.25) holds for all θr and j ă λ, we see

that

››pI ´ PΦqΨ
››2
F

“
Rÿ

r“1

λ´1ÿ

j“0

››pI ´ PΦqψpθr ` jεq
››2
2

ď C2RλM3
0

`
εM0

˘2λ´2
.

(XI.26)

Combining inequalities (XI.20), (XI.21), (XI.22), and (XI.26)

completes the proof.

REFERENCES

[1] Arthur Barabell. Improving the resolution performance of
eigenstructure-based direction-finding algorithms. In ICASSP’83.

IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 8, pages 336–339. IEEE, 1983.

[2] Dmitry Batenkov, Laurent Demanet, Gil Goldman, and Yosef Yomdin.
Conditioning of partial nonuniform fourier matrices with clustered
nodes. SIAM Journal on Matrix Analysis and Applications, 41(1):199–
220, 2020.

[3] Dmitry Batenkov, Benedikt Diederichs, Gil Goldman, and Yosef
Yomdin. The spectral properties of vandermonde matrices with clustered
nodes. Linear Algebra and its Applications, 2020.

[4] John J. Benedetto and Weilin Li. Super-resolution by means of Beurling
minimal extrapolation. Applied and Computational Harmonic Analysis,
48(1):218–241, 2020.

[5] T. Tony Cai and Anru Zhang. Rate-optimal perturbation bounds for
singular subspaces with applications to high-dimensional statistics. The
Annals of Statistics, 46(1):60–89, 2018.

[6] Emmanuel J. Candès and Carlos Fernandez-Granda. Super-resolution
from noisy data. Journal of Fourier Analysis and Applications,
19(6):1229–1254, 2013.

[7] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Spectral
methods for data science: A statistical perspective. arXiv preprint
arXiv:2012.08496, 2020.

[8] Harald Cramér. Mathematical methods of statistics, volume 43. Prince-
ton university press, 1999.

[9] A De Maio, A Farina, and G Foglia. Target fluctuation models and their
application to radar performance prediction. IEE Proceedings-Radar,

Sonar and Navigation, 151(5):261–269, 2004.



16

[10] Arnold Jan Den Dekker and A. Van den Bos. Resolution: A survey.
Journal of Optical Society of America, 14(3):547–557, 1997.

[11] Benedikt Diederichs. Well-posedness of sparse frequency estimation.
arXiv preprint arXiv:1905.08005, 2019.

[12] El-Hadi Djermoune and Marc Tomczak. Perturbation analysis of
subspace-based methods in estimating a damped complex exponential.
IEEE Transactions on Signal Processing, 57(11):4558–4563, 2009.

[13] David L. Donoho. Superresolution via sparsity constraints. SIAM

Journal on Mathematical Analysis, 23(5):1309–1331, 1992.
[14] Vincent Duval and Gabriel Peyré. Exact support recovery for sparse
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